1
|
Santos JM, Deshmukh H, Elmassry MM, Yakhnitsa V, Ji G, Kiritoshi T, Presto P, Antenucci N, Liu X, Neugebauer V, Shen CL. Beneficial Effects of Ginger Root Extract on Pain Behaviors, Inflammation, and Mitochondrial Function in the Colon and Different Brain Regions of Male and Female Neuropathic Rats: A Gut-Brain Axis Study. Nutrients 2024; 16:3563. [PMID: 39458557 PMCID: PMC11510108 DOI: 10.3390/nu16203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Neuroinflammation and mitochondrial dysfunction have been implicated in the progression of neuropathic pain (NP) but can be mitigated by supplementation with gingerol-enriched ginger (GEG). However, the exact benefits of GEG for each sex in treating neuroinflammation and mitochondrial homeostasis in different brain regions and the colon remain to be determined. OBJECTIVE Evaluate the effects of GEG on emotional/affective pain and spontaneous pain behaviors, neuroinflammation, as well as mitochondria homeostasis in the amygdala, frontal cortex, hippocampus, and colon of male and female rats in the spinal nerve ligation (SNL) NP model. METHODS One hundred rats (fifty males and fifty females) were randomly assigned to five groups: sham + vehicle, SNL + vehicle, and SNL with three different GEG doses (200, 400, and 600 mg/kg BW) for 5 weeks. A rat grimace scale and vocalizations were used to assess spontaneous and emotional/affective pain behaviors, respectively. mRNA gene and protein expression levels for tight junction protein, neuroinflammation, mitochondria homeostasis, and oxidative stress were measured in the amygdala, frontal cortex, hippocampus, and colon using qRT-PCR and Western blot (colon). RESULTS GEG supplementation mitigated spontaneous pain in both male and female rats with NP while decreasing emotional/affective responses only in male NP rats. GEG supplementation increased intestinal integrity (claudin 3) and suppressed neuroinflammation [glial activation (GFAP, CD11b, IBA1) and inflammation (TNFα, NFκB, IL1β)] in the selected brain regions and colon of male and female NP rats. GEG supplementation improved mitochondrial homeostasis [increased biogenesis (TFAM, PGC1α), increased fission (FIS, DRP1), decreased fusion (MFN2, MFN1) and mitophagy (PINK1), and increased Complex III] in the selected brain regions and colon in both sexes. Some GEG dose-response effects in gene expression were observed in NP rats of both sexes. CONCLUSIONS GEG supplementation decreased emotional/affective pain behaviors of males and females via improving gut integrity, suppressing neuroinflammation, and improving mitochondrial homeostasis in the amygdala, frontal cortex, hippocampus, and colon in both male and female SNL rats in an NP model, implicating the gut-brain axis in NP. Sex differences observed in the vocalizations assay may suggest different mechanisms of evoked NP responses in females.
Collapse
Affiliation(s)
- Julianna Maria Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
- Department of Microanatomy and Cellular Biology, Woody L. Hunt School of Dental Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Hemalata Deshmukh
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
| | - Moamen M. Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA;
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
| | - Xiaobo Liu
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
| |
Collapse
|
2
|
Li P, Wang T, Qiu H, Zhang R, Yu C, Wang J. 6-Gingerol Inhibits De Novo Lipogenesis by Targeting Stearoyl-CoA Desaturase to Alleviate Fructose-Induced Hepatic Steatosis. Int J Mol Sci 2024; 25:11289. [PMID: 39457074 PMCID: PMC11508832 DOI: 10.3390/ijms252011289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease (NAFLD), is a worldwide liver disease without definitive or widely used therapeutic drugs in clinical practice. In this study, we confirm that 6-gingerol (6-G), an active ingredient of ginger (Zingiber officinale Roscoe) in traditional Chinese medicine (TCM), can alleviate fructose-induced hepatic steatosis. It was found that 6-G significantly decreased hyperlipidemia caused by high-fructose diets (HFD) in rats, and reversed the increase in hepatic de novo lipogenesis (DNL) and triglyceride (TG) levels induced by HFD, both in vivo and in vitro. Mechanistically, chemical proteomics and cellular thermal shift assay (CETSA)-proteomics approaches revealed that stearoyl-CoA desaturase (SCD) is a direct binding target of 6-G, which was confirmed by further CETSA assay and molecular docking. Meanwhile, it was found that 6-G could not alter SCD expression (in either mRNA or protein levels), but inhibited SCD activity (decreasing the desaturation levels of fatty acids) in HFD-fed rats. Furthermore, SCD deficiency mimicked the ability of 6-G to reduce lipid accumulation in HF-induced HepG2 cells, and impaired the improvement in hepatic steatosis brought about by 6-G treatment in HFD supplemented with oleic acid diet-induced SCD1 knockout mice. Taken together, our present study demonstrated that 6-G inhibits DNL by targeting SCD to alleviate fructose diet-induced hepatic steatosis.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing 400016, China; (P.L.); (T.W.)
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Tingting Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing 400016, China; (P.L.); (T.W.)
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Hongmei Qiu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Ruoyu Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing 400016, China;
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Medical University, Chongqing 400016, China; (P.L.); (T.W.)
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China;
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing 400016, China;
| |
Collapse
|
3
|
Jin Z, Wang X. Traditional Chinese medicine and plant-derived natural products in regulating triglyceride metabolism: Mechanisms and therapeutic potential. Pharmacol Res 2024; 208:107387. [PMID: 39216839 DOI: 10.1016/j.phrs.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The incidence of cardiometabolic disease is increasing globally, with a trend toward younger age of onset. Among these, atherosclerotic cardiovascular disease is a leading cause of mortality worldwide. Despite the efficacy of traditional lipid-lowering drugs, such as statins, in reducing low-density lipoprotein cholesterol levels, a significant residual risk of cardiovascular events remains, which is closely related to unmet triglyceride (TG) targets. The clinical application of current TG-lowering Western medicines has certain limitations, necessitating alternative or complementary therapeutic strategies. Traditional Chinese medicine (TCM) and plant-derived natural products, known for their safety owing to their natural origins and diverse biological activities, offer promising avenues for TG regulation with potentially fewer side effects. This review systematically summarises the mechanisms of TG metabolism and subsequently reviews the regulatory effects of TCM and plant-derived natural products on TG metabolism, including the inhibition of TG synthesis (via endogenous and exogenous pathways), promotion of TG catabolism, regulation of fatty acid absorption and transport, enhancement of lipophagy, modulation of the gut microbiota, and other mechanisms. In conclusion, through a comprehensive analysis of recent studies, this review consolidates the multifaceted regulatory roles of TCM and plant-derived natural products in TG metabolism and elucidates their potential as safer, multi-target therapeutic agents in managing hypertriglyceridemia and mitigating cardiovascular risk, thereby providing a basis for new drug development.
Collapse
Affiliation(s)
- Zhou Jin
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, Jóźwik A, Horbańczuk JO, Atanasov AG. Effects of Ginger ( Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024; 14:940. [PMID: 39199328 PMCID: PMC11352747 DOI: 10.3390/biom14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Ginger (Zingiber officinale Roscoe) is broadly used as a traditional remedy and food ingredient, and numerous preclinical and clinical studies have demonstrated health benefits in a range of age-related disorders. Moreover, longevity-promoting effects have been demonstrated in several (preclinical) research models. With this work, we aimed to comprehensively review the reported effects of ginger and its bioactive constituents on the twelve established hallmarks of aging, with the ultimate goal of gaining a deeper understanding of the potential for future interventions in the area of longevity-extension and counteracting of aging-related diseases. The reviewed literature supports the favorable effects of ginger and some of its constituents on all twelve hallmarks of aging, with a particularly high number of animal research studies indicating counteraction of nutrient-sensing dysregulations, mitochondrial dysfunction, chronic inflammation, and dysbiosis. On this background, validation in human clinical trials is still insufficient or is entirely missing, with the exception of some studies indicating positive effects on deregulated nutrient-sensing, chronic inflammation, and dysbiosis. Thus, the existing body of literature clearly supports the potential of ginger to be further studied in clinical trials as a supplement for the promotion of both lifespan and health span.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital 263002, India;
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Farhan Bin Matin
- Department of Pharmacy, East West University, Aftabnagar, Dhaka 1212, Bangladesh;
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
5
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
6
|
Peng Z, Zeng Y, Tan Q, He Q, Wang S, Wang J. 6-Gingerol alleviates ectopic lipid deposition in skeletal muscle by regulating CD36 translocation and mitochondrial function. Biochem Biophys Res Commun 2024; 708:149786. [PMID: 38493545 DOI: 10.1016/j.bbrc.2024.149786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Ectopic lipid deposition (ELD) and mitochondrial dysfunction are common causes of metabolic disorders in humans. Consuming too much fructose can result in mitochondrial dysfunction and metabolic disorders. 6-Gingerol, the main component of ginger (Zingiber officinale Roscoe), has been proven to alleviate metabolic disorders. This study seeks to examine the effects of 6-gingerol on metabolic disorders caused by fructose and uncover the underlying molecular mechanisms. In this study, the results showed that 6-Gingerol ameliorated high-fructose-induced metabolic disorders. Moreover, it inhibited CD36 membrane translocation, increased CD36 expression in the mitochondria, and decreased the O-GlcNAc modification of CD36 and OGT expression in vitro and vivo. In addition, 6-Gingerol enhanced the performance of mitochondria in the skeletal muscle and boosted the respiratory capability of L6 myotubes. This study provides a theoretical basis and new insights for the development of lipid-lowering drugs in clinical practice.
