1
|
Tao W, Che X, Liu P, Zhang Y, Zheng X, Di B, Qiao H. Direct injection UPLC-MS/MS method for analysing 77 compounds including human biomarkers, illicit drugs, new psychoactive substances and metabolites in wastewater. J Chromatogr A 2025; 1741:465596. [PMID: 39708526 DOI: 10.1016/j.chroma.2024.465596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/21/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Wastewater analysis technology has emerged as a promising tool for monitoring illicit drug consumption. However, the current reliance on the solid-phase extraction (SPE) pre-treatment method presents significant challenges for widespread adoption and high-throughput monitoring, as it consumes a large amount of time and labor as well as requires specialized instruments. This study has developed a direct injection (DI) technique for UPLC-MS/MS, enabling the detection of 77 compounds encompassing metabolites of human biomarkers, illicit drugs, and new psychoactive substances. The DI method underwent rigorous optimization and validation, demonstrating a lower limit of quantitation (LLOQ) ranging from 1 ng L-1 to 100 ng L-1 and a limit of detection (LOD) ranging from 0.5 ng L-1 to 80 ng L-1. The SPE method comprising two common SPE cartridges and the DI method were compared in terms of matrix effects, recoveries, and accuracies through analyzing spiked wastewater samples. The DI method exhibited superior capability in detecting a wider range of compounds while being more time-efficient, and it also significantly demonstrated a better recovery, lower matrix effect, and lower relative error in spiked samples. Real wastewater samples from 25 wastewater treatment plants (WWTPs) were analyzed using this method. This study expanded the targets species of wastewater analysis by DI method and provided practical strategies for conducting large-scale drug monitoring.
Collapse
Affiliation(s)
- Wenjia Tao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China
| | - Xinfeng Che
- Longquanyi district branch of Chengdu Public Security Bureau, Chengdu 610100, PR China
| | - Peipei Liu
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, PR China Beijing 100193, PR China
| | - Yu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China
| | - Xiaoyu Zheng
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, PR China Beijing 100193, PR China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China.
| | - Hongwei Qiao
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, PR China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, PR China Beijing 100193, PR China.
| |
Collapse
|
2
|
Huang Q, Zhou J, Zhong J, Chen L, Yang H, Wu K, Yang D, Xu F, Xu P, Fan H, Yang X. Insight into the mechanism of adsorption and release of 11-nor-9-carboxy-Δ 9-tetrahydrocannabinol in sewage by modeling regional suspended particles for evaluation of the influence on monitoring of cannabis illicit abuse. J Chromatogr A 2024; 1732:465207. [PMID: 39088898 DOI: 10.1016/j.chroma.2024.465207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
The adsorption of 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THC-COOH) by the suspended particles in sewage makes it fail to accurately monitor cannabis abuse. In this work, the model sewage sample was prepared through equivalent mixing the sewage from 10 different sewage treatment plants in Guangdong province of China and used as a comprehensive representative for investigating the adsorption and release behavior of THC-COOH on the suspended particles under different temperature and pH. The solid-liquid distribution of THC-COOH in sewage depended strongly on the adsorption and release properties which were susceptible to the temperature and pH, specially adjusting pH to 11.0 could release more than 90 % of THC-COOH from the suspended particles. By means of the kinetics models, pseudo-second-order kinetic and Weber-Morris models revealed the mechanism of adsorption and release of THC-COOH in sewage that was a relatively reversible and controllable process with multiple interactions, and then it was further confirmed by the validation experiment in a variety of actual sewage samples. According to the suggested pH, the modification of the existing detection protocol prior to high performance liquid chromatography-tandem triple quadrupole mass spectrometry (HPLC-TQ-MS/MS), was successfully applied to determination of THC-COOH in the stimulated positive samples, and the recoveries and RSDs were respectively 95.48-99.79 % and 4.0-5.6 %. The finding could greatly help improving the accuracy of not only the detection of THC-COOH in sewage but also the estimation data of the consumption level of cannabis in the related regions.
