1
|
McCarrick S, Malmborg V, Gren L, Danielsen PH, Tunér M, Palmberg L, Broberg K, Pagels J, Vogel U, Gliga AR. Pulmonary exposure to renewable diesel exhaust particles alters protein expression and toxicity profiles in bronchoalveolar lavage fluid and plasma of mice. Arch Toxicol 2025; 99:797-814. [PMID: 39739031 PMCID: PMC11775017 DOI: 10.1007/s00204-024-03915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/21/2024] [Indexed: 01/02/2025]
Abstract
Exposure to diesel exhaust is associated with increased risk of cardiovascular and lung disease. Substituting petroleum diesel with renewable diesel can alter emission properties but the potential health effects remain unclear. This study aimed to explore toxicity and underlying mechanisms of diesel exhaust from renewable fuels. Using proximity extension assay (Olink), 92 proteins linked to inflammation, cardiovascular function, and cancer were analyzed in bronchoalveolar lavage fluid (BALF) and plasma in mice 1 day after pulmonary exposure to exhaust particles at doses of 6, 18, and 54 µg/mouse. Particles were generated from combustion of renewable (rapeseed methyl ester, RME13, hydrogen-treated vegetable oil, HVO13; both at 13% O2 engine intake) and petroleum diesel (MK1 ultra-low-sulfur diesel at 13% and 17% O2 intake; DEP13 and DEP17). We identified positive dose-response relationships between exposure and proteins in BALF using linear models: 33 proteins for HVO13, 24 for DEP17, 22 for DEP13, and 12 for RME13 (p value < 0.05). In BALF, 11 proteins indicating cytokine signaling and inflammation (CCL2, CXCL1, CCL3L3, CSF2, IL1A, CCL20, TPP1, GDNF, LGMN, ITGB6, PDGFB) were common for all exposures. Several proteins in BALF (e.g., CCL2, CXCL1, CCL3L3, CSF2, IL1A) correlated (rs ≥ 0.5) with neutrophil cell count and DNA damage in BAL cells. Interestingly, plasma protein profiles were only affected by RME13 and, to lesser extent, by DEP13. Overall, we identified inflammation-related changes in the BALF as a common toxic mechanism for the combustion particles. Our protein-based approach enables sensitive detection of inflammatory protein changes across different matrices enhancing understanding of exhaust particle toxicity.
Collapse
Affiliation(s)
- Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelm Malmborg
- Division of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Louise Gren
- Division of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | | | - Martin Tunér
- Division of Combustion Engines, Lund University, Lund, Sweden
| | - Lena Palmberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Joakim Pagels
- Division of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Tang J, Diao P, Pan W, Li L, Xiong L. The cross-linking between DNA damage, oxidative stress and epidermal barrier in keratinocytes after exposure to particulate matters and carbon black. Exp Dermatol 2024; 33:e15048. [PMID: 38439204 DOI: 10.1111/exd.15048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/07/2023] [Accepted: 12/08/2023] [Indexed: 03/06/2024]
Abstract
As the largest organ, the skin provides the first line of defence against environmental pollutants. Different pollutants have varied damage to the skin due to their own physical-chemical properties. A previous epidemiological study by our team revealed that eczema was positively correlated with different air pollutants. However, the mechanism of action from different pollutants on the skin is less known. In this work, the differences among the genotoxicity, intracellular reactive oxygen species, and barrier-related parameters caused by two kinds of air pollutants, that is, S1650b and carbon black (CB) were investigated by Western blot, TUNEL, comet assay and RNA-sequences. The results indicated that both S1650b and CB caused DNA damage of keratinocytes. With the content of lipophilic polycyclic aromatic hydrocarbons (PAH), S1650b leaked into the keratinocytes easily, which activated the aromatic hydrocarbon receptor (AhR) in keratinocytes, leading to worse damage to barrier-related proteins than CB. And CB-induced higher intracellular ROS than S1650b due to the smaller size which make it enter the keratinocytes easier. RNA-sequencing results revealed that S1650b and CB both caused DNA damage of keratinocytes, and the intervention of S1650b significantly upregulated AhR, cytochrome oxidase A1 and B1 (CYP1A1 and CYP1B1) genes, while the results showed oppositely after CB intervention. The mechanism of keratinocyte damage caused by different air particle pollutants in this study will help to expand our understanding on the air pollutant-associated skin disease at cell levels.
Collapse
Affiliation(s)
- Jie Tang
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Sichuan University, Chengdu, China
| | - Ping Diao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Weixi Pan
- Analytical and Metrical Center of Sichuan Province, Chengdu, China
| | - Li Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Berthing T, Lard M, Danielsen PH, Abariute L, Barfod KK, Adolfsson K, Knudsen KB, Wolff H, Prinz CN, Vogel U. Pulmonary toxicity and translocation of gallium phosphide nanowires to secondary organs following pulmonary exposure in mice. J Nanobiotechnology 2023; 21:322. [PMID: 37679803 PMCID: PMC10483739 DOI: 10.1186/s12951-023-02049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND III-V semiconductor nanowires are envisioned as being integrated in optoelectronic devices in the near future. However, the perspective of mass production of these nanowires raises concern for human safety due to their asbestos- and carbon nanotube-like properties, including their high aspect ratio shape. Indeed, III-V nanowires have similar dimensions as Mitsui-7 multi-walled carbon nanotubes, which induce lung cancer by inhalation in rats. It is therefore urgent to investigate the toxicological effects following lung exposure to III-V nanowires prior to their use in industrial production, which entails risk of human exposure. Here, female C57BL/6J mice were exposed to 2, 6, and 18 µg (0.12, 0.35 and 1.1 mg/kg bw) of gallium phosphide (III-V) nanowires (99 nm diameter, 3.7 μm length) by intratracheal instillation and the toxicity was investigated 1, 3, 28 days and 3 months after exposure. Mitsui-7 multi-walled carbon nanotubes and carbon black Printex 90 nanoparticles were used as benchmark nanomaterials. RESULTS Gallium phosphide nanowires induced genotoxicity in bronchoalveolar lavage cells and acute inflammation with eosinophilia observable both in bronchoalveolar lavage and lung tissue (1 and 3 days post-exposure). The inflammatory response was comparable to the response following exposure to Mitsui-7 multi-walled carbon nanotubes at similar dose levels. The nanowires underwent partial dissolution in the lung resulting in thinner nanowires, with an estimated in vivo half-life of 3 months. Despite the partial dissolution, nanowires were detected in lung, liver, spleen, kidney, uterus and brain 3 months after exposure. CONCLUSION Pulmonary exposure to gallium phosphide nanowires caused similar toxicological effects as the multi-walled carbon nanotube Mitsui-7.
Collapse
Affiliation(s)
- Trine Berthing
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Mercy Lard
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
| | | | - Laura Abariute
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
- Phase Holographic Imaging PHI AB, Lund, 224 78, Sweden
| | - Kenneth K Barfod
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Food Science, Microbiology and Fermentation, University of Copenhagen, Copenhagen, Denmark
| | - Karl Adolfsson
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
- Axis Communications AB, Lund, 223 69, Sweden
| | - Kristina B Knudsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Christelle N Prinz
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden.
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark.
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Solorio-Rodriguez SA, Williams A, Poulsen SS, Knudsen KB, Jensen KA, Clausen PA, Danielsen PH, Wallin H, Vogel U, Halappanavar S. Single-Walled vs. Multi-Walled Carbon Nanotubes: Influence of Physico-Chemical Properties on Toxicogenomics Responses in Mouse Lungs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061059. [PMID: 36985953 PMCID: PMC10057402 DOI: 10.3390/nano13061059] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are nanomaterials with one or multiple layers of carbon sheets. While it is suggested that various properties influence their toxicity, the specific mechanisms are not completely known. This study was aimed to determine if single or multi-walled structures and surface functionalization influence pulmonary toxicity and to identify the underlying mechanisms of toxicity. Female C57BL/6J BomTac mice were exposed to a single dose of 6, 18, or 54 μg/mouse of twelve SWCNTs or MWCNTs of different properties. Neutrophil influx and DNA damage were assessed on days 1 and 28 post-exposure. Genome microarrays and various bioinformatics and statistical methods were used to identify the biological processes, pathways and functions altered post-exposure to CNTs. All CNTs were ranked for their potency to induce transcriptional perturbation using benchmark dose modelling. All CNTs induced tissue inflammation. MWCNTs were more genotoxic than SWCNTs. Transcriptomics analysis showed similar responses across CNTs at the pathway level at the high dose, which included the perturbation of inflammatory, cellular stress, metabolism, and DNA damage responses. Of all CNTs, one pristine SWCNT was found to be the most potent and potentially fibrogenic, so it should be prioritized for further toxicity testing.
Collapse
Affiliation(s)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Per Axel Clausen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Pernille Høgh Danielsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Håkan Wallin
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
- Department of Public Health, University of Copenhagen, 1353 Copenhagen, Denmark
- National Institute of Occupational Health, 0304 Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
5
|
Di Ianni E, Møller P, Cholakova T, Wolff H, Jacobsen NR, Vogel U. Assessment of primary and inflammation-driven genotoxicity of carbon black nanoparticles in vitro and in vivo. Nanotoxicology 2022; 16:526-546. [PMID: 35993455 DOI: 10.1080/17435390.2022.2106906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Carbon black nanoparticles (CBNPs) have a large surface area/volume ratio and are known to generate oxidative stress and inflammation that may result in genotoxicity and cancer. Here, we evaluated the primary and inflammatory response-driven (i.e. secondary) genotoxicity of two CBNPs, Flammruss101 (FL101) and PrintexXE2B (XE2B) that differ in size and specific surface area (SSA), and cause different amounts of reactive oxygen species. Three doses (low, medium and high) of FL101 and XE2B were assessed in vitro in the lung epithelial (A549) and activated THP-1 (THP-1a) monocytic cells exposed in submerged conditions for 6 and 24 h, and in C57BL/6 mice at day 1, 28 and 90 following intratracheal instillation. In vitro, we assessed pro-inflammatory response as IL-8 and IL-1β gene expression, and in vivo, inflammation was determined as inflammatory cell infiltrates in bronchial lavage (BAL) fluid and as histological changes in lung tissue. DNA damage was quantified in vitro and in vivo as DNA strand breaks levels by the alkaline comet assay. Inflammatory responses in vitro and in vivo correlated with dosed CBNPs SSA. Both materials induced DNA damage in THP-1a (correlated with dosed mass), and only XE2B in A549 cells. Non-statistically significant increase in DNA damage in vivo was observed in BAL cells. In conclusion, this study shows dosed SSA predicted inflammation both in vivo and in vitro, whereas dosed mass predicted genotoxicity in vitro in THP-1a cells. The observed lack of correlation between CBNP surface area and genotoxicity provides little evidence of inflammation-driven genotoxicity in vivo and in vitro.