Collapse
Affiliation(s)
- Ze Peng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Zeng
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Qi Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Qifeng He
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China.
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing College of Traditional Chinese Medicine, Chongqing, China.
| |
Collapse
|
7
|
Merenda T, Juszczak F, Ferier E, Duez P, Patris S, Declèves AÉ, Nachtergael A. Natural compounds proposed for the management of non-alcoholic fatty liver disease. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:24. [PMID: 38556609 PMCID: PMC10982245 DOI: 10.1007/s13659-024-00445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Although non-alcoholic fatty liver disease (NAFLD) presents as an intricate condition characterized by a growing prevalence, the often-recommended lifestyle interventions mostly lack high-level evidence of efficacy and there are currently no effective drugs proposed for this indication. The present review delves into NAFLD pathology, its diverse underlying physiopathological mechanisms and the available in vitro, in vivo, and clinical evidence regarding the use of natural compounds for its management, through three pivotal targets (oxidative stress, cellular inflammation, and insulin resistance). The promising perspectives that natural compounds offer for NAFLD management underscore the need for additional clinical and lifestyle intervention trials. Encouraging further research will contribute to establishing more robust evidence and practical recommendations tailored to patients with varying NAFLD grades.
Collapse
Affiliation(s)
- Théodora Merenda
- Unit of Clinical Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Florian Juszczak
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Elisabeth Ferier
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
- Unit of Therapeutic Chemistry and Pharmacognosy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Stéphanie Patris
- Unit of Clinical Pharmacy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Anne-Émilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium
| | - Amandine Nachtergael
- Unit of Therapeutic Chemistry and Pharmacognosy, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Mons, Belgium.
| |
Collapse
|
8
|
Xia Q, Lu F, Chen Y, Li J, Huang Z, Fang K, Hu M, Guo Y, Dong H, Xu L, Gong J. 6-Gingerol regulates triglyceride and cholesterol biosynthesis to improve hepatic steatosis in MAFLD by activating the AMPK-SREBPs signaling pathway. Biomed Pharmacother 2024; 170:116060. [PMID: 38147735 DOI: 10.1016/j.biopha.2023.116060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Excessive synthesis of triglycerides and cholesterol accelerates the progression of hepatic steatosis in metabolic-associated fatty liver disease (MAFLD). However, the precise mechanism by which 6-gingerol mitigates hepatic steatosis in MAFLD model mice has yet to be fully understood. The present study observed that 6-gingerol administration exhibited significant protective effects against obesity, insulin resistance, and hepatic steatosis in mice subjected to a high-fat diet (HFD), and mitigated lipid accumulation in HepG2 cells treated with palmitate (PA). Following the hepatic lipidomic analysis, we confirmed that the AMPK-SREBPs signaling pathway as the underlying molecular mechanism by which 6-gingerol inhibited triglyceride and cholesterol biosynthesis, both in vivo and in vitro, through Western blot and immunofluorescence assay. Additionally, the application of an AMPK agonist/inhibitor further validated that 6-gingerol promoted AMPK activation by increasing the phosphorylation level of AMPK in vitro. Notably, the inhibitory effect of 6-gingerol on cholesterol biosynthesis, rather than triglyceride biosynthesis, was significantly diminished after silencing SREBP2 using a lentiviral plasmid shRNA in HepG2 cells. Our study demonstrates that 6-gingerol mitigates hepatic triglyceride and cholesterol biosynthesis to alleviate hepatic steatosis by activating the AMPK-SREBPs signaling pathway, indicating that 6-gingerol may be a potential candidate in the therapy of MAFLD.
Collapse
Affiliation(s)
- Qingsong Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jingbin Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhaoyi Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
9
|
Zhang L, Chen N, Zhan L, Bi T, Zhou W, Zhang L, Zhu L. Erchen Decoction alleviates obesity-related hepatic steatosis via modulating gut microbiota-drived butyric acid contents and promoting fatty acid β-oxidation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116811. [PMID: 37336336 DOI: 10.1016/j.jep.2023.116811] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erchen decoction (ECD) is a traditional Chinese medicine formula comprising six distinct herbs and has been documented to possess a protective effect against obesity. The study conducted previously demonstrated that ECD has the potential to effectively modulate the composition of gut microbiota and levels of short-chain fatty acids (SCFAs) in obese rat. However, the regulatory mechanism of ECD on gut microbiota and SCFAs and further improvement of obesity have not been thoroughly explained. AIM OF THE STUDY The objective of this study was to examine the therapeutic effect and molecular mechanism of ECD in a rat model of high-fat diet (HFD) feeding. MATERIALS AND METHODS Rats with HFD-induced obesity were treated with ECD. Upon completion of the study, serum and liver samples were procured to conduct biochemical, pathological, and Western blotting analyses. The investigation of alterations in the gut microbiota subsequent to ECD treatment was conducted through the utilization of 16S rRNA sequencing. The metabolic alterations in the cecal contents were examined through the utilization of mass spectrometry-ultraperformance liquid chromatography. RESULTS ECD treatment improved lipid metabolic disorders and reduced hepatic steatosis in HFD-induced obese rats. Obese rat treated with ECD showed a higher abundance of SCFA-producing bacteria, including Lactobacillus, Bifidobacterium, and Butyricicoccus, and lower abundance of disease-related bacteria, such as Bacteroides, Parabacteroides, and Sediminibacterium. Additionally, ECD caused an increase in total SCFAs levels; in particular, butyric acid was dramatically increased in the HFD group. Rats treated with ECD also exhibited significantly increased butyric acid concentrations in the serum and liver. The subsequent reduction in histone deacetylase 1 expression and increase in acetyl-histone 3-lysine 9 (H3K9ac) levels contributed to the promotion of fatty acid β-oxidation (FAO) in liver by ECD. CONCLUSION This study demonstrates that ECD regulates the gut microbiota and promotes butyric acid production to ameliorate obesity-related hepatic steatosis. The mechanism might be related to the promotion of FAO via a butyric acid-mediated increase in H3K9ac levels in the liver.
Collapse
Affiliation(s)
- Ling Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ning Chen
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Libin Zhan
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Key Laboratory of Liaoning Province for TCM Spleen-Viscera-State Modern Research, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China.
| | - Tingting Bi
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lianlian Zhu
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Key Laboratory of Liaoning Province for TCM Spleen-Viscera-State Modern Research, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China.
| |
Collapse
|
10
|
Fang Q, Yu L, Tian F, Zhang H, Chen W, Zhai Q. Effects of dietary irritants on intestinal homeostasis and the intervention strategies. Food Chem 2023; 409:135280. [PMID: 36587512 DOI: 10.1016/j.foodchem.2022.135280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Abundant diet components are unexplored as vital factors in intestinal homeostasis. Dietary irritants stimulate the nervous system and provoke somatosensory responses, further inducing diarrhea, gut microbiota disorder, intestinal barrier damage or even severe gastrointestinal disease. We depicted the effects of food with piquancy, high fat, low pH, high-refined carbohydrates, and indigestible texture. The mechanism of dietary irritants on intestinal homeostasis were comprehensively summarized. Somatosensory responses to dietary irritants are palpable and have specific chemical and neural mechanisms. In contrast, even low-dose exposure to dietary irritants can involve multiple intestinal barriers. Their mechanisms in intestinal homeostasis are often overlapping and dose-dependent. Therefore, treating symptoms caused by dietary irritants requires personalized nutritional advice. The reprocessing of stimulant foods, additional supplementation with probiotics or prebiotics, and enhancement of the intestinal barrier are effective intervention strategies. This review provides promising preliminary guidelines for the treatment of symptoms and gastrointestinal injury caused by dietary irritants.
Collapse
Affiliation(s)
- Qingying Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute, Wuxi Branch, PR China; Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China.
| |
Collapse
|
11
|
Yu W, Peng Y, Peng X, Li Z, Liu C, Yang L, Gao Y, Liang S, Yuan B, Chen C, Kim NH, Jiang H, Zhang J. 6-Gingerol Improves In Vitro Porcine Embryo Development by Reducing Oxidative Stress. Animals (Basel) 2023; 13:ani13081315. [PMID: 37106877 PMCID: PMC10135256 DOI: 10.3390/ani13081315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
6-Gingerol, the main active ingredient in ginger, exhibits a variety of biological activities, such as antioxidant, anti-inflammatory, and anticancer activities, and can affect cell development. However, the effects of 6-gingerol on mammalian reproductive processes, especially early embryonic development, are unclear. This study explored whether 6-gingerol can be used to improve the quality of in vitro-cultured porcine embryos. The results showed that 5 μM 6-gingerol significantly increased the blastocyst formation rates of porcine early embryos. 6-Gingerol attenuated intracellular reactive oxygen species accumulation and autophagy, increased intracellular glutathione levels, and increased mitochondrial activity. In addition, 6-gingerol upregulated NANOG, SRY-box transcription factor 2, cytochrome c oxidase subunit II, mechanistic target of rapamycin kinase, and RPTOR independent companion of MTOR complex 2 while downregulating Caspase 3, baculoviral IAP repeat containing 5, autophagy related 12, and Beclin 1. Most importantly, 6-gingerol significantly increased the levels of p-extracellular regulated protein kinase 1/2 while reducing the levels of p-c-Jun N-terminal kinase 1/2/3 and p-p38. These results indicate that 6-gingerol can promote the development of porcine early embryos in vitro.
