1
|
Hu J, Liu C, Zeng X, Tang T, Zeng Z, Wu J, Tan X, Dai Q, Jin C. Prochloraz induced alterations in the expression of mRNA in the reproductive system of male offspring mice. PeerJ 2024; 12:e17917. [PMID: 39210919 PMCID: PMC11361262 DOI: 10.7717/peerj.17917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Prochloraz is a widely used fungicide worldwide. It is classified as an endocrine disrupting pesticide that affects the reproductive system. This study aimed to examine the impact of exposure to prochloraz of male mice on the reproductive system of their offspring male mice. Male father mice were intragastrically administered different dosages of prochloraz (group MA: 0 mg/kg/day; MB: 53.33 mg/kg/day; MD:160 mg/kg/day). Then, the testicular average weight of male offspring in the dose groups was found to be significantly lower than those in the control group (MB:0.312g, MD:0.294g, and MA:0.355 g; P < 0.05). Additionally, the testicular coefficient index in the MB and MD groups was also lower than that of the control group. Secondly,we observed that there were significantly different expressed genes clustered in groups B and D, in contrast to the control. Finally, the findings demonstrated a significant alteration in the response of male mice reproductive relative genes to prochloraz invasion. Two genes (Mt-nd6 and Slc12a4) were found to be involved in the regulation of sperm mitochondria function and six genes (Greb1, Esrrb, Catsperb, Mospd2, Sohlh1 and Specc1) were closely linked to sperm functions and estrogen response. The study revealed a significant impact of prochloraz on the reproductive system of male mice, thereby supporting further investigation into the reproductive toxicological effects of the drug.
Collapse
Affiliation(s)
- Junhe Hu
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Chang Liu
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Xianghui Zeng
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Tao Tang
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Zhi Zeng
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Juan Wu
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Xiansheng Tan
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Qingxiang Dai
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| | - Chenzhong Jin
- Hunan Provincial Key Laboratory of Pesticide Harmless Application, Loudi, Hunan Province, China
- Department of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, Hunan Province, China
| |
Collapse
|
2
|
Bovee TF, Heusinkveld HJ, Dodd S, Peijnenburg A, Rijkers D, Blokland M, Sprong RC, Crépet A, Nolles A, Zwart EP, Gremmer ER, Ven LTVD. Dose addition in mixtures of compounds with dissimilar endocrine modes of action in in vitro receptor activation assays and the zebrafish sexual development test. Food Chem Toxicol 2024; 184:114432. [PMID: 38176580 DOI: 10.1016/j.fct.2023.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Human exposure to pesticides is being associated with feminisation for which a decrease of the anogenital distance (AGD) is a sensitive endpoint. Dose addition for the cumulative risk assessment of pesticides in food is considered sufficiently conservative for combinations of compounds with both similar and dissimilar modes of action (MoA). OBJECTIVE The present study was designed to test the dose addition hypothesis in a binary mixture of endocrine active compounds with a dissimilar mode of action for the endpoint feminisation. METHODS Compounds were selected from a list of chemicals of which exposure is related to a decrease of the AGD in rats and completed with reference compounds. These chemicals were characterised using specific in vitro transcriptional activation (TA) assays for estrogenic and androgenic properties, leading to a final selection of dienestrol as an ER-agonist and flutamide, linuron, and deltamethrin as AR-antagonists. These compounds were then tested in an in vivo model, i.e. in zebrafish (Danio rerio), using sex ratio in the population as an endpoint in order to confirm their feminising effect and MoA. Ultimately, the fish model was used to test a binary mixture of flutamide and dienestrol. RESULTS Statistical analysis of the binary mixture of flutamide and dienestrol in the fish sexual development tests (FSDT) with zebrafish supported dose addition.
Collapse
Affiliation(s)
- Toine Fh Bovee
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands.
| | - Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Sophie Dodd
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Deborah Rijkers
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Marco Blokland
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - R Corinne Sprong
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Amélie Crépet
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, 947001, Maisons-Alfort, France
| | - Antsje Nolles
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Edwin P Zwart
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Eric R Gremmer
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Leo Tm van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA, Bilthoven, the Netherlands
| |
Collapse
|
3
|
Durcik M, Grobin A, Roškar R, Trontelj J, Peterlin Mašič L. Estrogenic potency of endocrine disrupting chemicals and their mixtures detected in environmental waters and wastewaters. CHEMOSPHERE 2023; 330:138712. [PMID: 37068617 DOI: 10.1016/j.chemosphere.2023.138712] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/14/2023]
Abstract
Endocrine disrupting chemicals such as natural and synthetic steroid hormones and bisphenols are among the most important pollutants in the aquatic environment. We performed an environmental chemical analysis of five Slovenian water samples, two rivers, one groundwater, and the influent and effluent of wastewater treatment plants, with a highly sensitive analysis of twenty-five endocrine-disrupting compounds belonging to the groups of natural hormones, synthetic hormones, and bisphenols. Since these compounds are simultaneously present in the environment, it is important to study their individual effects as well as the effects of mixtures. We investigated in vitro the estrogenic potency of selected natural and synthetic steroid hormones and bisphenols detected in surface, ground and waste water in Slovenia using the OECD-validated transactivation assay on the cell line Hela9903. We predicted their mixture effects using the concentration addition model and compared them with experimentally determined values. Two mixing designs were used: a balanced design in which chemicals were combined in proportion to their individual EC50 values, and an unbalanced design with compounds in proportion to their measured concentrations in the environmental samples. The estrogenic effects of the experimental mixtures followed the concentration addition model. Real water samples exhibited weaker estrogenic effects, showing the great heterogeneity of the real water samples.
Collapse
Affiliation(s)
- Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Andrej Grobin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Lupu DI, Cediel Ulloa A, Rüegg J. Endocrine-Disrupting Chemicals and Hippocampal Development: The Role of Estrogen and Androgen Signaling. Neuroendocrinology 2023; 113:1193-1214. [PMID: 37356425 DOI: 10.1159/000531669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Hormones are important regulators of key processes during fetal brain development. Thus, the developing brain is vulnerable to the action of chemicals that can interfere with endocrine signals. Epidemiological studies have pointed toward sexually dimorphic associations between neurodevelopmental outcomes, such as cognitive abilities, in children and prenatal exposure to endocrine-disrupting chemicals (EDCs). This points toward disruption of sex steroid signaling in the development of neural structures underlying cognitive functions, such as the hippocampus, an essential mediator of learning and memory processes. Indeed, during development, the hippocampus is subjected to the organizational effects of estrogens and androgens, which influence hippocampal cell proliferation, differentiation, dendritic growth, and synaptogenesis in the hippocampal fields of Cornu Ammonis and the dentate gyrus. These early organizational effects correlate with a sexual dimorphism in spatial cognition and are subject to exogenous chemical perturbations. This review summarizes the current knowledge about the organizational effects of estrogens and androgens on the developing hippocampus and the evidence for hippocampal-dependent learning and memory perturbations induced by developmental exposure to EDCs. We conclude that, while it is clear that sex hormone signaling plays a significant role during hippocampal development, a complete picture at the molecular and cellular levels would be needed to establish causative links between the endocrine modes of action exerted by EDCs and the adverse outcomes these chemicals can induce at the organism level.
Collapse
Affiliation(s)
- Diana-Ioana Lupu
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Dutta S, Sengupta P, Bagchi S, Chhikara BS, Pavlík A, Sláma P, Roychoudhury S. Reproductive toxicity of combined effects of endocrine disruptors on human reproduction. Front Cell Dev Biol 2023; 11:1162015. [PMID: 37250900 PMCID: PMC10214012 DOI: 10.3389/fcell.2023.1162015] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Confluence of environmental, genetic, and lifestyle variables is responsible for deterioration of human fecundity. Endocrine disruptors or endocrine disrupting chemicals (EDCs) may be found in a variety of foods, water, air, beverages, and tobacco smoke. It has been demonstrated in experimental investigations that a wide range of endocrine disrupting chemicals have negative effects on human reproductive function. However, evidence on the reproductive consequences of human exposure to endocrine disrupting chemicals is sparse and/or conflicting in the scientific literature. The combined toxicological assessment is a practical method for assessing the hazards of cocktails of chemicals, co-existing in the environment. The current review provides a comprehensive overview of studies emphasizing the combined toxicity of endocrine disrupting chemicals on human reproduction. Endocrine disrupting chemicals interact with each other to disrupt the different endocrine axes, resulting in severe gonadal dysfunctions. Transgenerational epigenetic effects have also been induced in germ cells, mostly through DNA methylation and epimutations. Similarly, after acute or chronic exposure to endocrine disrupting chemicals combinations, increased oxidative stress (OS), elevated antioxidant enzymatic activity, disrupted reproductive cycle, and reduced steroidogenesis are often reported consequences. The article also discusses the concentration addition (CA) and independent action (IA) prediction models, which reveal the importance of various synergistic actions of endocrine disrupting chemicals mixtures. More crucially, this evidence-based study addresses the research limitations and information gaps, as well as particularly presents the future research views on combined endocrine disrupting chemicals toxicity on human reproduction.
