1
|
Alewel DI, Kodavanti UP. Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:287-314. [PMID: 39075643 DOI: 10.1080/10937404.2024.2383637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Air pollution exposure is ranked as a leading environmental risk factor for not only cardiopulmonary diseases but also for systemic health ailments including diabetes, reproductive abnormalities, and neuropsychiatric disorders, likely mediated by central neural stress mechanisms. Current experimental evidence links many air pollution health outcomes with activation of neuroendocrine sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal (HPA) stress axes associated with resultant increases in adrenal-derived hormone levels acting as circulating mediators of multi-organ stress reactions. Epidemiological and experimental investigations also demonstrated sex-specific responses to air pollutant inhalation, which may be attributed to hormonal interactions within the stress and reproductive axes. Sex hormones (androgens and estrogens) interact with neuroendocrine functions to influence hypothalamic responses, subsequently augmenting stress-mediated metabolic and immune changes. These neurohormonal interactions may contribute to innate sex-specific responses to inhaled irritants, inducing differing individual susceptibility. The aim of this review was to: (1) examine neuroendocrine co-regulation of the HPA axis by gonadal hormones, (2) provide experimental evidence demonstrating sex-specific respiratory and systemic effects attributed to air pollutant inhalation exposure, and (3) postulate proposed mechanisms of stress and sex hormone interactions during air pollution-related stress.
Collapse
Affiliation(s)
- Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Kang N, Sargsyan S, Chough I, Petrick L, Liao J, Chen W, Pavlovic N, Lurmann FW, Martinez MP, McConnell R, Xiang AH, Chen Z. Dysregulated metabolic pathways associated with air pollution exposure and the risk of autism: Evidence from epidemiological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124729. [PMID: 39147228 DOI: 10.1016/j.envpol.2024.124729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder with symptoms that range from social and communication impairments to restricted interests and repetitive behavior and is the 4th most disabling condition for children aged 5-14. Risk factors of ASD are not fully understood. Environmental risk factors are believed to play a significant role in the ASD epidemic. Research focusing on air pollution exposure as an early-life risk factor of autism is growing, with numerous studies finding associations of traffic and industrial emissions with an increased risk of ASD. One of the possible mechanisms linking autism and air pollution exposure is metabolic dysfunction. However, there were no consensus about the key metabolic pathways and corresponding metabolite signatures in mothers and children that are altered by air pollution exposure and cause the ASD. Therefore, we performed a review of published papers examining the metabolomic signatures and metabolic pathways that are associated with either air pollution exposure or ASD risk in human studies. In conclusion, we found that dysregulated lipid, fatty acid, amino acid, neurotransmitter, and microbiome metabolisms are associated with both short-term and long-term air pollution exposure and the risk of ASD. These dysregulated metabolisms may provide insights into ASD etiology related to air pollution exposure, particularly during the perinatal period in which neurodevelopment is highly susceptible to damage from oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ni Kang
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Suzan Sargsyan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ino Chough
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Lauren Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Wu Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Wang X, Karvonen-Gutierrez CA, Mancuso P, Gold EB, Derby CA, Kravitz HM, Greendale G, Wu X, Ebisu K, Schwartz J, Park SK. Exposure to air pollution is associated with adipokines in midlife women: The Study of Women's Health Across the Nation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177334. [PMID: 39488293 DOI: 10.1016/j.scitotenv.2024.177334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
This study examined the associations between ambient air pollution exposure, including fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3), with serum levels of high molecular weight (HMW) adiponectin, leptin, and soluble leptin receptors (sOB-R) in midlife women. The analysis included 1551 participants from the Study of Women's Health Across the Nation (median age = 52.3 years) with adipokine data from 2002 to 2003. Annual air pollution exposures were assigned by linking residential addresses with high-resolution machine learning models at a 1-km2 resolution. Multivariable linear regression and Bayesian kernel machine regression (BKMR) were used to evaluate the associations for individual pollutants and pollutant mixtures. After adjusting for confounders in linear regression models, an interquartile range increase in PM2.5 (2.5 μg/m3) was associated with a 4.6 % lower HMW adiponectin level (95 % CI: -8.8 %, -0.3 %). Exposure to air pollutant mixtures showed negative associations with HMW adiponectin and positive associations with leptin levels in BKMR models. These findings suggest that exposures to PM2.5, NO2, and O3 are associated with adverse levels of adipokines, which may contribute to obesity-related outcomes. Further research is needed to confirm these findings and explore the underlying biological mechanisms.
Collapse
Affiliation(s)
- Xin Wang
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | | | - Peter Mancuso
- Department of Nutritional Sciences, Graduate Program in Immunology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ellen B Gold
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Carol A Derby
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Howard M Kravitz
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Family and Preventive Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Gail Greendale
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Xiangmei Wu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Oshidari Y, Salehi M, Kermani M, Jonidi Jafari A. Associations between long-term exposure to air pollution, diabetes, and hypertension in metropolitan Iran: an ecologic study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2476-2490. [PMID: 37674318 DOI: 10.1080/09603123.2023.2254713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Epidemiological studies on air pollution, diabetes, and hypertension conflict. This study examined air pollution, diabetes, and hypertension in adults in 11 metropolitan areas of Iran (2012-2016). Local environment departments and the Tehran Air Quality Control Company provided air quality data. The VIZIT website and Stepwise Approach to Chronic Disease Risk Factor Surveillance study delivered chronic disease data. Multiple logistic regression and generalized estimating equations evaluated air pollution-related diabetes and hypertension. In Isfahan, Ahvaz, and Tehran, PM2.5 was linked to diabetes. In all cities except Urmia, Yasuj, and Yazd, PM2.5 was statistically related to hypertension. O3 was connected to hypertension in Ahvaz, Tehran, and Shiraz, whereas NO2 was not. BMI and gender predict hypertension and diabetes. Diabetes, SBP, and total cholesterol were correlated. Iran's largest cities' poor air quality may promote diabetes and hypertension. PM2.5 impacts many cities' outcomes. Therefore, politicians and specialists have to control air pollution.
Collapse
Affiliation(s)
- Yasaman Oshidari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Feng C, Yang B, Wang Z, Zhang J, Fu Y, Yu B, Dong S, Ma H, Liu H, Zeng H, Reinhardt JD, Yang S. Relationship of long-term exposure to air pollutant mixture with metabolic-associated fatty liver disease and subtypes: A retrospective cohort study of the employed population of Southwest China. ENVIRONMENT INTERNATIONAL 2024; 188:108734. [PMID: 38744043 DOI: 10.1016/j.envint.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND While evidence suggests that PM2.5 is associated with overall prevalence of Metabolic (dysfunction)-Associated Fatty Liver Disease (MAFLD), effects of comprehensive air pollutant mixture on MAFLD and its subtypes remain unclear. OBJECTIVE To investigate individual and joint effects of long-term exposure to comprehensive air pollutant mixture on MAFLD and its subtypes. METHODS Data of 27,699 participants of the Chinese Cohort of Working Adults were analyzed. MAFLD and subtypes, including overweight/obesity, lean, and diabetes MAFLD, were diagnosed according to clinical guidelines. Concentrations of NO3-, SO42-, NH4+, organic matter (OM), black carbon (BC), PM2.5, SO2, NO2, O3 and CO were estimated as a weighted average over participants' residential and work addresses for the three years preceding outcome assessment. Logistic regression and weighted quantile sum regression were used to estimate individual and joint effects of air pollutant mixture on presence of MAFLD. RESULTS Overall prevalence of MAFLD was 26.6 % with overweight/obesity, lean, and diabetes MAFLD accounting for 92.0 %, 6.4 %, and 1.6 %, respectively. Exposure to SO42-, NO3-, NH4+, BC, PM2.5, NO2, O3and CO was significantly associated with overall MAFLD, overweight/obesity MAFLD, or lean MAFLD in single pollutant models. Joint effects of air pollutant mixture were observed for overall MAFLD (OR = 1.10 [95 % CI: 1.03, 1.17]), overweight/obesity (1.09 [1.02, 1.15]), and lean MAFLD (1.63 [1.28, 2.07]). Contributions of individual air pollutants to joint effects were dominated by CO in overall and overweight/obesity MAFLD (Weights were 42.31 % and 45.87 %, respectively), while SO42- (36.34 %), SO2 (21.00 %) and BC (12.38 %) were more important in lean MAFLD. Being male, aged above 45 years and smoking increased joint effects of air pollutant mixture on overall MAFLD. CONCLUSIONS Air pollutant mixture was associated with MAFLD, particularly the lean MAFLD subtype. CO played a pivotal role in both overall and overweight/obesity MAFLD, whereas SO42- were associated with lean MAFLD.
Collapse
Affiliation(s)
- Chuanteng Feng
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Yang
- Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China
| | - Zihang Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayi Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyun Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Honglian Zeng
- Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China
| | - Jan D Reinhardt
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; Department of Rehabilitation Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing 210009, China; Department of Health Sciences and Medicine, University of Lucerne, Lucerne 6002, Switzerland.
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan 430079, China.
| |
Collapse
|
6
|
Lu W, Jiang C, Chen Y, Lu Z, Xu X, Zhu L, Xi H, Ye G, Yan C, Chen J, Zhang J, Zuo L, Huang Q. Altered metabolome and microbiome associated with compromised intestinal barrier induced hepatic lipid metabolic disorder in mice after subacute and subchronic ozone exposure. ENVIRONMENT INTERNATIONAL 2024; 185:108559. [PMID: 38461778 DOI: 10.1016/j.envint.2024.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Exposure to ozone has been associated with metabolic disorders in humans, but the underlying mechanism remains unclear. In this study, the role of the gut-liver axis and the potential mechanism behind the metabolic disorder were investigated by histological examination, microbiome and metabolome approaches in mice during the subacute (4-week) and subchronic (12-week) exposure to 0.5 ppm and 2.5 ppm ozone. Ozone exposure resulted in slowed weight gain and reduced hepatic lipid contents in a dose-dependent manner. After exposure to ozone, the number of intestinal goblet cells decreased, while the number of tuft cells increased. Tight junction protein zonula occludens-1 (ZO-1) was significantly downregulated, and the apoptosis of epithelial cells increased with compensatory proliferation, indicating a compromised chemical and physical layer of the intestinal barrier. The hepatic and cecal metabolic profiles were altered, primarily related to lipid metabolism and oxidative stress. The abundance of Muribaculaceae increased dose-dependently in both colon and cecum, and was associated with the decrease of metabolites such as bile acids, betaine, and L-carnitine, which subsequently disrupted the intestinal barrier and lipid metabolism. Overall, this study found that subacute and subchronic exposure to ozone induced metabolic disorder via disturbing the gut-liver axis, especially the intestinal barrier. These findings provide new mechanistic understanding of the health risks associated with environmental ozone exposure and other oxidative stressors.
Collapse
Affiliation(s)
- Wenjia Lu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chonggui Jiang
- Innovation and Entrepreneurship Laboratory for college students, Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yajie Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueli Xu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liting Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotong Xi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changzhou Yan
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for college students, Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National Basic Science Data Center, Beijing 100190, China.
| |
Collapse
|
7
|
Cheng WC, Wong PY, Wu CD, Cheng PN, Lee PC, Li CY. Non-linear association between long-term air pollution exposure and risk of metabolic dysfunction-associated steatotic liver disease. Environ Health Prev Med 2024; 29:7. [PMID: 38346730 PMCID: PMC10898959 DOI: 10.1265/ehpm.23-00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD) has become a global epidemic, and air pollution has been identified as a potential risk factor. This study aims to investigate the non-linear relationship between ambient air pollution and MASLD prevalence. METHOD In this cross-sectional study, participants undergoing health checkups were assessed for three-year average air pollution exposure. MASLD diagnosis required hepatic steatosis with at least 1 out of 5 cardiometabolic criteria. A stepwise approach combining data visualization and regression modeling was used to determine the most appropriate link function between each of the six air pollutants and MASLD. A covariate-adjusted six-pollutant model was constructed accordingly. RESULTS A total of 131,592 participants were included, with 40.6% met the criteria of MASLD. "Threshold link function," "interaction link function," and "restricted cubic spline (RCS) link functions" best-fitted associations between MASLD and PM2.5, PM10/CO, and O3 /SO2/NO2, respectively. In the six-pollutant model, significant positive associations were observed when pollutant concentrations were over: 34.64 µg/m3 for PM2.5, 57.93 µg/m3 for PM10, 56 µg/m3 for O3, below 643.6 µg/m3 for CO, and within 33 and 48 µg/m3 for NO2. The six-pollutant model using these best-fitted link functions demonstrated superior model fitting compared to exposure-categorized model or linear link function model assuming proportionality of odds. CONCLUSION Non-linear associations were found between air pollutants and MASLD prevalence. PM2.5, PM10, O3, CO, and NO2 exhibited positive associations with MASLD in specific concentration ranges, highlighting the need to consider non-linear relationships in assessing the impact of air pollution on MASLD.