Collapse
Affiliation(s)
- Wenjie Yu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Yanxia Peng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Xinyue Peng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Ze Li
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Chang Liu
- School of Grains, Jilin Business and Technology College, Changchun 130507, China
| | - Liu Yang
- Tongyu Grassland Management Station, Changchun 137200, China
| | - Yan Gao
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Shuang Liang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Chengzhen Chen
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Nam-Hyung Kim
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
- Department of Animal Science, Chungbuk National University, Cheongju 361-763, Chungbuk, Republic of Korea
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
- Department of Animal Science, Chungbuk National University, Cheongju 361-763, Chungbuk, Republic of Korea
| | - Jiabao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| |
Collapse
|
12
|
Abazari O, Shakibaee A, Shahriary A, Arabzadeh E, Hofmeister M. Hepatoprotective effects of moderate-intensity interval training along with ginger juice in an old male rat model. Pflugers Arch 2023; 475:437-452. [PMID: 36692542 DOI: 10.1007/s00424-023-02787-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Aging is a natural process coupled with oxidative stress and chronic inflammation, gradually associated with losing organ function over time. Therefore, the objective of the current work was to peruse the protective effects of 8-week moderate-intensity interval training (MIIT) and ginger extract supplementation on some biomarkers of oxidative stress, inflammation, and lipid metabolism in the liver of elderly males Wistar rats (animal study with ethical code IR.BMSU.REC.1401.015). A total of thirty-two 22-month-aged male Wistar rats were randomly assigned to four groups: (1) control, (2) MIIT, (3) ginger, and (4) MIIT + ginger. After 8 weeks of treadmill training and ginger extract supplementation, the biochemical parameters (liver enzyme and lipid profile), inflammatory mediators (leucine-rich α-2 glycoprotein 1 (LRG1), tumor necrosis factor-alpha, and interleukin-6), pro-oxidant (malondialdehyde), antioxidant biomarkers (catalase, superoxide dismutase, total antioxidant capacity), some lipid metabolism regulators (carnitine palmitoyltransferase 1, adipose triglyceride lipase, acetyl-CoA carboxylase, CD36, and AMP-activated protein kinase), and liver histopathological changes were appraised. The acquired findings pointed out that MIIT combined with ginger extract appreciably diminished the serum levels of LRG1, liver enzymes, and lipid profile relative to the other groups after 8 weeks of intervention. Furthermore, ginger + MIIT caused a great improvement in the liver levels of antioxidant biomarkers, pro-oxidant, pro-inflammatory biomarkers, lipid metabolism regulators, and liver tissue impairment compared to the other groups. The findings suggested that MIIT + ginger was more effective in improving examined indices relative to the other groups.
Collapse
Affiliation(s)
- Omid Abazari
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Shakibaee
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Martin Hofmeister
- Department of Food and Nutrition, Consumer Centre of the German Federal State of Bavaria, Munich, Germany
| |
Collapse
|
13
|
Liu Y, Li D, Wang S, Peng Z, Tan Q, He Q, Wang J. 6-Gingerol Ameliorates Hepatic Steatosis, Inflammation and Oxidative Stress in High-Fat Diet-Fed Mice through Activating LKB1/AMPK Signaling. Int J Mol Sci 2023; 24:ijms24076285. [PMID: 37047258 PMCID: PMC10094681 DOI: 10.3390/ijms24076285] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
6-Gingerol, one of the major pharmacologically active ingredients extracted from ginger, has been reported experimentally to exert hepatic protection in non-alcoholic fatty liver disease (NAFLD). However, the molecular mechanism remains largely elusive. RNA sequencing indicated the significant involvement of the AMPK signaling pathway in 6-gingerol-induced alleviation of NAFLD in vivo. Given the significance of the LKB1/AMPK pathway in metabolic homeostasis, this study aims to investigate its role in 6-gingerol-induced mitigation on NAFLD. Our study showed that 6-gingerol ameliorated hepatic steatosis, inflammation and oxidative stress in vivo and in vitro. Further experiment validation suggested that 6-gingerol activated an LKB1/AMPK pathway cascade in vivo and in vitro. Co-immunoprecipitation analysis demonstrated that the 6-gingerol-elicited activation of an LKB1/AMPK pathway cascade was related to the enhanced stability of the LKB1/STRAD/MO25 complex. Furthermore, radicicol, an LKB1 destabilizer, inhibited the activating effect of 6-gingerol on an LKB1/AMPK pathway cascade via destabilizing LKB1/STRAD/MO25 complex stability in vitro, thus reversing the 6-gingerol-elicited ameliorative effect. In addition, molecular docking analysis further predicated the binding pockets of LKB1 necessary for binding with 6-gingerol. In conclusion, our results indicate that 6-gingerol plays an important role in regulating the stability of the LKB1/STRAD/MO25 complex and the activation of LKB1, which might weigh heavily in the 6-gingerol alleviation of NAFLD.
Collapse
Affiliation(s)
- Yuzhe Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dong Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ze Peng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qi Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qifeng He
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- Correspondence:
| |
Collapse
|
14
|
Zheng M, Hu Z, Wang Y, Wang C, Zhong C, Cui W, You J, Gao B, Sun X, La L. Zhen Wu decoction represses renal fibrosis by invigorating tubular NRF2 and TFAM to fuel mitochondrial bioenergetics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154495. [PMID: 36257219 DOI: 10.1016/j.phymed.2022.154495] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Zhen Wu Decoction (ZWD) is a prescription from the classical text "Treatise on Exogenous Febrile Disease" and has been extensively used to control kidney diseases since the time of the Eastern Han Dynasty. HYPOTHESIS We hypothesized that ZWD limits tubular fibrogenesis by reinvigorating tubular bio-energetic capacity. STUDY DESIGN / METHODS A mouse model of chronic kidney disease (CKD) was established using unilateral ureteral obstruction (UUO). Three concentrations of ZWD, namely 25.2 g/kg (high dosage), 12.6 g/kg (middle dosage), and 6.3 g/kg (low dosage), were included to study the dose-effect relationship. Real-time qPCR was used to observe gene transcription in blood samples from patients with CKD. Different siRNAs were designed to study the role of mitochondrial transcription factor A (TFAM) and nuclear factor (erythroid-derived 2)-related factor 2 (NRF2) in transforming growth factor (TGF)-β1 induced fibrogenesis and mitochondrial damage. RESULTS We showed that ZWD efficiently attenuates renal function impairment and reduces renal interstitial fibrosis. TFAM and NRF2 were repressed, and the stimulator of interferon genes (STING) was activated in CKD patient blood sample. We further confirmed that ZWD activated TFAM depended on NRF2 as an important negative regulator of STING in mouse kidneys. Treatment with ZWD significantly reduced oxidative stress and inflammation by regulating the levels of oxidative phosphorylation (OXPHOS) and pro-inflammatory factors, such as interleukin-6, interleukin-1β, tumor necrosis factor receptor 1, and mitochondrial respiratory chain subunits. NRF2 inhibitors can weaken the ability of ZWD to increase TFAM expression and heal injured mitochondria, playing a similar role to that of STING inhibitors. Our study showed that ZWD elevates the expression of TFAM and mitochondrial respiratory chain subunits by promoting NRF2 activation, after suppressing mitochondrial membrane damage and cristae breakdown and restricting mitochondrial DNA (mtDNA) leakage into the cytoplasm to reduce STING activation. CONCLUSION ZWD maintains mitochondrial integrity and improves OXPHOS which represents an innovative insight into "strengthening Yang-Qi" theory. ZWD limits tubular fibrogenesis by reinvigorating tubular bioenergetic capacity.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhengyang Hu
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yibin Wang
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chao Zhong
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weiwei Cui
- Department of Imaging, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junxiong You
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Baogui Gao
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Lei La
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
15
|
Abd El-Hack ME, Swelum AA, Attia YA, Abdo M, Abo-Ahmed AI, Emam MA, Alagawany M. Ginger as a Natural Feed Supplement in Poultry Diets. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:33-51. [DOI: 10.2174/9789815049015122010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Poultry ventures have progressed quickly over the last three decades.
Therefore, curative or growth-promoting antibacterial agents have been utilized
extensively. Because of increasing bacterial resistance towards antibiotics and,
consequently, accumulation of antibacterial residues in chicken products and increased
consumer’s demand for products without antibacterial residues, alternative solutions
that could substitute antibiotics without affecting productivity or product quality should
be attempted. Recently, natural replacements such as ginger, etheric oils, organic acids,
garlic prebiotics, immune stimulants and plant extracts were used to improve
productiveness, and body performance, prevent pathogenic microorganisms, and
reduce antibacterial activity usage in poultry manufacturing. The utilization of a single
alternative or a combination of variable replacements and perfect surveillance and flock
health might improve the profits and sustain the productivity of poultry. This chapter
aimed at summarizing the recent knowledge and information regarding the utilization of ginger and its derivatives as natural alternatives or supplements in poultry feed and
their impacts on poultry productivity, meat and egg traits in addition to economic
efficacy.