Collapse
Affiliation(s)
- Emilio Di Ianni
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Tanya Cholakova
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Henrik Wolff
- Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.,National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Di Ianni E, Jacobsen NR, Vogel UB, Møller P. Systematic review on primary and secondary genotoxicity of carbon black nanoparticles in mammalian cells and animals. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108441. [PMID: 36007825 DOI: 10.1016/j.mrrev.2022.108441] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/01/2023]
Abstract
Carbon black exposure causes oxidative stress, inflammation and genotoxicity. The objective of this systematic review was to assess the contributions of primary (i.e. direct formation of DNA damage) and secondary genotoxicity (i.e., DNA lesions produced indirectly by inflammation) to the overall level of DNA damage by carbon black. The database is dominated by studies that have measured DNA damage by the comet assay. Cell culture studies indicate a genotoxic action of carbon black, which might be mediated by oxidative stress. Many in vivo studies originate from one laboratory that has investigated the genotoxic effects of Printex 90 in mice by intra-tracheal instillation. Meta-analysis and pooled analysis of these results demonstrate that Printex 90 exposure is associated with a slightly increased level of DNA strand breaks in bronchoalveolar lavage cells and lung tissue. Other types of genotoxic damage have not been investigated as thoroughly as DNA strand breaks, although there is evidence to suggest that carbon black exposure might increase the mutation frequency and cytogenetic endpoints. Stratification of studies according to concurrent inflammation and DNA damage does not indicate that carbon black exposure gives rise to secondary genotoxicity. Even substantial pulmonary inflammation is at best only associated with a weak genotoxic response in lung tissue. In conclusion, the review indicates that nanosized carbon black is a weak genotoxic agent and this effect is more likely to originate from a primary genotoxic mechanism of action, mediated by e.g., oxidative stress, than inflammation-driven (secondary) genotoxicity.
Collapse
Affiliation(s)
- Emilio Di Ianni
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Nicklas Raun Jacobsen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Ulla Birgitte Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark; National Food Institute, Technical University of Denmark, Kemitorvet, Bygning 202, DK-2800 Kgs Lyngby, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen, Denmark.
| |
Collapse
|
7
|
Serra A, del Giudice G, Kinaret PAS, Saarimäki LA, Poulsen SS, Fortino V, Halappanavar S, Vogel U, Greco D. Characterization of ENM Dynamic Dose-Dependent MOA in Lung with Respect to Immune Cells Infiltration. NANOMATERIALS 2022; 12:nano12122031. [PMID: 35745370 PMCID: PMC9228743 DOI: 10.3390/nano12122031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023]
Abstract
The molecular effects of exposures to engineered nanomaterials (ENMs) are still largely unknown. In classical inhalation toxicology, cell composition of bronchoalveolar lavage (BAL) is a toxicity indicator at the lung tissue level that can aid in interpreting pulmonary histological changes. Toxicogenomic approaches help characterize the mechanism of action (MOA) of ENMs by investigating the differentially expressed genes (DEG). However, dissecting which molecular mechanisms and events are directly induced by the exposure is not straightforward. It is now generally accepted that direct effects follow a monotonic dose-dependent pattern. Here, we applied an integrated modeling approach to study the MOA of four ENMs by retrieving the DEGs that also show a dynamic dose-dependent profile (dddtMOA). We further combined the information of the dddtMOA with the dose dependency of four immune cell populations derived from BAL counts. The dddtMOA analysis highlighted the specific adaptation pattern to each ENM. Furthermore, it revealed the distinct effect of the ENM physicochemical properties on the induced immune response. Finally, we report three genes dose-dependent in all the exposures and correlated with immune deregulation in the lung. The characterization of dddtMOA for ENM exposures, both for apical endpoints and molecular responses, can further promote toxicogenomic approaches in a regulatory context.
Collapse
Affiliation(s)
- Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (G.d.G.); (L.A.S.)
- BioMediTech Institute, Tampere University, 33520 Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), 33520 Tampere, Finland
| | - Giusy del Giudice
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (G.d.G.); (L.A.S.)
- BioMediTech Institute, Tampere University, 33520 Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), 33520 Tampere, Finland
| | | | - Laura Aliisa Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (G.d.G.); (L.A.S.)
- BioMediTech Institute, Tampere University, 33520 Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), 33520 Tampere, Finland
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark; (S.S.P.); (U.V.)
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Ulla Vogel
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark; (S.S.P.); (U.V.)
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (G.d.G.); (L.A.S.)
- BioMediTech Institute, Tampere University, 33520 Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), 33520 Tampere, Finland
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland;
- Correspondence:
| |
Collapse
|
8
|
Song X, Hu Y, Ma Y, Jiang L, Wang X, Shi A, Zhao J, Liu Y, Liu Y, Tang J, Li X, Zhang X, Guo Y, Wang S. Is short-term and long-term exposure to black carbon associated with cardiovascular and respiratory diseases? A systematic review and meta-analysis based on evidence reliability. BMJ Open 2022; 12:e049516. [PMID: 35504636 PMCID: PMC9066484 DOI: 10.1136/bmjopen-2021-049516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Adverse health effects of fine particles (particulate matter2.5) have been well documented by a series of studies. However, evidences on the impacts of black carbon (BC) or elemental carbon (EC) on health are limited. The objectives were (1) to explored the effects of BC and EC on cardiovascular and respiratory morbidity and mortality, and (2) to verified the reliability of the meta-analysis by drawing p value plots. DESIGN The systematic review and meta-analysis using adapted Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach and p value plots approach. DATA SOURCES PubMed, Embase and Web of Science were searched from inception to 19 July 2021. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Time series, case cross-over and cohort studies that evaluated the associations between BC/EC on cardiovascular or respiratory morbidity or mortality were included. DATA EXTRACTION AND SYNTHESIS Two reviewers independently selected studies, extracted data and assessed risk of bias. Outcomes were analysed via a random effects model and reported as relative risk (RR) with 95% CI. The certainty of evidences was assessed by adapted GRADE. The reliabilities of meta-analyses were analysed by p value plots. RESULTS Seventy studies met our inclusion criteria. (1) Short-term exposure to BC/EC was associated with 1.6% (95% CI 0.4% to 2.8%) increase in cardiovascular diseases per 1 µg/m3 in the elderly; (2) Long-term exposure to BC/EC was associated with 6.8% (95% CI 0.4% to 13.5%) increase in cardiovascular diseases and (3) The p value plot indicated that the association between BC/EC and respiratory diseases was consistent with randomness. CONCLUSIONS Both short-term and long-term exposures to BC/EC were related with cardiovascular diseases. However, the impact of BC/EC on respiratory diseases did not present consistent evidence and further investigations are required. PROSPERO REGISTRATION NUMBER CRD42020186244.
Collapse
Affiliation(s)
- Xuping Song
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yue Hu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yan Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Liangzhen Jiang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xinyi Wang
- Second Clinical College, Lanzhou University, Lanzhou, Gansu, China
| | - Anchen Shi
- Department of General Surgery, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Junxian Zhao
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yunxu Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yafei Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Tang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiayang Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Zhang
- College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan, China
| | - Yong Guo
- Department of Civil Affairs in Guizhou Province, Guizhou Province People's Government, Guiyang, Guizhou, China
| | - Shigong Wang
- College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Avet C, Paul EN, Garrel G, Grange-Messent V, L'Hôte D, Denoyelle C, Corre R, Dupret JM, Lanone S, Boczkowski J, Simon V, Cohen-Tannoudji J. Carbon Black Nanoparticles Selectively Alter Follicle-Stimulating Hormone Expression in vitro and in vivo in Female Mice. Front Neurosci 2021; 15:780698. [PMID: 34938157 PMCID: PMC8685435 DOI: 10.3389/fnins.2021.780698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Toxic effects of nanoparticles on female reproductive health have been documented but the underlying mechanisms still need to be clarified. Here, we investigated the effect of carbon black nanoparticles (CB NPs) on the pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which are key regulators of gonadal gametogenesis and steroidogenesis. To that purpose, we subjected adult female mice to a weekly non-surgical intratracheal administration of CB NPs at an occupationally relevant dose over 4 weeks. We also analyzed the effects of CB NPs in vitro, using both primary cultures of pituitary cells and the LβT2 gonadotrope cell line. We report here that exposure to CB NPs does not disrupt estrous cyclicity but increases both circulating FSH levels and pituitary FSH β-subunit gene (Fshb) expression in female mice without altering circulating LH levels. Similarly, treatment of anterior pituitary or gonadotrope LβT2 cells with increasing concentrations of CB NPs dose-dependently up-regulates FSH but not LH gene expression or release. Moreover, CB NPs enhance the stimulatory effect of GnRH on Fshb expression in LβT2 cells without interfering with LH regulation. We provide evidence that CB NPs are internalized by LβT2 cells and rapidly activate the cAMP/PKA pathway. We further show that pharmacological inhibition of PKA significantly attenuates the stimulatory effect of CB NPs on Fshb expression. Altogether, our study demonstrates that exposure to CB NPs alters FSH but not LH expression and may thus lead to gonadotropin imbalance.
Collapse
Affiliation(s)
- Charlotte Avet
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | - Emmanuel N Paul
- Inserm U955, IMRB, U 955, Faculté de Médecine, équipe 04, Université Paris Est (UPEC), Créteil, France
| | - Ghislaine Garrel
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | - Valérie Grange-Messent
- Sorbonne Université, CNRS, Inserm, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Paris, France
| | - David L'Hôte
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | - Chantal Denoyelle
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | - Raphaël Corre
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | | | - Sophie Lanone
- Inserm U955, IMRB, U 955, Faculté de Médecine, équipe 04, Université Paris Est (UPEC), Créteil, France
| | - Jorge Boczkowski
- Inserm U955, IMRB, U 955, Faculté de Médecine, équipe 04, Université Paris Est (UPEC), Créteil, France
| | - Violaine Simon
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | | |
Collapse
|
10
|
Danielsen PH, Bendtsen KM, Knudsen KB, Poulsen SS, Stoeger T, Vogel U. Nanomaterial- and shape-dependency of TLR2 and TLR4 mediated signaling following pulmonary exposure to carbonaceous nanomaterials in mice. Part Fibre Toxicol 2021; 18:40. [PMID: 34717665 PMCID: PMC8557558 DOI: 10.1186/s12989-021-00432-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Background Pulmonary exposure to high doses of engineered carbonaceous nanomaterials (NMs) is known to trigger inflammation in the lungs paralleled by an acute phase response. Toll-like receptors (TLRs), particularly TLR2 and TLR4, have recently been discussed as potential NM-sensors, initiating inflammation. Using Tlr2 and Tlr4 knock out (KO) mice, we addressed this hypothesis and compared the pattern of inflammation in lung and acute phase response in lung and liver 24 h after intratracheal instillation of three differently shaped carbonaceous NMs, spherical carbon black (CB), multi-walled carbon nanotubes (CNT), graphene oxide (GO) plates and bacterial lipopolysaccharide (LPS) as positive control.
Results The LPS control confirmed a distinct TLR4-dependency as well as a pronounced contribution of TLR2 by reducing the levels of pulmonary inflammation to 30 and 60% of levels in wild type (WT) mice. At the doses chosen, all NM caused comparable neutrophil influxes into the lungs of WT mice, and reduced levels were only detected for GO-exposed Tlr2 KO mice (35%) and for CNT-exposed Tlr4 KO mice (65%). LPS-induced gene expression was strongly TLR4-dependent. CB-induced gene expression was unaffected by TLR status. Both GO and MWCNT-induced Saa1 expression was TLR4-dependent. GO-induced expression of Cxcl2, Cxcl5, Saa1 and Saa3 were TLR2-dependent. NM-mediated hepatic acute phase response in terms of liver gene expression of Saa1 and Lcn2 was shown to depend on TLR2 for all three NMs. TLR4, in contrast, was only relevant for the acute phase response caused by CNTs, and as expected by LPS. Conclusion TLR2 and TLR4 signaling was not involved in the acute inflammatory response caused by CB exposure, but contributed considerably to that of GO and CNTs, respectively. The strong involvement of TLR2 in the hepatic acute phase response caused by pulmonary exposure to all three NMs deserves further investigations. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00432-z.