Collapse
Affiliation(s)
- Qingda Huang
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Jiedan Zhou
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Jinjian Zhong
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Linzhou Chen
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hai Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ke Wu
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Dafeng Yang
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Fei Xu
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Peng Xu
- National Narcotics Laboratory, Drug Intelligence and Forensic Center of the Ministry of Public Security of the People's Republic of China, Beijing 100193, China.
| | - Huajun Fan
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Nadarajan D, O'Brien J, Cresswell S, Kele B, Mueller J, Bade R. Application of design of experiment for quantification of 71 new psychoactive substances in influent wastewater. Anal Chim Acta 2024; 1321:343036. [PMID: 39155095 DOI: 10.1016/j.aca.2024.343036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND New psychoactive substances (NPS) are of public health concern due to their sporadic proliferation and the dearth of information on toxicity when consumed. In addition to seized data from forensic and toxicology reporting, wastewater analysis serves as a complimentary tool for NPS surveillance. A method to detect 71 NPS by simple filtration followed by liquid-chromatography tandem mass spectrometry was developed to detect multiclass NPS consisting of arylcyclohexylamines, designer benzodiazepines, synthetic cannabinoids, synthetic opioids, phenethylamines, synthetic cathinones, tryptamines, and indole alkaloids. RESULTS In this work, the influential factors for electrospray ionisation were identified and optimised using the fractional factorial design and face-centred central composite design, respectively. The filtration loss during sample clean-up was assessed for all compounds. The final method was validated and applied to wastewater collected from a music festival held in Queensland in 2022. The validated method had linearity between 0.5 ng L-1 and 5000 ng L-1, the limit of quantification (LOQ) ranges from 0.6 ng L-1 to 70 ng L-1, precision within ±20 %, accuracy ranges from 70 % to 120 %, and matrix effect ranges from soft (0 %-20 %) to medium (20 %-50 %) for the majority of the compounds. NPS detected in the festival were 2-fluorodeschloroketamine, 7-hydroxymitragynine, mitragynine, N,N-dimethylpentylone, pentylone, phenibut, and O-desmethyltramadol. SIGNIFICANCE Systematic electrospray ionisation optimisation using the design of experiment for a large method is practical and provides in-depth chemical information on studied compounds. The optimised method demonstrated the applicability of analysing samples collected from a festival in this work.
Collapse
Affiliation(s)
- Dhayaalini Nadarajan
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woollsiana, Queensland, Australia
| | - Jake O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woollsiana, Queensland, Australia; Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Netherlands
| | - Sarah Cresswell
- School of Environment and Science, Griffith University, Queensland, Australia
| | - Ben Kele
- Arris Pty Ltd, 44 Wenworth Terrace, Rockhampton, QLD, 4700, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woollsiana, Queensland, Australia
| | - Richard Bade
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woollsiana, Queensland, Australia.
| |
Collapse
|
4
|
Li X, Jiang L, Di B, Hu C. Preparation of amphiphilic poly(divinylbenzene- co-N-vinylpyrrolidone)-functionalized polydopamine magnetic nanoadsorbents for enrichment of synthetic cannabinoids in wastewater. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3968-3982. [PMID: 38853581 DOI: 10.1039/d4ay00711e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Concerns have been raised about synthetic cannabinoids (SCs), which are among the most often trafficked and used illegal substances. An analytical method that holds promise for determining illicit drug use in the general population is wastewater-based epidemiology (WBE). Unfortunately, the concentration of SCs in wastewater is often extremely low on account of their hydrophobic nature, thus presenting a significant obstacle to the accurate detection and quantification of SCs using WBE. In this study, we present novel magnetic nanomaterials as amphiphilic adsorbents for pretreatment of wastewater using magnetic solid phase extraction (MSPE). Polydopamine-modified Fe3O4 nanoparticles were used as the magnetic core and further functionalized with poly(divinylbenzene-N-vinylpyrrolidone). Coupled with UHPLC-MS/MS analysis, an analytical method to simultaneously detect nine SCs at trace-levels in wastewater was developed and validated, enriching 50 mL wastewater to 100 μL with limits of detection (LOD) being 0.005-0.5 ng L-1, limits of quantification (LOQ) being 0.01-1.0 ng L-1, recoveries ranging from 73.99 to 110.72%, and the intra- and inter-day precision's relative standard deviations less than 15%. In comparison to the time-consuming conventional column-based solid phase extraction, the entire MSPE procedure from sample pre-treatment to data acquisition could be finished in one hour, thus largely facilitating the WBE method for drug surveillance and control.