Collapse
Affiliation(s)
| | - Ayman A. Swelum
- King Saud University,Department of Animal Production,Riyadh,Saudi Arabia
| | - Youssef A. Attia
- Faculty of Agriculture Damanhour University,Animal and Poultry Production Department,Damanhour,,Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy,Badr University in Cairo (BUC),Cairo,Egypt
| | | | | | | |
Collapse
|
16
|
Xue G, Su S, Yan P, Shang J, Wang J, Yan C, Li J, Wang Q, Xiong X, Xu H. Integrative analyses of widely targeted metabolomic profiling and derivatization-based LC-MS/MS reveals metabolic changes of Zingiberis Rhizoma and its processed products. Food Chem 2022; 389:133068. [PMID: 35490521 DOI: 10.1016/j.foodchem.2022.133068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
Zingiberis Rhizoma (ZR) has nutritional value and application potentiality, while Zingiberis Rhizoma Praeparatum (ZRP) and Carbonised Ginger (CG) are two main processed products of ZR based on different methods. Here, we performed a widely targeted metabolomics method with Sequential Windowed Acquisition of all Theoretical fragment ions (SWATH) mode to analyze differential metabolites in ZR, ZRP and CG. Additionally, the chemical derivatization was applied to characterize different submetabolomes and improve the separation effect and MS response of metabolites. In total, 369 metabolites were identified and divided into 14 categories, 104 of which were differential metabolites. Our results suggest that carbohydrates, nucleotides, organic acids, vitamins, lipids, indoles, alkaloids, and terpenes contributed to a downward trend after processing, but the maximum content of flavanones, phenylpropanes and polyphenols appeared in ZRP, and that of alcohols appeared in CG. These findings serve as promising perspectives for developing functional food in ZR, ZRP and CG.
Collapse
Affiliation(s)
- Guiren Xue
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Shanshan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Pengfei Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiawei Shang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jianxin Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chengye Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiaxi Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Qiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xue Xiong
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huijun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
17
|
He Y, Zhang Y, Zhang J, Hu X. The Key Molecular Mechanisms of Sini Decoction Plus Ginseng Soup to Rescue Acute Liver Failure: Regulating PPARα to Reduce Hepatocyte Necroptosis? J Inflamm Res 2022; 15:4763-4784. [PMID: 36032938 PMCID: PMC9417306 DOI: 10.2147/jir.s373903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose This study aimed to investigate the improvement effect of Sini Decoction plus Ginseng Soup (SNRS) on the LPS/D-GalN-induced acute liver failure (ALF) mouse model and the molecular mechanism of the SNRS effect. Methods To study the protective effect of SNRS on ALF mice, the ICR mice were firstly divided into 4 groups: Control group (vehicle-treated), Model group (LPS/D-GalN), SNRS group (LPS/D-GalN+SNRS), and Silymarin group (LPS/D-GalN+Silymarin), the therapeutic drug was administered by gavage 48h, 24h before, and 10 min after LPS/D-GalN injection. On this basis, the peroxisome proliferator-activated receptor (PPAR) α agonist (WY14643) and inhibitor (GW6471) were added to verify whether the therapeutic mechanism of SNRS is related to its promoting effect on PPARα. The animals are grouped as follows: Control group (vehicle-treated), Model group (LPS/D-GalN+DMSO), SNRS group (LPS/D-GalN+SNRS+DMSO), Inhibitor group (LPS/D-GalN+GW6471), Agonist group (LPS/D-GalN+WY14643), and Inhibitor+SNRS group (LPS/D-GalN+GW6471+SNRS). Results The protective effect of SNRS on the ALF model is mainly reflected in the reduction of serum alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) as well as the ameliorated pathology of the liver tissue. The survival rate of ALF mice treated with SNRS was significantly increased. Further mechanism studies showed that SNRS significantly promoted the protein expression of PPARα and decreased the expression of necroptosis proteins (RIP3, MLKL, p-MLKL) in ALF mice. Reduced necroptosis resulted in decreased HMGB1 release, which in turn inhibited the activation of TLR4-JNK and NLRP3 inflammasome signaling pathways and the expression of NF-κB protein induced by LPS/D-GalN. The expression of CPT1A, a key enzyme involved in fatty acid β-oxidation, was found to be significantly up-regulated in the SNRS treated group, accompanied by an increased adenosine-triphosphate (ATP) level, which may be the relevant mechanism by which SNRS reduces necroptosis. Conclusion The potential therapeutic effect of SNRS on ALF may be through promoting the expression of PPARα and increasing the level of ATP in liver tissue, thereby inhibiting necroptosis of hepatocytes, reducing hepatocyte damage, and improving liver function.
Collapse
Affiliation(s)
- Ying He
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China.,Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yang Zhang
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junli Zhang
- Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Hu
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
18
|
Sabir U, Irfan HM, Alamgeer, Umer I, Niazi ZR, Asjad HMM. Phytochemicals targeting NAFLD through modulating the dual function of forkhead box O1 (FOXO1) transcription factor signaling pathways. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:741-755. [PMID: 35357518 DOI: 10.1007/s00210-022-02234-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 02/06/2023]
Abstract
Literature evidence reveals that natural compounds are potential candidates for ameliorating obesity-associated non-alcoholic fatty liver disease (NAFLD) by targeting forkhead box O1 (FOXO1) transcription factor. FOXO1 has a dual and complex role in regulating both increase and decrease in lipid accumulation in hepatocytes and adipose tissues (AT) at different stages of NAFLD. In insulin resistance (IR), it is constitutively expressed, resulting in increased hepatic glucose output and lipid metabolism irregularity. The studies on different phytochemicals indicate that dysregulation of FOXO1 causes disturbance in cellular nutrients homeostasis, and the natural entities have an enduring impact on the mitigation of these abnormalities. The current review communicates and evaluates certain phytochemicals through different search engines, targeting FOXO1 and its downstream cellular pathways to find lead compounds as potential therapeutic agents for treating NAFLD and related metabolic disorders. The findings of this review confirm that polyphenols, flavonoids, alkaloids, terpenoids, and anthocyanins are capable of modulating FOXO1 and associated signaling pathways, and they are potential therapeutic agents for NAFLD and related complications. HIGHLIGHTS: • FOXO1 has the potential to be targeted by novel drugs from natural sources for the treatment of NAFLD and obesity. • FOXO1 regulates cellular autophagy, inflammation, oxidative stress, and lipogenesis through alternative mechanisms. • Phytochemicals treat NAFLD by acting on FOXO1 or SREBP1c and PPARγ transcription factor signaling pathways.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Hafiz Muhammad Irfan
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | - Alamgeer
- Punjab University College of Pharmacy, University of the Punjab Lahore, Lahore, Pakistan
| | - Ihtisham Umer
- Pharmacy Department, Comsat International University Lahore Campus, Lahore, Pakistan
| | | | | |
Collapse
|
19
|
Xue G, Su S, Yan P, Shang J, Wang J, Yan C, Li J, Wang Q, Du Y, Cao L, Xu H. Quality control of Zingiberis Rhizoma and its processed products by UHPLC-Q-TOF/MS-based non-targeted metabonomics combining with SIBDV method. Food Res Int 2022; 154:111021. [PMID: 35337577 DOI: 10.1016/j.foodres.2022.111021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
Zingiberis Rhizoma (ZR) is a homologous plant with pungent tastes and aromas, which has unique nutritional value and tremendous application potentiality. Zingiberis Rhizoma Praeparatum (ZRP) and Carbonised Ginger (CG) are processed products of ZR through different processing methods, and they are commonly used ingredients in food supplements. This study used ZR, ZRP and CG from different batches to further understand composition differences after processing. Additionally, we performed non-targeted metabolomics-based profiling of gingerols by ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) in combination with multivariate analysis and compounds identification. In which, we developed a comprehensive SWATH-IDA bi-directionally verified (SIBDV) method integrating the advantages of Sequential Windowed Acquisition of all Theoretical fragment ions (SWATHTM) and traditional information-dependent acquisition (IDA) mode for characterization of gingerols. Potential chemical markers were selected by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of chemometrics methods. After that, the threshold variable importance in projection (VIP) value and P value were employed to screen the valuable MS features for discriminating ZR, ZRP and CG. In total, 59 gingerols in the different samples were structurally identified. Results allowed the selection of 33 gingerols, which are nominated as novel markers for materials authentication in ZR, ZRP and CG. The analysis of the study showed that the content of gingerols showed a downward trend after processing, but shogaols and gingerone compounds had an upward trend, resulting in differences in application and pharmacodynamic efficacy. These findings provide promising perspectives in the quality control of ZR, ZRP and CG, as well as for laying the foundation in food design and development.
Collapse
Affiliation(s)
- Guiren Xue
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Shanshan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Pengfei Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiawei Shang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jianxin Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chengye Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiaxi Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Qiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Liang Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huijun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
20
|
Samadi M, Moradinazar M, Khosravy T, Soleimani D, Jahangiri P, Kamari N. A systematic review and meta-analysis of preclinical and clinical studies on the efficacy of ginger for the treatment of fatty liver disease. Phytother Res 2022; 36:1182-1193. [PMID: 35106852 DOI: 10.1002/ptr.7390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
Fatty liver disease (FLD) is the most common chronic liver disease worldwide. The pathogenesis of this disease is closely related to obesity and insulin resistance. Ginger has hypolipidemic and antioxidant effects and acts as an insulin sensitizer. This study aims to evaluate the effect of ginger supplementation on the fatty liver. A comprehensive search of Medline/PubMed, Embase, Scopus, Web of Science/ISI, and Cochrane databases was conducted without time or language restrictions. Eighteen eligible studies were identified, including 17 in-vivo experiments in quantitative analysis and 3 clinical trials in qualitative analysis. The present study provides comprehensive evidence of the efficacy of ginger to improve the liver levels of cholesterol (-5.60 mg/g), triglycerides (TG, -4.28 mg/g), malondialdehyde (-3.16 nmol/mg), catalase (CAT) (3.35 nmol/mg), superoxide dismutase (SOD, 3.01 U/mg), serum levels of alanine aminotransferase (ALT, -2.85 U/L), aspartate aminotransferase (AST, -0.98 U/L), TG (-4.98 mg/dL), low-density lipoprotein (LDL, -3.94 mg/dL), total cholesterol (TC, -3.45 mg/dL), high-density lipoprotein (HDL, 1.27 mg/dL), and fasting blood sugar (FBS, -2.54 mg/dL). Ginger administration may reduce many clinical aspects of FLD by several mechanisms, including insulin-sensitive effects, stimulating the expression of antioxidant enzymes, reducing the generation of reactive oxygen species (ROS), having antidyslipidemic activities, and reducing hepatic fat content. However, future clinical trials are essential to investigate the clinical application of ginger in this area.