Collapse
Affiliation(s)
| | | | | | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Tobias Stoeger
- Comprehensive Pneumology Center (CPC)/Institute of Lung Biology and Disease (ILBD) Helmholtz Zentrum München, Neuherberg, Germany
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark. .,DTU Food, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
11
|
Respiratory exposure to carbon black nanoparticles may induce testicular structure damage and lead to decreased sperm quality in mice. Reprod Toxicol 2021; 106:32-41. [PMID: 34624488 DOI: 10.1016/j.reprotox.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 11/24/2022]
Abstract
Environmental carbon black nanoparticles (CBNPs) can enter into various organs including testes through the respiratory tract. However, there are few studies describing reproductive toxicity of CBNPs after respiratory exposure. In this study, male KM mice were exposed to CBNPs in their natural breathing state. Four-, 8-, and 12-week-old mice were exposed to 0, 9, 18 and 27 mg/m3 of CBNPs for 4 weeks in order to examine the relationship between CBNP exposure and age. Eight-week-old mice were exposed to CBNPs at the same four concentrations for 1-4 weeks in order to examine the effects of CBNP exposure time. After CBNP exposure, testicular oxidative stress and inflammation increased significantly, and these effects varied with exposure time. Seminiferous tubule diameter (STD), seminiferous epithelium height (SEH), the number of spermatogenic and Leydig cells, sperm motility, and sperm speed decreased significantly, and these effects varied with exposure dose. Data analyses suggested that increased oxidative stress and inflammation in testes damaged testicular morphology, spermatogenesis, and testosterone secretion, and decreased sperm quality. Morphological damage to the testes was also closely related to decreased the sperm quantity. These findings are of significance for evaluating the reproductive toxicity of CBNPs.
Collapse
|
12
|
Majumder N, Goldsmith WT, Kodali VK, Velayutham M, Friend SA, Khramtsov VV, Nurkiewicz TR, Erdely A, Zeidler-Erdely PC, Castranova V, Harkema JR, Kelley EE, Hussain S. Oxidant-induced epithelial alarmin pathway mediates lung inflammation and functional decline following ultrafine carbon and ozone inhalation co-exposure. Redox Biol 2021; 46:102092. [PMID: 34418598 PMCID: PMC8385153 DOI: 10.1016/j.redox.2021.102092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Environmental inhalation exposures are inherently mixed (gases and particles), yet regulations are still based on single toxicant exposures. While the impacts of individual components of environmental pollution have received substantial attention, the impact of inhalation co-exposures is poorly understood. Here, we mechanistically investigated pulmonary inflammation and lung function decline after inhalation co-exposure and individual exposures to ozone (O3) and ultrafine carbon black (CB). Environmentally/occupationally relevant lung deposition levels in mice were achieved after inhalation of stable aerosols with similar aerodynamic and mass median distributions. X-ray photoemission spectroscopy detected increased surface oxygen contents on particles in co-exposure aerosols. Compared with individual exposures, co-exposure aerosols produced greater acellular and cellular oxidants detected by electron paramagnetic resonance (EPR) spectroscopy, and in vivo immune-spin trapping (IST), as well as synergistically increased lavage neutrophils, lavage proteins and inflammation related gene/protein expression. Co-exposure induced a significantly greater respiratory function decline compared to individual exposure. A synthetic catalase-superoxide dismutase mimetic (EUK-134) significantly blunted lung inflammation and respiratory function decline confirming the role of oxidant imbalance. We identified a significant induction of epithelial alarmin (thymic stromal lymphopoietin-TSLP)-dependent interleukin-13 pathway after co-exposure, associated with increased mucin and interferon gene expression. We provided evidence of interactive outcomes after air pollution constituent co-exposure and identified a key mechanistic pathway that can potentially explain epidemiological observation of lung function decline after an acute peak of air pollution. Developing and studying the co-exposure scenario in a standardized and controlled fashion will enable a better mechanistic understanding of how environmental exposures result in adverse outcomes. Interaction with O3 mediates free radical production on the surface of carbon black (CB) particles. Oxidants mediate co-exposure (CB + O3)-induced lung function decline. EUK-134 (a synthetic superoxide-catalase mimetic) abrogates CB + O3-induced lung inflammation. CB + O3 co-exposure induces greater lung inflammation than individual exposures. Epithelial alarmin (TSLP) contributes significantly to the CB + O3 toxicity.
Collapse
Affiliation(s)
- Nairrita Majumder
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Vamsi K Kodali
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | | | - Sherri A Friend
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Valery V Khramtsov
- Department of Biochemistry, School of Medicine, West Virginia University, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Aaron Erdely
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Patti C Zeidler-Erdely
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Vince Castranova
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, School of Veterinary Medicine, Michigan State University, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Salik Hussain
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA.
| |
Collapse
|
13
|
Christophersen DV, Møller P, Thomsen MB, Lykkesfeldt J, Loft S, Wallin H, Vogel U, Jacobsen NR. Accelerated atherosclerosis caused by serum amyloid A response in lungs of ApoE -/- mice. FASEB J 2021; 35:e21307. [PMID: 33638910 DOI: 10.1096/fj.202002017r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
Airway exposure to eg particulate matter is associated with cardiovascular disease including atherosclerosis. Acute phase genes, especially Serum Amyloid A3 (Saa3), are highly expressed in the lung following pulmonary exposure to particles. We aimed to investigate whether the human acute phase protein SAA (a homolog to mouse SAA3) accelerated atherosclerotic plaque progression in Apolipoprotein E knockout (ApoE-/- ) mice. Mice were intratracheally (i.t.) instilled with vehicle (phosphate buffered saline) or 2 µg human SAA once a week for 10 weeks. Plaque progression was assessed in the aorta using noninvasive ultrasound imaging of the aorta arch as well as by en face analysis. Additionally, lipid peroxidation, SAA3, and cholesterol were measured in plasma, inflammation was determined in lung, and mRNA levels of the acute phase genes Saa1 and Saa3 were measured in the liver and lung, respectively. Repeated i.t. instillation with SAA caused a significant progression in the atherosclerotic plaques in the aorta (1.5-fold). Concomitantly, SAA caused a statistically significant increase in neutrophils in bronchoalveolar lavage fluid (625-fold), in pulmonary Saa3 (196-fold), in systemic SAA3 (1.8-fold) and malondialdehyde levels (1.14-fold), indicating acute phase response (APR), inflammation and oxidative stress. Finally, pulmonary exposure to SAA significantly decreased the plasma levels of very low-density lipoproteins - low-density lipoproteins and total cholesterol, possibly due to lipids being sequestered in macrophages or foam cells in the arterial wall. Combined these results indicate the importance of the pulmonary APR and SAA3 for plaque progression.
Collapse
Affiliation(s)
- Daniel Vest Christophersen
- Department of Public Health, Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen K, Denmark.,Ambu A/S, Ballerup, Denmark.,The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen K, Denmark
| | - Morten Baekgaard Thomsen
- Department of Biomedical Sciences, Heart and Circulatory Research Section, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen K, Denmark
| | - Håkan Wallin
- Department of Public Health, Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen K, Denmark.,The National Research Centre for the Working Environment, Copenhagen, Denmark.,National Institute of Occupational Health, Oslo, Norway
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
14
|
Raja G, Selvaraj V, Suk M, Suk KT, Kim TJ. Metabolic phenotyping analysis of graphene oxide nanosheets exposures in breast cancer cells: Metabolomics profiling techniques. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Saarimäki LA, Federico A, Lynch I, Papadiamantis AG, Tsoumanis A, Melagraki G, Afantitis A, Serra A, Greco D. Manually curated transcriptomics data collection for toxicogenomic assessment of engineered nanomaterials. Sci Data 2021; 8:49. [PMID: 33558569 PMCID: PMC7870661 DOI: 10.1038/s41597-021-00808-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Toxicogenomics (TGx) approaches are increasingly applied to gain insight into the possible toxicity mechanisms of engineered nanomaterials (ENMs). Omics data can be valuable to elucidate the mechanism of action of chemicals and to develop predictive models in toxicology. While vast amounts of transcriptomics data from ENM exposures have already been accumulated, a unified, easily accessible and reusable collection of transcriptomics data for ENMs is currently lacking. In an attempt to improve the FAIRness of already existing transcriptomics data for ENMs, we curated a collection of homogenized transcriptomics data from human, mouse and rat ENM exposures in vitro and in vivo including the physicochemical characteristics of the ENMs used in each study.
Collapse
Affiliation(s)
- Laura Aliisa Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
- NovaMechanics Ltd, P.O Box 26014 1666, Nicosia, Cyprus
| | | | | | | | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- BioMediTech Institute, Tampere University, Tampere, Finland.
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
- Finnish Centre for Alternative Methods (FICAM), Faculty of Medicine and Heath Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
16
|
Bendtsen KM, Bengtsen E, Saber AT, Vogel U. A review of health effects associated with exposure to jet engine emissions in and around airports. Environ Health 2021; 20:10. [PMID: 33549096 PMCID: PMC7866671 DOI: 10.1186/s12940-020-00690-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/29/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Airport personnel are at risk of occupational exposure to jet engine emissions, which similarly to diesel exhaust emissions include volatile organic compounds and particulate matter consisting of an inorganic carbon core with associated polycyclic aromatic hydrocarbons, and metals. Diesel exhaust is classified as carcinogenic and the particulate fraction has in itself been linked to several adverse health effects including cancer. METHOD In this review, we summarize the available scientific literature covering human health effects of exposure to airport emissions, both in occupational settings and for residents living close to airports. We also report the findings from the limited scientific mechanistic studies of jet engine emissions in animal and cell models. RESULTS Jet engine emissions contain large amounts of nano-sized particles, which are particularly prone to reach the lower airways upon inhalation. Size of particles and emission levels depend on type of aircraft, engine conditions, and fuel type, as well as on operation modes. Exposure to jet engine emissions is reported to be associated with biomarkers of exposure as well as biomarkers of effect among airport personnel, especially in ground-support functions. Proximity to running jet engines or to the airport as such for residential areas is associated with increased exposure and with increased risk of disease, increased hospital admissions and self-reported lung symptoms. CONCLUSION We conclude that though the literature is scarce and with low consistency in methods and measured biomarkers, there is evidence that jet engine emissions have physicochemical properties similar to diesel exhaust particles, and that exposure to jet engine emissions is associated with similar adverse health effects as exposure to diesel exhaust particles and other traffic emissions.