Collapse
Affiliation(s)
- Sulagna Dutta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Sovan Bagchi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Bhupender S. Chhikara
- Molecular Medicinal and Material NanoChemistry Laboratory, Department of Chemistry, Aditi Mahavidyalaya, University of Delhi, Delhi, India
| | - Aleš Pavlík
- Laboratory of Animal Physiology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petr Sláma
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | | |
Collapse
|
6
|
Hardy F, Takser L, Gillet V, Baccarelli AA, Bellenger JP. Characterization of childhood exposure to environmental contaminants using stool in a semi-urban middle-class cohort from eastern Canada. ENVIRONMENTAL RESEARCH 2023; 222:115367. [PMID: 36709028 DOI: 10.1016/j.envres.2023.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Children are exposed to various environmental organic and inorganic contaminants with effects on health outcomes still largely unknown. Many matrices (e.g., blood, urine, nail, hair) have been used to characterize exposure to organic and inorganic contaminants. The sampling of feces presents several advantages; it is non-invasive and provides a direct evaluation of the gut microbiome exposure to contaminants. The gut microbiome is a key factor in neurological development through the brain-gut axis. Its composition and disturbances can affect the neurodevelopment of children. Characterization of children exposure to contaminants is often performed on vulnerable populations (e.g., from developing countries, low-income neighborhoods, and large urban centers). Data on the exposure of children from middle-class, semi-urban, and mid-size populations to contaminants is scarce despite representing a significant fraction of the population in North America. In this study, 73 organics compounds from different chemical classes and 22 elements were analyzed in 6 years old (n = 84) and 10 years old (n = 119) children's feces from a middle-class, semi-urban, mid-size population cohort from Eastern Canada. Results show that 67 out of 73 targeted organics compounds and all elements were at least detected in one child's feces. Only caffeine (97% & 80%) and acetaminophen (28% & 48%) were detected in more than 25% of the children's feces, whereas all elements besides titanium were detected in more than 50% of the children.
Collapse
Affiliation(s)
- Félix Hardy
- Department of Chemistry, Faculty of Sciences, Sherbrooke University, Quebec, Canada.
| | - Larissa Takser
- Department of Pediatrics, Faculty of Medicine, Sherbrooke University, Quebec, Canada
| | - Viginie Gillet
- Department of Pediatrics, Faculty of Medicine, Sherbrooke University, Quebec, Canada
| | | | | |
Collapse
|
7
|
Ma Y, Taxvig C, Rodríguez-Carrillo A, Mustieles V, Reiber L, Kiesow A, Löbl NM, Fernández MF, Hansen TVA, Valente MJ, Kolossa-Gehring M, David M, Vinggaard AM. Human risk associated with exposure to mixtures of antiandrogenic chemicals evaluated using in vitro hazard and human biomonitoring data. ENVIRONMENT INTERNATIONAL 2023; 173:107815. [PMID: 36822008 PMCID: PMC10030311 DOI: 10.1016/j.envint.2023.107815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Scientific evidence for underestimated toxicity from unintentional exposure to chemical mixtures is mounting. Yet, harmonized approaches on how to assess the actual risk of mixtures is lacking. As part of the European Joint programme 'Human Biomonitoring for Europe' we explored a novel methodology for mixture risk assessment of chemicals affecting male reproductive function. METHODOLOGY We explored a methodology for chemical mixture risk assessment based on human in vitro data combined with human exposure data, thereby circumventing the drawbacks of using hazard data from rodents and estimated exposure intake levels. Human androgen receptor (hAR) antagonism was selected as the most important molecular initiating event linked to adverse outcomes on male reproductive health. RESULTS Our work identified 231 chemicals able to interfere with hAR activity. Among these were 61 finally identified as having both reliable hAR antagonist and human biomonitoring data. Calculation of risk quotients indicated that PCBs (118, 138, 157), phthalates (BBP, DBP, DIBP), benzophenone-3, PFOS, methylparaben, triclosan, some pesticides (i.e cypermethrin, β-endosulfan, methylparathion, p,p-DDE), and a PAH metabolite (1-hydroxypyrene) contributed to the mixture effect. The major chemical mixture drivers were PCB 118, BBP, PFOS, DBP, and the UV filter benzophenone-3, together contributing with 75% of the total mixture effect that was primarily driven by high exposure values. CONCLUSIONS This viable way forward for mixture risk assessment of chemicals has the advantages of (1) being a more comprehensive mixture risk assessment also covering data-poor chemicals, and (2) including human data only. However, the approach is subjected to uncertainties in terms of in vitro to in vivo extrapolation, it is not ready for decision making, and needs further development. Still, the results indicate a concern for adverse effects on reproductive function in highly exposed boys, especially when considering additional exposure to data-poor chemicals and chemicals acting by other mechanisms of action.
Collapse
Affiliation(s)
- Yanying Ma
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrea Rodríguez-Carrillo
- Center for Biomedical Research (CIBM), University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Spain
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | | | | | | | - Mariana F Fernández
- Center for Biomedical Research (CIBM), University of Granada, Spain; Instituto de Investigación Biosanitaria Ibs Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | | | - Maria João Valente
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Schlezinger JJ, Heiger-Bernays W, Webster TF. Predicting the Activation of the Androgen Receptor by Mixtures of Ligands Using Generalized Concentration Addition. Toxicol Sci 2021; 177:466-475. [PMID: 32726424 DOI: 10.1093/toxsci/kfaa108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Concentration/dose addition is widely used for compounds that act by similar mechanisms. But it cannot make predictions for mixtures of full and partial agonists for effect levels above that of the least efficacious component. As partial agonists are common, we developed generalized concentration addition, which has been successfully applied to systems in which ligands compete for a single binding site. Here, we applied a pharmacodynamic model for a homodimer receptor system with 2 binding sites, the androgen receptor, that acts according to the classic homodimer activation model: Each cytoplasmic monomer protein binds ligand, undergoes a conformational change that relieves inhibition of dimerization, and binds to DNA response elements as a dimer. We generated individual dose-response data for full (dihydroxytestosterone, BMS564929) and partial (TFM-4AS-1) agonists and a competitive antagonist (MDV3100) using reporter data generated in the MDA-kb2 cell line. We used the Schild method to estimate the binding affinity of MDV3100. Data for individual compounds fit the homodimer pharmacodynamic model well. In the presence of a full agonist, the partial agonist had agonistic effects at low effect levels and antagonistic effects at high levels, as predicted by pharmacological theory. The generalized concentration addition model fits the empirical mixtures data-full/full agonist, full/partial agonist, and full agonist/antagonist-as well or better than relative potency factors or effect summation. The ability of generalized concentration addition to predict the activity of mixtures of different types of androgen receptor ligands is important as a number of environmental compounds act as partial androgen receptor agonists or antagonists.
Collapse
Affiliation(s)
- Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118
| |
Collapse
|
9
|
Onder Erguven G, Tatar Ş, Serdar O, Yildirim NC. Evaluation of the efficiency of chlorpyrifos-ethyl remediation by Methylobacterium radiotolerans and Microbacterium arthrosphaerae using response of some biochemical biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2871-2879. [PMID: 32893334 DOI: 10.1007/s11356-020-10672-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
This study reveals out detoxifying and antioxidant enzyme response of Gammarus pulex exposed/polluted to chlorpyrifos-ethyl insecticide before and after biodegradation/bioremediation by Methylobacterium radiotolerans and Microbacterium arthrosphaerae. Cytochrome P450 1A1, glutathione S-transferase, catalase, and superoxide dismutase activities in G. pulex exposed to chlorpyrifos-ethyl before and after bioremediation/biodegradation by these two bacteria during 24 and 96 h tested by using commercial ELISA kits. The activity of catalase enzyme was decreased depending on chlorpyrifos-ethyl before and after bioremediation/biodegradation the enzyme activity was increased repeatedly. Superoxide dismutase activity level increased after chlorpyrifos-ethyl exposure in 96 h (p > 0.05). Following bioremediation, superoxide dismutase enzyme activity decreased again during 24 h (p > 0.05) and increased during 96 h (p < 0.05). Statistical differences were not found in cytochrome P450 1A1 enzyme activity before and after the process (p > 0.05). No significant differences were determined during the activity of glutathione S-transferase in 24 h (p > 0.05). The activities of glutathione S-transferase were increased after exposure of chlorpyrifos-ethyl during 96 h. After bioremediation; the activity of glutathione S-transferase increased even more (p < 0.05). The results determined that activities of G. pulex at superoxide dismutase, catalase, and glutathione S-transferase are common biomarkers for revealing out the efficiency of bioremediation of chlorpyrifos-ethyl with these two types of soil bacteria. Graphical abstract.