Collapse
Affiliation(s)
- Wei-Chun Cheng
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Gastroenterology and Hepatology, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Pei-Yi Wong
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Pin-Nan Cheng
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chen Lee
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Yi Li
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Liang S, Lu Z, Cai L, Zhu M, Zhou H, Zhang J. Multi-Omics analysis reveals molecular insights into the effects of acute ozone exposure on lung tissues of normal and obese male mice. ENVIRONMENT INTERNATIONAL 2024; 183:108436. [PMID: 38219541 DOI: 10.1016/j.envint.2024.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Certain sub-groups, including men and obese individuals, are more susceptible to ozone (O3) exposure, but the underlying molecular mechanisms remain unclear. In this study, the male mice were divided into two dietary groups: one fed a high-fat diet (HFD), mimicking obesity conditions, and the other fed a normal diet (ND), then exposed to 0.5 ppm and 2 ppm O3 for 4 h per day over two days. The HFD mice exhibited significantly higher body weight and serum lipid biochemical indicators compared to the ND mice. Obese mice also exhibited more severe pulmonary inflammation and oxidative stress. Using a multi-omics approach including proteomics, metabolomics, and lipidomics, we observed that O3 exposure induced significant pulmonary molecular changes in both obese and normal mice, primarily arachidonic acid metabolism and lipid metabolism. Different molecular biomarker responses to acute O3 exposure were also observed between two dietary groups, with immune-related proteins impacted in obese mice and PPAR pathway-related proteins affected in normal mice. Furthermore, although not statistically significant, O3 exposure tended to aggravate HFD-induced disturbances in lung glycerophospholipid metabolism. Overall, this study provides valuable molecular insights into the responses of lung to O3 exposure and highlights the potential impact of O3 on obesity-induced metabolic changes.
Collapse
Affiliation(s)
- Shijia Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Lijing Cai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Miao Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Haixia Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
9
|
Zhang Y, Yan Z, Nan N, Qin G, Sang N. Circadian rhythm disturbances involved in ozone-induced glucose metabolism disorder in mouse liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167316. [PMID: 37742977 DOI: 10.1016/j.scitotenv.2023.167316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Ozone (O3) is a key environmental factor for developing diabetes. Nevertheless, the underlying mechanisms remain unclear. This study aimed to investigate alterations of glycometabolism in mice after O3 exposure and the role of circadian rhythms in this process. C57BL/6 male mice were randomly assigned to O3 (0.5 ppm) or filtered air for four weeks (4 h/day). Then, hepatic tissues of mice were collected at 4 h intervals within 24 h after O3 exposure to test. The results showed that hepatic circadian rhythm genes oscillated abnormally, mainly at zeitgeber time (ZT)8 and ZT20 after O3 exposure. Furthermore, detection of glycometabolism (metabolites, enzymes, and genes) revealed that O3 caused change in the daily oscillations of glycometabolism. The serum glucose content decreased at ZT4 and ZT20, while hepatic glucose enhanced at ZT16 and ZT24(0). Both G6pc and Pck1, which are associated with hepatic gluconeogenesis, significantly increased at ZT20. O3 exposure disrupted glycometabolism by increasing gluconeogenesis and decreasing glycolysis in mice liver. Finally, correlation analysis showed that the association between Bmal1 and O3-induced disruption of glycometabolism was the strongest. The findings emphasized the interaction between adverse outcomes of circadian rhythms and glycometabolism following O3 exposure.
Collapse
Affiliation(s)
- Yaru Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
10
|
Alewel DI, Rentschler KM, Jackson TW, Schladweiler MC, Astriab-Fisher A, Evansky PA, Kodavanti UP. Serum metabolome and liver transcriptome reveal acrolein inhalation-induced sex-specific homeostatic dysfunction. Sci Rep 2023; 13:21179. [PMID: 38040807 PMCID: PMC10692194 DOI: 10.1038/s41598-023-48413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023] Open
Abstract
Acrolein, a respiratory irritant, induces systemic neuroendocrine stress. However, peripheral metabolic effects have not been examined. Male and female WKY rats were exposed to air (0 ppm) or acrolein (3.16 ppm) for 4 h, followed by immediate serum and liver tissue collection. Serum metabolomics in both sexes and liver transcriptomics in males were evaluated to characterize the systemic metabolic response. Of 887 identified metabolites, > 400 differed between sexes at baseline. An acrolein biomarker, 3-hydroxypropyl mercapturic acid, increased 18-fold in males and 33-fold in females, indicating greater metabolic detoxification in females than males. Acrolein exposure changed 174 metabolites in males but only 50 in females. Metabolic process assessment identified higher circulating free-fatty acids, glycerols, and other lipids in male but not female rats exposed to acrolein. In males, acrolein also increased branched-chain amino acids, which was linked with metabolites of nitrogen imbalance within the gut microbiome. The contribution of neuroendocrine stress was evident by increased corticosterone in males but not females. Male liver transcriptomics revealed acrolein-induced over-representation of lipid and protein metabolic processes, and pathway alterations including Sirtuin, insulin-receptor, acute-phase, and glucocorticoid signaling. In sum, acute acrolein inhalation resulted in sex-specific serum metabolomic and liver transcriptomic derangement, which may have connections to chronic metabolic-related diseases.
Collapse
Affiliation(s)
- Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Katherine M Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas W Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Anna Astriab-Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Paul A Evansky
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
11
|
Valdez MC, Freeborn DL, Valdez JM, Henriquez AR, Snow SJ, Jackson TW, Kodavanti PRS, Kodavanti UP. Influence of Mild Chronic Stress and Social Isolation on Acute Ozone-Induced Alterations in Stress Biomarkers and Brain-Region-Specific Gene Expression in Male Wistar-Kyoto Rats. Antioxidants (Basel) 2023; 12:1964. [PMID: 38001817 PMCID: PMC10669107 DOI: 10.3390/antiox12111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Individuals with psychosocial stress often experience an exaggerated response to air pollutants. Ozone (O3) exposure has been associated with the activation of the neuroendocrine stress-response system. We hypothesized that preexistent mild chronic stress plus social isolation (CS), or social isolation (SI) alone, would exacerbate the acute effects of O3 exposure on the circulating adrenal-derived stress hormones, and the expression of the genes regulating glucocorticoid stress signaling via an altered stress adaptation in a brain-region-specific manner. Male Wistar-Kyoto rats (5 weeks old) were socially isolated, plus were subjected to either CS (noise, confinement, fear, uncomfortable living, hectic activity, and single housing), SI (single housing only, restricted handling and no enrichment) or no stress (NS; double housing, frequent handling and enrichment provided) for 8 weeks. The rats were then exposed to either air or O3 (0.8 ppm for 4 h), and the samples were collected immediately after. The indicators of sympathetic and hypothalamic-pituitary axis (HPA) activation (i.e., epinephrine, corticosterone, and lymphopenia) increased with O3 exposure, but there were no effects from CS or SI, except for the depletion of serum BDNF. CS and SI revealed small changes in brain-region-specific glucocorticoid-signaling-associated markers of gene expression in the air-exposed rats (hypothalamic Nr3c1, Nr3c2 Hsp90aa1, Hspa4 and Cnr1 inhibition in SI; hippocampal HSP90aa1 increase in SI; and inhibition of the bed nucleus of the stria terminalis (BNST) Cnr1 in CS). Gene expression across all brain regions was altered by O3, reflective of glucocorticoid signaling effects, such as Fkbp5 in NS, CS and SI. The SI effects on Fkbp5 were greatest for SI in BNST. O3 increased Cnr2 expression in the hypothalamus and olfactory bulbs of the NS and SI groups. O3, in all stress conditions, generally inhibited the expression of Nr3c1 in all brain regions, Nr3c2 in the hippocampus and hypothalamus and Bdnf in the hippocampus. SI, in general, showed slightly greater O3-induced changes when compared to NS and CS. Serum metabolomics revealed increased sphingomyelins in the air-exposed SI and O3-exposed NS, with underlying SI dampening some of the O3-induced changes. These results suggest a potential link between preexistent SI and acute O3-induced increases in the circulating adrenal-derived stress hormones and brain-region-specific gene expression changes in glucocorticoid signaling, which may partly underlie the stress dynamic in those with long-term SI.
Collapse
Affiliation(s)
- Matthew C. Valdez
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (M.C.V.); (D.L.F.); (J.M.V.); (P.R.S.K.)
- Oak Ridge Institute for Science and Education Research Participation Program, US Department of Energy, Oak Ridge, TN 37831, USA; (A.R.H.); (T.W.J.)
| | - Danielle L. Freeborn
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (M.C.V.); (D.L.F.); (J.M.V.); (P.R.S.K.)
| | - Joseph M. Valdez
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (M.C.V.); (D.L.F.); (J.M.V.); (P.R.S.K.)
- Oak Ridge Institute for Science and Education Research Participation Program, US Department of Energy, Oak Ridge, TN 37831, USA; (A.R.H.); (T.W.J.)
| | - Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, US Department of Energy, Oak Ridge, TN 37831, USA; (A.R.H.); (T.W.J.)
| | - Samantha J. Snow
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, US Department of Energy, Oak Ridge, TN 37831, USA; (A.R.H.); (T.W.J.)
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Prasada Rao S. Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (M.C.V.); (D.L.F.); (J.M.V.); (P.R.S.K.)
| | - Urmila P. Kodavanti
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| |
Collapse
|
12
|
Sundar IK, Duraisamy SK, Choudhary I, Saini Y, Silveyra P. Acute and Repeated Ozone Exposures Differentially Affect Circadian Clock Gene Expression in Mice. Adv Biol (Weinh) 2023; 7:e2300045. [PMID: 37204107 PMCID: PMC10657336 DOI: 10.1002/adbi.202300045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Indexed: 05/20/2023]
Abstract
Circadian rhythms have an established role in regulating physiological processes, such as inflammation, immunity, and metabolism. Ozone, a common environmental pollutant with strong oxidative potential, is implicated in lung inflammation/injury in asthmatics. However, whether O3 exposure affects the expression of circadian clock genes in the lungs is not known. In this study, changes in the expression of core clock genes are analyzed in the lungs of adult female and male mice exposed to filtered air (FA) or O3 using qRT-PCR. The findings are confirmed using an existing RNA-sequencing dataset from repeated FA- and O3 -exposed mouse lungs and validated by qRT-PCR. Acute O3 exposure significantly alters the expression of clock genes in the lungs of females (Per1, Cry1, and Rora) and males (Per1). RNA-seq data revealing sex-based differences in clock gene expression in the airway of males (decreased Nr1d1/Rev-erbα) and females (increased Skp1), parenchyma of females and males (decreased Nr1d1 and Fbxl3 and increased Bhlhe40 and Skp1), and alveolar macrophages of males (decreased Arntl/Bmal1, Per1, Per2, Prkab1, and Prkab2) and females (increased Cry2, Per1, Per2, Csnk1d, Csnk1e, Prkab2, and Fbxl3). These findings suggest that lung inflammation caused by O3 exposure affects clock genes which may regulate key signaling pathways.
Collapse
Affiliation(s)
- Isaac Kirubakaran Sundar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Santhosh Kumar Duraisamy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ishita Choudhary
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University, School of Public Health, Bloomington, IN, USA
| |
Collapse
|
13
|
Pan W, Wang M, Hu Y, Lian Z, Cheng H, Qin JJ, Wan J. The association between outdoor air pollution and body mass index, central obesity, and visceral adiposity index among middle-aged and elderly adults: a nationwide study in China. Front Endocrinol (Lausanne) 2023; 14:1221325. [PMID: 37876545 PMCID: PMC10593432 DOI: 10.3389/fendo.2023.1221325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/22/2023] [Indexed: 10/26/2023] Open
Abstract
Background Previous animal studies have suggested that air pollution (AP) exposure may be a potential risk factor for obesity; however, there is limited epidemiological evidence available to describe the association of obesity with AP exposure. Methods A retrospective cross-sectional study was conducted on 11,766 participants across mainland China in 2015. Obesity was assessed using body mass index (BMI), waist circumference (WC), and visceral adiposity index (VAI). The space-time extremely randomized tree (STET) model was used to estimate the concentration of air pollutants, including SO2, NO2, O3, PM1, PM2.5, and PM10, matched to participants' residential addresses. Logistic regression models were employed to estimate the associations of obesity with outdoor AP exposure. Further stratified analysis was conducted to evaluate whether sociodemographics or lifestyles modified the effects. Results Increased AP exposure was statistically associated with increased odds of obesity. The odds ratio (ORs) and 95% confidence interval (CI) of BMI-defined obesity were 1.21 (1.17, 1.26) for SO2, 1.33 (1.26, 1.40) for NO2, 1.15 (1.10, 1.21) for O3, 1.38 (1.29, 1.48) for PM1, 1.19 (1.15, 1.22) for PM2.5, and 1.11 (1.09, 1.13) for PM10 per 10 μg/m3 increase in concentration. Similar results were found for central obesity. Stratified analyses suggested that elderly participants experienced more adverse effects from all 6 air pollutants than middle-aged participants. Furthermore, notable multiplicative interactions were found between O3 exposure and females as well as second-hand smokers in BMI-defined obesity. Conclusions This study suggested that outdoor AP exposure had a significant association with the risk of obesity in the middle-aged and elderly Chinese population. Elderly individuals and women may be more vulnerable to AP exposure.