Collapse
Affiliation(s)
- Katja M. Bendtsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Elizabeth Bengtsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Anne T. Saber
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
17
|
Lin H, Fu G, Yu Q, Wang Z, Zuo Y, Shi Y, Zhang L, Gu Y, Qin L, Zhou T. Carbon black nanoparticles induce HDAC6-mediated inflammatory responses in 16HBE cells. Toxicol Ind Health 2020; 36:759-768. [PMID: 32783763 DOI: 10.1177/0748233720947214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long-term inhalation of carbon black nanoparticles (CBNPs) leads to pulmonary inflammatory diseases. Histone deacetylase 6 (HDAC6) has been identified as an important regulator in the development of inflammatory disorders. However, the direct involvement of HDAC6 in CBNPs-induced pulmonary inflammatory responses remains unclear. To explore whether HDAC6 participates in CBNPs-induced pulmonary inflammation, human bronchial epithelial cell line (16HBE cells) was transfected with HDAC6 small interference RNA (siRNA) and then exposed to CBNPs at concentrations of 0, 25, and 50 µg/ml for 24 h. Intracellular HDAC6 and intraflagellar transport protein 88 (IFT88) mRNA and protein were determined by real-time polymerase chain reaction and Western blot, respectively. The secretions of inflammatory cytokines including interleukin (IL)-8, tumor necrosis factor (TNF)-α, IL-6, and IL-1β were measured by enzyme-linked immunosorbent assay. CBNPs induced a significant increase in the expressions of IL-8 and IL-6, accompanied by a high level of intracellular HDAC6 mRNA when compared with a blank control group (p < 0.05). However, there were no significant changes in the levels of TNF-α secretion, intracellular HDAC6 and IFT88 protein induced by CBNPs (p > 0.05). The HDAC6 mRNA expression was significantly suppressed in HDAC6 siRNA-transfected cells (p < 0.05). The secretions of IL-8, TNF-α, and IL-6 were significantly less in HDAC6 siRNA-transfected cells than that in normal 16HBE cells with exposure to 25 or 50 µg/ml of CBNPs, but intracellular IFT88 mRNA expression was markedly increased in HDAC6 siRNA-transfected cells when compared with normal 16HBE cells exposed to 50 µg/ml of CBNPs (all p < 0.05). Downregulation of the HDAC6 gene inhibits CBNPs-induced inflammatory responses in bronchial epithelial cells, partially through regulating IFT88 expression. It is suggested that CBNPs may trigger inflammatory responses in bronchial epithelial cells by an HDAC6/IFT88-dependent pathway.
Collapse
Affiliation(s)
- Hui Lin
- Department of Occupational and Environmental Health, School of Public Health, Medical College, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Guoqing Fu
- Department of Occupational and Environmental Health, School of Public Health, Medical College, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qimei Yu
- Department of Occupational and Environmental Health, School of Public Health, Medical College, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zhenyu Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Basic Medicine, Medical College, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yao Zuo
- Department of Occupational and Environmental Health, School of Public Health, Medical College, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yuqin Shi
- Department of Occupational and Environmental Health, School of Public Health, Medical College, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Medical College, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yingying Gu
- Department of Occupational and Environmental Health, School of Public Health, Medical College, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Lingzhi Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Medical College, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, 481115Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
18
|
Particle characterization and toxicity in C57BL/6 mice following instillation of five different diesel exhaust particles designed to differ in physicochemical properties. Part Fibre Toxicol 2020; 17:38. [PMID: 32771016 PMCID: PMC7414762 DOI: 10.1186/s12989-020-00369-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/22/2020] [Indexed: 02/01/2023] Open
Abstract
Background Diesel exhaust is carcinogenic and exposure to diesel particles cause health effects. We investigated the toxicity of diesel exhaust particles designed to have varying physicochemical properties in order to attribute health effects to specific particle characteristics. Particles from three fuel types were compared at 13% engine intake O2 concentration: MK1 ultra low sulfur diesel (DEP13) and the two renewable diesel fuels hydrotreated vegetable oil (HVO13) and rapeseed methyl ester (RME13). Additionally, diesel particles from MK1 ultra low sulfur diesel were generated at 9.7% (DEP9.7) and 17% (DEP17) intake O2 concentration. We evaluated physicochemical properties and histopathological, inflammatory and genotoxic responses on day 1, 28, and 90 after single intratracheal instillation in mice compared to reference diesel particles and carbon black. Results Moderate variations were seen in physical properties for the five particles: primary particle diameter: 15–22 nm, specific surface area: 152–222 m2/g, and count median mobility diameter: 55–103 nm. Larger differences were found in chemical composition: organic carbon/total carbon ratio (0.12–0.60), polycyclic aromatic hydrocarbon content (1–27 μg/mg) and acid-extractable metal content (0.9–16 μg/mg). Intratracheal exposure to all five particles induced similar toxicological responses, with different potency. Lung particle retention was observed in DEP13 and HVO13 exposed mice on day 28 post-exposure, with less retention for the other fuel types. RME exposure induced limited response whereas the remaining particles induced dose-dependent inflammation and acute phase response on day 1. DEP13 induced acute phase response on day 28 and inflammation on day 90. DNA strand break levels were not increased as compared to vehicle, but were increased in lung and liver compared to blank filter extraction control. Neutrophil influx on day 1 correlated best with estimated deposited surface area, but also with elemental carbon, organic carbon and PAHs. DNA strand break levels in lung on day 28 and in liver on day 90 correlated with acellular particle-induced ROS. Conclusions We studied diesel exhaust particles designed to differ in physicochemical properties. Our study highlights specific surface area, elemental carbon content, PAHs and ROS-generating potential as physicochemical predictors of diesel particle toxicity.
Collapse
|
19
|
Barosova H, Maione AG, Septiadi D, Sharma M, Haeni L, Balog S, O'Connell O, Jackson GR, Brown D, Clippinger AJ, Hayden P, Petri-Fink A, Stone V, Rothen-Rutishauser B. Use of EpiAlveolar Lung Model to Predict Fibrotic Potential of Multiwalled Carbon Nanotubes. ACS NANO 2020; 14:3941-3956. [PMID: 32167743 DOI: 10.1021/acsnano.9b06860] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Expansion in production and commercial use of nanomaterials increases the potential human exposure during the lifecycle of these materials (production, use, and disposal). Inhalation is a primary route of exposure to nanomaterials; therefore it is critical to assess their potential respiratory hazard. Herein, we developed a three-dimensional alveolar model (EpiAlveolar) consisting of human primary alveolar epithelial cells, fibroblasts, and endothelial cells, with or without macrophages for predicting long-term responses to aerosols. Following thorough characterization of the model, proinflammatory and profibrotic responses based on the adverse outcome pathway concept for lung fibrosis were assessed upon repeated subchronic exposures (up to 21 days) to two types of multiwalled carbon nanotubes (MWCNTs) and silica quartz particles. We simulate occupational exposure doses for the MWCNTs (1-30 μg/cm2) using an air-liquid interface exposure device (VITROCELL Cloud) with repeated exposures over 3 weeks. Specific key events leading to lung fibrosis, such as barrier integrity and release of proinflammatory and profibrotic markers, show the responsiveness of the model. Nanocyl induced, in general, a less pronounced reaction than Mitsui-7, and the cultures with human monocyte-derived macrophages (MDMs) showed the proinflammatory response at later time points than those without MDMs. In conclusion, we present a robust alveolar model to predict inflammatory and fibrotic responses upon exposure to MWCNTs.
Collapse
Affiliation(s)
- Hana Barosova
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Anna G Maione
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts 01721, United States
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Monita Sharma
- PETA International Science Consortium Ltd., 8 All Saints Street, London N1 9RL, U.K
| | - Laetitia Haeni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Olivia O'Connell
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts 01721, United States
| | - George R Jackson
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts 01721, United States
| | - David Brown
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Amy J Clippinger
- PETA International Science Consortium Ltd., 8 All Saints Street, London N1 9RL, U.K
| | - Patrick Hayden
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts 01721, United States
- BioSurfaces, Inc., 200 Homer Ave, Ashland, Massachusetts 01721, United States
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Vicki Stone
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | | |
Collapse
|
20
|
Hadrup N, Saber AT, Kyjovska ZO, Jacobsen NR, Vippola M, Sarlin E, Ding Y, Schmid O, Wallin H, Jensen KA, Vogel U. Pulmonary toxicity of Fe 2O 3, ZnFe 2O 4, NiFe 2O 4 and NiZnFe 4O 8 nanomaterials: Inflammation and DNA strand breaks. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103303. [PMID: 31794919 DOI: 10.1016/j.etap.2019.103303] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Exposure to metal oxide nanomaterials potentially occurs at the workplace. We investigated the toxicity of two Fe-oxides: Fe2O3 nanoparticles and nanorods; and three MFe2O4 spinels: NiZnFe4O8, ZnFe2O4, and NiFe2O4 nanoparticles. Mice were dosed 14, 43 or 128 μg by intratracheal instillation. Recovery periods were 1, 3, or 28 days. Inflammation - neutrophil influx into bronchoalveolar lavage (BAL) fluid - occurred for Fe2O3 rods (1 day), ZnFe2O4 (1, 3 days), NiFe2O4 (1, 3, 28 days), Fe2O3 (28 days) and NiZnFe4O8 (28 days). Conversion of mass-dose into specific surface-area-dose showed that inflammation correlated with deposited surface area and consequently, all these nanomaterials belong to the so-called low-solubility, low-toxicity class. Increased levels of DNA strand breaks were observed for both Fe2O3 particles and rods, in BAL cells three days post-exposure. To our knowledge, this is, besides magnetite (Fe3O4), the first study of the pulmonary toxicity of MFe2O4 spinel nanomaterials.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Anne T Saber
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Zdenka O Kyjovska
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Minnamari Vippola
- Materials Science and Environmental Engineering, Tampere University, P.O.Box 589, 33014 Tampere University, Finland.
| | - Essi Sarlin
- Materials Science and Environmental Engineering, Tampere University, P.O.Box 589, 33014 Tampere University, Finland.
| | - Yaobo Ding
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Otmar Schmid
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Biology and Disease, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway.
| | - Keld A Jensen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; Department of Health Technology, Danish Technical University (DTU), DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
21
|
Barfod KK, Bendtsen KM, Berthing T, Koivisto AJ, Poulsen SS, Segal E, Verleysen E, Mast J, Holländer A, Jensen KA, Hougaard KS, Vogel U. Increased surface area of halloysite nanotubes due to surface modification predicts lung inflammation and acute phase response after pulmonary exposure in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103266. [PMID: 31707308 DOI: 10.1016/j.etap.2019.103266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The toxicological potential of halloysite nanotubes (HNTs) and variants after functional alterations to surface area are not clear. We assessed the toxicological response to HNTs (NaturalNano (NN)) before and after surface etching (NN-etched). Potential cytotoxicity of the two HNTs was screened in vitro in MutaTMMouse lung epithelial cells. Lung inflammation, acute phase response and genotoxicity were assessed 1, 3, and 28 days after a single intratracheal instillation of adult female C57BL/6 J BomTac mice. The doses were 6, 18 or 54 μg of HNTs, compared to vehicle controls and the Carbon black NP (Printex 90) of 162 μg/mouse. The cellular composition of bronchoalveolar lavage (BAL) fluid was determined as a measure of lung inflammation. The pulmonary and hepatic acute phase responses were assessed by Serumamyloida mRNA levels in lung and liver tissue by real-time quantitative PCR. Pulmonary and systemic genotoxicity were analyzed by the alkaline comet assay as DNA strand breaks in BAL cells, lung and liver tissue. The etched HNT (NN-etched) had 4-5 times larger BET surface area than the unmodified HNT (NN). Instillation of NN-etched at the highest dose induced influx of neutrophils into the lungs at all time points and increased Saa3 mRNA levels in lung tissue on day 1 and 3 after exposure. No genotoxicity was observed at any time point. In conclusion, functionalization by etching increased BET surface area of the studied NN and enhanced pulmonary inflammatory toxicity in mice.