Collapse
Affiliation(s)
- Gokhan Onder Erguven
- Department of Chemistry and Chemical Processes, Tunceli Vocation School, Munzur University, 62000, Tunceli, Turkey.
| | - Şule Tatar
- Department of Chemistry and Chemical Processes, Tunceli Vocation School, Munzur University, 62000, Tunceli, Turkey
| | - Osman Serdar
- Fisheries Faculty, Munzur University, 62000, Tunceli, Turkey
| | - Nuran Cikcikoglu Yildirim
- Department of Veterinary Medicine, Pertek Sakine GencVocational School, Laboratorian and Veterinarian Health Pr, Munzur University, 62000, Tunceli, Turkey
| |
Collapse
|
10
|
Munkboel CH, Hansen HS, Jessen JB, Johannsen ML, Styrishave B. Oral anti-diabetic drugs as endocrine disruptors in vitro - No evidence for additive effects in binary mixtures. Toxicol In Vitro 2020; 70:105007. [PMID: 33002602 DOI: 10.1016/j.tiv.2020.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
Diabetes is one of the World's most concerning health problems and millions of patients are using anti-diabetic drugs (ADDs) in order to control blood glucose. The in vitro H295R steroidogenesis assay was implemented to investigate endocrine effects of three ADDs, metformin (MET), glimepiride (GLIM), sitagliptin (SIT) and the cholesterol-lowering drug simvastatin (SIM) individually and in three binary mixtures. Steroid hormones were analyzed using LC-MS/MS. Mixture effects were assessed by applying the Concentration Addition (CA) model. All tested drugs and binary mixtures interrupted the H295R steroidogenesis with different potency. The effects of MET:GLIM on the steroidogenesis were overall similar to the steroidogenic profile of GLIM, however effects were less pronounced. The binary mixture of MET:SIT showed overall minor effects on steroid production and only at very high concentrations. The SIM:SIT mixture showed inhibition downstream from cholesterol, which was attributed to the effects of SIM. The CA model partly predicted the effect of MET:SIT on some steroids but significantly overestimated the effects of MET:GLIM and SIM:SIT. Thus, the applicability of the CA model was limited and cocktail effects appeared to be intermediate responses of individual drugs, rather than additive. The complexity of dynamic pathways such as steroidogenesis appears to significantly reduce the use of the CA model. In conclusion, more dynamic models are needed to predict mixture effects in complex systems.
Collapse
Affiliation(s)
- Cecilie Hurup Munkboel
- Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 OE Copenhagen, Denmark
| | - Helene Stenbæk Hansen
- Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 OE Copenhagen, Denmark
| | - Julie Buchholt Jessen
- Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 OE Copenhagen, Denmark
| | - Malene Louise Johannsen
- Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 OE Copenhagen, Denmark
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 OE Copenhagen, Denmark.
| |
Collapse
|
11
|
Ren XM, Kuo Y, Blumberg B. Agrochemicals and obesity. Mol Cell Endocrinol 2020; 515:110926. [PMID: 32619583 PMCID: PMC7484009 DOI: 10.1016/j.mce.2020.110926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Obesity has become a very large concern worldwide, reaching pandemic proportions over the past several decades. Lifestyle factors, such as excess caloric intake and decreased physical activity, together with genetic predispositions, are well-known factors related to obesity. There is accumulating evidence suggesting that exposure to some environmental chemicals during critical windows of development may contribute to the rapid increase in the incidence of obesity. Agrochemicals are a class of chemicals extensively used in agriculture, which have been widely detected in human. There is now considerable evidence linking human exposure to agrochemicals with obesity. This review summarizes human epidemiological evidence and experimental animal studies supporting the association between agrochemical exposure and obesity and outlines possible mechanistic underpinnings for this link.
Collapse
Affiliation(s)
- Xiao-Min Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Yun Kuo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
12
|
Doan TQ, Berntsen HF, Verhaegen S, Ropstad E, Connolly L, Igout A, Muller M, Scippo ML. A mixture of persistent organic pollutants relevant for human exposure inhibits the transactivation activity of the aryl hydrocarbon receptor in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113098. [PMID: 31479813 DOI: 10.1016/j.envpol.2019.113098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
While humans are exposed to mixtures of persistent organic pollutants (POPs), their risk assessment is usually based on a chemical-by-chemical approach. To assess the health effects associated with mixed exposures, knowledge on mixture toxicity is required. Several POPs are potential ligands of the Aryl hydrocarbon receptor (AhR), which involves in xenobiotic metabolism and controls many biological pathways. This study assesses AhR agonistic and antagonistic activities of 29 POPs individually and in mixtures by using Chemical-Activated LUciferase gene eXpression bioassays with 3 transgenic cell lines (rat hepatoma DR-H4IIE, human hepatoma DR-Hep G2 and human mammary gland carcinoma DR-T47-D). Among the 29 POPs, which were selected based on their abundance in Scandinavian human blood, only 4 exerted AhR agonistic activities, while 16 were AhR antagonists in DR-H4IIE, 5 in DR-Hep G2 and 7 in DR-T47-D when tested individually. The total POP mixture revealed to be AhR antagonistic. It antagonized EC50 TCDD inducing AhR transactivation at a concentration of 125 and 250 and 500 fold blood levels in DR-H4IIE, DR-T47-D and DR-Hep G2, respectively, although each compound was present at these concentrations lower than their LOEC values. Such values could occur in real-life in food contamination incidents or in exposed populations. In DR-H4IIE, the antagonism of the total POP mixture was due to chlorinated compounds and, in particular, to PCB-118 and PCB-138 which caused 90% of the antagonistic activity in the POP mixture. The 16 active AhR antagonists acted additively. Their mixed effect was predicted successfully by concentration addition or generalized concentration addition models, rather than independent action, with only two-fold IC50 underestimation. We also attained good predictions for the full dose-response curve of the antagonistic activity of the total POP mixture.
Collapse
Affiliation(s)
- T Q Doan
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - H F Berntsen
- Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, NMBU - Faculty of Veterinary Medicine, Oslo, N-0033, Norway; Department of Administration, Lab Animal Unit, National Institute of Occupational Health, P.O. Box 8149 Dep, Oslo, N-0033, Norway
| | - S Verhaegen
- Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, NMBU - Faculty of Veterinary Medicine, Oslo, N-0033, Norway
| | - E Ropstad
- Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, NMBU - Faculty of Veterinary Medicine, Oslo, N-0033, Norway
| | - L Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, BT7 1NN, UK
| | - A Igout
- Department of Biomedical and Preclinical Sciences, Faculty of Medicine, University of Liège, Liège, 4000, Belgium
| | - M Muller
- GIGA-R, Laboratory for Organogenesis and Regeneration, University of Liège, Liège, 4000, Belgium
| | - M L Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium.
| |
Collapse
|
13
|
Haselman JT, Kosian PA, Korte JJ, Olmstead AW, Degitz SJ. Effects of multiple life stage exposure to the fungicide prochloraz in Xenopus laevis: Manifestations of antiandrogenic and other modes of toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:240-251. [PMID: 29674245 PMCID: PMC6299828 DOI: 10.1016/j.aquatox.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 05/14/2023]
Abstract
The Larval Amphibian Growth and Development Assay (LAGDA) is an internationally harmonized testing guideline for evaluating effects of chronic chemical exposure in amphibians. In order to evaluate the effects of chronic exposure to an antiandrogenic chemical in an amphibian model, prochloraz was tested using a variation of the LAGDA design. Exposure was initiated with <1d post-fertilization embryos at nominal concentrations of 0, 6.7, 20, 60 and 180 μg/L (0, 18, 53, 159, 478 nM) and continued in flow-through conditions until two months following the median time that controls completed metamorphosis. Growth, developmental rate, circulating thyroid hormone and thyroid gland histopathology were evaluated in a subsample at completion of metamorphosis. There were no effects on growth or development at this stage, but circulating thyroid hormone was elevated in the 20, 60 and 180 μg/L treatments and minimal to mild thyroid follicular cell hypertrophy was observed histologically in the 180 μg/L treatment. Growth, overt toxicity, and reproductive development were evaluated at test termination. There were no effects on growth in either gender, but livers and kidneys exhibited treatment-related pathologies consistent with organ toxicity related to metabolism and presumably impaired excretion of prochloraz metabolites. Histological assessments of female ovaries resulted in minimal pathologies only in the 180 μg/L treatment while male testes exhibited numerous treatment-related pathologies that are consistent with previously reported antiandrogenic effects of prochloraz in other species. The most severe testis pathologies occurred in the 180 μg/L treatment; however, incidences of treatment-related pathologies occurred in all prochloraz treatments. Müllerian duct regression in males was inhibited by prochloraz exposure while Müllerian duct maturation in females was accelerated, characteristic of a feminizing effect. Gene expression levels of potential biomarkers of testis function were also measured. Relative abundance of cyp17a1 transcripts was generally unaffected by prochloraz exposure whereas the Insl3 orthologue, rflcii, was elevated by 3 and >5-fold in the 60 and 180 μg/L treatments, respectively, indicating impaired Leydig cell maturation and testosterone signaling. Overall, prochloraz exposure caused effects characteristic of an antiandrogenic mode of action, which is consistent with previously reported results in other species and supports the utility of the LAGDA design for chemical testing.