Collapse
Affiliation(s)
- Xiuchen Li
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China.
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Le Jiang
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China.
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Bin Di
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China.
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China
| | - Chi Hu
- Department of Pharmaceutical Engineering, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China.
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, PR China
| |
Collapse
|
5
|
Bijlsma L, Simpson B, Gerber C, van Nuijs ALN, Burgard D. Making waves: Wastewater-based surveillance of cannabis use. WATER RESEARCH 2024; 255:121522. [PMID: 38552484 DOI: 10.1016/j.watres.2024.121522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/24/2024]
Abstract
Monitoring cannabis consumption holds great interest due to the increasing trend towards its legalization for both medicinal and recreational purposes, despite the potential risks and harms involved. Wastewater-based surveillance (WBS) offers a valuable tool for assessing shifts and patterns in drug consumption and to evaluate law enforcement strategies and harm reduction programs. However, WBS-derived cannabis use estimates have been linked to greater uncertainties compared to other drugs, in part due to the many different routes of administration and a substantial excretion of metabolites in faecal matter. Therefore, the usual approach for estimating consumed amounts and scaling consumption compared to other problem drugs requires a rethink. This viewpoint highlights the progress made in this area and describes the current existing barriers related to in-sewer and in-sample behaviour (e.g., adsorption/desorption mechanisms), analytical procedures used (e.g., sample preparation), and pharmacokinetic aspects (e.g., administration route) linked to cannabis biomarkers in influent wastewater. These need to be addressed to improve the estimation of cannabis use and reflect spatial and temporal trends in the same way as for other drugs. Until then, we recommend being cautious when interpreting wastewater-based cannabis consumption estimates.
Collapse
Affiliation(s)
- Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, E-12071, Castelló, Spain.
| | - Bradley Simpson
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Cobus Gerber
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide 5000, South Australia, Australia
| | | | - Dan Burgard
- Department of Chemistry and Biochemistry, University of Puget Sound, Tacoma, WA, USA
| |
Collapse
|
6
|
Bade R, van Herwerden D, Rousis N, Adhikari S, Allen D, Baduel C, Bijlsma L, Boogaerts T, Burgard D, Chappell A, Driver EM, Sodre FF, Fatta-Kassinos D, Gracia-Lor E, Gracia-Marín E, Halden RU, Heath E, Jaunay E, Krotulski A, Lai FY, Löve ASC, O'Brien JW, Oh JE, Pasin D, Castro MP, Psichoudaki M, Salgueiro-Gonzalez N, Gomes CS, Subedi B, Thomas KV, Thomaidis N, Wang D, Yargeau V, Samanipour S, Mueller J. Workflow to facilitate the detection of new psychoactive substances and drugs of abuse in influent urban wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133955. [PMID: 38457976 DOI: 10.1016/j.jhazmat.2024.133955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
The complexity around the dynamic markets for new psychoactive substances (NPS) forces researchers to develop and apply innovative analytical strategies to detect and identify them in influent urban wastewater. In this work a comprehensive suspect screening workflow following liquid chromatography - high resolution mass spectrometry analysis was established utilising the open-source InSpectra data processing platform and the HighResNPS library. In total, 278 urban influent wastewater samples from 47 sites in 16 countries were collected to investigate the presence of NPS and other drugs of abuse. A total of 50 compounds were detected in samples from at least one site. Most compounds found were prescription drugs such as gabapentin (detection frequency 79%), codeine (40%) and pregabalin (15%). However, cocaine was the most found illicit drug (83%), in all countries where samples were collected apart from the Republic of Korea and China. Eight NPS were also identified with this protocol: 3-methylmethcathinone 11%), eutylone (6%), etizolam (2%), 3-chloromethcathinone (4%), mitragynine (6%), phenibut (2%), 25I-NBOH (2%) and trimethoxyamphetamine (2%). The latter three have not previously been reported in municipal wastewater samples. The workflow employed allowed the prioritisation of features to be further investigated, reducing processing time and gaining in confidence in their identification.