Collapse
Affiliation(s)
- Kenneth Klingenberg Barfod
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark; Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, DK-1014, Denmark
| | - Katja Maria Bendtsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Trine Berthing
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Antti Joonas Koivisto
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | | | - Jan Mast
- Sciensano, Groeselenbergstraat 99, 1180, Uccle, Belgium
| | - Andreas Holländer
- Fraunhofer-Institut für Angewandte Polymerforschung, Geiselbergstr. 69, 14476, Potsdam, Germany
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, DK-1014, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark; DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
22
|
Raja IS, Song SJ, Kang MS, Lee YB, Kim B, Hong SW, Jeong SJ, Lee JC, Han DW. Toxicity of Zero- and One-Dimensional Carbon Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1214. [PMID: 31466309 PMCID: PMC6780407 DOI: 10.3390/nano9091214] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
The zero (0-D) and one-dimensional (1-D) carbon nanomaterials have gained attention among researchers because they exhibit a larger surface area to volume ratio, and a smaller size. Furthermore, carbon is ubiquitously present in all living organisms. However, toxicity is a major concern while utilizing carbon nanomaterials for biomedical applications such as drug delivery, biosensing, and tissue regeneration. In the present review, we have summarized some of the recent findings of cellular and animal level toxicity studies of 0-D (carbon quantum dot, graphene quantum dot, nanodiamond, and carbon black) and 1-D (single-walled and multi-walled carbon nanotubes) carbon nanomaterials. The in vitro toxicity of carbon nanomaterials was exemplified in normal and cancer cell lines including fibroblasts, osteoblasts, macrophages, epithelial and endothelial cells of different sources. Similarly, the in vivo studies were illustrated in several animal species such as rats, mice, zebrafish, planktons and, guinea pigs, at various concentrations, route of administrations and exposure of nanoparticles. In addition, we have described the unique properties and commercial usage, as well as the similarities and differences among the nanoparticles. The aim of the current review is not only to signify the importance of studying the toxicity of 0-D and 1-D carbon nanomaterials, but also to emphasize the perspectives, future challenges and possible directions in the field.
Collapse
Affiliation(s)
| | - Su-Jin Song
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Yu Bin Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Bongju Kim
- Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Seung Jo Jeong
- GS Medical Co., Ltd., Cheongju-si, Chungcheongbuk-do 28161, Korea
| | - Jae-Chang Lee
- Bio-Based Chemistry Research Center, Korea Research Institute of Chemical Technology, Ulsan 44429, Korea.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
23
|
Du Y, Hou L, Chu C, Jin Y, Sun W, Zhang R. Characterization of serum metabolites as biomarkers of carbon black nanoparticles-induced subchronic toxicity in rats by hybrid triple quadrupole time-of-flight mass spectrometry with non-targeted metabolomics strategy. Toxicology 2019; 426:152268. [PMID: 31437482 DOI: 10.1016/j.tox.2019.152268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/27/2022]
Abstract
Carbon black nanoparticles (CBNPs) are one of atmospheric particles components and have been closely related with a series of lung diseases. It can reach the depths of the respiratory tract or even alveolar more easily than those micro-particles. Although some of its toxicities have been confirmed in animals or human bodies, the subchronic toxicity mechanism of CBNPs has been uncertain so far. Therefore, it is very necessary to establish a novel method and clarify the mechanism of subchronic toxicity caused by concentration adjustments of small molecule metabolites in vivo. In animal experiments, CB exposure, recovery and control group were set up. The concentration of CBNPs in chamber was 30.06 ± 4.42 mg/m3. We developed a UHPLC-Q-TOF-MS/MS-based non-targeted metabolomic analysis strategy to analyze serum samples of rats. Then, differential metabolites in serum were found by multivariate data analysis and 39 potential biomarkers were identified. It was showed that main metabolic pathways associated with CBNPs exposure were hormones metabolism, amino acid metabolism, nucleotide metabolism and lipid metabolism. It is worth noting that long-term exposure to CBNPs had the greatest impact on steroid hormones biosynthesis so that the risk of infertility could increase. The results provided a new mechanistic insight into the metabolic alterations owing to CBNPs induced subchronic toxicity.
Collapse
Affiliation(s)
- Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Ludan Hou
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Chen Chu
- Department of Occupational and Environmental Health, the School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Yiran Jin
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China; The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Wenjing Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Rong Zhang
- Department of Occupational and Environmental Health, the School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China.
| |
Collapse
|
24
|
Bendtsen KM, Brostrøm A, Koivisto AJ, Koponen I, Berthing T, Bertram N, Kling KI, Dal Maso M, Kangasniemi O, Poikkimäki M, Loeschner K, Clausen PA, Wolff H, Jensen KA, Saber AT, Vogel U. Airport emission particles: exposure characterization and toxicity following intratracheal instillation in mice. Part Fibre Toxicol 2019; 16:23. [PMID: 31182125 PMCID: PMC6558896 DOI: 10.1186/s12989-019-0305-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Little is known about the exposure levels and adverse health effects of occupational exposure to airplane emissions. Diesel exhaust particles are classified as carcinogenic to humans and jet engines produce potentially similar soot particles. Here, we evaluated the potential occupational exposure risk by analyzing particles from a non-commercial airfield and from the apron of a commercial airport. Toxicity of the collected particles was evaluated alongside NIST standard reference diesel exhaust particles (NIST2975) in terms of acute phase response, pulmonary inflammation, and genotoxicity after single intratracheal instillation in mice. RESULTS Particle exposure levels were up to 1 mg/m3 at the non-commercial airfield. Particulate matter from the non-commercial airfield air consisted of primary and aggregated soot particles, whereas commercial airport sampling resulted in a more heterogeneous mixture of organic compounds including salt, pollen and soot, reflecting the complex occupational exposure at an apron. The particle contents of polycyclic aromatic hydrocarbons and metals were similar to the content in NIST2975. Mice were exposed to doses 6, 18 and 54 μg alongside carbon black (Printex 90) and NIST2975 and euthanized after 1, 28 or 90 days. Dose-dependent increases in total number of cells, neutrophils, and eosinophils in bronchoalveolar lavage fluid were observed on day 1 post-exposure for all particles. Lymphocytes were increased for all four particle types on 28 days post-exposure as well as for neutrophil influx for jet engine particles and carbon black nanoparticles. Increased Saa3 mRNA levels in lung tissue and increased SAA3 protein levels in plasma were observed on day 1 post-exposure. Increased levels of DNA strand breaks in bronchoalveolar lavage cells and liver tissue were observed for both particles, at single dose levels across doses and time points. CONCLUSIONS Pulmonary exposure of mice to particles collected at two airports induced acute phase response, inflammation, and genotoxicity similar to standard diesel exhaust particles and carbon black nanoparticles, suggesting similar physicochemical properties and toxicity of jet engine particles and diesel exhaust particles. Given this resemblance as well as the dose-response relationship between diesel exhaust exposure and lung cancer, occupational exposure to jet engine emissions at the two airports should be minimized.
Collapse
Affiliation(s)
- Katja Maria Bendtsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Anders Brostrøm
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Fysikvej, Building 307, DK-2800 Kgs Lyngby, Denmark
| | - Antti Joonas Koivisto
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Ismo Koponen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
- FORCE Technology, Park Allé 345, 2605 Brøndby, Denmark
| | - Trine Berthing
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Nicolas Bertram
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Kirsten Inga Kling
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Fysikvej, Building 307, DK-2800 Kgs Lyngby, Denmark
| | - Miikka Dal Maso
- Aerosol Physics, Laboratory of Physics, Faculty of Natural Sciences, Tampere University of Technology, PO Box 527, FI-33101 Tampere, Finland
| | - Oskari Kangasniemi
- Aerosol Physics, Laboratory of Physics, Faculty of Natural Sciences, Tampere University of Technology, PO Box 527, FI-33101 Tampere, Finland
| | - Mikko Poikkimäki
- Aerosol Physics, Laboratory of Physics, Faculty of Natural Sciences, Tampere University of Technology, PO Box 527, FI-33101 Tampere, Finland
| | - Katrin Loeschner
- National Food Institute, Research Group for Nano-Bio Science, Technical University of Denmark, Kemitorvet 201, DK-2800 Kgs Lyngby, Denmark
| | - Per Axel Clausen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Henrik Wolff
- Finnish Institute of Occupational Health, P.O. Box 40, FI-00032, Työterveyslaitos, Helsinki, Finland
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Anne Thoustrup Saber
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
25
|
Chu C, Zhou L, Xie H, Pei Z, Zhang M, Wu M, Zhang S, Wang L, Zhao C, Shi L, Zhang N, Niu Y, Zheng Y, Zhang R. Pulmonary toxicities from a 90-day chronic inhalation study with carbon black nanoparticles in rats related to the systemical immune effects. Int J Nanomedicine 2019; 14:2995-3013. [PMID: 31118618 PMCID: PMC6503190 DOI: 10.2147/ijn.s198376] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Recent years, there occurs heavy haze pollution in northern China during wintertime. The potential influence of airborne particulate matter (PM) on human health attracts great concern. The fuel-derived PM in the inhalable size range is dominated by aggregates of nanoparticles of Carbon black (CB). However, there are still lack of evidences especially regarding long-term exposure to explain the chronic effects of nanoscaled CB and the relative mechanism. Purpose: The objective of this study was to identify the potential mechanism of chronic effects of nanoscale CB. The systemic toxicity, immune suppression or activity and local toxicity were evaluated. Methods: 32 rats were divided into 2 groups: 30 mg/m3 CB exposure (nose only, 90 d, 6h/d) and control (clean air). Half of rats were scarified after exposure and another half of rats recovered for 14 days. Eight rats in each group were executed the lung function tests using a ventilated bias flow whole body plethysmograph (WBP). SDS-PAGE protocol was used to detect the deposition and retention of CB in lung of rats. HE staining was used to observe the changes of histopathology. Cell apoptosis was examined by TUNEL assay or flow cytometry. The levels of IL-6, IL-8, IL-17 and TNF-α in serum and lung tissue were evaluated with commercially available ELISA kit. The peripheral blood cell counts were detected by Auto 5-diff hematology analyzer. Results: The lung burden of CB was 16 mg in lung of rats after a 90-day exposure by MPPD. Fourteen percentages of the amount of CB accumulated at the end of the exposure period was cleared from the lung during the 14 dys recovery period. The lung function was significantly decreased and could not recover after a short time recovery. The fibroblasts and granuloma formation were found in lung. The levels of apoptosis and DNA damages were significantly increased in lung cells after CB inhalation. The cytokines levels in lung but not in serum were significantly increased in CB exposure group. The cell counts of WBC, monocytes and neutrophils had 1.72, 3.13, and 2.73-fold increases after CB exposure, respectively. The percentages of CD4+ lymphocytes and the rates of CD4+/CD8+ were statistically increased after CB exposure. The stimulation indexes of the peripheral blood lymphocytes were significantly decreased after CB exposure. In the CB exposure group, the disrupted histomorphology of thymus and spleen were found as well as the early apoptotic thymocytes had a 2.36-fold increase. Conclusion: CB induced the localized or direct toxicity and systemic immune toxicity. The direct and systemic immune responses had a combined effect on the lung damages caused by CB.