Collapse
Affiliation(s)
- Mehnoosh Samadi
- Student Research Committee, Department of Nutritional Sciences, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Moradinazar
- Behavioral Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tina Khosravy
- Health Nutrition, Lorestan University of medical science, Lorestan, Iran
| | - Davood Soleimani
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parvin Jahangiri
- Behavioral Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Kamari
- Student Research Committee, Department of Nutritional Sciences, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
21
|
Wang K, Li B, Fu R, Jiang Z, Wen X, Ni Y. Bentong ginger oleoresin mitigates liver injury and modulates gut microbiota in mouse with nonalcoholic fatty liver disease induced by high-fat diet. J Food Sci 2022; 87:1268-1281. [PMID: 35152443 DOI: 10.1111/1750-3841.16076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2023]
Abstract
The present study aimed to examine the protective effect of Bentong ginger oleoresin (BGO) on the occurrence of nonalcoholic fatty liver disease (NAFLD) and its underlying mechanism. In the present study, 14-week BGO treatment reduced the high-fat diet (HFD)-induced obesity. The serum total cholesterol (TC) was reduced from 4.76 ± 0.30 to 3.542 ± 0.49 mmol/L and fatty liver score decreased to the normal level (1.6 ± 0.55). BGO had antihypercholesterolemia activity, alleviated abnormal lipid metabolism, and improved liver fat accumulation. In addition, liver inflammatory cytokine tests and Western blotting analysis indicated that BGO might play an anti-inflammatory role by mediating the NF-κB signaling pathway. Moreover, BGO regulated the gut microbiota in NAFLD mice and finally mediated their benefits for the host, which might be associated with reduced abundance of Lachnospiraceae_NK4A136_group and Fournierella. BGO showed effective liver protection and regulation of gut microbiota for the HFD-induced NAFLD in obese mice. As a result, BGO may serve as an effective dietary supplement for the improvement of NAFLD-related metabolic diseases. PRACTICAL APPLICATION: This study provides a new way to improve the added value of Bentong ginger. It also provides certain experimental data on BGO as a kind of the functional food ingredient. The current work also provides new ideas for the improvement and treatment of NAFLD.
Collapse
Affiliation(s)
- Kunli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Bei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| | - Rao Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| | - Zefang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| | - Xin Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| |
Collapse
|
22
|
Shen CL, Wang R, Ji G, Elmassry MM, Zabet-Moghaddam M, Vellers H, Hamood AN, Gong X, Mirzaei P, Sang S, Neugebauer V. Dietary supplementation of gingerols- and shogaols-enriched ginger root extract attenuate pain-associated behaviors while modulating gut microbiota and metabolites in rats with spinal nerve ligation. J Nutr Biochem 2022; 100:108904. [PMID: 34748918 PMCID: PMC8794052 DOI: 10.1016/j.jnutbio.2021.108904] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
Neuroinflammation is a central factor in neuropathic pain (NP). Ginger is a promising bioactive compound in NP management due to its anti-inflammatory property. Emerging evidence suggests that gut microbiome and gut-derived metabolites play a key role in NP. We evaluated the effects of two ginger root extracts rich in gingerols (GEG) and shogaols (SEG) on pain sensitivity, anxiety-like behaviors, circulating cell-free mitochondrial DNA (ccf-mtDNA), gut microbiome composition, and fecal metabolites in rats with NP. Sixteen male rats were divided into four groups: sham, spinal nerve ligation (SNL), SNL+0.75%GEG in diet, and SNL+0.75%SEG in diet groups for 30 days. Compared to SNL group, both SNL+GEG and SNL+SEG groups showed a significant reduction in pain- and anxiety-like behaviors, and ccf-mtDNA level. Relative to the SNL group, both SNL+GEG and SNL+SEG groups increased the relative abundance of Lactococcus, Sellimonas, Blautia, Erysipelatoclostridiaceae, and Anaerovoracaceae, but decreased that of Prevotellaceae UCG-001, Rikenellaceae RC9 gut group, Mucispirillum and Desulfovibrio, Desulfovibrio, Anaerofilum, Eubacterium siraeum group, RF39, UCG-005, Lachnospiraceae NK4A136 group, Acetatifactor, Eubacterium ruminantium group, Clostridia UCG-014, and an uncultured Anaerovoracaceae. GEG and SEG had differential effects on gut-derived metabolites. Compared to SNL group, SNL+GEG group had higher level of 1'-acetoxychavicol acetate, (4E)-1,7-Bis(4-hydroxyphenyl)-4-hepten-3-one, NP-000629, 7,8-Dimethoxy-3-(2-methyl-3-buten-2-yl)-2H-chromen-2-one, 3-{[4-(2-Pyrimidinyl)piperazino]carbonyl}-2-pyrazinecarboxylic acid, 920863, and (1R,3R,7R,13S)-13-Methyl-6-methylene-4,14,16-trioxatetracyclo[11.2.1.0∼1,10∼.0∼3,7∼]hexadec-9-en-5-one, while SNL+SEG group had higher level for (±)-5-[(tert-Butylamino)-2'-hydroxypropoxy]-1_2_3_4-tetrahydro-1-naphthol and dehydroepiandrosteronesulfate. In conclusion, ginger is a promising functional food in the management of NP, and further investigations are necessary to assess the role of ginger on gut-brain axis in pain management.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Integrative Health, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Technical University Health Sciences Center, Lubbock, Texas.
| | - Rui Wang
- Department of Pathology, Texas Technical University Health Sciences Center, Lubbock, Texas
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Technical University Health Sciences Center, Lubbock, Texas
| | - Moamen M Elmassry
- Department of Biological Sciences, Texas Technical University, Lubbock, Texas
| | | | - Heather Vellers
- Department of Kinesiology and Sport Management, Texas Technical University, Lubbock, Texas
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Technical University Health Sciences Center, Lubbock, Texas; Department of Surgery, Texas Technical University Health Sciences Center, Lubbock, Teaxs
| | - Xiaoxia Gong
- Center for Biotechnology and Genomics, Texas Technical University, Lubbock, Texas
| | - Parvin Mirzaei
- Center for Biotechnology and Genomics, Texas Technical University, Lubbock, Texas
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Carolina A&T State University, North Carolina Research Campus, Kannapolis, North Carolina
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Technical University Health Sciences Center, Lubbock, Texas; Department of Pharmacology and Neuroscience, Texas Technical University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
23
|
Xue F, Li X, Qin L, Liu X, Li C, Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv Drug Deliv Rev 2021; 176:113886. [PMID: 34314783 DOI: 10.1016/j.addr.2021.113886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
Aging is spontaneous and inevitable process in all living beings. It is a complex natural phenomenon that manifests as a gradual decline of physiological functions and homeostasis. Aging inevitably leads to age-associated injuries, diseases, and eventually death. The research on aging-associated diseases aimed at delaying, preventing or even reversing the aging process are of great significance for healthy aging and also for scientific progress. Numerous plant-derived compounds have anti-aging effects, but their therapeutic potential is limited due to their short shelf-life and low bioavailability. As the novel delivery system, nanoemulsion can effectively improve this defect. Nanoemulsions enhance the delivery of drugs to the target site, maintain the plasma concentration for a longer period, and minimize adverse reaction and side effects. This review describes the importance of nanoemulsions for the delivery of phyto-derived compounds and highlights the importance of nanoemulsions in the treatment of aging-related diseases. It also covers the methods of preparation, fate and safety of nanoemulsions, which will provide valuable information for the development of new strategies in treatment of aging-related diseases.
Collapse
|
24
|
Protective Effects of A. sativa against Oxidative Stress-Induced Liver Damage in Ovariectomized Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5577498. [PMID: 34337029 PMCID: PMC8298160 DOI: 10.1155/2021/5577498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Postmenopausal women express great failure in their ovarian hormone production, especially estrogen. This deficiency may promote hypercholesterolemia and accelerate the redox imbalance. The present study was designed to evaluate the protective effect of Avena sativa against estrogen deficiency-induced liver and uterus oxidative injury in experimental ovariectomized mice. Female mice were randomly divided into five groups: group one (negative control) received normal diet and distilled water (C), group two (positive control) received daily enriched diet with oat grains and was kept on tap distilled water at a dose of 200 mg kg−1 d−1 (A), group three (ovariectomized mice) was nontreated fed with normal diet (O), group four includes ovariectomized mice treated daily with estradiol given by intraperitoneal injection at a dose of 100 μg kg−1 d−1 (OE), and the fifth group also includes ovariectomized mice which received enriched diet with oat grain parts with the same dose given to group two. The treatment period lasted two consecutive months. Both oat and hormonal treatments of ovariectomized groups resulted in a significant reduction in triglycerides and total cholesterol and increased high-density lipoprotein (HDL) levels in the plasma after 21 and 60 days of treatment. Besides, the coadministration of A. sativa has decreased the activities of alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) and increased transaminase activities after 21 and 60 days of treatment. On the other hand, this cereal has restored the enzymatic (SOD, CAT, and GPx) and nonenzymatic antioxidant activities (GSH) as well as the elevated thiobarbituric acid reactive substances (AOPP and PCO) to near-normal values. The beneficial effects of this cereal were confirmed by a histological study of the liver and uterus of all previous cited groups. Our finding emphasized the antioxidant and antilipidemic effect of oat grain part, suggesting the use of this cereal in the prevention of liver and uterus diseases that occurred in postmenopausal women.