Collapse
Affiliation(s)
- Richard Bade
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Denice van Herwerden
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, the Netherlands
| | - Nikolaos Rousis
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Sangeet Adhikari
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85281, United States; Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, United States
| | - Darren Allen
- Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Christine Baduel
- Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Institute of Environmental Geosciences (IGE), Grenoble, France
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Tim Boogaerts
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dan Burgard
- Department of Chemistry and Biochemistry, University of Puget Sound, Tacoma, WA 98416, United States
| | - Andrew Chappell
- Institute of Environmental Science and Research Limited (ESR), Christchurch Science Centre, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, United States
| | | | - Despo Fatta-Kassinos
- Nireas-International Water Research Centre and Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Emma Gracia-Lor
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Elisa Gracia-Marín
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Rolf U Halden
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85281, United States; Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, United States; OneWaterOneHealth, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, United States
| | - Ester Heath
- Jožef Stefan Institute and International Postgraduate School Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| | - Emma Jaunay
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Alex Krotulski
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, PA 19090, United States
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Arndís Sue Ching Löve
- University of Iceland, Department of Pharmacology and Toxicology, Hofsvallagata 53, 107 Reykjavik, Iceland; University of Iceland, Faculty of Pharmaceutical Sciences, Hofsvallagata 53, 107 Reykjavik, Iceland
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia; Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, the Netherlands
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Daniel Pasin
- Forensic Laboratory Division, San Francisco Office of the Chief Medical Examiner, 1 Newhall St, San Francisco, CA 94124, United States
| | | | - Magda Psichoudaki
- Nireas-International Water Research Centre and Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Noelia Salgueiro-Gonzalez
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | | | - Bikram Subedi
- Department of Chemistry, Murray State University, Murray, KY 42071-3300, United States
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Saer Samanipour
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, the Netherlands; UvA Data Science Center, University of Amsterdam, the Netherlands
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
7
|
Shi Y, Xu R, Wang S, Zheng J, Zhu F, Hu Q, Huang J, Ouyang G. Fluorinated-Squaramide Covalent Organic Frameworks for High-Performance and Interference-Free Extraction of Synthetic Cannabinoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302925. [PMID: 37807813 PMCID: PMC10646270 DOI: 10.1002/advs.202302925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Indexed: 10/10/2023]
Abstract
Synthetic cannabinoids (SCs), one of the largest groups of new psychoactive substances (NPSs), have emerged as a significant public health threat in different regions worldwide. Analyzing SCs in water samples is critical to estimate their consumption and control. However, due to their low background concentration and the coexistence of complex matrix, the selective and effective enrichment of SCs is still challenging. In this study, a series of fluorinated-squaramide-based covalent organic frameworks (COF: FSQ-2, FSQ-3, and FSQ-4) are synthesized, and the as-prepared FSQ-4 exhibits strong affinity to different SCs. The proper pore size (1.4 nm) and pre-located functional groups (hydrogen-bond donors, hydrogen-bond acceptors, and fluorophilic segments) work synergistically for efficient SCs capture. Remarkably, when coupled FSQ-4 with solid-phase microextraction (SPME), trace-level (part per trillion, 10-9 ) determination of 13 SCs can be easily achieved, representing one of the best results among NPS analyses, and the excellent extraction performance can be maintained under various interfering conditions.