Collapse
Affiliation(s)
- Chen Chu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Lixiao Zhou
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Heran Xie
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Zijie Pei
- Department of Pathology, Medical School, China Three Gorge University, Yichang, 443002, People's Republic of China
| | - Mengyue Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Shaohui Zhang
- Department of Experimental Center, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People's Republic of China
| | - Luqi Wang
- Riodiology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, People's Republic of China
| | - Chunfang Zhao
- Histology and Embryology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Lei Shi
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Ning Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yuxin Zheng
- Department of Toxicology, Public Health College, Qingdao University, Qingdao, 266000, People's Republic of China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
26
|
Zhang Y, Tu B, Jiang X, Xu G, Liu X, Tang Q, Bai L, Meng P, Zhang L, Qin X, Zou Z, Chen C. Exposure to carbon black nanoparticles during pregnancy persistently damages the cerebrovascular function in female mice. Toxicology 2019; 422:44-52. [PMID: 31022427 DOI: 10.1016/j.tox.2019.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023]
Abstract
Maternal exposure to carbon black nanoparticles (CBNPs) during pregnancy have been well documented to induce harmful outcomes of offspring on brain function. However, it remains largely unknown whether females exposed to CBNPs during sensitive period of pregnancy can cause the neurotoxic effects on their own body after parturition. In this study, our results showed that pregnancy CBNPs exposure induced the persistent pathological changes in the cerebral cortex tissues and impaired cerebrovascular function of mice manifested by significant alterations of endothelin-1, endothelial nitric oxide synthase, vascular endothelial growth factor-A and ATP-binding cassette transporter G1. Intriguingly, we observed that these deleterious effects on brain and cerebrovascular functions in mice could persist for 49 days after delivery of pups. By using in vitro human umbilical vein endothelial cells, we further verified the potential vascular dysfunction after CBNPs exposure. In summary, our results provide the first evidence that pregnancy CBNPs exposure-induced brain pathological changes and cerebrovascular dysfunction can persist for a relative long time. These finding suggest exposure to CBNPs during sensitive stages of pregnancy may not only show the harmful effects on offspring neurodevelopment, but also result in the irreversible brain damage on mother body.
Collapse
Affiliation(s)
- Yujia Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Baijie Tu
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuemei Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lulu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Pan Meng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Longbin Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
27
|
Skovmand A, Jensen ACØ, Maurice C, Marchetti F, Lauvås AJ, Koponen IK, Jensen KA, Goericke-Pesch S, Vogel U, Hougaard KS. Effects of maternal inhalation of carbon black nanoparticles on reproductive and fertility parameters in a four-generation study of male mice. Part Fibre Toxicol 2019; 16:13. [PMID: 30879468 PMCID: PMC6421671 DOI: 10.1186/s12989-019-0295-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 03/06/2023] Open
Abstract
Background Previous findings indicate that in utero exposure to nanoparticles may affect the reproductive system in male offspring. Effects such as decreased sperm counts and testicular structural changes in F1 males have been reported following maternal airway exposure to carbon black during gestation. In addition, a previous study in our laboratory suggested that the effects of in utero exposure of nanoparticles may span further than the first generation, as sperm content per gram of testis was significantly lowered in F2 males. In the present study we assessed male fertility parameters following in utero inhalation exposure to carbon black in four generations of mice. Results Filter measurements demonstrated that the time-mated females were exposed to a mean total suspended particle mass concentration of 4.79 ± 1.86 or 33.87 ± 14.77 mg/m3 for the low and high exposure, respectively. The control exposure was below the detection limit (LOD 0.08 mg/m3). Exposure did not affect gestation and litter parameters in any generation. No significant changes were observed in body and reproductive organ weights, epididymal sperm parameters, daily sperm production, plasma testosterone or fertility. Conclusion In utero exposure to carbon black nanoparticles, at occupationally relevant exposure levels, via maternal whole body inhalation did not affect male-specific reproductive, fertility and litter parameters in four generations of mice.
Collapse
Affiliation(s)
- Astrid Skovmand
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark.,Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Clotilde Maurice
- Environmental Health Science Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Anna J Lauvås
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ismo K Koponen
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Keld A Jensen
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Sandra Goericke-Pesch
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Reproductive Unit of the Clinics - Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Karin S Hougaard
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark. .,Institute of Public Health, University of Copenhagen, Copenhagen K, Denmark.
| |
Collapse
|
28
|
Hadrup N, Bengtson S, Jacobsen NR, Jackson P, Nocun M, Saber AT, Jensen KA, Wallin H, Vogel U. Influence of dispersion medium on nanomaterial-induced pulmonary inflammation and DNA strand breaks: investigation of carbon black, carbon nanotubes and three titanium dioxide nanoparticles. Mutagenesis 2018; 32:581-597. [PMID: 29301028 PMCID: PMC5907907 DOI: 10.1093/mutage/gex042] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intratracheal instillation serves as a model for inhalation exposure. However, for this, materials are dispersed in appropriate media that may influence toxicity. We tested whether different intratracheal instillation dispersion media influence the pulmonary toxicity of different nanomaterials. Rodents were intratracheally instilled with 162 µg/mouse/1620 µg/rat carbon black (CB), 67 µg/mouse titanium dioxide nanoparticles (TiO2) or 54 µg/mouse carbon nanotubes (CNT). The dispersion media were as follows: water (CB, TiO2); 2% serum in water (CB, CNT, TiO2); 0.05% serum albumin in water (CB, CNT, TiO2); 10% bronchoalveolar lavage fluid in 0.9% NaCl (CB), 10% bronchoalveolar lavage (BAL) fluid in water (CB) or 0.1% Tween-80 in water (CB). Inflammation was measured as pulmonary influx of neutrophils into bronchoalveolar fluid, and DNA damage as DNA strand breaks in BAL cells by comet assay. Inflammation was observed for all nanomaterials (except 38-nm TiO2) in all dispersion media. For CB, inflammation was dispersion medium dependent. Increased levels of DNA strand breaks for CB were observed only in water, 2% serum and 10% BAL fluid in 0.9% NaCl. No dispersion medium-dependent effects on genotoxicity were observed for TiO2, whereas CNT in 2% serum induced higher DNA strand break levels than in 0.05% serum albumin. In conclusion, the dispersion medium was a determinant of CB-induced inflammation and genotoxicity. Water seemed to be the best dispersion medium to mimic CB inhalation, exhibiting DNA strand breaks with only limited inflammation. The influence of dispersion media on nanomaterial toxicity should be considered in the planning of intratracheal investigations.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| | - Stefan Bengtson
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| | - Petra Jackson
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| | - Marek Nocun
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Anne T Saber
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| | - Keld A Jensen
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| | - Håkan Wallin
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark.,Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Gydas vei, Majorstuen, Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé, DK Copenhagen, Denmark
| |
Collapse
|
29
|
Umezawa M, Onoda A, Korshunova I, Jensen ACØ, Koponen IK, Jensen KA, Khodosevich K, Vogel U, Hougaard KS. Maternal inhalation of carbon black nanoparticles induces neurodevelopmental changes in mouse offspring. Part Fibre Toxicol 2018; 15:36. [PMID: 30201004 PMCID: PMC6131790 DOI: 10.1186/s12989-018-0272-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023] Open
Abstract
Background Engineered nanoparticles are smaller than 100 nm and designed to improve or creating even new physico-chemical properties. Consequently, toxicological properties of materials may change as size reaches the nm size-range. We examined outcomes related to the central nervous system in the offspring following maternal inhalation exposure to nanosized carbon black particles (Printex 90). Methods Time-mated mice (NMRI) were exposed by inhalation, for 45 min/day to 0, 4.6 or 37 mg/m3 aerosolized carbon black on gestation days 4–18, i.e. for a total of 15 days. Outcomes included maternal lung inflammation (differential cell count in bronchoalveolar lavage fluid and Saa3 mRNA expression in lung tissue), offspring neurohistopathology and behaviour in the open field test. Results Carbon black exposure did not cause lung inflammation in the exposed females, measured 11 or 28–29 days post-exposure. Glial fibrillary acidic protein (GFAP) expression levels were dose-dependently increased in astrocytes around blood vessels in the cerebral cortex and hippocampus in six weeks old offspring, indicative of reactive astrogliosis. Also enlarged lysosomal granules were observed in brain perivascular macrophages (PVMs) in the prenatally exposed offspring. The number of parvalbumin-positive interneurons and the expression levels of parvalbumin were decreased in the motor and prefrontal cortices at weaning and 120 days of age in the prenatally exposed offspring. In the open field test, behaviour was dose-dependently altered following maternal exposure to Printex 90, at 90 days of age. Prenatally exposed female offspring moved a longer total distance, and especially males spent significantly longer time in the central zone of the maze. In the offspring, the described effects were long-lasting as they were present at all time points investigated. Conclusion The present study reports for the first time that maternal inhalation exposure to Printex 90 carbon black induced dose-dependent denaturation of PVM and reactive astrocytes, similarly to the findings observed following maternal exposure to Printex 90 by airway instillation. Of note, some of the observed effects have striking similarities with those observed in mouse models of neurodevelopmental disorders. Electronic supplementary material The online version of this article (10.1186/s12989-018-0272-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masakazu Umezawa
- Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, Japan.,Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| | - Atsuto Onoda
- Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, Japan.,Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.,Japan Society for the Promotion of Science, Chiyoda, Tokyo, 102-0083, Japan
| | - Irina Korshunova
- Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen K, Denmark
| | - Alexander C Ø Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Ismo K Koponen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Keld A Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen K, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Karin S Hougaard
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark. .,Institute of Public Health, University of Copenhagen, Copenhagen K, Denmark.
| |
Collapse
|
30
|
In-ovo exposed carbon black nanoparticles altered mRNA gene transcripts of antioxidants, proinflammatory and apoptotic pathways in the brain of chicken embryos. Chem Biol Interact 2018; 295:133-139. [PMID: 29496469 DOI: 10.1016/j.cbi.2018.02.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/27/2018] [Accepted: 02/23/2018] [Indexed: 11/21/2022]
Abstract
With ubiquitous applications of nanotechnology, there are increasing probabilities of exposure to manufactured nanoparticles (NPs), which might be posing emerging health concerns on the next generation. Recent data suggest that generation of reactive oxygen species may play an integral role in the carbon black nanoparticles (CBNPs)-induced oxidative injury; however, the exact molecular mechanism has not been clarified. Hence, the role of oxidative stress, inflammation and apoptosis pathways in the CBNPs-induced neuronal toxicity following in-ovo exposure of chicken embryo was elucidated. Specific pathogen-free fertilized Sasso eggs were inoculated with 4.8, 9.5 and 14 μg CBNPs/egg at the 3rd day of incubation alongside vehicle controls. In a concentration-dependent manner, CBNPs inoculation induced oxidative stress, which was ascertained by enhancement of lipid peroxides and diminishing total antioxidant capacity and glutathione levels, and catalase activity in brain tissues. mRNA transcript levels of antioxidant genes showed up-regulation of heme oxygenase-1 and superoxide dismutase-1, with marked down-regulation of glutathione S-transferase-α. Additionally, the pro-inflammatory genes; nuclear factor-κB1 was up-regulated, while interferon-γ was down-regulated. There is also a clear down-regulation in apoptotic markers caspase-8, caspase-3, cytochrome c and B-cell CLL/lymphoma 2 at the different concentrations, while caspase-2 is up-regulated only at higher concentration. Collectively, these results show that CBNPs exposure-mediated overproduction of the free radicals, particularly at higher concentration contributes to inflammation and subsequent cellular apoptosis at the gene expression level, thus unveiling possible molecular relationship between CBNPs and genes linked to the oxidant, inflammatory and apoptotic responses.