Collapse
Affiliation(s)
- Jonathan T Haselman
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Patricia A Kosian
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Joseph J Korte
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Allen W Olmstead
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Sigmund J Degitz
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| |
Collapse
|
14
|
Trego ML, Hoh E, Kellar NM, Meszaros S, Robbins MN, Dodder NG, Whitehead A, Lewison RL. Comprehensive Screening Links Halogenated Organic Compounds with Testosterone Levels in Male Delphinus delphis from the Southern California Bight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3101-3109. [PMID: 29397698 PMCID: PMC6301072 DOI: 10.1021/acs.est.7b04652] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
While environmental pollutants have been associated with changes in endocrine health in cetaceans, efforts to link contaminant exposure with hormones have largely been limited to a list of known, targeted contaminants, overlooking minimally characterized or unknown compounds of emerging concern. To address this gap, we analyzed a suite of potential endocrine disrupting halogenated organic compounds (HOCs) in blubber from 16 male short-beaked common dolphins ( Delphinus delphis) with known maturity status collected from fishery bycatch in the Southern California Bight. We employed a suspect screening mass spectrometry-based method to investigate a wide range of HOCs that were previously observed in cetaceans from the same region. Potential endocrine effects were assessed through the measurement of blubber testosterone. We detected 167 HOCs, including 81 with known anthropogenic sources, 49 of unknown origin, and 37 with known natural sources. The sum of 11 anthropogenic and 4 unknown HOC classes were negatively correlated with blubber testosterone. Evidence suggests that elevated anthropogenic HOC load contributes to impaired testosterone production in mature male D. delphis. The application of this integrative analytical approach to cetacean contaminant analysis allows for inference of the biological consequences of accumulation of HOCs and prioritization of compounds for future environmental toxicology research.
Collapse
Affiliation(s)
- Marisa L. Trego
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
- Corresponding Author, Phone: (858) 546-7066
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Nicholas M. Kellar
- Southwest Fisheries Science Center, MMTD, NMFS, NOAA, 8901 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Sara Meszaros
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Michelle N. Robbins
- Ocean Associates, Inc., under contract to the Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration - USA
| | - Nathan G. Dodder
- Graduate School of Public Health, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Rebecca L. Lewison
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| |
Collapse
|
15
|
Schneider S, Fussell KC, Melching-Kollmuss S, Buesen R, Gröters S, Strauss V, Jiang X, van Ravenzwaay B. Investigations on the dose-response relationship of combined exposure to low doses of three anti-androgens in Wistar rats. Arch Toxicol 2017; 91:3961-3989. [PMID: 28879601 PMCID: PMC5719133 DOI: 10.1007/s00204-017-2053-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/28/2017] [Indexed: 02/08/2023]
Abstract
The current investigation examines whether combined exposure to three anti-androgens (flutamide, prochloraz, vinclozolin) result in interference with endocrine homeostasis when applied at very low dose levels, and whether the results of combined exposure are more pronounced than to the individual compounds. A pre-post-natal in vivo study design was chosen with more parameters than regulatory testing protocols require (additional endpoints addressing hormone levels, morphology and histopathological examinations). Dose levels were chosen to represent the lowest observed adverse effect level (LOAEL), the no observed adverse effect level (NOAEL), and the acceptable daily intake for each individual substance. Anti-androgenic changes were observable at the effect level (LOAEL) but not at lower exposures. Nipple/areola counts appeared to be a sensitive measure of effect, in addition to male sex organ weights at sexual maturation, and finally gross findings. The results indicate the absence of evidence for effects at low or very low dose levels. No (adverse) effects were seen at the NOAEL dose. A non-monotonic dose-response relationship was not evident. Combined exposure at LOAEL level resulted in enhanced responses for anogenital index, number of areolas/nipples, delayed preputial separation and reduced ventral prostate weight in comparison to the individual compounds.
Collapse
Affiliation(s)
- Steffen Schneider
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | | | | | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Sibylle Gröters
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Volker Strauss
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Xiaoqi Jiang
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | | |
Collapse
|
16
|
Mixture effects of azole fungicides on the adrenal gland in a broad dose range. Toxicology 2017; 385:28-37. [DOI: 10.1016/j.tox.2017.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/07/2017] [Accepted: 04/24/2017] [Indexed: 02/04/2023]
|
17
|
Truter JC, van Wyk JH, Oberholster PJ, Botha AM, Mokwena LM. An evaluation of the endocrine disruptive potential of crude oil water accommodated fractions and crude oil contaminated surface water to freshwater organisms using in vitro and in vivo approaches. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1330-1342. [PMID: 27787904 DOI: 10.1002/etc.3665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Knowledge regarding the potential impacts of crude oil on endocrine signaling in freshwater aquatic vertebrates is limited. The expression of selected genes as biomarkers for altered endocrine signaling was studied in African clawed frog, Xenopus laevis, tadpoles and juvenile Mozambique tilapia, Oreochromis mossambicus, exposed to weathered bunker and unweathered refinery crude oil water accommodated fractions (WAFs). In addition, the expression of the aforementioned genes was quantified in X. laevis tadpoles exposed to surface water collected from the proximity of an underground oil bunker. The (anti)estrogenicity and (anti)androgenicity of crude oil, crude oil WAFs, and surface water were furthermore evaluated using recombinant yeast. Thyroid hormone receptor beta expression was significantly down-regulated in X. laevis in response to both oil WAF types, whereas a further thyroid linked gene, type 2 deiodinase, was up-regulated in O. mossambicus exposed to a high concentration of bunker oil WAF. In addition, both WAFs altered the expression of the adipogenesis-linked peroxisome proliferator-activated receptor gamma in X. laevis. The crude oil and WAFs exhibited antiestrogenic and antiandrogenic activity in vitro. However, O. mossambicus androgen receptor 2 was the only gene, representing the reproductive system, significantly affected by WAF exposure. Estrogenicity, antiestrogenicity, and antiandrogenicity were detected in surface water samples; however, no significant changes were observed in the expression of any of the genes evaluated in X. laevis exposed to surface water. The responses varied among the 2 model organisms used, as well as among the 2 types of crude oil. Nonetheless, the data provide evidence that crude oil pollution may lead to adverse health effects in freshwater fish and amphibians as a result of altered endocrine signaling. Environ Toxicol Chem 2017;36:1330-1342. © 2016 SETAC.
Collapse
Affiliation(s)
- J Christoff Truter
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Johannes H van Wyk
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Paul J Oberholster
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- CSIR Natural Resources and the Environment, Stellenbosch, South Africa
| | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Lucky M Mokwena
- Central Analytical Facility, Mass Spectrometry Unit, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
18
|
Fujino C, Tamura Y, Tange S, Nakajima H, Sanoh S, Watanabe Y, Uramaru N, Kojima H, Yoshinari K, Ohta S, Kitamura S. Metabolism of methiocarb and carbaryl by rat and human livers and plasma, and effect on their PXR, CAR and PPARα activities. J Toxicol Sci 2017; 41:677-91. [PMID: 27665777 DOI: 10.2131/jts.41.677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The oxidative, reductive, and hydrolytic metabolism of methiocarb and the hydrolytic metabolism of carbaryl by liver microsomes and plasma of rats or humans were examined. The effects of the metabolism of methiocarb and carbaryl on their nuclear receptor activities were also examined. When methiocarb was incubated with rat liver microsomes in the presence of NADPH, methiocarb sulfoxide, and a novel metabolite, methiocarb sulfone were detected. Methiocarb sulfoxide was oxidized to the sulfone by liver microsomes and reduced back to methiocarb by liver cytosol. Thus, the interconversion between methiocarb and the sulfoxide was found to be a new metabolic pathway for methiocarb by liver microsomes. The product of methiocarb hydrolysis, which is methylthio-3,5-xylenol (MX), was also oxidized to sulfoxide form by rat liver microsomes. The oxidations were catalyzed by human flavin-containing monooxygenase isoform (FMO1). CYP2C19, which is a human cytochrome P450 (CYP) isoform, catalyzed the sulfoxidations of methiocarb and MX, while CYP1A2 also exhibited oxidase activity toward MX. Methiocarb and carbaryl were not enzymatically hydrolyzed by the liver microsomes, but they were mainly hydrolyzed by plasma and albumin to MX and 1-naphthol, respectively. Both methiocarb and carbaryl exhibited PXR and PPARα agonistic activities; however, methiocarb sulfoxide and sulfone showed markedly reduced activities. In fact, when methiocarb was incubated with liver microsomes, the receptor activities were decreased. In contrast, MX and 1-naphthol showed nuclear receptor activities equivalent to those of their parent carbamates. Thus, the hydrolysis of methiocarb and carbaryl and the oxidation of methiocarb markedly modified their nuclear receptor activities.