Collapse
Affiliation(s)
- Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yingying Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhengqi Lian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Haonan Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Yang C, Shen Y, Zhang Y, Xiao H, Sun X, Liao J, Chen X, Zhang W, Yu L, Xia W, Xu S, Li Y. Air pollution exposure and plasma fatty acid profile in pregnant women: a cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108319-108329. [PMID: 37752390 DOI: 10.1007/s11356-023-29886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Air pollution exposure was known to result in body impairments by inducing inflammation and oxidation. But little is known about the associations of air pollutants with plasma fatty acid profile which may play important roles in the impairment of air pollutants based on the related mechanism, especially in pregnant women. This study aimed to explore the relationships of air pollution exposure with plasma fatty acid profile and the potential effect modification by pre-pregnancy body mass index (BMI). Based on a cohort in Wuhan, China, we measured concentrations of plasma fatty acids of 519 pregnant women enrolled from 2013 to 2016 by gas chromatography-mass spectrometry (GC-MS). Levels of exposure to air pollutants (fine particulate matter (PM2.5), inhalable particles (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO)) were estimated by using spatial-temporal land use regression models and calculated in three periods (average concentrations during 1 day, 1 week, and 1 month before the phlebotomizing day in the first trimester). Per interquartile range increment of the levels of air pollution exposure 1 day before phlebotomizing was related to 1.21-2.01% increment of omega-6 polyunsaturated fatty acids (n-6PUFA) and 0.63-1.74% decrement of omega-3 polyunsaturated fatty acids (n-3PUFA). Besides, relationships above were kept robust in the analysis during 1 week and 1 month before phlebotomizing. In women with normal BMI, plasma fatty acid profile was observed to be more sensitive to air pollutants. Our study demonstrated that increment of exposure to air pollutants was associated with higher plasma n-6PUFA known to be pro-inflammatory and lower plasma n-3PUFA known to be anti-inflammatory, which was more sensitive in pregnant women with normal BMI. Our findings suggested that changes in plasma fatty acid profile should cause concerns and may serve as biomarkers in the further studies. Future studies are needed to validate our findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Chenhui Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ye Shen
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
- Department of Gynaecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiong Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Jiaqiang Liao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Xinmei Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Wenxin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuanyuan Li
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
15
|
Liu L, Wang T, Xu H, Zhu Y, Guan X, He X, Fang J, Xie Y, Zhang Q, Song X, Zhao Q, Huang W. Exposure to ambient oxidant pollution associated with ceramide changes and cardiometabolic responses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104276. [PMID: 37717721 DOI: 10.1016/j.etap.2023.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Evidence of impact of ambient oxidant pollution on cardiometabolic responses remains limited. We aimed to examine associations of oxidant pollutants with cardiometabolic responses, and effect modification by ceramides. During 2019-2020, 152 healthy adults were visited 4 times in Beijing, China, and indicators of ceramides, glucose homeostasis, and vascular function were measured. We found significant increases in ceramides of 13.9% (p = 0.020) to 110.1% (p = 0.005) associated with an interquartile increase in oxidant pollutants at prior 1-7 days. Exposure to oxidant pollutants was also related to elevations in insulin and reductions in adiponectin, and elevations in systolic and diastolic blood pressure. Further, stratified analyses revealed larger changes in oxidant pollutant related cardiometabolic responses among participants with higher ceramide levels compared to those with lower levels. Our findings suggested cardiometabolic effects associated with exposure to oxidant pollutants, which may be modified by ceramide levels.
Collapse
Affiliation(s)
- Lingyan Liu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Department of Geriatrics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Tong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China.
| | - Yutong Zhu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Xinpeng Guan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Xinghou He
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Qiaochi Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Qian Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Wei Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China.
| |
Collapse
|
16
|
Jackson TW, House JS, Henriquez AR, Schladweiler MC, Jackson KM, Fisher AA, Snow SJ, Alewel DI, Motsinger-Reif AA, Kodavanti UP. Multi-tissue transcriptomic and serum metabolomic assessment reveals systemic implications of acute ozone-induced stress response in male Wistar Kyoto rats. Metabolomics 2023; 19:81. [PMID: 37690105 DOI: 10.1007/s11306-023-02043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Air pollutant exposures have been linked to systemic disease; however, the underlying mechanisms between responses of the target tissue and systemic effects are poorly understood. A prototypic inducer of stress, ozone causes respiratory and systemic multiorgan effects through activation of a neuroendocrine stress response. The goal of this study was to assess transcriptomic signatures of multiple tissues and serum metabolomics to understand how neuroendocrine and adrenal-derived stress hormones contribute to multiorgan health outcomes. Male Wistar Kyoto rats (12-13 weeks old) were exposed to filtered air or 0.8 ppm ozone for 4-hours, and blood/tissues were collected immediately post-exposure. Each tissue had distinct expression profiles at baseline. Ozone changed 1,640 genes in lung, 274 in hypothalamus, 2,516 in adrenals, 1,333 in liver, 1,242 in adipose, and 5,102 in muscle (adjusted p-value < 0.1, absolute fold-change > 50%). Serum metabolomic analysis identified 863 metabolites, of which 447 were significantly altered in ozone-exposed rats (adjusted p-value < 0.1, absolute fold change > 20%). A total of 6 genes were differentially expressed in all 6 tissues. Glucocorticoid signaling, hypoxia, and GPCR signaling were commonly changed, but ozone induced tissue-specific changes in oxidative stress, immune processes, and metabolic pathways. Genes upregulated by TNF-mediated NFkB signaling were differentially expressed in all ozone-exposed tissues, but those defining inflammatory response were tissue-specific. Upstream predictor analysis identified common mediators of effects including glucocorticoids, although the specific genes responsible for these predictors varied by tissue. Metabolomic analysis showed major changes in lipids, amino acids, and metabolites linked to the gut microbiome, concordant with transcriptional changes identified through pathway analysis within liver, muscle, and adipose tissues. The distribution of receptors and transcriptional mechanisms underlying the ozone-induced stress response are tissue-specific and involve induction of unique gene networks and metabolic phenotypes, but the shared initiating triggers converge into shared pathway-level responses. This multi-tissue transcriptomic analysis, combined with circulating metabolomic assessment, allows characterization of the systemic inhaled pollutant-induced stress response.
Collapse
Affiliation(s)
- Thomas W Jackson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - John S House
- Division of Intramural Research, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andres R Henriquez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | | | - Anna A Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Sam J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
- ICF, Durham, NC, USA
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Allison A Motsinger-Reif
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
17
|
Peng J, Wang S, Wang Y, Yu W, Zha Y, Gao S. Effects of ozone exposure on lipid metabolism in Huh-7 human hepatoma cells. Front Public Health 2023; 11:1222762. [PMID: 37521985 PMCID: PMC10374329 DOI: 10.3389/fpubh.2023.1222762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Ozone pollution is a major environmental concern. According to recent epidemiological studies, ozone exposure increases the risk of metabolic liver disease. However, studies on the mechanisms underlying the effects of ozone exposure on hepatic oxidative damage, lipid synthesis, and catabolism are limited. In this study, Huh-7 human hepatocellular carcinoma cells were randomly divided into five groups and exposed to 200 ppb O3 for 0, 1, 2, 4, and 8 h. We measured the levels of oxidative stress and analyzed the changes in molecules related to lipid metabolism. The levels of oxidative stress were found to be significantly elevated in Huh-7 hepatocellular carcinoma cells after O3 exposure. Moreover, the expression levels of intracellular lipid synthases, including SREBP1, FASN, SCD1, and ACC1, were enhanced. Lipolytic enzymes, including ATGL and HSL, and the mitochondrial fatty acid oxidase, CPT1α, were inhibited after O3 exposure. In addition, short O3 exposure enhanced the expression of the intracellular peroxisomal fatty acid β-oxidase, ACOX1; however, its expression decreased adaptively with longer exposure times. Overall, O3 exposure induces an increase in intracellular oxidative stress and disrupts the normal metabolism of lipids in hepatocytes, leading to intracellular lipid accumulation.
Collapse
Affiliation(s)
- Jianhao Peng
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Siyuan Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Yunlong Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Wanchao Yu
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Yejun Zha
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing, China
| | - Shuxin Gao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| |
Collapse
|
18
|
Alewel DI, Jackson TW, Vance SA, Schladweiler MC, Evansky PA, Henriquez AR, Grindstaff R, Gavett SH, Kodavanti UP. Sex-specific respiratory and systemic endocrine effects of acute acrolein and trichloroethylene inhalation. Toxicol Lett 2023; 382:22-32. [PMID: 37201588 PMCID: PMC10585336 DOI: 10.1016/j.toxlet.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/23/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Acrolein and trichloroethylene (TCE) are priority hazardous air pollutants due to environmental prevalence and adverse health effects; however, neuroendocrine stress-related systemic effects are not characterized. Comparing acrolein, an airway irritant, and TCE with low irritancy, we hypothesized that airway injury would be linked to neuroendocrine-mediated systemic alterations. Male and female Wistar-Kyoto rats were exposed nose-only to air, acrolein or TCE in incremental concentrations over 30 min, followed by 3.5-hr exposure to the highest concentration (acrolein - 0.0, 0.1, 0.316, 1, 3.16 ppm; TCE - 0.0, 3.16, 10, 31.6, 100 ppm). Real-time head-out plethysmography revealed acrolein decreased minute volume and increased inspiratory-time (males>females), while TCE reduced tidal-volume. Acrolein, but not TCE, inhalation increased nasal-lavage-fluid protein, lactate-dehydrogenase activity, and inflammatory cell influx (males>females). Neither acrolein nor TCE increased bronchoalveolar-lavage-fluid injury markers, although macrophages and neutrophils increased in acrolein-exposed males and females. Systemic neuroendocrine stress response assessment indicated acrolein, but not TCE, increased circulating adrenocorticotrophic hormone, and consequently corticosterone, and caused lymphopenia, but only in males. Acrolein also reduced circulating thyroid-stimulating hormone, prolactin, and testosterone in males. In conclusion, acute acrolein inhalation resulted in sex-specific upper respiratory irritation/inflammation and systemic neuroendocrine alterations linked to hypothalamic-pituitary-adrenal axes activation, which is critical in mediating extra-respiratory effects.
Collapse
Affiliation(s)
- Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Thomas W Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Samuel A Vance
- Oak Ridge Institute for Science and Education Research Participation Program, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Paul A Evansky
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Rachel Grindstaff
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Stephen H Gavett
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
19
|
Perryman AN, Kim HYH, Payton A, Rager JE, McNell EE, Rebuli ME, Wells H, Almond M, Antinori J, Alexis NE, Porter NA, Jaspers I. Plasma sterols and vitamin D are correlates and predictors of ozone-induced inflammation in the lung: A pilot study. PLoS One 2023; 18:e0285721. [PMID: 37186612 PMCID: PMC10184915 DOI: 10.1371/journal.pone.0285721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Ozone (O3) exposure causes respiratory effects including lung function decrements, increased lung permeability, and airway inflammation. Additionally, baseline metabolic state can predispose individuals to adverse health effects from O3. For this reason, we conducted an exploratory study to examine the effect of O3 exposure on derivatives of cholesterol biosynthesis: sterols, oxysterols, and secosteroid (25-hydroxyvitamin D) not only in the lung, but also in circulation. METHODS We obtained plasma and induced sputum samples from non-asthmatic (n = 12) and asthmatic (n = 12) adult volunteers 6 hours following exposure to 0.4ppm O3 for 2 hours. We quantified the concentrations of 24 cholesterol precursors and derivatives by UPLC-MS and 30 cytokines by ELISA. We use computational analyses including machine learning to determine whether baseline plasma sterols are predictive of O3 responsiveness. RESULTS We observed an overall decrease in the concentration of cholesterol precursors and derivatives (e.g. 27-hydroxycholesterol) and an increase in concentration of autooxidation products (e.g. secosterol-B) in sputum samples. In plasma, we saw a significant increase in the concentration of secosterol-B after O3 exposure. Machine learning algorithms showed that plasma cholesterol was a top predictor of O3 responder status based on decrease in FEV1 (>5%). Further, 25-hydroxyvitamin D was positively associated with lung function in non-asthmatic subjects and with sputum uteroglobin, whereas it was inversely associated with sputum myeloperoxidase and neutrophil counts. CONCLUSION This study highlights alterations in sterol metabolites in the airway and circulation as potential contributors to systemic health outcomes and predictors of pulmonary and inflammatory responsiveness following O3 exposure.
Collapse
Affiliation(s)
- Alexia N. Perryman
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Hye-Young H. Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Alexis Payton
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Julia E. Rager
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Erin E. McNell
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Meghan E. Rebuli
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Heather Wells
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Martha Almond
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jamie Antinori
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Neil E. Alexis
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
20
|
Rose M, Filiatreault A, Williams A, Guénette J, Thomson EM. Modulation of insulin signaling pathway genes by ozone inhalation and the role of glucocorticoids: A multi-tissue analysis. Toxicol Appl Pharmacol 2023; 469:116526. [PMID: 37088303 DOI: 10.1016/j.taap.2023.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Air pollution is associated with increased risk of metabolic diseases including type 2 diabetes, of which dysregulation of the insulin-signaling pathway is a feature. While studies suggest pollutant exposure alters insulin signaling in certain tissues, there is a lack of comparison across multiple tissues needed for a holistic assessment of metabolic effects, and underlying mechanisms remain unclear. Air pollution increases plasma levels of glucocorticoids, systemic regulators of metabolic function. The objectives of this study were to 1) determine effects of ozone on insulin-signaling genes in major metabolic tissues, and 2) elucidate the role of glucocorticoids. Male Fischer-344 rats were treated with metyrapone, a glucocorticoid synthesis inhibitor, and exposed to 0.8 ppm ozone or clean air for 4 h, with tissue collected immediately or 24 h post exposure. Ozone inhalation resulted in distinct mRNA profiles in the liver, brown adipose, white adipose and skeletal muscle tissues, including effects on insulin-signaling cascade genes (Pik3r1, Irs1, Irs2) and targets involved in glucose metabolism (Hk2, Pgk1, Slc2a1), cell survival (Bcl2l1), and genes associated with diabetes and obesity (Serpine1, Retn, Lep). lucocorticoid-dependent regulation was observed in the liver and brown and white adipose tissues, while effects in skeletal muscle were largely unaffected by metyrapone treatment. Gene expression changes were accompanied by altered phosphorylation states of insulin-signaling proteins (BAD, GSK, IR-β, IRS-1) in the liver. The results show that systemic effects of ozone inhalation include tissue-specific regulation of insulin-signaling pathway genes via both glucocorticoid-dependent and independent mechanisms, providing insight into mechanisms underlying adverse effects of pollutants.