Collapse
|
31
|
Modrzynska J, Berthing T, Ravn-Haren G, Jacobsen NR, Weydahl IK, Loeschner K, Mortensen A, Saber AT, Vogel U. Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice. Part Fibre Toxicol 2018; 15:2. [PMID: 29298701 PMCID: PMC5753473 DOI: 10.1186/s12989-017-0238-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/15/2017] [Indexed: 11/20/2022] Open
Abstract
Background Little is known about the mechanism underlying the genotoxicity observed in the liver following pulmonary exposure to carbon black (CB) nanoparticles (NPs). The genotoxicity could be caused by the presence of translocated particles or by circulating inflammatory mediators released during pulmonary inflammation and acute-phase response. To address this, we evaluated induction of pulmonary inflammation, pulmonary and hepatic acute-phase response and genotoxicity following exposure to titanium dioxide (TiO2), cerium oxide (CeO2) or CB NPs. Female C57BL/6 mice were exposed by intratracheal instillation, intravenous injection or oral gavage to a single dose of 162 μg NPs/mouse and terminated 1, 28 or 180 days post-exposure alongside vehicle control. Results Liver DNA damage assessed by the Comet Assay was observed after intravenous injection and intratracheal instillation of CB NPs but not after exposure to TiO2 or CeO2. Intratracheal exposure to NPs resulted in pulmonary inflammation in terms of increased neutrophils influx for all NPs 1 and 28 days post-exposure. Persistent pulmonary acute phase response was detected for all NPs at all three time points while only a transient induction of hepatic acute phase response was observed. All 3 materials were detected in the liver by enhanced darkfield microscopy up to 180 days post-exposure. In contrast to TiO2 and CeO2 NPs, CB NPs generated ROS in an acellular assay. Conclusions Our results suggest that the observed hepatic DNA damage following intravenous and intratracheal dosing with CB NPs was caused by the presence of translocated, ROS-generating, particles detected in the liver rather than by the secondary effects of pulmonary inflammation or hepatic acute phase response. Electronic supplementary material The online version of this article (10.1186/s12989-017-0238-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna Modrzynska
- Technical University of Denmark, National Food Institute, Lyngby, Denmark.,The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Trine Berthing
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Gitte Ravn-Haren
- Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | - Nicklas Raun Jacobsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Ingrid Konow Weydahl
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Katrin Loeschner
- Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | - Alicja Mortensen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Anne Thoustrup Saber
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark. .,Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
32
|
Chaudhuri I, Fruijtier-Pölloth C, Ngiewih Y, Levy L. Evaluating the evidence on genotoxicity and reproductive toxicity of carbon black: a critical review. Crit Rev Toxicol 2017; 48:143-169. [DOI: 10.1080/10408444.2017.1391746] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ishrat Chaudhuri
- Safety, Health and Environment, Cabot Corporation, Billerica, MA, USA
| | | | | | - Len Levy
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| |
Collapse
|
33
|
Berger M, de Boer JD, Lutter R, Makkee M, Sterk PJ, Kemper EM, van der Zee JS. Pulmonary challenge with carbon nanoparticles induces a dose-dependent increase in circulating leukocytes in healthy males. BMC Pulm Med 2017; 17:121. [PMID: 28877711 PMCID: PMC5588713 DOI: 10.1186/s12890-017-0463-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 08/24/2017] [Indexed: 12/22/2022] Open
Abstract
Background Inhalation of particulate matter, as part of air pollution, is associated with increased morbidity and mortality. Nanoparticles (< 100 nm) are likely candidates for triggering inflammatory responses and activation of coagulation pathways because of their ability to enter lung cells and pass bronchial mucosa. We tested the hypothesis that bronchial segmental instillation of carbon nanoparticles causes inflammation and activation of coagulation pathways in healthy humans in vivo. Methods This was an investigator-initiated, randomized controlled, dose-escalation study in 26 healthy males. Participants received saline (control) in one lung segment and saline (placebo) or carbon nanoparticles 10 μg, 50 μg, or 100 μg in the contra-lateral lung. Six hours later, blood and bronchoalveolar lavage fluid (BALF) was collected for inflammation and coagulation parameters. Results There was a significant dose-dependent increase in blood neutrophils (p = 0.046) after challenge with carbon nanoparticles. The individual top-dose of 100 μg showed a significant (p = 0.05) increase in terms of percentage neutrophils in blood as compared to placebo. Conclusions This study shows a dose-dependent effect of bronchial segmental challenge with carbon nanoparticles on circulating neutrophils of healthy volunteers. This suggests that nanoparticles in the respiratory tract induce systemic inflammation. Trial registration Dutch Trial Register no. 2976. 11 July 2011. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2976 Electronic supplementary material The online version of this article (10.1186/s12890-017-0463-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marieke Berger
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Room F-5-260, Amsterdam, The Netherlands.
| | - Johannes D de Boer
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Room F-5-260, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel Makkee
- Catalysis Engineering, Chemical Engineering, Technical University of Delft, Delft, The Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Room F-5-260, Amsterdam, The Netherlands
| | - Elles M Kemper
- Department of Pharmacy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaring S van der Zee
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Room F-5-260, Amsterdam, The Netherlands.,Department of Respiratory Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Poulsen SS, Knudsen KB, Jackson P, Weydahl IEK, Saber AT, Wallin H, Vogel U. Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice. PLoS One 2017; 12:e0174167. [PMID: 28380028 PMCID: PMC5381870 DOI: 10.1371/journal.pone.0174167] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/04/2017] [Indexed: 01/08/2023] Open
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) has been linked to an increased risk of developing cardiovascular disease in addition to the well-documented physicochemical-dependent adverse lung effects. A proposed mechanism is through a strong and sustained pulmonary secretion of acute phase proteins to the blood. We identified physicochemical determinants of MWCNT-induced systemic acute phase response by analyzing effects of pulmonary exposure to 14 commercial, well-characterized MWCNTs in female C57BL/6J mice pulmonary exposed to 0, 6, 18 or 54 μg MWCNT/mouse. Plasma levels of acute phase response proteins serum amyloid A1/2 (SAA1/2) and SAA3 were determined on day 1, 28 or 92. Expression levels of hepatic Saa1 and pulmonary Saa3 mRNA levels were assessed to determine the origin of the acute phase response proteins. Pulmonary Saa3 mRNA expression levels were greater and lasted longer than hepatic Saa1 mRNA expression. Plasma SAA1/2 and SAA3 protein levels were related to time and physicochemical properties using adjusted, multiple regression analyses. SAA3 and SAA1/2 plasma protein levels were increased after exposure to almost all of the MWCNTs on day 1, whereas limited changes were observed on day 28 and 92. SAA1/2 and SAA3 protein levels did not correlate and only SAA3 protein levels correlated with neutrophil influx. The multiple regression analyses revealed a protective effect of MWCNT length on SAA1/2 protein level on day 1, such that a longer length resulted in lowered SAA1/2 plasma levels. Increased SAA3 protein levels were positively related to dose and content of Mn, Mg and Co on day 1, whereas oxidation and diameter of the MWCNTs were protective on day 28 and 92, respectively. The results of this study reveal very differently controlled pulmonary and hepatic acute phase responses after MWCNT exposure. As the responses were influenced by the physicochemical properties of the MWCNTs, this study provides the first step towards designing MWCNT that induce less SAA.
Collapse
Affiliation(s)
- Sarah S. Poulsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- * E-mail:
| | | | - Petra Jackson
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | | | - Anne T. Saber
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Håkan Wallin
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Institute of Public Health, Copenhagen University, Copenhagen K, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
35
|
Assessment of Pulmonary Toxicity Induced by Inhaled Toner with External Additives. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4245309. [PMID: 28191462 PMCID: PMC5278518 DOI: 10.1155/2017/4245309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/22/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022]
Abstract
We investigated the harmful effects of exposure to a toner with external additives by a long-term inhalation study using rats, examining pulmonary inflammation, oxidative stress, and histopathological changes in the lung. Wistar rats were exposed to a well-dispersed toner (mean of MMAD: 2.1 μm) at three mass concentrations of 1, 4, and 16 mg/m3 for 22.5 months, and the rats were sacrificed after 6 months, 12 months, and 22.5 months of exposure. The low and medium concentrations did not induce statistically significant pulmonary inflammation, but the high concentration did, and, in addition, a histopathological examination showed fibrosis in the lung. Although lung tumor was observed in one sample of high exposure for 22.5 months, the cause was not statistically significant. On the other hand, a persistent increase in 8-OHdG was observed in the high exposure group, indicating that DNA damage by oxidative stress with persistent inflammation leads to the formation of tumorigenesis. The results of our studies show that toners with external additives lead to pulmonary inflammation, oxidative stress, and fibrosis only at lung burdens beyond overload. These data suggest that toners with external additives may have low toxicity in the lung.
Collapse
|
36
|
Sattler C, Moritz F, Chen S, Steer B, Kutschke D, Irmler M, Beckers J, Eickelberg O, Schmitt-Kopplin P, Adler H, Stoeger T. Nanoparticle exposure reactivates latent herpesvirus and restores a signature of acute infection. Part Fibre Toxicol 2017; 14:2. [PMID: 28069010 PMCID: PMC5223553 DOI: 10.1186/s12989-016-0181-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/15/2016] [Indexed: 02/04/2023] Open
Abstract
Background Inhalation of environmental (nano) particles (NP) as well as persistent herpesvirus-infection are potentially associated with chronic lung disease and as both are omnipresent in human society a coincidence of these two factors is highly likely. We hypothesized that NP-exposure of persistently herpesvirus-infected cells as a second hit might disrupt immune control of viral latency, provoke reactivation of latent virus and eventually lead to an inflammatory response and tissue damage. Results To test this hypothesis, we applied different NP to cells or mice latently infected with murine gammaherpesvirus 68 (MHV-68) which provides a small animal model for the study of gammaherpesvirus-pathogenesis in vitro and in vivo. In vitro, NP-exposure induced expression of the typically lytic viral gene ORF50 and production of lytic virus. In vivo, lytic viral proteins in the lung increased after intratracheal instillation with NP and elevated expression of the viral gene ORF50 could be detected in cells from bronchoalveolar lavage. Gene expression and metabolome analysis of whole lung tissue revealed patterns with striking similarities to acute infection. Likewise, NP-exposure of human cells latently infected with Epstein-Barr-Virus also induced virus production. Conclusions Our results indicate that NP-exposure of persistently herpesvirus-infected cells – murine or human – restores molecular signatures found in acute virus infection, boosts production of lytic viral proteins, and induces an inflammatory response in the lung – a combination which might finally result in tissue damage and pathological alterations. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0181-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Sattler
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Franco Moritz
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit BioGeoChemistry, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Shanze Chen
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Beatrix Steer
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Marchioninistrasse 25, D-81377, Munich, Germany.,University Hospital Grosshadern, Ludwig-Maximilians-University, D-81377, Munich, Germany.,Comprehensive Pneumology Center, Member of the German Center of Lung Research (DZL), D-81377, Munich, Germany
| | - David Kutschke
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Martin Irmler
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Johannes Beckers
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.,Technische Universität München, Chair of Experimental Genetics, D-85354, Freising, Germany
| | - Oliver Eickelberg
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit BioGeoChemistry, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Heiko Adler
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Marchioninistrasse 25, D-81377, Munich, Germany. .,University Hospital Grosshadern, Ludwig-Maximilians-University, D-81377, Munich, Germany. .,Comprehensive Pneumology Center, Member of the German Center of Lung Research (DZL), D-81377, Munich, Germany.