Collapse
|
25
|
Ahn J, Lee H, Jung CH, Ha SY, Seo HD, Kim YI, Ha T. 6-Gingerol Ameliorates Hepatic Steatosis via HNF4α/miR-467b-3p/GPAT1 Cascade. Cell Mol Gastroenterol Hepatol 2021; 12:1201-1213. [PMID: 34139323 PMCID: PMC8445893 DOI: 10.1016/j.jcmgh.2021.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS The development of nonalcoholic fatty liver disease (NAFLD) can be modulated by microRNAs (miRNA). Dietary polyphenols modulate the expression of miRNA such as miR-467b-3p in the liver. In addition, 6-gingerol (6-G), the functional polyphenol of ginger, has been reported to ameliorate hepatic steatosis; however, the exact mechanism involved and the role of miRNA remain elusive. In this study, we assessed the role of miR-467b-3p in the pathogenesis of hepatic steatosis and the regulation of miR-467b-3p by 6-G through the hepatocyte nuclear factor 4α (HNF4α). METHODS miR-467b-3p expression was measured in free fatty acid (FFA)-treated hepatocytes or liver from high-fat diet (HFD)-fed mice. Gain- or loss-of-function of miR-467b-3p was induced using miR-467b-3p-specific miRNA mimic or miRNA inhibitor, respectively. 6-G was exposed to FFA-treated cells and HFD-fed mice. The HNF4α/miR-467b-3p/GPAT1 axis was measured in mouse and human fatty liver tissues. RESULTS We found that miR-467b-3p was down-regulated in liver tissues from HFD-fed mice and in FFA-treated Hepa1-6 cells. Overexpression of miR-467b-3p decreased intracellular lipid accumulation in FFA-treated hepatocytes and mitigated hepatic steatosis in HFD-fed mice via negative regulation of glycerol-3-phosphate acyltransferase-1 (GPAT1). In addition, miR-467b-3p up-regulation by 6-G was observed. 6-G inhibited FFA-induced lipid accumulation and mitigated hepatic steatosis. Moreover, it increased the transcriptional activity of HNF4α, resulting in the increase of miR-467b-3p and subsequent decrease of GPAT1. HNF4α/miR-467b-3p/GPAT1 signaling also was observed in human samples with hepatic steatosis. CONCLUSIONS Our findings establish a novel mechanism by which 6-G improves NAFLD. This suggests that targeting of the HNF4α/miR-467b-3p/GPAT1 cascade may be used as a potential therapeutic strategy to control NAFLD.
Collapse
Affiliation(s)
- Jiyun Ahn
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea,Correspondence Address correspondence to: Jiyun Ahn, PhD, DVM, Metabolism and Nutrition Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| | - Hyunjung Lee
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea
| | - Chang Hwa Jung
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Seung Yeon Ha
- Department of Pathology, Gachon University of Medicine and Science, Incheon, Korea
| | - Hyo-Deok Seo
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea
| | - Young In Kim
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Taeyoul Ha
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea,Correspondence Address correspondence to: Jiyun Ahn, PhD, DVM, Metabolism and Nutrition Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| |
Collapse
|
26
|
Hong W, Zhi FX, Kun TH, Hua FJ, Huan Ling L, Fang F, Wen C, Jie W, Yang LC. 6-Gingerol attenuates ventilator-induced lung injury via anti-inflammation and antioxidative stress by modulating the PPARγ/NF-κBsignalling pathway in rats. Int Immunopharmacol 2021; 92:107367. [PMID: 33461160 DOI: 10.1016/j.intimp.2021.107367] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023]
Abstract
Although mechanical ventilation (MV) is indispensable to life-support therapy in critically ill patients, it may promote or aggravatelunginjury known asventilator-inducedlunginjury(VILI). 6-Gingerol is the principal ingredient of ginger with potential anti-inflammatory and antioxidant properties in various diseases. Nevertheless, the role and mechanism of 6-gingerol in the process of VILI has not been explicitly investigated. In the study, we found that pre-treatment with 6-gingerol significantly improved the histological changes and pulmonary oedema, inhibited neutrophil accumulation and the release of early pro-inflammatory cytokines and MPO, and reduced oxidative stress reactions after high MV. Moreover, 6-gingerol treatment also increased PPARγ expression and decreased NF-κB activation in rats subjected to high MV. Furthermore, GW9662, a specific PPARγ inhibitor, was demonstrated to activatethe NF-κB pathway and cancele the protective role of 6-gingerol in VILI. This indicates that 6-gingerol exerted anti-inflammatory and antioxidative stress effects in VILI by activating PPARγ and inhibiting the NF-κBsignalling pathway.
Collapse
Affiliation(s)
- Wei Hong
- Department of Anesthesiology, Huazhong University of Science and Technology Union ShenZhen Hospital, ShenZhen, China; Department of Anesthesiology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, ShenZhen, China
| | - Fang Xiang Zhi
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology, Subei People's Hospital, YangZhou 225001, China
| | - Tu Han Kun
- Department of Anesthesiology, Huazhong University of Science and Technology Union ShenZhen Hospital, ShenZhen, China; Department of Anesthesiology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, ShenZhen, China
| | - Feng Jie Hua
- Department of Anesthesiology, Huazhong University of Science and Technology Union ShenZhen Hospital, ShenZhen, China; Department of Anesthesiology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, ShenZhen, China
| | - Li Huan Ling
- Department of Anesthesiology, Huazhong University of Science and Technology Union ShenZhen Hospital, ShenZhen, China; Department of Anesthesiology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, ShenZhen, China
| | - Fang Fang
- Department of General Medicine, Huazhong University of Science and Technology Union ShenZhen Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, ShenZhen, China
| | - Chen Wen
- Department of Anesthesiology, Yuebei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Wang Jie
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li Chao Yang
- Department of Anesthesiology, Huazhong University of Science and Technology Union ShenZhen Hospital, ShenZhen, China; Department of Anesthesiology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, ShenZhen, China.
| |
Collapse
|
27
|
Zhang J, Lin L, Tao N, Zhu Z, Wang X, Wang M. Effect of big eye tuna ( Thunnus obesus) head soup with different colloidal particle size on TG and TC deposition in FFA-exposed HepG2 cells. Food Sci Nutr 2021; 9:1143-1151. [PMID: 33598198 PMCID: PMC7866563 DOI: 10.1002/fsn3.2092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 01/05/2023] Open
Abstract
Micro/nanocolloidal is confirmed as a self-assembly structure in big eye tuna (Thunnus obesus) head soup, and lipids enriched with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the major component. In this study, the effect of big eye tuna head soup (BETHS) with different particle size micro/nanocolloidal on lipid accumulation was initially evaluated. The original soup and microfiltration soup (with or without ginger; OGS/OGSG and MFS/MFSG) were prepared firstly. A free fatty acid-exposed (FFA-exposed) HepG2 cell model was built using sodium oleic acid (OA) and sodium palmitic acid (PA) (2:1). The triglyceride (TG) and total cholesterol (TC) in the FFA-exposed HepG2 cells were 8.6 ng/104 cells and 0.6 nM/104 cells, respectively, which were significantly different with control (p < .05). Both OGS and OGSG could significantly decline the TG deposition of FFA-exposed HepG2 cells with 31% and 40% (p < .05), and in MFS and MFSG were 23% and 26% (p ≥ .05). Meanwhile, OGS inhibited the deposition of TG mainly in 18-24 hr, and OGSG mainly in 12-18 hr. All the BETHS samples showed no inhibition effect on TC deposition (p ≥ .05). This research might help to understand the improving activity of natural or traditional food products on metabolic syndrome.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiP. R. China
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyShanghaiP. R. China
| | - Liu Lin
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiP. R. China
| | - Ningping Tao
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiP. R. China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & PreservationShanghaiChina
| | - Zheqing Zhu
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiP. R. China
| | - Xichang Wang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiP. R. China
- Shanghai Engineering Research Center of Aquatic‐Product Processing & PreservationShanghaiChina
| | - Mingfu Wang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiP. R. China
- Food and Nutritional Science ProgramSchool of Biological SciencesThe University of Hong KongHong KongP. R. China
| |
Collapse
|
28
|
Ma RH, Ni ZJ, Zhu YY, Thakur K, Zhang F, Zhang YY, Hu F, Zhang JG, Wei ZJ. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food Funct 2021; 12:519-542. [PMID: 33367423 DOI: 10.1039/d0fo02834g] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Due to recent lifestyle shifts and health discernments among consumers, synthetic drugs are facing the challenge of controlling disease development and progression. Various medicinal plants and their constituents are recognized for their imminent role in disease management via modulation of biological activities. At present, research scholars have diverted their attention on natural bioactive entities with health-boosting perception to combat the lifestyle-related disarrays. In particular, Zingiber officinale is a medicinal herb that has been commonly used in food and pharmaceutical products. Its detailed chemical composition and high value-added active components have been extensively studied. In this review, we have summarized the pharmacological potential of this well-endowed chemo preventive agent. It was revealed that its functionalities are attributed to several inherent chemical constituents, including 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 6-hydroshogaol, and oleoresin, which were established through many studies (in vitro, in vivo, and cell lines). In this review, we also focused on the therapeutic effects of ginger and its constituents for their effective antioxidant properties. Their consumption may reduce or delay the progression of related diseases, such as cancer, diabetes, and obesity, via modulation of genetic and metabolic activities. The updated data could elucidate the relationship of the extraction processes with the constituents and biological manifestations. We have collated the current knowledge (including the latest clinical data) about the bioactive compounds and bioactivities of ginger. Their detailed mechanisms, which can lay foundation for their food and medical applications are also discussed.