Collapse
Affiliation(s)
- Mercedes Rose
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Alain Filiatreault
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Josée Guénette
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
21
|
Yang H, Xiao X, Chen G, Chen X, Gao T, Xu L. Preliminary study on the effect of ozone exposure on blood glucose level in rats. Technol Health Care 2023; 31:303-311. [PMID: 37066931 DOI: 10.3233/thc-236026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND In recent years, people have paid more and more attention to the health hazards caused by O3 exposure, which will become a major problem after fine particulate matter (PM). OBJECTIVE To investigate the effects of ozone (O3) exposure on blood glucose levels in rats under different concentrations and times. METHODS Eighty rats were divided into control group and three ozone concentration groups. Each group was continuously exposed for 1d, 3d and, 6d, and exposed for 6 hours daily. After exposure, GTT, FBG, and random blood glucose were measured. RESULTS The FBG value increased significantly on the 6th day of 0.5 ppm and the 3rd and 6th days of 1.0 ppm exposure compared with the control group (P< 0.05). The random blood glucose value was significantly increased on the 3rd and 6th days of each exposure concentration (P< 0.05). When exposed to 1 ppm concentration, the 120 min GTT value of 1 d, 3 d and, 6 d was significantly higher than that of the control group (P< 0.05). CONCLUSION After acute O3 exposure, the blood glucose level of rats was affected by the exposure concentration and time. The concentration of 0.1 ppm had no significant impact on FBG and random blood glucose, and O3 with a concentration of 0.1 ppm and 0.5 ppm had no significant impact on values of GTT at 90 min, and 120 min.
Collapse
Affiliation(s)
- Hui Yang
- The Central Theater General Hospital of PLA, Wuhan, Hubei, China
| | - Xue Xiao
- Wuhan Qingchuan University, Wuhan, Hubei, China
| | - Gaoyun Chen
- The Institute of NBC Defense, Beijing, China
| | - Xiangfei Chen
- The Central Theater General Hospital of PLA, Wuhan, Hubei, China
| | - Tingting Gao
- The Central Theater General Hospital of PLA, Wuhan, Hubei, China
| | - Li Xu
- The Institute of NBC Defense, Beijing, China
| |
Collapse
|
22
|
Montes JOA, Villarreal AB, Piña BGB, Martínez KC, Lugo MC, Romieu I, Cadena LH. Short-Term Ambient Air Ozone Exposure and Components of Metabolic Syndrome in a Cohort of Mexican Obese Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4495. [PMID: 36901504 PMCID: PMC10001840 DOI: 10.3390/ijerph20054495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Ambient air pollution is a major global public health concern; little evidence exists about the effects of short-term exposure to ozone on components of metabolic syndrome in young obese adolescents. The inhalation of air pollutants, such as ozone, can participate in the development of oxidative stress, systemic inflammation, insulin resistance, endothelium dysfunction, and epigenetic modification. Metabolic alterations in blood in components of metabolic syndrome (MS) and short-term ambient air ozone exposure were determined and evaluated longitudinally in a cohort of 372 adolescents aged between 9 to 19 years old. We used longitudinal mixed-effects models to evaluate the association between ozone exposure and the risk of components of metabolic syndrome and its parameters separately, adjusted using important variables. We observed statistically significant associations between exposure to ozone in tertiles in different lag days and the parameters associated with MS, especially for triglycerides (20.20 mg/dL, 95% CI: 9.5, 30.9), HDL cholesterol (-2.56 mg/dL (95% CI: -5.06, -0.05), and systolic blood pressure (1.10 mmHg, 95% CI: 0.08, 2.2). This study supports the hypothesis that short-term ambient air exposure to ozone may increase the risk of some components of MS such as triglycerides, cholesterol, and blood pressure in the obese adolescent population.
Collapse
Affiliation(s)
- Jorge Octavio Acosta Montes
- Facultad de Enfermería y Nutriología, Universidad Autónoma de Chihuahua, C. Escorza No. 900 Centro, Chihuahua 31000, Chihuahua, Mexico
| | - Albino Barraza Villarreal
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Blanca Gladiana Beltrán Piña
- Facultad de Enfermería y Nutriología, Universidad Autónoma de Chihuahua, C. Escorza No. 900 Centro, Chihuahua 31000, Chihuahua, Mexico
| | - Karla Cervantes Martínez
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Marlene Cortez Lugo
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Isabelle Romieu
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Leticia Hernández Cadena
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| |
Collapse
|
23
|
Alewel DI, Henriquez AR, Schladweiler MC, Grindstaff R, Fisher AA, Snow SJ, Jackson TW, Kodavanti UP. Intratracheal instillation of respirable particulate matter elicits neuroendocrine activation. Inhal Toxicol 2023; 35:59-75. [PMID: 35867597 PMCID: PMC10590194 DOI: 10.1080/08958378.2022.2100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Inhalation of ozone activates central sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal stress axes. While airway neural networks are known to communicate noxious stimuli to higher brain centers, it is not known to what extent responses generated from pulmonary airways contribute to neuroendocrine activation. MATERIALS AND METHODS Unlike inhalational exposures that involve the entire respiratory tract, we employed intratracheal (IT) instillations to expose only pulmonary airways to either soluble metal-rich residual oil fly ash (ROFA) or compressor-generated diesel exhaust particles (C-DEP). Male Wistar-Kyoto rats (12-13 weeks) were IT instilled with either saline, C-DEP or ROFA (5 mg/kg) and necropsied at 4 or 24 hr to assess temporal effects. RESULTS IT-instillation of particulate matter (PM) induced hyperglycemia as early as 30-min and glucose intolerance when measured at 2 hr post-exposure. We observed PM- and time-specific effects on markers of pulmonary injury/inflammation (ROFA>C-DEP; 24 hr>4hr) as corroborated by increases in lavage fluid injury markers, neutrophils (ROFA>C-DEP), and lymphocytes (ROFA). Increases in lavage fluid pro-inflammatory cytokines differed between C-DEP and ROFA in that C-DEP caused larger increases in TNF-α whereas ROFA caused larger increases in IL-6. No increases in circulating cytokines occurred. At 4 hr, PM impacts on neuroendocrine activation were observed through depletion of circulating leukocytes, increases in adrenaline (ROFA), and decreases in thyroid-stimulating-hormone, T3, prolactin, luteinizing-hormone, and testosterone. C-DEP and ROFA both increased lung expression of genes involved in acute stress and inflammatory processes. Moreover, small increases occurred in hypothalamic Fkbp5, a glucocorticoid-sensitive gene. CONCLUSION Respiratory alterations differed between C-DEP and ROFA, with ROFA inducing greater overall lung injury/inflammation; however, both PM induced a similar degree of neuroendocrine activation. These findings demonstrate neuroendocrine activation after pulmonary-only PM exposure, and suggest the involvement of pituitary- and adrenal-derived hormones.
Collapse
Affiliation(s)
- Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Mette C. Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Rachel Grindstaff
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Anna A. Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Samantha J. Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
24
|
Zhao J, Yang Q, Liu Z, Xu P, Tian L, Yan J, Li K, Lin B, Bian L, Xi Z, Liu X. The impact of subchronic ozone exposure on serum metabolome and the mechanisms of abnormal bile acid and arachidonic acid metabolisms in the liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114573. [PMID: 36701875 DOI: 10.1016/j.ecoenv.2023.114573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 06/17/2023]
Abstract
Ambient ozone (O3) pollution can induce respiratory and cardiovascular toxicity. However, its impact on the metabolome and the underlying mechanisms remain unclear. This study first investigated the serum metabolite changes in rats exposed to 0.5 ppm O3 for 3 months using untargeted metabolomic approach. Results showed chronic ozone exposure significantly altered the serum levels of 34 metabolites with potential increased risk of digestive, respiratory and cardiovascular disease. Moreover, bile acid synthesis and secretion, and arachidonic acid (AA) metabolism became the most prominent affected metabolic pathways after O3 exposure. Further studies on the mechanisms found that the elevated serum toxic bile acid was not due to the increased biosynthesis in the liver, but the reduced reuptake from the portal vein to hepatocytes owing to repressed Ntcp and Oatp1a1, and the decreased bile acid efflux in hepatocytes as a results of inhibited Bsep, Ostalpha and Ostbeta. Meanwhile, decreased expressions of detoxification enzyme of SULT2A1 and the important regulators of FXR, PXR and HNF4α also contributed to the abnormal bile acids. In addition, O3 promoted the conversion of AA into thromboxane A2 (TXA2) and 20-hydroxyarachidonic acid (20-HETE) in the liver by up-regulation of Fads2, Cyp4a and Tbxas1 which resulting in decreased AA and linoleic acid (LA), and increased thromboxane B2 (TXB2) and 20-HETE in the serum. Furthermore, apparent hepatic chronic inflammation, fibrosis and abnormal function were found in ozone-exposed rats. These results indicated chronic ozone exposure could alter serum metabolites by interfering their metabolism in the liver, and inducing liver injury to aggravate metabolic disorders.
Collapse
Affiliation(s)
- Jiao Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Qingcheng Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Zhiyuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Pengfei Xu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| |
Collapse
|
25
|
Kodavanti UP, Jackson TW, Henriquez AR, Snow SJ, Alewel DI, Costa DL. Air Pollutant impacts on the brain and neuroendocrine system with implications for peripheral organs: a perspective. Inhal Toxicol 2023; 35:109-126. [PMID: 36749208 DOI: 10.1080/08958378.2023.2172486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Air pollutants are being increasingly linked to extrapulmonary multi-organ effects. Specifically, recent studies associate air pollutants with brain disorders including psychiatric conditions, neuroinflammation and chronic diseases. Current evidence of the linkages between neuropsychiatric conditions and chronic peripheral immune and metabolic diseases provides insights on the potential role of the neuroendocrine system in mediating neural and systemic effects of inhaled pollutants (reactive particulates and gases). Autonomically-driven stress responses, involving sympathetic-adrenal-medullary and hypothalamus-pituitary-adrenal axes regulate cellular physiological processes through adrenal-derived hormones and diverse receptor systems. Recent experimental evidence demonstrates the contribution of the very stress system responding to non-chemical stressors, in mediating systemic and neural effects of reactive air pollutants. The assessment of how respiratory encounter of air pollutants induce lung and peripheral responses through brain and neuroendocrine system, and how the impairment of these stress pathways could be linked to chronic diseases will improve understanding of the causes of individual variations in susceptibility and the contribution of habituation/learning and resiliency. This review highlights effects of air pollution in the respiratory tract that impact the brain and neuroendocrine system, including the role of autonomic sensory nervous system in triggering neural stress response, the likely contribution of translocated nano particles or metal components, and biological mediators released systemically in causing effects remote to the respiratory tract. The perspective on the use of systems approaches that incorporate multiple chemical and non-chemical stressors, including environmental, physiological and psychosocial, with the assessment of interactive neural mechanisms and peripheral networks are emphasized.
Collapse
Affiliation(s)
- Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Thomas W Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Daniel L Costa
- Department of Environmental Sciences and Engineering, Gilling's School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Wu T, Li Z, Wei Y. Advances in understanding mechanisms underlying mitochondrial structure and function damage by ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160589. [PMID: 36462650 DOI: 10.1016/j.scitotenv.2022.160589] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Mitochondria are double-membraned organelles found in eukaryotic cells. The integrity of mitochondrial structure and function determines cell destiny. Mitochondria are also the "energy factories of cells." The production of energy is accompanied by reactive oxygen species (ROS) generation. Generally, the production and consumption of ROS maintains a balance in cells. Ozone is a highly oxidizing, harmful substance in ground-level atmosphere. Ozone inhalation causes oxidative injury owing to the generation of ROS, resulting in mitochondrial oxidative stress overload. Oxidative damage to the mitochondria induces a vicious cycle of ROS production which might destroy mitochondrial DNA and mitochondrial structure and function in cells. ROS can alter the phosphorylation of various signaling molecules, triggering a series of downstream signaling pathway reactions. These include inflammatory responses, pyroptosis, autophagy, and apoptosis. Changes involving these molecular mechanisms may be related to the occurrence of disease. According to numerous epidemiological investigations, ozone exposure induces respiratory, cardiovascular, and nervous system diseases in humans. In addition, these systems require large quantities of energy. Hence, the mitochondrial damage caused by ozone may act as a bridge between human diseases. However, the specific molecular mechanisms involved require further investigation. This review discusses our understanding of the structure and function of mitochondria the mechanisms underlying ozone-induced mitochondrial damage.