Collapse
Affiliation(s)
- Chieri Fujino
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lundqvist J, Hellman B, Oskarsson A. Fungicide prochloraz induces oxidative stress and DNA damage in vitro. Food Chem Toxicol 2016; 91:36-41. [DOI: 10.1016/j.fct.2016.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 01/02/2023]
|
20
|
Comparing effect levels of regulatory studies with endpoints derived in targeted anti-androgenic studies: example prochloraz. Arch Toxicol 2016; 91:143-162. [DOI: 10.1007/s00204-016-1678-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/28/2016] [Indexed: 01/05/2023]
|
21
|
The ability of the YAS and AR CALUX assays to detect the additive effects of anti-androgenic fungicide mixtures. Toxicol Lett 2016; 241:193-9. [DOI: 10.1016/j.toxlet.2015.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023]
|
22
|
Tange S, Fujimoto N, Uramaru N, Wong FF, Sugihara K, Ohta S, Kitamura S. In vitro metabolism of methiocarb and carbaryl in rats, and its effect on their estrogenic and antiandrogenic activities. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:289-297. [PMID: 26774076 DOI: 10.1016/j.etap.2015.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
In this work, we examined the metabolism of the carbamate insecticides methiocarb and carbaryl by rat liver microsomes and plasma, and its effect on their endocrine-disrupting activities. Methiocarb and carbaryl were not enzymatically hydrolyzed by rat liver microsomes, but were hydrolyzed by rat plasma, mainly to methylthio-3,5-xylenol (MX) and 1-naphthol, respectively. When methiocarb was incubated with rat liver microsomes in the presence of NADPH, methiocarb sulfoxide was formed. The hydrolysis product, MX, was also oxidized to the sulfoxide, 3,5-dimethyl-4-(methylsulfinyl)phenol (SP), by rat liver microsomes in the presence of NADPH. These oxidase activities were catalyzed by cytochrome P450 and flavin-containing monooxygenase. Methiocarb and carbaryl both exhibited estrogen receptor α (ERα) and ERβ agonistic activity. MX and 1-naphthol showed similar activities, but methiocarb sulfoxide and SP showed markedly decreased activities. On the other hand, methiocarb and carbaryl exhibited potent antiandrogenic activity in the concentration range of 1×10(-6)-3×10(-5) M. Their hydrolysis products, MX, and 1-naphthol also showed high activity, equivalent to that of flutamide. However, methiocarb sulfoxide and SP showed relatively low activity. Thus, hydrolysis of methiocarb and carbaryl and oxidation of methiocarb to the sulfoxide markedly modified the estrogenic and antiandrogenic activities of methiocarb and carbaryl.
Collapse
Affiliation(s)
- Satoko Tange
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Nariaki Fujimoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Naoto Uramaru
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Fung Fuh Wong
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, Taiwan
| | - Kazumi Sugihara
- Faculty of Pharmaceutical Science, Hiroshima International University, Hirokoshingai 5-1-1, Kure, Hiroshima Prefecture, 737-0112, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Shigeyuki Kitamura
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan.
| |
Collapse
|
23
|
Peng C, Lee JW, Sichani HT, Ng JC. Toxic effects of individual and combined effects of BTEX on Euglena gracilis. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:10-8. [PMID: 25463212 DOI: 10.1016/j.jhazmat.2014.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 05/26/2023]
Abstract
BTEX is a group of volatile organic compounds consisting of benzene, toluene, ethylbenzene and xylenes. Environmental contamination of BTEX can occur in the groundwater with their effects on the aquatic organisms and ecosystem being sparsely studied. The aim of this study was to evaluate the toxic effects of individual and mixed BTEX on Euglena gracilis (E. gracilis). We examined the growth rate, morphological changes and chlorophyll contents in E. gracilis Z and its mutant SMZ cells treated with single and mixture of BTEX. BTEX induced morphological change, formation of lipofuscin, and decreased chlorophyll content of E. gracilis Z in a dose response manner. The toxicity of individual BTEX on cell growth and chlorophyll inhibition is in the order of xylenes>ethylbenzene>toluene>benzene. SMZ was found more sensitive to BTEX than Z at much lower concentrations between 0.005 and 5 μM. The combined effect of mixed BTEX on chlorophyll contents was shown to be concentration addition (CA). Results from this study suggested that E. gracilis could be a suitable model for monitoring BTEX in the groundwater and predicting the combined effects on aqueous ecosystem.
Collapse
Affiliation(s)
- Cheng Peng
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Mawson Lakes, Adelaide 5095, Australia
| | - Jong-Wha Lee
- Department of Environmental Health, Soonchunhyang University, Asan-si, Chungcheongnam-do 336-745, Republic of Korea
| | - Homa Teimouri Sichani
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia
| | - Jack C Ng
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Road, Coopers Plains, Brisbane 4108, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Mawson Lakes, Adelaide 5095, Australia.
| |
Collapse
|
24
|
Rieke S, Koehn S, Hirsch-Ernst K, Pfeil R, Kneuer C, Marx-Stoelting P. Combination effects of (tri)azole fungicides on hormone production and xenobiotic metabolism in a human placental cell line. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:9660-79. [PMID: 25233012 PMCID: PMC4199042 DOI: 10.3390/ijerph110909660] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/22/2014] [Accepted: 09/01/2014] [Indexed: 11/26/2022]
Abstract
Consumers are exposed to multiple residues of different pesticides via the diet. Therefore, EU legislation for pesticides requires the evaluation of single active substances as well as the consideration of combination effects. Hence the analysis of combined effects of substances in a broad dose range represents a key challenge to current experimental and regulatory toxicology. Here we report evidence for additive effects for (tri)azole fungicides, a widely used group of antifungal agents, in the human placental cell line Jeg-3. In addition to the triazoles cyproconazole, epoxiconazole, flusilazole and tebuconazole and the azole fungicide prochloraz also pesticides from other chemical classes assumed to act via different modes of action (i.e., the organophosphate chlorpyrifos and the triazinylsulfonylurea herbicide triflusulfuron-methyl) were investigated. Endpoints analysed include synthesis of steroid hormone production (progesterone and estradiol) and gene expression of steroidogenic and non-steroidogenic cytochrome-P-450 (CYP) enzymes. For the triazoles and prochloraz, a dose dependent inhibition of progesterone production was observed and additive effects could be confirmed for several combinations of these substances in vitro. The non-triazoles chlorpyrifos and triflusulfuron-methyl did not affect this endpoint and, in line with this finding, no additivity was observed when these substances were applied in mixtures with prochloraz. While prochloraz slightly increased aromatase expression and estradiol production and triflusulfuron-methyl decreased estradiol production, none of the other substances had effects on the expression levels of steroidogenic CYP-enzymes in Jeg-3 cells. For some triazoles, prochloraz and chlorpyrifos a significant induction of CYP1A1 mRNA expression and potential combination effects for this endpoint were observed. Inhibition of CYP1A1 mRNA induction by the AhR inhibitor CH223191 indicated AhR receptor dependence this effect.
Collapse
Affiliation(s)
- Svenja Rieke
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| | - Sophie Koehn
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| | - Karen Hirsch-Ernst
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| | - Rudolf Pfeil
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| | - Carsten Kneuer
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| | - Philip Marx-Stoelting
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| |
Collapse
|
25
|
Kortenkamp A, Scholze M, Ermler S. Mind the gap: can we explain declining male reproductive health with known antiandrogens? Reproduction 2014; 147:515-27. [PMID: 24435164 PMCID: PMC3959774 DOI: 10.1530/rep-13-0440] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several countries have experienced rises in cryptorchidisms, hypospadias and testicular germ cell cancer. The reasons for these trends are largely unknown, but Skakkebaek has proposed that these disorders form a testicular dysgenesis syndrome and can be traced to androgen insufficiency in foetal life. This suggests that antiandrogenic chemicals might contribute to risks, but few chemicals have been linked to these diseases in epidemiological studies. In animal studies with p,p′-dichlorodiphenyldichloroethylene, effects typical of disruptions of male sexual differentiation became apparent when the foetal levels of this androgen receptor (AR) antagonist approached values associated with responses in in vitro assays. This prompted us to analyse whether the 22 chemicals with AR antagonistic properties would produce mixture effects in an in vitro AR antagonism assay when combined at concentrations found in human serum. Other antiandrogenic modalities could not be considered. Two scenarios were investigated, one representative of average serum levels reported in European countries, the other in line with levels towards the high exposures. In both situations, the in vitro potency of the 22 selected AR antagonists was too low to produce combined AR antagonistic effects at the concentrations found in human serum, although the high exposure scenario came quite close to measurable effects. Nevertheless, our analysis exposes an explanation gap which can only be bridged by conjuring up as yet undiscovered high potency AR antagonists or, alternatively, high exposures to unknown agents of average potency.