Collapse
Affiliation(s)
- Run-Hui Ma
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Simental-Mendía LE, Gamboa-Gómez CI, Guerrero-Romero F, Simental-Mendía M, Sánchez-García A, Rodríguez-Ramírez M. Beneficial Effects of Plant-Derived Natural Products on Non-alcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:257-272. [PMID: 33861449 DOI: 10.1007/978-3-030-64872-5_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease is becoming in one of the most prevalent liver diseases that leads to liver transplantation. This health problem is a multisystem disease with a complex pathogenesis that involves liver, adipose tissue, gut, and muscle. Although several pharmacological agents have been investigated to prevent or treat non-alcoholic fatty liver disease, currently there is no effective treatment for the management of this chronic liver disease. Nonetheless, the use of natural products has emerged as a alternative therapeutic for the treatment of hepatic diseases, including non-alcoholic fatty liver disease, due to its anti-inflammatory, antioxidant, antidiabetic, insulin-sensitizing, antiobesity, hypolipidemic, and hepatoprotective properties. In the present review, we have discussed the evidence from experimental and clinical studies regarding the potential beneficial effects of plant-derived natural products (quercetin, resveratrol, berberine, pomegranate, curcumin, cinnamon, green tea, coffee, garlic, ginger, ginseng, and gingko biloba) for the treatment or prevention of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Luis E Simental-Mendía
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México.
| | - Claudia I Gamboa-Gómez
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| | - Fernando Guerrero-Romero
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| | - Mario Simental-Mendía
- Department of Orthopedics and Traumatology, Hospital Universitario "Dr. José E. González", Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Adriana Sánchez-García
- Endocrinology Division, Hospital Universitario "Dr. José E. González", Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Mariana Rodríguez-Ramírez
- Unidad de Investigación Biomédica, Delegación Durango, Instituto Mexicano del Seguro Social, Durango, México
| |
Collapse
|
30
|
Nan LP, Wang F, Liu Y, Wu Z, Feng XM, Liu JJ, Zhang L. 6-gingerol protects nucleus pulposus-derived mesenchymal stem cells from oxidative injury by activating autophagy. World J Stem Cells 2020; 12:1603-1622. [PMID: 33505603 PMCID: PMC7789124 DOI: 10.4252/wjsc.v12.i12.1603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To date, there has been no effective treatment for intervertebral disc degeneration (IDD). Nucleus pulposus-derived mesenchymal stem cells (NPMSCs) showed encouraging results in IDD treatment, but the overexpression of reactive oxygen species (ROS) impaired the endogenous repair abilities of NPMSCs. 6-gingerol (6-GIN) is an antioxidant and anti-inflammatory reagent that might protect NPMSCs from injury.
AIM To investigate the effect of 6-GIN on NPMSCs under oxidative conditions and the potential mechanism.
METHODS The cholecystokinin-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of 6-GIN. ROS levels were measured by 2´7´-dichlorofluorescin diacetate analysis. Matrix metalloproteinase (MMP) was detected by the tetraethylbenzimidazolylcarbocyanine iodide assay. TUNEL assay and Annexin V/PI double-staining were used to determine the apoptosis rate. Additionally, autophagy-related proteins (Beclin-1, LC-3, and p62), apoptosis-associated proteins (Bcl-2, Bax, and caspase-3), and PI3K/Akt signaling pathway-related proteins (PI3K and Akt) were evaluated by Western blot analysis. Autophagosomes were detected by transmission electron microscopy in NPMSCs. LC-3 was also detected by immunofluorescence. The mRNA expression of collagen II and aggrecan was evaluated by real-time polymerase chain reaction (RT-PCR), and the changes in collagen II and MMP-13 expression were verified through an immunofluorescence assay.
RESULTS 6-GIN exhibited protective effects against hydrogen peroxide-induced injury in NPMSCs, decreased hydrogen peroxide-induced intracellular ROS levels, and inhibited cell apoptosis. 6-GIN could increase Bcl-2 expression and decrease Bax and caspase-3 expression. The MMP, Annexin V-FITC/PI flow cytometry and TUNEL assay results further confirmed that 6-GIN treatment significantly inhibited NPMSC apoptosis induced by hydrogen peroxide. 6-GIN treatment promoted extracellular matrix (ECM) expression by reducing the oxidative stress injury-induced increase in MMP-13 expression. 6-GIN activated autophagy by increasing the expression of autophagy-related markers (Beclin-1 and LC-3) and decreasing the expression of p62. Autophagosomes were visualized by transmission electron microscopy. Pretreatment with 3-MA and BAF further confirmed that 6-GIN-mediated stimulation of autophagy did not reduce autophagosome turnover but increased autophagic flux. The PI3K/Akt pathway was also found to be activated by 6-GIN. 6-GIN inhibited NPMSC apoptosis and ECM degeneration, in which autophagy and the PI3K/Akt pathway were involved.
CONCLUSION 6-GIN efficiently decreases ROS levels, attenuates hydrogen peroxide-induced NPMSCs apoptosis, and protects the ECM from degeneration. 6-GIN is a promising candidate for treating IDD.
Collapse
Affiliation(s)
- Li-Ping Nan
- Department of Orthopedic, Tongji University School of Medicine, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, Shanghai 200072, China
| | - Feng Wang
- Department of Spine Surgery, Tongji University School of Medicine, Shanghai East Hospital, Shanghai 200120, China
| | - Yang Liu
- Department of Orthopedic, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Zhong Wu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Jun-Jian Liu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
31
|
Tramontin NDS, Luciano TF, Marques SDO, de Souza CT, Muller AP. Ginger and avocado as nutraceuticals for obesity and its comorbidities. Phytother Res 2020; 34:1282-1290. [PMID: 31989713 DOI: 10.1002/ptr.6619] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2023]
Abstract
Obesity is a worldwide epidemic and is one of the factors involved in the etiology of type 2 diabetes mellitus. Obesity induces low-grade inflammation and oxidative stress. The treatment for obesity involves changes in diet, physical activity, and even medication and surgery. Currently, the use of nutraceutical compounds is associated with health benefits. Ginger and avocado are used for many people all around the world; however, its effect as a nutraceutical compound is less known by the general population. For this reason, we searched information of the literature to point its effects on distinct mechanisms of defense against the obesity its comorbidities. The present review aimed showing that these nutraceuticals may be useful in obesity treatment. Reports have shown that ginger and avocado induce antioxidant and anti-inflammatory effects by improving enzymatic activity and modulating obesity-related impairments in the anti-inflammatory system in different tissues, without side effects. Furthermore, ginger and avocado were found to be effective in reversing the harmful effects of obesity on blood lipids. In conclusion, on the basis of the positive effects of ginger and avocado in in vitro, animal, and human studies, these nutraceuticals may be useful in obesity treatment.
Collapse
Affiliation(s)
| | - Thais F Luciano
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Claudio T de Souza
- Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Alexandre P Muller
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
32
|
Phenolic Compounds Exerting Lipid-Regulatory, Anti-Inflammatory and Epigenetic Effects as Complementary Treatments in Cardiovascular Diseases. Biomolecules 2020; 10:biom10040641. [PMID: 32326376 PMCID: PMC7226566 DOI: 10.3390/biom10040641] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main process behind cardiovascular diseases (CVD), maladies which continue to be responsible for up to 70% of death worldwide. Despite the ongoing development of new and potent drugs, their incomplete efficacy, partial intolerance and numerous side effects make the search for new alternatives worthwhile. The focus of the scientific world turned to the potential of natural active compounds to prevent and treat CVD. Essential for effective prevention or treatment based on phytochemicals is to know their mechanisms of action according to their bioavailability and dosage. The present review is focused on the latest data about phenolic compounds and aims to collect and correlate the reliable existing knowledge concerning their molecular mechanisms of action to counteract important risk factors that contribute to the initiation and development of atherosclerosis: dyslipidemia, and oxidative and inflammatory-stress. The selection of phenolic compounds was made to prove their multiple benefic effects and endorse them as CVD remedies, complementary to allopathic drugs. The review also highlights some aspects that still need clear scientific explanations and draws up some new molecular approaches to validate phenolic compounds for CVD complementary therapy in the near future.