Collapse
Affiliation(s)
- Tingting Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
27
|
Zhang L, Wang P, Zhou Y, Cheng Y, Li J, Xiao X, Yin C, Li J, Meng X, Zhang Y. Associations of ozone exposure with gestational diabetes mellitus and glucose homeostasis: Evidence from a birth cohort in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159184. [PMID: 36202368 DOI: 10.1016/j.scitotenv.2022.159184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Associations between individual exposure to ozone (O3) and gestational diabetes mellitus (GDM) have rarely been investigated, and critical windows of O3 exposure for GDM have not been identified. OBJECTIVES We aimed to explore the associations of gestational O3 exposure with GDM and glucose homeostasis as well as to identify the potential critical windows. METHODS A total of 7834 pregnant women were included. Individual O3 exposure concentrations were evaluated using a high temporal-spatial resolution model. Each participant underwent an oral glucose tolerance test (OGTT) to screen for GDM between 24 and 28 gestational weeks. Multiple logistic and multiple linear regression models were used to estimate the associations of O3 with GDM risks and with blood glucose levels of OGTT, respectively. Distributed lag nonlinear models (DLNMs) were used to estimate the critical windows of O3 exposure for GDM. RESULTS Nearly 13.29 % of participants developed GDM. After controlling for covariates, we observed increased GDM risks per IQR increment of O3 exposure in the first trimester (OR = 1.738, 95 % CI: 1.002-3.016) and the first two trimesters (OR = 1.576, 95 % CI: 1.005-2.473). Gestational O3 exposure was positively associated with increased fasting blood glucose (the first trimester: β = 2.964, 95 % CI: 1.529-4.398; the first two trimesters: β = 1.620, 95 % CI: 0.436-2.804) and 2 h blood glucose (the first trimester: β = 6.569, 95 % CI: 1.775-11.363; the first two trimesters: β = 6.839, 95 % CI: 2.896-10.782). We also observed a concentration-response relationship of gestational O3 exposure with GDM risk, as well as fasting and 2 h blood glucose levels. Additionally, 5-10 gestational weeks was identified as a critical window of O3 exposure for GDM development. CONCLUSION In summary, we found that gestational O3 exposure disrupts glucose homeostasis and increases the risk of GDM in pregnant women. Furthermore, 5-10 gestational weeks could be a critical window for the effects of O3 exposure on GDM.
Collapse
Affiliation(s)
- Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yukai Cheng
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jialin Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xirong Xiao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Chuanmin Yin
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Jiufeng Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xia Meng
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
28
|
Henriquez AR, Snow SJ, Jackson TW, House JS, Alewel DI, Schladweiler MC, Valdez MC, Freeborn DL, Miller CN, Grindstaff R, Kodavanti PRS, Kodavanti UP. Social isolation exacerbates acute ozone inhalation induced pulmonary and systemic health outcomes. Toxicol Appl Pharmacol 2022; 457:116295. [PMID: 36341779 PMCID: PMC9722630 DOI: 10.1016/j.taap.2022.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Psychosocially-stressed individuals might have exacerbated responses to air pollution exposure. Acute ozone exposure activates the neuroendocrine stress response leading to systemic metabolic and lung inflammatory changes. We hypothesized chronic mild stress (CS) and/or social isolation (SI) would cause neuroendocrine, inflammatory, and metabolic phenotypes that would be exacerbated by an acute ozone exposure. Male 5-week-old Wistar-Kyoto rats were randomly assigned into 3 groups: no stress (NS) (pair-housed, regular-handling); SI (single-housed, minimal-handling); CS (single-housed, subjected to mild unpredicted-randomized stressors [restraint-1 h, tilted cage-1 h, shaking-1 h, intermittent noise-6 h, and predator odor-1 h], 1-stressor/day*5-days/week*8-weeks. All animals then 13-week-old were subsequently exposed to filtered-air or ozone (0.8-ppm) for 4 h and immediately necropsied. CS, but not SI animals had increased adrenal weights. However, relative to NS, both CS and SI had lower circulating luteinizing hormone, prolactin, and follicle-stimulating hormone regardless of exposure (SI > CS), and only CS demonstrated lower thyroid-stimulating hormone levels. SI caused more severe systemic inflammation than CS, as evidenced by higher circulating cytokines and cholesterol. Ozone exposure increased urine corticosterone and catecholamine metabolites with no significant stressor effect. Ozone-induced lung injury, and increases in lavage-fluid neutrophils and IL-6, were exacerbated by SI. Ozone severely lowered circulating thyroid-stimulating hormone, prolactin, and luteinizing hormone in all groups and exacerbated systemic inflammation in SI. Ozone-induced increases in serum glucose, leptin, and triglycerides were consistent across stressors; however, increases in cholesterol were exacerbated by SI. Collectively, psychosocial stressors, especially SI, affected the neuroendocrine system and induced adverse metabolic and inflammatory effects that were exacerbated by ozone exposure.
Collapse
Affiliation(s)
- Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Thomas W Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - John S House
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Matthew C Valdez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Danielle L Freeborn
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Rachel Grindstaff
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prasada Rao S Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
29
|
Henriquez AR, Snow SJ, Jackson TW, House JS, Motsinger-Reif AA, Ward-Caviness CK, Schladweiler MC, Alewel DI, Miller CN, Farraj AK, Hazari MS, Grindstaff R, Diaz-Sanchez D, Ghio AJ, Kodavanti UP. Stress Drivers of Glucose Dynamics during Ozone Exposure Measured Using Radiotelemetry in Rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:127006. [PMID: 36542476 PMCID: PMC9770052 DOI: 10.1289/ehp11088] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Inhaled irritant air pollutants may trigger stress-related metabolic dysfunction associated with altered circulating adrenal-derived hormones. OBJECTIVES We used implantable telemetry in rats to assess real-time changes in circulating glucose during and after exposure to ozone and mechanistically linked responses to neuroendocrine stress hormones. METHODS First, using a cross-over design, we monitored glucose during ozone exposures (0.0, 0.2, 0.4, and 0.8 ppm) and nonexposure periods in male Wistar Kyoto rats implanted with glucose telemeters. A second cohort of unimplanted rats was exposed to ozone (0.0, 0.4 or 0.8 ppm) for 30 min, 1 h, 2 h, or 4 h with hormones measured immediately post exposure. We assessed glucose metabolism in sham and adrenalectomized rats, with or without supplementation of adrenergic/glucocorticoid receptor agonists, and in a separate cohort, antagonists. RESULTS Ozone (0.8 ppm) was associated with significantly higher blood glucose and lower core body temperature beginning 90 min into exposure, with reversal of effects 4-6 h post exposure. Glucose monitoring during four daily 4-h ozone exposures revealed duration of glucose increases, adaptation, and diurnal variations. Ozone-induced glucose changes were preceded by higher levels of adrenocorticotropic hormone, corticosterone, and epinephrine but lower levels of thyroid-stimulating hormone, prolactin, and luteinizing hormones. Higher glucose and glucose intolerance were inhibited in rats that were adrenalectomized or treated with adrenergic plus glucocorticoid receptor antagonists but exacerbated by agonists. DISCUSSION We demonstrated the temporality of neuroendocrine-stress-mediated biological sequalae responsible for ozone-induced glucose metabolic dysfunction and mechanism in a rodent model. Stress hormones assessment with real-time glucose monitoring may be useful in identifying interactions among irritant pollutants and stress-related illnesses. https://doi.org/10.1289/EHP11088.
Collapse
Affiliation(s)
- Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Samantha J. Snow
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - John S. House
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alison A. Motsinger-Reif
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Cavin K. Ward-Caviness
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Mette C. Schladweiler
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Colette N. Miller
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aimen K. Farraj
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Mehdi S. Hazari
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Rachel Grindstaff
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - David Diaz-Sanchez
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Andrew J. Ghio
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Urmila P. Kodavanti
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| |
Collapse
|
30
|
Stapelberg NJC, Branjerdporn G, Adhikary S, Johnson S, Ashton K, Headrick J. Environmental Stressors and the PINE Network: Can Physical Environmental Stressors Drive Long-Term Physical and Mental Health Risks? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13226. [PMID: 36293807 PMCID: PMC9603079 DOI: 10.3390/ijerph192013226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Both psychosocial and physical environmental stressors have been linked to chronic mental health and chronic medical conditions. The psycho-immune-neuroendocrine (PINE) network details metabolomic pathways which are responsive to varied stressors and link chronic medical conditions with mental disorders, such as major depressive disorder via a network of pathophysiological pathways. The primary objective of this review is to explore evidence of relationships between airborne particulate matter (PM, as a concrete example of a physical environmental stressor), the PINE network and chronic non-communicable diseases (NCDs), including mental health sequelae, with a view to supporting the assertion that physical environmental stressors (not only psychosocial stressors) disrupt the PINE network, leading to NCDs. Biological links have been established between PM exposure, key sub-networks of the PINE model and mental health sequelae, suggesting that in theory, long-term mental health impacts of PM exposure may exist, driven by the disruption of these biological networks. This disruption could trans-generationally influence health; however, long-term studies and information on chronic outcomes following acute exposure event are still lacking, limiting what is currently known beyond the acute exposure and all-cause mortality. More empirical evidence is needed, especially to link long-term mental health sequelae to PM exposure, arising from PINE pathophysiology. Relationships between physical and psychosocial stressors, and especially the concept of such stressors acting together to impact on PINE network function, leading to linked NCDs, evokes the concept of syndemics, and these are discussed in the context of the PINE network.
Collapse
Affiliation(s)
- Nicolas J. C. Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, QID 4101, Australia
| | - Susannah Johnson
- Gold Coast Hospital and Health Service, Gold Coast, QLD 4215, Australia
| | - Kevin Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4226, Australia
| | - John Headrick
- School of Medical Science, Griffith University, Gold Coast, QID 4215, Australia
| |
Collapse
|
31
|
Jackson TW, Henriquez AR, Snow SJ, Schladweiler MC, Fisher AA, Alewel DI, House JS, Kodavanti UP. Adrenal Stress Hormone Regulation of Hepatic Homeostatic Function After an Acute Ozone Exposure in Wistar-Kyoto Male Rats. Toxicol Sci 2022; 189:73-90. [PMID: 35737395 PMCID: PMC9609881 DOI: 10.1093/toxsci/kfac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ozone-induced lung injury, inflammation, and pulmonary/hypothalamus gene expression changes are diminished in adrenalectomized (AD) rats. Acute ozone exposure induces metabolic alterations concomitant with increases in epinephrine and corticosterone. We hypothesized that adrenal hormones are responsible for observed hepatic ozone effects, and in AD rats, these changes would be diminished. In total, 5-7 days after sham (SH) or AD surgeries, male Wistar-Kyoto rats were exposed to air or 0.8-ppm ozone for 4 h. Serum samples were analyzed for metabolites and liver for transcriptional changes immediately post-exposure. Ozone increased circulating triglycerides, cholesterol, free fatty-acids, and leptin in SH but not AD rats. Ozone-induced inhibition of glucose-mediated insulin release was absent in AD rats. Unlike diminution of ozone-induced hypothalamus and lung mRNA expression changes, AD in air-exposed rats (AD-air/SH-air) caused differential hepatic expression of ∼1000 genes. Likewise, ozone in AD rats caused differential expression of ∼1000 genes (AD-ozone/AD-air). Ozone-induced hepatic changes in SH rats reflected enrichment for pathways involving metabolic processes, including acetyl-CoA biosynthesis, TCA cycle, and sirtuins. Upstream predictor analysis identified similarity to responses produced by glucocorticoids and pathways involving forskolin. These changes were absent in AD rats exposed to ozone. However, ozone caused unique changes in AD liver mRNA reflecting activation of synaptogenesis, neurovascular coupling, neuroinflammation, and insulin signaling with inhibition of senescence pathways. In these rats, upstream predictor analysis identified numerous microRNAs likely involved in glucocorticoid insufficiency. These data demonstrate the critical role of adrenal stress hormones in ozone-induced hepatic homeostasis and necessitate further research elucidating their role in propagating environmentally driven diseases.
Collapse
Affiliation(s)
- Thomas W Jackson
- Oak Ridge Institute for Science and Education Research Participation Program
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Anna A Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program
| | - John S House
- Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
32
|
Rivas-Arancibia S, Hernández-Orozco E, Rodríguez-Martínez E, Valdés-Fuentes M, Cornejo-Trejo V, Pérez-Pacheco N, Dorado-Martínez C, Zequeida-Carmona D, Espinosa-Caleti I. Ozone Pollution, Oxidative Stress, Regulatory T Cells and Antioxidants. Antioxidants (Basel) 2022; 11:antiox11081553. [PMID: 36009272 PMCID: PMC9405302 DOI: 10.3390/antiox11081553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 12/06/2022] Open
Abstract
Ozone pollution, is a serious health problem worldwide. Repeated exposure to low ozone doses causes a loss of regulation of the oxidation–reduction systems, and also induces a chronic state of oxidative stress. This fact is of special importance for the regulation of different systems including the immune system and the inflammatory response. In addition, the oxidation–reduction balance modulates the homeostasis of these and other complex systems such as metabolism, survival capacity, cell renewal, and brain repair, etc. Likewise, it has been widely demonstrated that in chronic degenerative diseases, an alteration in the oxide-reduction balance is present, and this alteration causes a chronic loss in the regulation of the immune response and the inflammatory process. This is because reactive oxygen species disrupt different signaling pathways. Such pathways are related to the role of regulatory T cells (Treg) in inflammation. This causes an increase in chronic deterioration in the degenerative disease over time. The objective of this review was to study the relationship between environmental ozone pollution, the chronic state of oxidative stress and its effect on Treg cells, which causes the loss of regulation in the inflammatory response as well as the role played by antioxidant systems in various pathologies.