| | - Tobias Stoeger
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
| |
Collapse
|
37
|
Poulsen SS, Jackson P, Kling K, Knudsen KB, Skaug V, Kyjovska ZO, Thomsen BL, Clausen PA, Atluri R, Berthing T, Bengtson S, Wolff H, Jensen KA, Wallin H, Vogel U. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. Nanotoxicology 2016; 10:1263-75. [PMID: 27323647 PMCID: PMC5020352 DOI: 10.1080/17435390.2016.1202351] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commercial MWCNT (supplied in three groups of different dimensions, with one pristine and two/three surface modified in each group). We characterized morphology, chemical composition, surface area and functionalization levels. MWCNT were deposited in lungs of female C57BL/6J mice by intratracheal instillation of 0, 6, 18 or 54 μg/mouse. Pulmonary inflammation (neutrophil influx in bronchoalveolar lavage (BAL)) and genotoxicity were determined on day 1, 28 or 92. Histopathology of the lungs was performed on day 28 and 92. All MWCNT induced similar histological changes. Lymphocytic aggregates were detected for all MWCNT on day 28 and 92. Using adjusted, multiple regression analyses, inflammation and genotoxicity were related to dose, time and physicochemical properties. The specific surface area (BET) was identified as a positive predictor of pulmonary inflammation on all post-exposure days. In addition, length significantly predicted pulmonary inflammation, whereas surface oxidation (–OH and –COOH) was predictor of lowered inflammation on day 28. BET surface area, and therefore diameter, significantly predicted genotoxicity in BAL fluid cells and lung tissue such that lower BET surface area or correspondingly larger diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects.
Collapse
Affiliation(s)
- Sarah S Poulsen
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark
| | - Petra Jackson
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark
| | - Kirsten Kling
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark
| | - Kristina B Knudsen
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark
| | - Vidar Skaug
- b National Institute of Occupational Health , Oslo , Norway
| | - Zdenka O Kyjovska
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark
| | - Birthe L Thomsen
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark
| | - Per Axel Clausen
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark
| | - Rambabu Atluri
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark
| | - Trine Berthing
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark
| | - Stefan Bengtson
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark
| | - Henrik Wolff
- c Finnish Institute of Occupational Health , Helsinki , Finland
| | - Keld A Jensen
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark
| | - Håkan Wallin
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark .,d Institute of Public Health, Copenhagen University , Copenhagen K , Denmark , and
| | - Ulla Vogel
- a National Research Centre for the Working Environment , Copenhagen Ø , Denmark .,e Department of Micro-and Nanotechnology , Technical University of Denmark , Kgs. Lyngby , Denmark
| |
Collapse
|
38
|
Saber AT, Mortensen A, Szarek J, Koponen IK, Levin M, Jacobsen NR, Pozzebon ME, Mucelli SP, Rickerby DG, Kling K, Atluri R, Madsen AM, Jackson P, Kyjovska ZO, Vogel U, Jensen KA, Wallin H. Epoxy composite dusts with and without carbon nanotubes cause similar pulmonary responses, but differences in liver histology in mice following pulmonary deposition. Part Fibre Toxicol 2016; 13:37. [PMID: 27357593 PMCID: PMC4928277 DOI: 10.1186/s12989-016-0148-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background The toxicity of dusts from mechanical abrasion of multi-walled carbon nanotube (CNT) epoxy nanocomposites is unknown. We compared the toxic effects of dusts generated by sanding of epoxy composites with and without CNT. The used CNT type was included for comparison. Methods Mice received a single intratracheal instillation of 18, 54 and 162 μg of CNT or 54, 162 and 486 μg of the sanding dust from epoxy composite with and without CNT. DNA damage in lung and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Furthermore, the mRNA expression of interleukin 6 and heme oxygenase 1 was measured in the lungs and serum amyloid A1 in the liver. Printex 90 carbon black was included as a reference particle. Results Pulmonary exposure to CNT and all dusts obtained by sanding epoxy composite boards resulted in recruitment of inflammatory cells into lung lumen: On day 1 after instillation these cells were primarily neutrophils but on day 3, eosinophils contributed significantly to the cell population. There were still increased numbers of neutrophils 28 days after intratracheal instillation of the highest dose of the epoxy dusts. Both CNT and epoxy dusts induced DNA damage in lung tissue up to 3 days after intratracheal instillation but not in liver tissue. There was no additive effect of adding CNT to epoxy resins for any of the pulmonary endpoints. In livers of mice instilled with CNT and epoxy dust with CNTs inflammatory and necrotic histological changes were observed, however, not in mice instilled with epoxy dust without CNT. Conclusions Pulmonary deposition of epoxy dusts with and without CNT induced inflammation and DNA damage in lung tissue. There was no additive effect of adding CNT to epoxies for any of the pulmonary endpoints. However, hepatic inflammatory and necrotic histopathological changes were seen in mice instilled with sanding dust from CNT-containing epoxy but not in mice instilled with reference epoxy. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0148-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Thoustrup Saber
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark.
| | - Alicja Mortensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark.,National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Józef Szarek
- Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Ismo Kalevi Koponen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Marcus Levin
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Nicklas Raun Jacobsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Maria Elena Pozzebon
- Veneto Nanotech SCpA, ECSIN - European Centre for the Sustainable Impact of Nanotechnology, I-45100, Rovigo, Italy
| | - Stefano Pozzi Mucelli
- Veneto Nanotech SCpA, ECSIN - European Centre for the Sustainable Impact of Nanotechnology, I-45100, Rovigo, Italy.,Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - David George Rickerby
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, I-21027, Ispra, VA, Italy
| | - Kirsten Kling
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Rambabu Atluri
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark.,Nanologica AB, SE-114 28, Stockholm, Sweden
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Petra Jackson
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Zdenka Orabi Kyjovska
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Håkan Wallin
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark.,Department of Public Health, University of Copenhagen, DK-1014, Copenhagen K, Denmark
| |
Collapse
|
39
|
Nikota J, Williams A, Yauk CL, Wallin H, Vogel U, Halappanavar S. Meta-analysis of transcriptomic responses as a means to identify pulmonary disease outcomes for engineered nanomaterials. Part Fibre Toxicol 2016; 13:25. [PMID: 27169501 PMCID: PMC4865099 DOI: 10.1186/s12989-016-0137-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
Background The increasing use of engineered nanomaterials (ENMs) of varying physical and chemical characteristics poses a great challenge for screening and assessing the potential pathology induced by these materials, necessitating novel toxicological approaches. Toxicogenomics measures changes in mRNA levels in cells and tissues following exposure to toxic substances. The resulting information on altered gene expression profiles, associated pathways, and the doses at which these changes occur, are used to identify the underlying mechanisms of toxicity and to predict disease outcomes. We evaluated the applicability of toxicogenomics data in identifying potential lung-specific (genomic datasets are currently available from experiments where mice have been exposed to various ENMs through this common route of exposure) disease outcomes following exposure to ENMs. Methods Seven toxicogenomics studies describing mouse pulmonary responses over time following intra-tracheal exposure to increasing doses of carbon nanotubes (CNTs), carbon black, and titanium dioxide (TiO2) nanoparticles of varying properties were examined to understand underlying mechanisms of toxicity. mRNA profiles from these studies were compared to the publicly available datasets of 15 other mouse models of lung injury/diseases induced by various agents including bleomycin, ovalbumin, TNFα, lipopolysaccharide, bacterial infection, and welding fumes to delineate the implications of ENM-perturbed biological processes to disease pathogenesis in lungs. Results The meta-analysis revealed two distinct clusters—one driven by TiO2 and the other by CNTs. Unsupervised clustering of the genes showing significant expression changes revealed that CNT response clustered with bleomycin injury and bacterial infection models, both of which are known to induce lung fibrosis, in a post-exposure-time dependent manner, irrespective of the CNT’s physical-chemical properties. TiO2 samples clustered separately from CNTs and disease models. Conclusions These results indicate that in the absence of apical toxicity data, a tiered strategy beginning with short term, in vivo tissue transcriptomics profiling can effectively and efficiently screen new ENMs that have a higher probability of inducing pulmonary pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0137-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jake Nikota
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Håkan Wallin
- National Research Centre for the Working Environment, Lerso Parkallé 105, Copenhagen, DK-2100, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen K, DK-1353, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lerso Parkallé 105, Copenhagen, DK-2100, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
40
|
Labib S, Williams A, Yauk CL, Nikota JK, Wallin H, Vogel U, Halappanavar S. Nano-risk Science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes. Part Fibre Toxicol 2016; 13:15. [PMID: 26979667 PMCID: PMC4792104 DOI: 10.1186/s12989-016-0125-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/01/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A diverse class of engineered nanomaterials (ENMs) exhibiting a wide array of physical-chemical properties that are associated with toxicological effects in experimental animals is in commercial use. However, an integrated framework for human health risk assessment (HHRA) of ENMs has yet to be established. Rodent 2-year cancer bioassays, clinical chemistry, and histopathological endpoints are still considered the 'gold standard' for detecting substance-induced toxicity in animal models. However, the use of data derived from alternative toxicological tools, such as genome-wide expression profiling and in vitro high-throughput assays, are gaining acceptance by the regulatory community for hazard identification and for understanding the underlying mode-of-action. Here, we conducted a case study to evaluate the application of global gene expression data in deriving pathway-based points of departure (PODs) for multi-walled carbon nanotube (MWCNT)-induced lung fibrosis, a non-cancer endpoint of regulatory importance. METHODS Gene expression profiles from the lungs of mice exposed to three individual MWCNTs with different physical-chemical properties were used within the framework of an adverse outcome pathway (AOP) for lung fibrosis to identify key biological events linking MWCNT exposure to lung fibrosis. Significantly perturbed pathways were categorized along the key events described in the AOP. Benchmark doses (BMDs) were calculated for each perturbed pathway and were used to derive transcriptional BMDs for each MWCNT. RESULTS Similar biological pathways were perturbed by the different MWCNT types across the doses and post-exposure time points studied. The pathway BMD values showed a time-dependent trend, with lower BMDs for pathways perturbed at the earlier post-exposure time points (24 h, 3d). The transcriptional BMDs were compared to the apical BMDs derived by the National Institute for Occupational Safety and Health (NIOSH) using alveolar septal thickness and fibrotic lesions endpoints. We found that regardless of the type of MWCNT, the BMD values for pathways associated with fibrosis were 14.0-30.4 μg/mouse, which are comparable to the BMDs derived by NIOSH for MWCNT-induced lung fibrotic lesions (21.0-27.1 μg/mouse). CONCLUSIONS The results demonstrate that transcriptomic data can be used to as an effective mechanism-based method to derive acceptable levels of exposure to nanomaterials in product development when epidemiological data are unavailable.
Collapse
Affiliation(s)
- Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Jake K. Nikota
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Håkan Wallin
- National Research Centre for the Working Environment, Lerso Parkallé 105, DK-2100 Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, DK-1353 Copenhagen K, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lerso Parkallé 105, DK-2100 Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| |
Collapse
|