Collapse
Affiliation(s)
- Andreas Kortenkamp
- Institute for the Environment, Brunel University, Kingston Lane, Uxbridge UB8 3PH, UK
| | | | | |
Collapse
|
26
|
Alpertunga B, Kara M, Abudayyak M, Oztas E, Ozden S, Özhan G. Effects of prochloraz on DNA damage, lipid peroxidation and antioxidant systemin vitro. Toxicol Mech Methods 2014; 24:268-75. [DOI: 10.3109/15376516.2014.881943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Taxvig C, Hadrup N, Boberg J, Axelstad M, Bossi R, Bonefeld-Jørgensen EC, Vinggaard AM. In vitro - in vivo correlations for endocrine activity of a mixture of currently used pesticides. Toxicol Appl Pharmacol 2013; 272:757-66. [DOI: 10.1016/j.taap.2013.07.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/12/2013] [Accepted: 07/24/2013] [Indexed: 12/17/2022]
|
28
|
Kjeldsen LS, Bonefeld-Jørgensen EC. Perfluorinated compounds affect the function of sex hormone receptors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8031-44. [PMID: 23764977 DOI: 10.1007/s11356-013-1753-3] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/16/2013] [Indexed: 05/03/2023]
Abstract
Perfluorinated compounds (PFCs) are a large group of chemicals used in different industrial and commercial applications. Studies have suggested the potential of some PFCs to disrupt endocrine homeostasis, increasing the risk of adverse health effects. This study aimed to elucidate mechanisms behind PFC interference with steroid hormone receptor functions. Seven PFCs [perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA)] were analyzed in vitro for their potential to affect estrogen receptor (ER) and androgen receptor (AR) transactivity as well as aromatase enzyme activity. The PFCs were assessed as single compounds and in an equimolar mixture. PFHxS, PFOS and PFOA significantly induced the ER transactivity, whereas PFHxS, PFOS, PFOA, PFNA and PFDA significantly antagonized the AR activity in a concentration-dependent manner. Moreover, PFDA weakly decreased the aromatase activity at a high test concentration. A mixture effect more than additive was observed on AR function. We conclude that five of the seven PFCs possess the potential in vitro to interfere with the function of the ER and/or the AR. The observed mixture effect emphasizes the importance of considering the combined action of PFCs in future studies to assess related health risks.
Collapse
Affiliation(s)
- Lisbeth Stigaard Kjeldsen
- Centre for Arctic Health and Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Building 1260, Bartholins Allé 2, 8000, Aarhus, Denmark
| | | |
Collapse
|
29
|
Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products. Toxicol Appl Pharmacol 2013; 278:201-8. [PMID: 24055644 DOI: 10.1016/j.taap.2013.09.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/30/2013] [Accepted: 09/09/2013] [Indexed: 12/14/2022]
Abstract
Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations is missing. Such data can reveal whether joint effects at the receptor are induced at low levels and may support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicals were combined at three mixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists from a wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity.
Collapse
|
30
|
Kjeldsen LS, Ghisari M, Bonefeld-Jørgensen EC. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity. Toxicol Appl Pharmacol 2013; 272:453-64. [PMID: 23871939 DOI: 10.1016/j.taap.2013.06.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/11/2013] [Accepted: 06/25/2013] [Indexed: 01/31/2023]
Abstract
The endocrine-disrupting potential of pesticides is of health concern, since they are found ubiquitously in the environment and in food items. We investigated in vitro effects on estrogen receptor (ER) and androgen receptor (AR) transactivity, and aromatase enzyme activity, of the following pesticides: 2-methyl-4-chlorophenoxyacetic acid (MCPA), terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb, cypermethrin, tau fluvalinate, malathion and the metabolite ethylene thiourea (ETU). The pesticides were analyzed alone and in selected mixtures. Effects of the pesticides on ER and AR function were assessed in human breast carcinoma MVLN cells and hamster ovary CHO-K1 cells, respectively, using luciferase reporter gene assays. Effects on aromatase enzyme activity were analyzed in human choriocarcinoma JEG-3 cells, employing the classical [(3)H](2)O method. Five pesticides (terbuthylazine, propiconazole, prothioconazole, cypermethrin and malathion) weakly induced the ER transactivity, and three pesticides (bitertanol, propiconazole and mancozeb) antagonized the AR activity in a concentration-dependent manner. Three pesticides (terbuthylazine, propiconazole and prothioconazole) weakly induced the aromatase activity. In addition, two mixtures, consisting of three pesticides (bitertanol, propiconazole, cypermethrin) and five pesticides (terbuthylazine, bitertanol, propiconazole, cypermethrin, malathion), respectively, induced the ER transactivity and aromatase activity, and additively antagonized the AR transactivity. In conclusion, our data suggest that currently used pesticides possess endocrine-disrupting potential in vitro which can be mediated via ER, AR and aromatase activities. The observed mixture effects emphasize the importance of considering the combined action of pesticides in order to assure proper estimations of related health effect risks.
Collapse
|
31
|
Overgaard A, Holst K, Mandrup KR, Boberg J, Christiansen S, Jacobsen PR, Hass U, Mikkelsen JD. The effect of perinatal exposure to ethinyl oestradiol or a mixture of endocrine disrupting pesticides on kisspeptin neurons in the rat hypothalamus. Neurotoxicology 2013; 37:154-62. [DOI: 10.1016/j.neuro.2013.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/01/2013] [Accepted: 04/24/2013] [Indexed: 01/21/2023]
|
32
|
Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens. Reprod Toxicol 2013; 40:41-51. [PMID: 23770295 DOI: 10.1016/j.reprotox.2013.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/06/2013] [Accepted: 05/27/2013] [Indexed: 11/20/2022]
Abstract
Dietary phytoestrogens may prevent certain human diseases, but endocrine activity has been reported in animal studies. Sprague-Dawley rats were exposed perinatally to a 1-, 10- or 100-fold "high human dietary intake" mixture of 12 phytoestrogens consisting of mainly the lignan secoisolarici resinol and the isoflavones genistein and daidzein. This mixture induced persistent adverse effects, as adult male mammary glands showed hypertrophic growth. A reduced anogenital distance in newborn males indicated an anti-androgenic mode of action. Testosterone levels, testis and prostate weights, and expression of selected genes in testis and prostate were unaffected. Decreased serum estradiol was seen in genistein-exposed dams. This study indicated adverse effects at high intake levels in rats, but does not provide evidence for risk of phytoestrogen-mediated endocrine disruption at normal human dietary consumption levels. Further studies are warranted to increase the knowledge upon which risk assessment on dietary phytoestrogen exposure during pregnancy and infancy is based.
Collapse
|
33
|
Blocker TD, Ophir AG. Cryptic confounding compounds: A brief consideration of the influences of anthropogenic contaminants on courtship and mating behavior. Acta Ethol 2013; 16:10.1007/s10211-012-0137-x. [PMID: 24244068 PMCID: PMC3827776 DOI: 10.1007/s10211-012-0137-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Contaminants, like pesticides, polychlorinated biphenyls (PCBs), dioxins and metals, are persistent and ubiquitous and are known to threaten the environment. Traditionally, scientists have considered the direct physiological risks that these contaminants pose. However, scientists have just begun to integrate ethology and toxicology to investigate the effects that contaminants have on behavior. This review considers the potential for contaminant effects on mating behavior. Here we assess the growing body of research concerning disruptions in sexual differentiation, courtship, sexual receptivity, arousal, and mating. We discuss the implications of these disruptions on conservation efforts and highlight the importance of recognizing the potential for environmental stressors to affect behavioral experimentation. More specifically, we consider the negative implications for anthropogenic contaminants to affect the immediate behavior of animals, and their potential to have cascading and/or long-term effects on the behavioral ecology and evolution of populations. Overall, we aim to raise awareness of the confounding influence that contaminants can have, and promote caution when interpreting results where the potential for cryptic affects are possible.
Collapse
Affiliation(s)
- Tomica D Blocker
- Department of Zoology, Oklahoma State University, Stillwater, OK 74078
| | | |
Collapse
|
34
|
Yavuz O, Aksoy A, Das YK, Gulbahar MY, Guvenc D, Atmaca E, Yarim FG, Cenesiz M. Subacute oral toxicity of combinations of selected synthetic pyrethroids, piperonyl butoxide, and tetramethrin in rats. Toxicol Ind Health 2013; 31:289-97. [DOI: 10.1177/0748233712469651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, 70 Wistar rats were randomly divided into seven equal groups (six experimental and one control), which consisted of animals belonging to both sexes. Different combinations of insecticides were administered daily to the experimental groups (group 1: cypermethrin + piperonyl butoxide (PBO); group 2: alphacypermethrin + PBO; group 3: deltamethrin + PBO; group 4: cypermethrin + PBO + tetramethrin; group 5: alphacypermethrin + PBO + tetramethrin; and group 6: deltamethrin + PBO + tetramethrin) for 28 days. During the study period, mortality and serious clinical findings were not observed in any animal. However, feed consumptions decreased in groups 1 and 3 ( p < 0.05). Red blood cells, white blood cells, and hemoglobin levels, especially in cypermethrin and alphacypermethrin groups (groups 1, 2, and 4), were found to be higher than the control group ( p < 0.05). Furthermore, biochemical changes related to liver, kidney functions, and protein metabolism occurred in males of almost all the groups. Relative liver and kidney weights of the male animals increased in the cypermethrin and alphacypermethrin groups ( p < 0.05). The most common finding observed during the histopathological examination of all the experimental groups was centrilobular degeneration in the liver. It was concluded that although clinical symptoms were not observed, synthetic pyrethroid, synergist, and knockdown agent combinations might cause serious abnormalities when administered in certain doses in mammalians.