Collapse
|
33
|
Henriquez AR, Snow SJ, Dye JA, Schladweiler MC, Alewel DI, Miller CN, Kodavanti UP. The contribution of the neuroendocrine system to adaption after repeated daily ozone exposure in rats. Toxicol Appl Pharmacol 2022; 447:116085. [PMID: 35618032 PMCID: PMC9716342 DOI: 10.1016/j.taap.2022.116085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Ozone-induced lung injury/inflammation dissipates despite continued exposure for 3 or more days; however, the mechanisms of adaptation/habituation remain unclear. Since ozone effects are mediated through adrenal-derived stress hormones, which also regulate longevity of centrally-mediated stress response, we hypothesized that ozone-adaptation is linked to diminution of neuroendocrine stress-axes activation and glucocorticoid levels. Male Wistar-Kyoto-rats (12-week-old) were injected with vehicle or a therapeutically-relevant dexamethasone dose (0.01-mg/kg/day; intraperitoneal) for 1-month to determine if suppression of glucocorticoid signaling was linked to adaptation. Vehicle- and dexamethasone-treated rats were exposed to air or 0.8-ppm ozone, 4 h/day × 2 or 4 days to assess the impacts of acute exposure and adaptation, respectively. Dexamethasone reduced thymus and spleen weights, circulating lymphocytes, corticosterone and increased insulin. Ozone increased lavage-fluid protein and neutrophils and decreased circulating lymphocytes at day-2 but not day-4. Ozone-induced hyperglycemia, glucose intolerance and inhibition of beta-cell insulin release occurred at day-1 but not day-3. Ozone depleted circulating prolactin, thyroid-stimulating hormone, and luteinizing-hormone at day-2 but not day-4, suggesting central mediation of adaptation. Adrenal epinephrine biosynthesis gene, Pnmt, was up-regulated after ozone exposure at both timepoints. However, genes involved in glucocorticoid biosynthesis were up-regulated after day-2 but not day-4, suggesting that acute 1- or 2-day ozone-mediated glucocorticoid increase elicits feedback inhibition to dampen hypothalamic stimulation of ACTH release in response to repeated subsequent ozone exposures. Although dexamethasone pretreatment affected circulating insulin, lymphocytes and adrenal genes, it had modest effect on ozone adaptation. In conclusion, ozone adaptation likely involves lack of hypothalamic response due to reduced availability of circulating glucocorticoids.
Collapse
Affiliation(s)
- Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Janice A Dye
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America.
| |
Collapse
|
34
|
Wang L, Chen G, Hou J, Wei D, Liu P, Nie L, Fan K, Wang J, Xu Q, Song Y, Wang M, Huo W, Jing T, Li W, Guo Y, Wang C, Mao Z. Ambient ozone exposure combined with residential greenness in relation to serum sex hormone levels in Chinese rural adults. ENVIRONMENTAL RESEARCH 2022; 210:112845. [PMID: 35134378 DOI: 10.1016/j.envres.2022.112845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Long-term exposure to ambient ozone (O3) and residential greenness independently relate to altered hormones levels in urban settings and developed countries. However, independent and their joint associations with progestogen and androgen were sparsely studied in rural regions. MATERIALS AND METHODS A total of 6211 individuals were recruited in this study. Random forest model was applied to predict the daily average concentrations of O3 using the satellites data. Residential greenness was reflected by the normalized difference vegetation index (NDVI). Liquid chromatography-tandem mass spectrometry was used to measure serum progestogen and androgen concentrations. Gender and menopausal status modified associations of long-term exposure to O3 and residential greenness with hormones levels were analyzed by generalized linear models. RESULTS Long-term exposure to O3 was negatively related to 17-hydroxyprogesterone, testosterone, and androstenedione in both men and women (premenopausal and postmenopausal); the estimated β and 95% CI of ln-progesterone in response to per 10 μg/m3 increment in O3 concentration was -0.560 (-0.965, -0.155) in postmenopausal women. Association of long-term exposure to O3 with serum androgen levels in premenopausal and postmenopausal women were alleviated by residing in places with higher greenness. Additionally, a prominent effect of long-term exposure to O3 related to decreased serum progestogen and androgen levels was found in participants with middle- or high-level of physical activity or lower education level. CONCLUSIONS The results suggested that long-term exposure to high levels of O3 related to decreased serum androgen levels was attenuated by living in high greenness places in women regardless of menopause status. Future studies are needed to confirm the positive health effects of residential greenness on the potential detrimental effects due to exposure to O3.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Luting Nie
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Song
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mian Wang
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
35
|
Cruz R, Koch S, Matsuda M, Marquezini M, Sforça ML, Lima-Silva AE, Saldiva P, Koehle M, Bertuzzi R. Air pollution and high-intensity interval exercise: Implications to anti-inflammatory balance, metabolome and cardiovascular responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151094. [PMID: 34688752 DOI: 10.1016/j.scitotenv.2021.151094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
High-intensity interval exercise (HIIE) is an effective non-pharmacological tool for improving physiological responses related to health. When HIIE is performed in urban centers, however, the exerciser is exposed to traffic-related air pollution (TRAP), which is associated with metabolic, anti-inflammatory imbalance and cardiovascular diseases. This paradoxical combination has the potential for conflicting health effects. Thus, the aim of this study was to determine the effects of HIIE performed in TRAP exposure on serum cytokines, non-target metabolomics and cardiovascular parameters. Fifteen participants performed HIIE in a chamber capable to deliver filtered air (FA condition) or non-filtered air (TRAP condition) from a polluted site adjacent to the exposure chamber. Non-target blood serum metabolomics, blood serum cytokines and blood pressure analyses were collected in both FA and TRAP conditions at baseline, 10 min after exercise, and 1 h after exercise. The TRAP increased IL-6 concentration by 1.7 times 1 h after exercise (p < 0.01) and did not change the anti-inflammatory balance (IL-10/TNF-α ratio). In contrast, FA led to an increase in IL-10 and IL-10/TNF-α ratio (p < 0.01), by 2.1 and 2.3 times, respectively. The enrichment analysis showed incomplete fatty acid metabolism under the TRAP condition (p < 0.05) 10 min after exercise. There was also an overactivity of ketone body metabolism (p < 0.05) at 10 min and at 1 h after exercise with TRAP. Exercise-induced acute decrease in systolic blood pressure (SBP) was not observed at 10 min and impaired at 1 h after exercise (p < 0.05). These findings reveal that TRAP potentially attenuates health benefits often related to HIIE. For instance, the anti-inflammatory balance was impaired, accompanied by accumulation of metabolites related to energy supply and reduction to exercise-induced decrease in SBP.
Collapse
Affiliation(s)
- Ramon Cruz
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil; Sports Center, Department of Physical Education, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Sarah Koch
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat de Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Monique Matsuda
- Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Monica Marquezini
- Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil; Pro-Sangue Foundation, São Paulo, SP, Brazil
| | - Mauricio L Sforça
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Adriano E Lima-Silva
- Human Performance Research Group, Academic Department of Physical Education (DAEFI), Technological Federal University of Parana, Curitiba, PR, Brazil
| | - Paulo Saldiva
- Institute of Advanced Studies, University of São Paulo, São Paulo, SP, Brazil
| | - Michael Koehle
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
36
|
Wang W, Zhang W, Hu D, Li L, Cui L, Liu J, Liu S, Xu J, Wu S, Deng F, Guo X. Short-term ozone exposure and metabolic status in metabolically healthy obese and normal-weight young adults: A viewpoint of inflammatory pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127462. [PMID: 34653859 DOI: 10.1016/j.jhazmat.2021.127462] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/09/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Unhealthy metabolic status increases risks of cardiovascular and other diseases. This study aims to explore whether there is a link between O3 and metabolic health indicators through a viewpoint of inflammatory pathways. 49 metabolically healthy normal-weight (MH-NW) and 39 metabolically healthy obese (MHO) young adults aged 18-26 years were recruited from a panel study with three visits. O3 exposure were estimated based on fixed-site environmental monitoring data and time-activity diary for each participant. Compared to MH-NW people, MHO people were more susceptible to the adverse effects on metabolic status, including blood pressure, glucose, and lipid indicators when exposed to O3. For instance, O3 exposure was associated with significant decreases in high-density lipoprotein cholesterol (HDL-C), and increases in C-peptide and low-density lipoprotein cholesterol (LDL-C) among MHO people, while only weaker changes in HDL-C and LDL-C among MH-NW people. Mediation analyses indicated that leptin mediated the metabolic health effects in both groups, while eosinophils and MCP-1 were also important mediating factors for the MHO people. Although both with a metabolically healthy status, compared to normal-weight people, obese people might be more susceptible to the negative effects of O3 on metabolic status, possibly through inflammatory indicators such as leptin, eosinophils, and MCP-1.
Collapse
Affiliation(s)
- Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
37
|
Liu Z, Xu P, Gong F, Tan Y, Han J, Tian L, Yan J, Li K, Xi Z, Liu X. Altered lipidomic profiles in lung and serum of rat after sub-chronic exposure to ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150630. [PMID: 34597571 DOI: 10.1016/j.scitotenv.2021.150630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Ozone (O) exposure not only causes lung injury and lung inflammation but also changes blood composition. Previous studies have mainly focused on inflammatory processes and metabolic diseases caused by acute or chronic ozone exposure. However, the effect of ozone on lipid expression profiles remains unclear. This study aimed to investigate the lipidomic changes in lung tissue and serum of rats after ozone exposure for three months and explore the lipid metabolic pathway involved in an ozone-induced injury. Based on the non-targeted lipidomic analysis platform of the UPLC Orbitrap mass spectrometry system, we found that sub-chronic exposure to ozone significantly changed the characteristics of lipid metabolism in lungs and serum of rats. First, the variation in sphingomyelin (SM) and triglyceride (TG) levels in the lung and serum after O3 exposure are shown. SM decreased in both tissues, while TG decreased in the lungs and increased in the serum. Further, the effect of ozone on glycerophospholipids in the lung and serum was completely different. Phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI) were the major glycerophospholipids whose levels were altered in the lung, while phosphatidylglycerol (PG), phosphatidic acid (PA), and phosphatidylcholine (PC) levels changed dramatically in the serum. Third, after O3 exposure, the level of monogalactosyldiacylglycerol (MGDG), mainly MGDG (43, 11), a saccharolipid, declined significantly and uniquely in the serum. These results suggested that sub-chronic O3 exposure may play a role in the development of several diseases through perturbation of lipidomic profiles in the lungs and blood. In addition, changes in the lipids of the lung and blood may induce or exacerbate respiratory diseases.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Tianjin University of Sport, Tianjin 301617, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Pengfei Xu
- Tianjin University of Sport, Tianjin 301617, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Fuxu Gong
- Tianjin University of Sport, Tianjin 301617, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yizhe Tan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jie Han
- Tianjin University of Sport, Tianjin 301617, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xiaohua Liu
- Tianjin University of Sport, Tianjin 301617, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
38
|
Cruz R, Pasqua L, Silveira A, Damasceno M, Matsuda M, Martins M, Marquezini MV, Lima-Silva AE, Saldiva P, Bertuzzi R. Traffic-related air pollution and endurance exercise: Characterizing non-targeted serum metabolomics profiling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118204. [PMID: 34560574 DOI: 10.1016/j.envpol.2021.118204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Although the exposure to traffic-related air pollution (TRAP) has emerged as one of main problem worldwide to inhabitants' health in urban centers, its impact on metabolic responses during exercise is poorly understood. The aim of study was to characterize the profile of non-target serum metabolomics during prolonged exercise performed under TRAP conditions. Ten healthy men completed two 90 min constant-load cycling trials under conditions of either TRAP or filtered air. Experimental trials were performed in a chamber located on an avenue with a high volume of vehicle traffic. Blood samples were taken at 30 min, 60 min, and 90 min of exercise. Based on Nuclear Magnetic Resonance metabolomics, the non-target analysis was used to assess the metabolic profile. Twelve, 16 and 18 metabolites were identified as discriminants. These were: at 30 min of exercise, the coefficient of determination (R2) 0.98, the predictive relevance, (Q2) 0.12, and the area under the curve (AUC) 0.91. After 60 min of exercise: (R2: 0.99, Q2: 0.09, AUC: 0.94); and at 90 min of exercise (R2: 0.91, Q2: <0.01, AUC: 0.89), respectively. The discriminant metabolites were then considered for the target analysis, which demonstrated that the metabolic pathways of glycine and serine metabolism (p = 0.03) had been altered under TRAP conditions at 30 min of exercise; arginine and proline metabolism (p = 0.04) at 60 min of exercise; and glycolysis (p = 0.05) at 90 min of exercise. The present results suggest that exposure to TRAP during prolonged exercise leads to a significant change in metabolomics, characterized by a transitional pattern and lastly, impairs the glucose metabolism.
Collapse
Affiliation(s)
- Ramon Cruz
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil; Sports Center, Department of Physical Education, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Leonardo Pasqua
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil; Faculty of Medicine, Federal University of Alagoas, Maceió, Brazil
| | - André Silveira
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Mayara Damasceno
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil; CESMAC University Center, Maceió, Brazil
| | - Monique Matsuda
- Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Marco Martins
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mônica V Marquezini
- Pro-Sangue Foundation, São Paulo and Pathology Department, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Adriano Eduardo Lima-Silva
- Human Performance Research Group, Academic Department of Physical Education (DAEFI), Federal University of Technology Parana, Curitiba, PR, Brazil
| | - Paulo Saldiva
- Institute of Advanced Studies, University of São Paulo, São Paulo, SP, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
39
|
Shi Y, Han Y, Wang Y, Qi L, Chen X, Chen W, Li W, Zhang H, Zhu T, Gong J. Serum branched-chain amino acids modifies the associations between air pollutants and insulin resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112780. [PMID: 34537587 DOI: 10.1016/j.ecoenv.2021.112780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence supports that air pollution exposure has become a risk factor of type II diabetes mellitus through the induction of insulin resistance (IR), but the presented findings did not provide a consistent relationship between air pollution exposure and IR in the temporal scale and the magnitude. Reported associated with IR and air pollution exposure, branched-chain amino acids (BCAAs) in blood might modify the association between air pollution exposure and IR. We took advantage of an existing panel study on elderly people who were healthy or with pre-diabetes. Amino acids were analyzed from the serum samples using a UPLC-QQQ-MS, and the homeostasis model assessment of insulin resistance (HOMA-IR) values were calculated to represent the levels of IR in each visit. Exposures to PM2.5, NO2, SO2, CO, O3, and black carbon (BC) were estimated using data from a monitoring station. Linear mixed-effects models were applied to estimate the associations between the air pollution and HOMA-IR, as well as the modifying effects of BCAAs. We found significantly higher concentrations of BCAAs in the pre-diabetic subjects than healthy ones. The concentrations of BCAAs were all significantly associated with HOMA-IR. For subjects with high-level BCAAs, HOMA-IR was positively associated with an IQR increase in PM2.5, NO2, BC, and CO at lag day 2 and in PM2.5, SO2, NO2, BC, and CO at lag day 7. While for subjects with low-level BCAAs, there was no significant association observed at any lag day except for CO at lag day 5. The study provided evidence that circulating BCAAs may modify the relationship between air pollution exposure and the level of insulin resistance in humans.