Collapse
|
33
|
Abd El-Hack ME, Alagawany M, Shaheen H, Samak D, Othman SI, Allam AA, Taha AE, Khafaga AF, Arif M, Osman A, El Sheikh AI, Elnesr SS, Sitohy M. Ginger and Its Derivatives as Promising Alternatives to Antibiotics in Poultry Feed. Animals (Basel) 2020; 10:E452. [PMID: 32182754 PMCID: PMC7143490 DOI: 10.3390/ani10030452] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023] Open
Abstract
Poultry enterprises have sustained rapid development through the last three decennaries. For which reason, higher utilization of antibacterial, either as therapeutic or growth promoting agents, has been accepted. Owing to the concern of developing bacterial resistance among populations towards antibiotic generations, accumulation of antibacterial remaining's in chicken products and elevating shopper request for outcomes without antibacterial remaining's, looking for unconventional solutions that could exchange antibacterial without influencing productiveness or product characters. Using natural alternatives including ginger, garlic prebiotics, organic acids, plant extracts, etheric oils and immune stimulants have been applied to advance the performance, hold poultry productiveness, prevent and control the enteric pathogens and minimize the antibacterial utilization in the poultry production in recent years. The use of a single replacement or ideal assemblage of different choices besides good supervision and livestock welfare may play a basic role in maximizing benefits and preserving poultry productiveness. The object of this review was to support an outline of the recent knowledge on the use of the natural replacements (ginger and its derivatives) in poultry feed as feed additives and their effects on poultry performance, egg and meat quality, health as well as the economic efficiency.
Collapse
Affiliation(s)
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hazem Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Dalia Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Sarah I. Othman
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ahmed A. Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt;
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt;
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Punjab 40100, Pakistan;
| | - Ali Osman
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.O.); (M.S.)
| | - Ahmed I. El Sheikh
- Department of Public Health, Faculty of Veterinary Medicine, King Faisal University, Hofuf 31982, Saudi Arabia;
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (A.O.); (M.S.)
| |
Collapse
|
34
|
Rhodiola crenulata root extract ameliorates fructose-induced hepatic steatosis in rats: Association with activating autophagy. Biomed Pharmacother 2020; 125:109836. [PMID: 32007914 DOI: 10.1016/j.biopha.2020.109836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Increasing evidence has shown the beneficial effects of Rhodiola species on metabolic disorders, but their mechanisms are not clear. Hepatic steatosis is closely related to metabolic disorders, we aim to investigate the therapeutic effects of Rhodiola crenulata root (RCR) on fructose-induced hepatic steatosis and explore the underlying mechanisms. PURPOSE To observe the effect of Rhodiola crenulata root extract (RCR) on fructose-induced hepatic steatosis in Sprague-Dawley (SD) rats and explore its possible mechanism. METHODS Male Sprague-Dawley rats were treated with liquid fructose in their drinking water over 18 weeks. The extract of RCR was co-administered (once daily by oral gavage) during the last 5 weeks. Liver lipid deposition and morphological changes were observed by Oil red O staining. Real-time fluorescence quantitative PCR, Western blot and immunoprecipitation were used to detect gene and protein expression in liver. RESULTS RCR (50 mg/kg) reversed liquid fructose-induced increase in hepatic triglyceride content in rats. Attenuation of the increased vacuolization and Oil Red O staining area was evident on histological examination of liver in RCR-treated rats. However, RCR treatment did not affect chow intake and body weight of rats. Although some genes of the pathways involved in DNL (ChREBP, SREBP-1c, FAS, ACC1, SCD1, DGAT1, DGAT2 and MGAT2), fatty acid β-oxidation (PPARα, CPT1a, ACO and FGF21), VLDL-export (MTTP) and decomposition (HSL, ATGL) in the liver of fructose-fed rats were not changed significantly after RCR administration, the decrease in PPARα and PGC-1α proteins was reversed by RCR. Notably, SIRT1 mRNA and protein expression increased significantly with RCR administration. Furthermore, RCR increased expression of ATG4B, Beclin1 and decreased expression of Bcl2-Beclin1 complex dramatically. Meanwhile, RCR decreased the acetylation of beclin1. Moreover, RCR increased expression of autophagosome markers including LC3B and ATG5-ATG12-ATG16L1, and decreased expression of autophagolysosome marker p62 in the livers of fructose-fed rats. CONCLUSIONS RCR has a certain improvement effect on fructose-induced hepatic steatosis, which is related to the activation of autophagy.
Collapse
|
35
|
Karatay KB, Kılçar AY, Derviş E, Müftüler FZB. Radioiodinated Ginger Compounds (6-gingerol and 6-shogaol) and Incorporation Assays on Breast Cancer Cells. Anticancer Agents Med Chem 2020; 20:1129-1139. [PMID: 31994470 DOI: 10.2174/1871520620666200128114215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND 6-Gingerol (6G) and 6-Shogaol (6S) are the main active components of ginger. 6-Gingerol is known for its anti-metastatic and anti-invasive pharmacological activities on cancer cells, besides, 6-Shogaol also inhibits breast cancer cell invasion. OBJECTIVE In this study, radioiodination (131I) of 6G and 6S was aimed. Additionally, it is aimed to monitor their incorporation behavior on breast cancer cell lines. METHODS 6-Gingerol was isolated from the fresh ginger-roots extract, additionally, dehydrated to obtain 6-Shogaol. 6G and 6S were radioiodinated using iodogen method. Quality control studies of radioiodinated ginger compounds (6G and 6S) were performed by thin layer radio-chromatography. In vitro studies of radioiodinated ginger compounds on MCF-7 and MDA-MB-231 cells were performed with incorporation assays. RESULTS 6-Gingerol and 6-Shogaol were radioiodinated (131I-6G and 131I-6S) in high yields over 95%. 131I-6S demonstrated higher incorporation values than 131I-6G on MDA-MB-231 cells. Incorporation behavior of 131I-6G and 131I-6S was similar to MCF-7 cells. CONCLUSION It has been observed that ginger compounds were radioiodinated successfully and 131I-6S have a noteworthy incorporation on MDA-MB-231 cells which is a known breast carcinoma cell line with highly invasive characteristics.
Collapse
Affiliation(s)
- Kadriye B Karatay
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, 35100 Bornova, Izmir, Turkey
| | - Ayfer Yurt Kılçar
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, 35100 Bornova, Izmir, Turkey
| | - Emine Derviş
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, 35100 Bornova, Izmir, Turkey
| | - Fazilet Z Biber Müftüler
- Department of Nuclear Applications, Institute of Nuclear Sciences, Ege University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
36
|
Yan T, Yan N, Wang P, Xia Y, Hao H, Wang G, Gonzalez FJ. Herbal drug discovery for the treatment of nonalcoholic fatty liver disease. Acta Pharm Sin B 2020; 10:3-18. [PMID: 31993304 PMCID: PMC6977016 DOI: 10.1016/j.apsb.2019.11.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Few medications are available for meeting the increasing disease burden of nonalcoholic fatty liver disease (NAFLD) and its progressive stage, nonalcoholic steatohepatitis (NASH). Traditional herbal medicines (THM) have been used for centuries to treat indigenous people with various symptoms but without clarified modern-defined disease types and mechanisms. In modern times, NAFLD was defined as a common chronic disease leading to more studies to understand NAFLD/NASH pathology and progression. THM have garnered increased attention for providing therapeutic candidates for treating NAFLD. In this review, a new model called “multiple organs-multiple hits” is proposed to explain mechanisms of NASH progression. Against this proposed model, the effects and mechanisms of the frequently-studied THM-yielded single anti-NAFLD drug candidates and multiple herb medicines are reviewed, among which silymarin and berberine are already under U.S. FDA-sanctioned phase 4 clinical studies. Furthermore, experimental designs for anti-NAFLD drug discovery from THM in treating NAFLD are discussed. The opportunities and challenges of reverse pharmacology and reverse pharmacokinetic concepts-guided strategies for THM modernization and its global recognition to treat NAFLD are highlighted. Increasing mechanistic evidence is being generated to support the beneficial role of THM in treating NAFLD and anti-NAFLD drug discovery.
Collapse
Affiliation(s)
- Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding authors.
| | - Nana Yan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yangliu Xia
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding authors.
| |
Collapse
|
37
|
Effects of Ginger Extract on Laying Performance, Egg Quality, and Antioxidant Status of Laying Hens. Animals (Basel) 2019; 9:ani9110857. [PMID: 31652863 PMCID: PMC6912797 DOI: 10.3390/ani9110857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The application of in-feed antibiotic growth promoters was banned in many countries due to their negative effects, and several kinds of feed additives were widely investigated as antibiotic alternatives, in which natural plant-derived products received much attention due to their environmentally friendly properties and numerous biological activities. Ginger (Zingiber officinale Roscoe), a widely used herbal medicine and spice, was proven to have potential as an antibiotic alternative in poultry feed, but there is little literature on the efficacy of ginger extract (GE), which has concentrated bioactive compounds with high bioavailability. Our results showed that dietary GE supplementation increased egg weight, improved egg quality, and reduced the yolk cholesterol content of laying hens. Decreased serum activities of alanine transaminase and aspartate transaminase and improved antioxidant status were observed in the GE group. Our study demonstrated the potential benefits of GE in laying hens. Abstract The objective of this study was to investigate the effects of ginger extract (GE) as a dietary supplement for laying hens. A total of 40-week-old 288 Hyline Brown laying hens were randomly divided into two groups with six replicates, and fed a basal diet with or without 100 g/t GE for eight weeks. Dietary GE supplementation increased egg weight, albumin height, and Haugh unit of eggs, and decreased yolk cholesterol content and activities of alanine transaminase and aspartate transaminase in serum at eight weeks. Moreover, GE resulted in higher total superoxide dismutase (T-SOD) activity and lower malondialdehyde (MDA) content in yolk at four and eight weeks and in serum. It was concluded that GE was effective in increasing egg weight and improving the egg quality and antioxidant status of laying hens.
Collapse
|