Collapse
Affiliation(s)
- Oguzhan Yavuz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Abdurrahman Aksoy
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yavuz Kursad Das
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mustafa Yavuz Gulbahar
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Dilek Guvenc
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Enes Atmaca
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Fatma Gul Yarim
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Metin Cenesiz
- Department of Physiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
35
|
Orton F, Rosivatz E, Scholze M, Kortenkamp A. Competitive androgen receptor antagonism as a factor determining the predictability of cumulative antiandrogenic effects of widely used pesticides. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1578-84. [PMID: 23008280 PMCID: PMC3556629 DOI: 10.1289/ehp.1205391] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/10/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Many pesticides in current use have recently been revealed as in vitro androgen receptor (AR) antagonists, but information about their combined effects is lacking. OBJECTIVE We investigated the combined effects and the competitive AR antagonism of pesticide mixtures. METHODS We used the MDA-kb2 assay to test a combination of eight AR antagonists that did not also possess AR agonist properties ("pure" antagonists; 8 mix: fludioxonil, fenhexamid, ortho-phenylphenol, imazalil, tebuconazole, dimethomorph, methiocarb, pirimiphos-methyl), a combination of five AR antagonists that also showed agonist activity (5 mix: cyprodinil, pyrimethanil, vinclozolin, chlorpropham, linuron), and all pesticides combined (13 mix). We used concentration addition (CA) and independent action (IA) to formulate additivity expectations, and Schild plot analyses to investigate competitive AR antagonism. RESULTS A good agreement between the effects of the mixture of eight "pure" AR antagonists and the responses predicted by CA was observed. Schild plot analysis revealed that the 8 mix acted by competitive AR antagonism. However, the observed responses of the 5 mix and the 13 mix fell within the "prediction window" boundaries defined by the predicted regression curves of CA and IA. Schild plot analysis with these mixtures yielded anomalous responses incompatible with competitive receptor antagonism. CONCLUSIONS A mixture of widely used pesticides can, in a predictable manner, produce combined AR antagonist effects that exceed the responses elicited by the most potent component alone. Inasmuch as large populations are regularly exposed to mixtures of antiandrogenic pesticides, our results underline the need for considering combination effects for these substances in regulatory practice.
Collapse
Affiliation(s)
- Frances Orton
- Centre for Toxicology, School of Pharmacy, London, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Krüger T, Long M, Ghisari M, Bonefeld-Jørgensen EC. The combined effect of persistent organic pollutants in the serum POP mixture in Greenlandic Inuit: xenoestrogenic, xenoandrogenic and dioxin-like transactivities. Biomarkers 2012; 17:692-705. [PMID: 23030067 DOI: 10.3109/1354750x.2012.700950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Greenlandic Inuit have high body burden of persistent organic pollutants (POPs). We analyzed the combined effect of the actual lipophilic serum POP mixture on estrogen-, androgen- and aryl hydrocarbon-receptor functions as effect biomarkers, and the associations between the effect biomarkers and serum POPs, and lifestyle characteristics. The serum POPs were extracted from 232 Inuit from Ittoqqortoormiit, Narsaq and Qeqertarsuaq. The POP-related receptor transactivities correlated negatively to the POP levels and were associated to the lifestyle characteristics. The POP-related receptor transactivities can be used as effect biomarkers. The serum POPs have hormone disruptive potentials.
Collapse
Affiliation(s)
- Tanja Krüger
- Department of Public Health, Centre for Arctic Health & Cellular and Molecular Toxicology, Aarhus University, Aarhus C, Denmark
| | | | | | | |
Collapse
|
37
|
Long M, Krüger T, Ghisari M, Bonefeld-Jørgensen EC. Effects of selected phytoestrogens and their mixtures on the function of the thyroid hormone and the aryl hydrocarbon receptor. Nutr Cancer 2012; 64:1008-19. [PMID: 22966911 DOI: 10.1080/01635581.2012.711419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phytoestrogens (PEs) are natural plant components, which can induce biologic responses in vertebrates by mimicking or blocking the actions of natural hormones or influencing the hormone production in the body. This study investigated the effect of different mixtures composed of food-relevant PEs on the thyroid hormone (TH) system assessing the proliferation of the 3,3',5-triiodi-L-thryonine (T3) dependent rat pituitary GH3 cells using the T-screen assay, and the effect on the aryl hydrocarbon receptor (AhR) transactivation using an AhR-luciferase reporter gene assay. Most tested PEs and their mixtures showed effect on both the TH and AhR system. Single isoflavonoid metabolites and their mixture and coumestrol induced GH3 cell growth and AhR transactivity dose-dependently. Isoflavonoid metabolites elicited an additive effect on the T3-dependent GH3 cell growth, and a synergistic effect on the AhR transactivity. In conclusion, nutrition-relevant PEs, alone and in mixture may possess endocrine-disrupting potential by interfering with TH and AhR functions, which need to be considered when assessing the effects on human health.
Collapse
Affiliation(s)
- Manhai Long
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Aarhus, Denmark.
| | | | | | | |
Collapse
|
38
|
Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides. Reprod Toxicol 2012; 34:261-74. [DOI: 10.1016/j.reprotox.2012.05.090] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 11/23/2022]
|
39
|
Persistent developmental toxicity in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides. Reprod Toxicol 2012; 34:237-50. [DOI: 10.1016/j.reprotox.2012.05.099] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 11/20/2022]
|
40
|
Waring RH, Ramsden DB, Jarratt PDB, Harris RM. Biomarkers of endocrine disruption: cluster analysis of effects of plasticisers on Phase 1 and Phase 2 metabolism of steroids. ACTA ACUST UNITED AC 2012; 35:415-23. [PMID: 22372686 DOI: 10.1111/j.1365-2605.2012.01248.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although some endocrine disruptors (EDs) act at steroid receptors, it is now apparent that compounds may have ED potential if they alter steroid synthesis or metabolism, particularly if they affect Phase 1 or Phase 2 pathways. In the ENDOMET project (EU-funded 5th Framework programme), 23 different assays were used on a wide range of EDs. Cluster analysis of the matrix results enabled identification of four integrated test systems that can be used to pinpoint compounds that are able to alter steroid metabolism or function. Critical pathways were shown to include oestrogen synthesis and sulphonation, synthesis of sulphate/PAPS and thyroid hormone regulation so that the activity profiles of some Phase 1 and Phase 2 reactions can be used as biomarkers for detection of compounds with ED potential.
Collapse
Affiliation(s)
- R H Waring
- School of Biosciences, University of Birmingham, Birmingham, UK.
| | | | | | | |
Collapse
|
41
|
Sun H, Si C, Bian Q, Chen X, Chen L, Wang X. Developing in vitro reporter gene assays to assess the hormone receptor activities of chemicals frequently detected in drinking water. J Appl Toxicol 2012; 32:635-41. [DOI: 10.1002/jat.1790] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hong Sun
- Jiangsu Provincial Centre for Disease Prevention and Control; Nanjing; 210009; China
| | - Chaozong Si
- Suzhou City Centre for Disease Prevention and Control; Suzhou; 215007; China
| | - Qian Bian
- Jiangsu Provincial Centre for Disease Prevention and Control; Nanjing; 210009; China
| | - Xiaodong Chen
- Jiangsu Provincial Centre for Disease Prevention and Control; Nanjing; 210009; China
| | - Liansheng Chen
- Jiangsu Provincial Centre for Disease Prevention and Control; Nanjing; 210009; China
| | - Xinru Wang
- Nanjing Medical University; Institute of Toxicology; Nanjing; 210029; China
| |
Collapse
|
42
|
Ermler S, Scholze M, Kortenkamp A. The suitability of concentration addition for predicting the effects of multi-component mixtures of up to 17 anti-androgens with varied structural features in an in vitro AR antagonist assay. Toxicol Appl Pharmacol 2011; 257:189-97. [DOI: 10.1016/j.taap.2011.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/26/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
|
43
|
Kolle SN, Melching-Kollmuss S, Krennrich G, Landsiedel R, van Ravenzwaay B. Assessment of combinations of antiandrogenic compounds vinclozolin and flutamide in a yeast based reporter assay. Regul Toxicol Pharmacol 2011; 60:373-80. [DOI: 10.1016/j.yrtph.2011.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/06/2011] [Accepted: 05/11/2011] [Indexed: 11/27/2022]
|
44
|
Mnif W, Hassine AIH, Bouaziz A, Bartegi A, Thomas O, Roig B. Effect of endocrine disruptor pesticides: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:2265-303. [PMID: 21776230 PMCID: PMC3138025 DOI: 10.3390/ijerph8062265] [Citation(s) in RCA: 490] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 12/15/2022]
Abstract
Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health.
Collapse
Affiliation(s)
- Wissem Mnif
- Laboratoire de Biochimie, Unité de Recherche 02/UR/09-01, Institut Supérieur de Biotechnologie, de Monastir, BP 74, 5019 Monastir, Tunisia; E-Mails: (W.M.); (A.I.H.H); (A.B.)