Collapse
Affiliation(s)
- Yunxiu Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control (IJRC), Ministry of Education, College of Environmental Sciences and Engineering, Beijing 100871, China
| | - Yiqun Han
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control (IJRC), Ministry of Education, College of Environmental Sciences and Engineering, Beijing 100871, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Yanwen Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control (IJRC), Ministry of Education, College of Environmental Sciences and Engineering, Beijing 100871, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Qi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control (IJRC), Ministry of Education, College of Environmental Sciences and Engineering, Beijing 100871, China; School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control (IJRC), Ministry of Education, College of Environmental Sciences and Engineering, Beijing 100871, China; Hebei Xiongan Green-Research Inspection and Certification Co., Ltd., Shenzhen Institute of Building Research Co., Ltd., Shenzhen, China
| | - Wu Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control (IJRC), Ministry of Education, College of Environmental Sciences and Engineering, Beijing 100871, China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing 100871, China
| | - Hongyin Zhang
- Peking University Hospital, Peking University, Beijing 100871, China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control (IJRC), Ministry of Education, College of Environmental Sciences and Engineering, Beijing 100871, China
| | - Jicheng Gong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control (IJRC), Ministry of Education, College of Environmental Sciences and Engineering, Beijing 100871, China.
| |
Collapse
|
40
|
Hu X, Yan M, He L, Qiu X, Zhang J, Zhang Y, Mo J, Day DB, Xiang J, Gong J. Associations between time-weighted personal air pollution exposure and amino acid metabolism in healthy adults. ENVIRONMENT INTERNATIONAL 2021; 156:106623. [PMID: 33993003 DOI: 10.1016/j.envint.2021.106623] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/10/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The molecular mechanisms underlying the associations between air pollution exposure and adverse cardiopulmonary effects remain to be better understood. Altered amino acid metabolism may plays an important role in the development of cardiopulmonary diseases and may be perturbed by air pollution exposure. To test this hypothesized molecular mechanism, we conducted an association analysis from an existing intervention study to examine the relations of air pollution exposures with amino acids in 43 Chinese healthy adults. Plasma levels of amino acids were measured using a UPLC-QqQ-MS system. Time-weighted personal exposure to O3, PM2.5, NO2, and SO2 over four time windows, i.e., 12 h, 24 h, 1 week, and 2 weeks, were calculated using the measured indoor and outdoor concentrations coupled with the time-activity data for each participant. Linear mixed-effects models were used to estimate the associations between air pollutants at each exposure window and amino acids by controlling for potential confounders. We observed significant associations between exposures and plasma concentrations of amino acids, with the direction of associations varying by amino acid and air pollutant. While there is little evidence of associations for NO2 and SO2, the associations with amino acids were fairly pronounced for exposure to PM2.5 and O3. In particular, independent O3 (12- and 24-hour) associations were observed with changes in the amino acids that were related to the urea cycle, including aspartate, asparagine, glutamate, arginine, citrulline, and ornithine. Our findings indicated that air pollution may cause acute perturbation of amino acid metabolism, and that O3 and PM2.5 may affect the metabolism of amino acids in different pathways. Main finding: Acute air pollution exposure might affect the perturbation of amino acid metabolism, and in particular, was associated with amino acids in relation to the urea cycle.
Collapse
Affiliation(s)
- Xinyan Hu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Meilin Yan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Linchen He
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, NC 27708, United States
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China
| | - Junfeng Zhang
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, NC 27708, United States; Global Health Research Center, Duke Kunshan University, Jiangsu 215316, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA 98121, United States
| | - Jianbang Xiang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Center for Environment and Health, Peking University, Beijing 100871, China.
| |
Collapse
|
41
|
LaKind JS, Burns CJ, Pottenger LH, Naiman DQ, Goodman JE, Marchitti SA. Does ozone inhalation cause adverse metabolic effects in humans? A systematic review. Crit Rev Toxicol 2021; 51:467-508. [PMID: 34569909 DOI: 10.1080/10408444.2021.1965086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We utilized a practical, transparent approach for systematically reviewing a chemical-specific evidence base. This approach was used for a case study of ozone inhalation exposure and adverse metabolic effects (overweight/obesity, Type 1 diabetes [T1D], Type 2 diabetes [T2D], and metabolic syndrome). We followed the basic principles of systematic review. Studies were defined as "Suitable" or "Supplemental." The evidence for Suitable studies was characterized as strong or weak. An overall causality judgment for each outcome was then determined as either causal, suggestive, insufficient, or not likely. Fifteen epidemiologic and 33 toxicologic studies were Suitable for evidence synthesis. The strength of the human evidence was weak for all outcomes. The toxicologic evidence was weak for all outcomes except two: body weight, and impaired glucose tolerance/homeostasis and fasting/baseline hyperglycemia. The combined epidemiologic and toxicologic evidence was categorized as weak for overweight/obesity, T1D, and metabolic syndrome,. The association between ozone exposure and T2D was determined to be insufficient or suggestive. The streamlined approach described in this paper is transparent and focuses on key elements. As systematic review guidelines are becoming increasingly complex, it is worth exploring the extent to which related health outcomes should be combined or kept distinct, and the merits of focusing on critical elements to select studies suitable for causal inference. We recommend that systematic review results be used to target discussions around specific research needs for advancing causal determinations.
Collapse
Affiliation(s)
- Judy S LaKind
- LaKind Associates, LLC, Catonsville, MD, USA.,Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carol J Burns
- Burns Epidemiology Consulting, LLC, Sanford, MI, USA
| | | | - Daniel Q Naiman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
42
|
Colonna CH, Henriquez AR, House JS, Motsinger-Reif AA, Alewel DI, Fisher A, Ren H, Snow SJ, Schladweiler MC, Miller DB, Miller CN, Kodavanti PRS, Kodavanti UP. The Role of Hepatic Vagal Tone in Ozone-Induced Metabolic Dysfunction in the Liver. Toxicol Sci 2021; 181:229-245. [PMID: 33662111 DOI: 10.1093/toxsci/kfab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Air pollution has been associated with metabolic diseases and hepatic steatosis-like changes. We have shown that ozone alters liver gene expression for metabolic processes through neuroendocrine activation. This study aimed to further characterize ozone-induced changes and to determine the impact of hepatic vagotomy (HV) which reduces parasympathetic influence. Twelve-week-old male Wistar-Kyoto rats underwent HV or sham surgery 5-6 days before air or ozone exposure (0 or 1 ppm; 4 h/day for 1 or 2 days). Ozone-induced lung injury, hyperglycemia, glucose intolerance, and increases in circulating cholesterol, triglycerides, and leptin were similar in rats with HV and sham surgery. However, decreases in circulating insulin and increased HDL and LDL were observed only in ozone-exposed HV rats. Ozone exposure resulted in changed liver gene expression in both sham and HV rats (sham > HV), however, HV did not change expression in air-exposed rats. Upstream target analysis revealed that ozone-induced transcriptomic changes were similar to responses induced by glucocorticoid-mediated processes in both sham and HV rats. The directionality of ozone-induced changes reflecting cellular response to stress, metabolic pathways, and immune surveillance was similar in sham and HV rats. However, pathways regulating cell-cycle, regeneration, proliferation, cell growth, and survival were enriched by ozone in a directionally opposing manner between sham and HV rats. In conclusion, parasympathetic innervation modulated ozone-induced liver transcriptional responses for cell growth and regeneration without affecting stress-mediated metabolic changes. Thus, impaired neuroendocrine axes and parasympathetic innervation could collectively contribute to adverse effects of air pollutants on the liver.
Collapse
Affiliation(s)
- Catherine H Colonna
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - John S House
- Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Alison A Motsinger-Reif
- Division of Intramural Research, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Anna Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Hongzu Ren
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Desinia B Miller
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Prasada Rao S Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
43
|
Wesselink AK, Rosenberg L, Wise LA, Jerrett M, Coogan PF. A prospective cohort study of ambient air pollution exposure and risk of uterine leiomyomata. Hum Reprod 2021; 36:2321-2330. [PMID: 33984861 DOI: 10.1093/humrep/deab095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/02/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION To what extent are ambient concentrations of particulate matter <2.5 microns (PM2.5), nitrogen dioxide (NO2) and ozone (O3) associated with risk of self-reported physician-diagnosed uterine leiomyomata (UL)? SUMMARY ANSWER In this large prospective cohort study of Black women, ambient concentrations of O3, but not PM2.5 or NO2, were associated with increased risk of UL. WHAT IS KNOWN ALREADY UL are benign tumors of the myometrium that are the leading cause of gynecologic inpatient care among reproductive-aged women. Black women are clinically diagnosed at two to three times the rate of white women and tend to exhibit earlier onset and more severe disease. Two epidemiologic studies have found positive associations between air pollution exposure and UL risk, but neither included large numbers of Black women. STUDY DESIGN, SIZE, DURATION We conducted a prospective cohort study of 21 998 premenopausal Black women residing in 56 US metropolitan areas from 1997 to 2011. PARTICIPANTS/MATERIAL, SETTING, METHODS Women reported incident UL diagnosis and method of confirmation (i.e. ultrasound, surgery) on biennial follow-up questionnaires. We modeled annual residential concentrations of PM2.5, NO2 and O3 throughout the study period. We used Cox proportional hazards regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for a one-interquartile range (IQR) increase in air pollutant concentrations, adjusting for confounders and co-pollutants. MAIN RESULTS AND THE ROLE OF CHANCE During 196 685 person-years of follow-up, 6238 participants (28.4%) reported physician-diagnosed UL confirmed by ultrasound or surgery. Although concentrations of PM2.5 and NO2 were not appreciably associated with UL (HRs for a one-IQR increase: 1.01 (95% CI: 0.93, 1.10) and 1.05 (95% CI: 0.95, 1.16), respectively), O3 concentrations were associated with increased UL risk (HR for a one-IQR increase: 1.19, 95% CI: 1.07, 1.32). The association was stronger among women age <35 years (HR: 1.26, 95% CI: 0.98, 1.62) and parous women (HR: 1.28, 95% CI: 1.11, 1.48). LIMITATIONS, REASONS FOR CAUTION Our measurement of air pollution is subject to misclassification, as monitoring data are not equally spatially distributed and we did not account for time-activity patterns. Our outcome measure was based on self-report of a physician diagnosis, likely resulting in under-ascertainment of UL. Although we controlled for several individual- and neighborhood-level confounding variables, residual confounding remains a possibility. WIDER IMPLICATIONS OF THE FINDINGS Inequitable burden of air pollution exposure has important implications for racial health disparities, and may be related to disparities in UL. Our results emphasize the need for additional research focused on environmental causes of UL. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by the National Cancer Institute (U01-CAA164974) and the National Institute of Environmental Health Sciences (R01-ES019573). L.A.W. is a fibroid consultant for AbbVie, Inc. and accepts in-kind donations from Swiss Precision Diagnostics, Sandstone Diagnostics, FertilityFriend.com and Kindara.com for primary data collection in Pregnancy Study Online (PRESTO). M.J. declares consultancy fees from the Health Effects Institute (as a member of the review committee). The remaining authors declare they have no actual or potential competing financial interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Lynn Rosenberg
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.,Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences, University of California, Los Angeles, CA, USA
| | - Patricia F Coogan
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.,Slone Epidemiology Center, Boston University, Boston, MA, USA
| |
Collapse
|
44
|
Rouschop SH, Snow SJ, Kodavanti UP, Drittij MJ, Maas LM, Opperhuizen A, van Schooten FJ, Remels AH, Godschalk RW. Perinatal High-Fat Diet Influences Ozone-Induced Responses on Pulmonary Oxidant Status and the Molecular Control of Mitophagy in Female Rat Offspring. Int J Mol Sci 2021; 22:ijms22147551. [PMID: 34299170 PMCID: PMC8304403 DOI: 10.3390/ijms22147551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022] Open
Abstract
Previous research has shown that a perinatal obesogenic, high-fat diet (HFD) is able to exacerbate ozone-induced adverse effects on lung function, injury, and inflammation in offspring, and it has been suggested that mitochondrial dysfunction is implicated herein. The aim of this study was to investigate whether a perinatal obesogenic HFD affects ozone-induced changes in offspring pulmonary oxidant status and the molecular control of mitochondrial function. For this purpose, female Long-Evans rats were fed a control diet or HFD before and during gestation, and during lactation, after which the offspring were acutely exposed to filtered air or ozone at a young-adult age (forty days). Directly following this exposure, the offspring lungs were examined for markers related to oxidative stress; oxidative phosphorylation; and mitochondrial fusion, fission, biogenesis, and mitophagy. Acute ozone exposure significantly increased pulmonary oxidant status and upregulated the molecular machinery that controls receptor-mediated mitophagy. In female offspring, a perinatal HFD exacerbated these responses, whereas in male offspring, responses were similar for both diet groups. The expression of the genes and proteins involved in oxidative phosphorylation and mitochondrial biogenesis, fusion, and fission was not affected by ozone exposure or perinatal HFD. These findings suggest that a perinatal HFD influences ozone-induced responses on pulmonary oxidant status and the molecular control of mitophagy in female rat offspring.
Collapse
Affiliation(s)
- Sven H. Rouschop
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Samantha J. Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC 27711, USA; (S.J.S.); (U.P.K.)
- ICF International Inc., Durham, NC 27711, USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC 27711, USA; (S.J.S.); (U.P.K.)
| | - Marie-José Drittij
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Lou M. Maas
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
- Netherlands Food and Consumer Product Safety Authority (NVWA), 3511 Utrecht, The Netherlands
| | - Frederik J. van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Alexander H. Remels
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Roger W. Godschalk
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
- Correspondence:
| |
Collapse
|
45
|
Adrenergic and Glucocorticoid Receptors in the Pulmonary Health Effects of Air Pollution. TOXICS 2021; 9:toxics9060132. [PMID: 34200050 PMCID: PMC8226814 DOI: 10.3390/toxics9060132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023]
Abstract
Adrenergic receptors (ARs) and glucocorticoid receptors (GRs) are activated by circulating catecholamines and glucocorticoids, respectively. These receptors regulate the homeostasis of physiological processes with specificity via multiple receptor subtypes, wide tissue-specific distribution, and interactions with other receptors and signaling processes. Based on their physiological roles, ARs and GRs are widely manipulated therapeutically for chronic diseases. Although these receptors play key roles in inflammatory and cellular homeostatic processes, little research has addressed their involvement in the health effects of air pollution. We have recently demonstrated that ozone, a prototypic air pollutant, mediates pulmonary and systemic effects through the activation of these receptors. A single exposure to ozone induces the sympathetic–adrenal–medullary and hypothalamic–pituitary–adrenal axes, resulting in the release of epinephrine and corticosterone into the circulation. These hormones act as ligands for ARs and GRs. The roles of beta AR (βARs) and GRs in ozone-induced pulmonary injury and inflammation were confirmed in a number of studies using interventional approaches. Accordingly, the activation status of ARs and GRs is critical in mediating the health effects of inhaled irritants. In this paper, we review the cellular distribution and functions of ARs and GRs, their lung-specific localization, and their involvement in ozone-induced health effects, in order to capture attention for future research.
Collapse
|
46
|
Nassan FL, Wang C, Kelly RS, Lasky-Su JA, Vokonas PS, Koutrakis P, Schwartz JD. Ambient PM 2.5 species and ultrafine particle exposure and their differential metabolomic signatures. ENVIRONMENT INTERNATIONAL 2021; 151:106447. [PMID: 33639346 PMCID: PMC7994935 DOI: 10.1016/j.envint.2021.106447] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/03/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND The metabolomic signatures of short- and long-term exposure to PM2.5 have been reported and linked to inflammation and oxidative stress. However, little is known about the relative contribution of the specific PM2.5 species (hence sources) that drive these metabolomic signatures. OBJECTIVES We aimed to determine the relative contribution of the different species of PM2.5 exposure to the perturbed metabolic pathways related to changes in the plasma metabolome. METHODS We performed mass-spectrometry based metabolomic profiling of plasma samples among men from the Normative Aging Study to identify metabolic pathways associated with PM2.5 species. The exposure windows included short-term (one, seven-, and thirty-day moving average) and long-term (one year moving average). We used linear mixed-effect regression with subject-specific intercepts while simultaneously adjusting for PM2.5, NO2, O3, temperature, relative humidity, and covariates and correcting for multiple testing. We also used independent component analysis (ICA) to examine the relative contribution of patterns of PM2.5 species. RESULTS Between 2000 and 2016, 456 men provided 648 blood samples, in which 1158 metabolites were quantified. We chose 305 metabolites for the short-term and 288 metabolites for the long-term exposure in this analysis that were significantly associated (p-value < 0.01) with PM2.5 to include in our PM2.5 species analysis. On average, men were 75.0 years old and their body mass index was 27.7 kg/m2. Only 3% were current smokers. In the adjusted models, ultrafine particles (UFPs) were the most significant species of short-term PM2.5 exposure followed by nickel, vanadium, potassium, silicon, and aluminum. Black carbon, vanadium, zinc, nickel, iron, copper, and selenium were the significant species of long-term PM2.5 exposure. We identified several metabolic pathways perturbed with PM2.5 species including glycerophospholipid, sphingolipid, and glutathione. These pathways are involved in inflammation, oxidative stress, immunity, and nucleic acid damage and repair. Results were overlapped with the ICA. CONCLUSIONS We identified several significant perturbed plasma metabolites and metabolic pathways associated with exposure to PM2.5 species. These species are associated with traffic, fuel oil, and wood smoke. This is the largest study to report a metabolomic signature of PM2.5 species' exposure and the first to use ICA.
Collapse
Affiliation(s)
- Feiby L Nassan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Cuicui Wang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Pantel S Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, School of Medicine and School of Public Health, Boston University, Boston, MA 02215, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
47
|
The dynamicity of acute ozone-induced systemic leukocyte trafficking and adrenal-derived stress hormones. Toxicology 2021; 458:152823. [PMID: 34051339 DOI: 10.1016/j.tox.2021.152823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Ozone exposure induces neuroendocrine stress response, which causes lymphopenia. It was hypothesized that ozone-induced increases in stress hormones will temporally follow changes in circulating granulocytes, monocytes- and lymphocyte subpopulations. The goal of this study was to chronicle the changes in circulating stress hormones, cytokines, and leukocyte trafficking during 4 h exposure to ozone. Male Wistar Kyoto rats were exposed to air or ozone (0.4 or 0.8 ppm) for 0.5, 1, 2, or 4 h. After each time point, circulating stress hormones, cytokines, and lung gene expression were assessed along with live and apoptotic granulocytes, monocytes (classical and non-classical), and lymphocytes (B, Th, and Tc) in blood, thymus, and spleen using flow cytometry. Circulating stress hormones began to increase at 1 h of ozone exposure. Lung expression of inflammatory cytokines (Cxcl2, Il6, and Hmox1) and glucocorticoid-responsive genes (Nr3c1, Fkbp5 and Tsc22d3) increased in both a time- and ozone concentration-dependent manner. Circulating granulocytes increased at 0.5 h of ozone exposure but tended to decrease at 2 and 4 h, suggesting a rapid egress and then margination to the lung. Classical monocytes decreased over 4 h of exposure periods (∼80 % at 0.8 ppm). B and Tc lymphocytes significantly decreased after ozone exposure at 2 and 4 h. Despite dynamic shifts in circulating immune cell populations, few differences were measured in serum cytokines. Ozone neither increased apoptotic cells nor altered thymus and spleen lymphocytes. The data show that ozone-induced increases in adrenal-derived stress hormones precede the dynamic migration of circulating immune cells, likely to the lung to mediate inflammation.
Collapse
|
48
|
Li A, Mei Y, Zhao M, Xu J, Seery S, Li R, Zhao J, Zhou Q, Ge X, Xu Q. The effect of ambient ozone on glucose-homoeostasis: A prospective study of non-diabetic older adults in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143308. [PMID: 33223186 DOI: 10.1016/j.scitotenv.2020.143308] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To investigate potential effects of short- and medium-term exposure to low levels of ozone (O3) on glucose-homeostasis in non-diabetic older adults. METHODS 166 non-diabetic, older participants in Beijing were deemed eligible to partake in this longitudinal population-based study. Observations were recorded on three separate occasions from November 2016 up until January 2018. Concentrations of outdoor O3 were monitored throughout the study period. Biomarkers indicative of glucose-homeostasis, including fasting blood glucose, insulin, HbAlc, glycated albumin percentage (glycated albumin/albumin), HOMA-IR and HOMA-B were measured at 3 sessions. A linear mixed effects model with random effects was adopted to quantify the effect of O3 across a comprehensive set of glucose-homeostasis markers. RESULTS Short-term O3 exposure positively associated with increased fasting blood glucose, insulin, HOMA-IR and HOMA-B. The effect on glucose occurred at 3-, 5-, 6- and 7-days, although the largest effect manifested on 6-days (5.6%, 95% CI: 1.4, 9.9). Significant associations with both insulin and HOMA-IR were observed on the 3- and 4-days. For HOMA-B, positive associations were identified from 3- to 7-days with estimates ranging from 40.0% (95% CI: 2.3, 91.5) to 83.1% (95% CI: 25.3, 167.5). Stratification suggests that women may be more susceptible to short-term O3 exposure. There does not appear to be a significant association between O3 and glucose-homeostasis in medium-term exposures. CONCLUSIONS In this study, we found that O3 exposure is at least partially associated with type II diabetes in older adults with no prior history of this condition. O3 therefore appears to be a potential risk factor, which is a particular concern when we consider the rise in global concentrations. Evidence also suggests that women may be more susceptible to short-term O3 exposure although we are not quite sure why. Future research may look to investigate this phenomenon further.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Samuel Seery
- School of Humanities and Social Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Runkui Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
49
|
Alewel DI, Henriquez AR, Colonna CH, Snow SJ, Schladweiler MC, Miller CN, Kodavanti UP. Ozone-induced acute phase response in lung versus liver: the role of adrenal-derived stress hormones. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:235-248. [PMID: 33317425 PMCID: PMC8082230 DOI: 10.1080/15287394.2020.1858466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acute-phase response (APR) is an innate stress reaction to tissue trauma or injury, infection, and environmental insults like ozone (O3). Regardless of the location of stress, the liver has been considered the primary contributor to circulating acute-phase proteins (APPs); however, the mechanisms underlying APR induction are unknown. Male Wistar-Kyoto rats were exposed to air or O3 (1 ppm, 6-hr/day, 1 or 2 days) and examined immediately after each exposure and after 18-hr recovery for APR proteins and gene expression. To assess the contribution of adrenal-derived stress hormones, lung and liver global gene expression data from sham and adrenalectomized rats exposed to air or O3 were compared for APR transcriptional changes. Data demonstrated serum protein alterations for selected circulating positive and negative APPs following 2 days of O3 exposure and during recovery. At baseline, APP gene expression was several folds higher in the liver relative to the lung. O3-induced increases were significant for lung but not liver for some genes including orosomucoid-1. Further, comparative assessment of mRNA seq data for known APPs in sham rats exhibited marked elevation in the lung but not liver, and a near-complete abolishment of APP mRNA levels in lung tissue of adrenalectomized rats. Thus, the lung appears to play a critical role in O3-induced APP synthesis and requires the presence of circulating adrenal-derived stress hormones. The relative contribution of lung versus liver and the role of neuroendocrine stress hormones need to be considered in future APR studies involving inhaled pollutants.
Collapse
Affiliation(s)
- Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Catherine H. Colonna
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Samantha J. Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Mette C. Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Colette N. Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
50
|
Snow SJ, Henriquez AR, Fisher A, Vallanat B, House JS, Schladweiler MC, Wood CE, Kodavanti UP. Peripheral metabolic effects of ozone exposure in healthy and diabetic rats on normal or high-cholesterol diet. Toxicol Appl Pharmacol 2021; 415:115427. [PMID: 33524448 PMCID: PMC8086744 DOI: 10.1016/j.taap.2021.115427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022]
Abstract
Epidemiological studies show that individuals with underlying diabetes and diet-associated ailments are more susceptible than healthy individuals to adverse health effects of air pollution. Exposure to air pollutants can induce metabolic stress and increase cardiometabolic disease risk. Using male Wistar and Wistar-derived Goto-Kakizaki (GK) rats, which exhibit a non-obese type-2 diabetes phenotype, we investigated whether two key metabolic stressors, type-2 diabetes and a high-cholesterol atherogenic diet, exacerbate ozone-induced metabolic effects. Rats were fed a normal control diet (ND) or high-cholesterol diet (HCD) for 12 weeks and then exposed to filtered air or 1.0-ppm ozone (6 h/day) for 1 or 2 days. Metabolic responses were analyzed at the end of each day and after an 18-h recovery period following the 2-day exposure. In GK rats, baseline hyperglycemia and glucose intolerance were exacerbated by HCD vs. ND and by ozone vs. air. HCD also resulted in higher insulin in ozone-exposed GK rats and circulating lipase, aspartate transaminase, and alanine transaminase in all groups (Wistar>GK). Histopathological effects induced by HCD in the liver, which included macrovesicular vacuolation and hepatocellular necrosis, were more severe in Wistar vs. GK rats. Liver gene expression in Wistar and GK rats fed ND showed numerous strain differences, including evidence of increased lipid metabolizing activity and ozone-induced alterations in glucose and lipid transporters, specifically in GK rats. Collectively, these findings indicate that peripheral metabolic alterations induced by diabetes and high-cholesterol diet can enhance susceptibility to the metabolic effects of inhaled pollutants.
Collapse
MESH Headings
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Air Pollutants/toxicity
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Body Composition/drug effects
- Cholesterol, Dietary/metabolism
- Cholesterol, Dietary/toxicity
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Energy Metabolism/drug effects
- Gene Expression Regulation
- Inhalation Exposure
- Insulin/blood
- Lipids/blood
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Ozone/toxicity
- Rats, Wistar
- Species Specificity
- Rats
Collapse
Affiliation(s)
- Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Anna Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Beena Vallanat
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - John S House
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Charles E Wood
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States; Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, United States.
| |
Collapse
|