- Institut Supérieur de Biotechnologie de Sidi Thabet, Pole Technologie Sidi Thabet, 2020 Ariana, Tunisia
| | - Aziza Ibn Hadj Hassine
- Laboratoire de Biochimie, Unité de Recherche 02/UR/09-01, Institut Supérieur de Biotechnologie, de Monastir, BP 74, 5019 Monastir, Tunisia; E-Mails: (W.M.); (A.I.H.H); (A.B.)
| | - Aicha Bouaziz
- Laboratoire de Biochimie, Unité de Recherche 02/UR/09-01, Institut Supérieur de Biotechnologie, de Monastir, BP 74, 5019 Monastir, Tunisia; E-Mails: (W.M.); (A.I.H.H); (A.B.)
| | - Aghleb Bartegi
- Department of Biology, Faculty of Sciences, King Faisal University, P.O. Box 1759, 31982, Al Hassa, Saudi Arabia; E-Mail:
| | - Olivier Thomas
- Environment and Health Research laboratory (LERES), Advanced School of Public Health (EHESP), Avenue du Professeur Léon Bernard - CS 74312, 35043 Rennes Cedex, France; E-Mail: (O.T.)
| | - Benoit Roig
- Environment and Health Research laboratory (LERES), Advanced School of Public Health (EHESP), Avenue du Professeur Léon Bernard - CS 74312, 35043 Rennes Cedex, France; E-Mail: (O.T.)
| |
Collapse
|
45
|
Jowa L, Howd R. Should atrazine and related chlorotriazines be considered carcinogenic for human health risk assessment? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2011; 29:91-144. [PMID: 21660819 DOI: 10.1080/10590501.2011.577681] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Chloro-s-triazines have been a mainstay of preemergent pesticides for a number of decades and have generally been regarded as having low human toxicity. Atrazine, the major pesticide in this class, has been extensively studied. In a number of experimental studies, exposure to high doses of atrazine resulted in increased weight loss not attributable to decreased food intake. Chronic studies of atrazine and simazine and their common metabolites show an elevated incidence of mammary tumors only in female Sprague Dawley (SD) rats. On the basis of the clear tumor increase in female SD rats, atrazine was proposed to be classified as a likely human carcinogen by US Environmental Protection Agency (EPA) in 1999. With Fischer rats, all strains of mice, and dogs, there was no evidence of increased incidence of atrazine-associated tumors of any type. Evidence related to the pivotal role of hormonal control of the estrus cycle in SD rats appears to indicate that the mechanism for mammary tumor induction is specific to this strain of rats and thus is not relevant to humans. In humans the menstrual cycle is controlled by estrogen released by the ovary rather than depending on the LH surge, as estrus is in SD rats. However, the relevance of the tumors to humans continues to be debated based on endocrine effects of triazines. No strong evidence exists for atrazine mutagenicity, while there is evidence of clastogenicity at elevated concentrations. Atrazine does not appear to interact strongly with estrogen receptors α or β but may interact with putative estrogen receptor GPR30 (G-protein-coupled receptor). A large number of epidemiologic studies conducted on manufacturing workers, pesticide applicators, and farming families do not indicate that triazines are carcinogenic in these populations. A rat-specific hormonal mechanism for mammary tumors has now been accepted by US EPA, International Agency for Research on Cancer, and the European Union. Chlorotriazines do influence endocrine responses, but their potential impact on humans appears to be primarily on reproduction and development and is not related to carcinogenesis.
Collapse
Affiliation(s)
- Lubow Jowa
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, Sacramento, CA 95812, USA.
| | | |
Collapse
|
46
|
Aubé M, Larochelle C, Ayotte P. Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines. ENVIRONMENTAL RESEARCH 2011; 111:337-47. [PMID: 21295777 DOI: 10.1016/j.envres.2011.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/24/2010] [Accepted: 01/10/2011] [Indexed: 05/11/2023]
Abstract
Organochlorine compounds (OCs) are a group of persistent chemicals that accumulate in fatty tissues with age. Although OCs has been tested individually for their capacity to induce breast cancer cell proliferation, few studies examined the effect of complex mixtures that comprise compounds frequently detected in the serum of women. We constituted such an OC mixture containing 15 different components in environmentally relevant proportions and assessed its proliferative effects in four breast cancer cell lines (MCF-7, T47D, CAMA-1, MDAMB231) and in non-cancerous CV-1 cells. We also determined the capacity of the mixture to modulate cell cycle stage of breast cancer cells and to induce estrogenic and antiandrogenic effects using gene reporter assays. We observed that low concentrations of the mixture (100 × 10(3) and 50 × 10(3) dilutions) stimulated the proliferation of MCF-7 cells while higher concentrations (10 × 10(3) and 5 × 10(3) dilutions) had the opposite effect. In contrast, the mixture inhibited the proliferation of non-hormone-dependent cell lines. The mixture significantly increased the number of MCF-7 cells entering the S phase, an effect that was blocked by the antiestrogen ICI 182,780. Low concentrations of the mixture also caused an increase in CAMA-1 cell proliferation but only in the presence estradiol and dihydrotestosterone (p<0.05 at the 50 × 10(3) dilution). DDT analogs and polychlorinated biphenyls all had the capacity to stimulate the proliferation of CAMA-1 cells in the presence of sex steroids. Reporter gene assays further revealed that the mixture and several of its constituents (DDT analogs, aldrin, dieldrin, β-hexachlorocyclohexane, toxaphene) induced estrogenic effects, whereas the mixture and several components (DDT analogs, aldrin, dieldrin and PCBs) inhibited the androgen signaling pathway. Our results indicate that the complex OC mixture increases the proliferation of MCF-7 cells due to its estrogenic potential. The proliferative effect of the mixture on CAMA-1 cells in the presence of sex steroids appears mostly due to the antiandrogenic properties of p,p'-DDE, a major constituent of the mixture. Other mixtures of contaminants that include emerging compounds of interest such as brominated flame retardants and perfluoroalkyl compounds should be tested for their capacity to induce breast cancer cell proliferation.
Collapse
Affiliation(s)
- Michel Aubé
- Axe de recherche en santé des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Québec and Université Laval, 2875 Boulevard Laurier, Édifice Delta 2, bureau 600, Québec, QC, Canada.
| | | | | |
Collapse
|
47
|
Rider CV, Furr JR, Wilson VS, Gray LE. Cumulative effects of in utero administration of mixtures of reproductive toxicants that disrupt common target tissues via diverse mechanisms of toxicity. ACTA ACUST UNITED AC 2010; 33:443-62. [PMID: 20487044 DOI: 10.1111/j.1365-2605.2009.01049.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although risk assessments are typically conducted on a chemical-by-chemical basis, the 1996 Food Quality Protection Act required the US Environmental Protection Agency to consider cumulative risk of chemicals that act via a common mechanism of toxicity. To this end, we are conducting studies with mixtures of chemicals to elucidate mechanisms of joint action at the systemic level with the goal of providing a framework for assessing the cumulative effects of reproductive toxicants. Previous mixture studies conducted with antiandrogenic chemicals are reviewed briefly and two new studies are described. In all binary mixture studies, rats were dosed during pregnancy with chemicals, singly or in pairs, at dosage levels equivalent to approximately one-half of the ED50 for hypospadias or epididymal agenesis. The binary mixtures included androgen receptor (AR) antagonists (vinclozolin plus procymidone), phthalate esters [di(n-butyl) phthalate (DBP) plus benzyl n-butyl phthalate (BBP) and diethyl hexyl phthalate (DEHP) plus DBP], a phthalate ester plus an AR antagonist (DBP plus procymidone), a mixed mechanism androgen signalling disruptor (linuron) plus BBP, and two chemicals which disrupt epididymal differentiation through entirely different toxicity pathways: DBP (AR pathway) plus 2,3,7,8 TCDD (AhR pathway). We also conducted multi-component mixture studies combining several 'antiandrogens'. In the first study, seven chemicals (four pesticides and three phthalates) that elicit antiandrogenic effects at two different sites in the androgen signalling pathway (i.e. AR antagonist or inhibition of androgen synthesis) were combined. In the second study, three additional phthalates were added to make a 10 chemical mixture. In both the binary mixture studies and the multi-component mixture studies, chemicals that targeted male reproductive tract development displayed cumulative effects that exceeded predictions based on a response-addition model and most often were in accordance with predictions based on dose-addition models. In summary, our results indicate that compounds that act by disparate mechanisms of toxicity to disrupt the dynamic interactions among the interconnected signalling pathways in differentiating tissues produce cumulative dose-additive effects, regardless of the mechanism or mode of action of the individual mixture component.
Collapse
Affiliation(s)
- C V Rider
- MD-72, Reproductive Toxicology Branch, T A Division, NHEERL, ORD, US Environmental Protection Agency, RTP, NC 27711, USA
| | | | | | | |
Collapse
|
48
|
Kjaerstad MB, Taxvig C, Andersen HR, Nellemann C. Mixture effects of endocrine disrupting compounds in vitro. ACTA ACUST UNITED AC 2010; 33:425-33. [DOI: 10.1111/j.1365-2605.2009.01034.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Probabilistic cumulative risk assessment of anti-androgenic pesticides in food. Food Chem Toxicol 2009; 47:2951-62. [DOI: 10.1016/j.fct.2009.07.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 07/08/2009] [Accepted: 07/31/2009] [Indexed: 11/22/2022]
|
50
|
Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions. Toxicol Lett 2009; 189:67-77. [DOI: 10.1016/j.toxlet.2009.05.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/06/2009] [Accepted: 05/08/2009] [Indexed: 01/21/2023]
|