Collapse
Affiliation(s)
- Yueru Shi
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Ruolun Xu
- Anti‐Drug Technology Center of Guangdong ProvinceGuangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and SafetyGuangzhou510535China
| | - Shaohan Wang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Qingkun Hu
- Anti‐Drug Technology Center of Guangdong ProvinceGuangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and SafetyGuangzhou510535China
| | - Junlong Huang
- SGS‐CSTC Standards Technical Services Co., Ltd.Guangzhou510670China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
8
|
Chang WCW, Hsu MC, Liao PC. Detection of emerging patterns of drug misuse in sports via wastewater monitoring: A mini-review and potential strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122087. [PMID: 37348696 DOI: 10.1016/j.envpol.2023.122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Biological testing is a key component of the current anti-doping programme implemented by the authorities to detect doping in sports. Strategies such as longitudinal individualised data analysis and sport-specific analysis have been developed to increase the comprehensiveness of the testing. However, the trends of drug misuse in sports might not be effectively captured through today's testing plan. Wastewater testing, assembling individual-level data of a designated group to produce population-level results in one single aggregated sample, can be employed to as a complementary strategy offering added value for doping control. This paper presents an updated summary of the status of anti-doping testing and analytical methodologies for wastewater. The available literature on wastewater-based analyses of drugs prohibited in sports is reviewed. Publications surrounding sporting activities or competitions and others relevant to sports doping are selected. We debate between potential strategies and major limitations of using wastewater monitoring in anti-doping. Knowledge gaps and research directions, specifically on metabolites, stability, sensitivity, and ethical and legal considerations, are discussed. Choosing different wastewater sampling sites allows target sub-population that involved competing athletes and potentially reveal sport-specific or athlete-level-specific behaviour. Sampling from on-board toilets or athlete villages could target international-level athletes, sampling from the dormitories of national training centres allows monitoring of national-level athletes on a daily basis, and sampling from sports stadiums provides a full picture of drug use in the general population during an event. Confounding occurs as (i) the presence of non-athlete composition and the difficulty of analyses to be completely selective to the athlete population; and (ii) the identification of compounds prescribed legitimately with Therapeutic Use Exemptions, only banned in-competition, and naturally occurring. The practicalities of the approach are contextualised in monitoring the non-threshold substances such as anabolic agents, selective androgen receptor modulators, metabolic modulators, and hypoxia-inducible factor activators.
Collapse
Affiliation(s)
- William Chih-Wei Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Mei-Chich Hsu
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| |
Collapse
|
9
|
Zhu Z, Wang L, Jia Y, Duan S, Li S, Jiang L, Lin X, Yan F, Hou C, Hu C, Di B. Magnetic Liposomes Infused with GPCR-Expressing Cell Membrane for Targeted Extraction Using Minimum Organic Solvent: An Investigative Study of Trace THC in Sewage. Anal Chem 2023; 95:12613-12622. [PMID: 37583350 DOI: 10.1021/acs.analchem.2c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Trace analysis of lipophilic substances in complex environmental, food, or biological matrices has proven to be a challenge, on account of their high susceptibility to adsorption by particulate matter and liquid-solid interfaces. For this purpose, liquid-liquid extraction (LLE) is often employed as the separation method, which uses water-immiscible organic solvents. As an alternative, magnetic solid-phase extraction (MSPE) allows for adsorption, separation, and recovery of analytes from large volumes of aqueous samples with minimum usage of organic solvents. However, the poor selectivity hampers its performance in various scenarios, especially in sewage samples where complicated and unpredictable interference exists, resulting in block of the active adsorption sites of the sorbent. To this end, we propose receptor-affinity MSPE employing magnetic liposomes decorated with cell membranes expressing G-protein-coupled receptor as the sorbents. Application of the novel sorbent CM@Lip@Fe infused with CB1 cannabinoid receptors was demonstrated for the targeted extraction and enrichment of tetrahydrocannabinol from sewage matrix. Thanks to the high affinity and molecular selectivity of the ligand-receptor interactions, a limit of quantitation of 5.17 ng/L was achieved coupled with HPLC-MS/MS in unfiltered raw sewage, featuring minimum usage of organic solvents, fivefold enhanced sensitivity, low sorbent dosage (75 mg/L of sewage), and high efficiency as major advantages over conventional LLE. This work establishes a framework for efficient separation of specific molecules from complex media, thus promising to extend and refine standard LLE as the clean-up procedure for trace analysis.
Collapse
Affiliation(s)
- Zhihang Zhu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Lancheng Wang
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Yan Jia
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Shiqi Duan
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Siyu Li
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Le Jiang
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Xiaoxuan Lin
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Fang Yan
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Chenzhi Hou
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Chi Hu
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmaceutical Engineering, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| | - Bin Di
- China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
- Department of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, 210009 Nanjing, PR China
| |
Collapse
|
10
|
Atasoy Aydin A, Gören İE, Yavuz Guzel E, Daglioglu N. Method development, validation, and application for simultaneous determination of 56 new psychoactive substances in surface water by LC-MS/MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85920-85929. [PMID: 37394566 DOI: 10.1007/s11356-023-28495-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Despite preventive legislation, the popularity and consumption of new psychoactive substances (NPS) have been steadily increasing in recent years. This study provides a rapid and sensitive method for the quantitation and the detection of 56 NPS from surface water. Sample clean-up and pre-concentration were performed by solid-phase extraction (SPE) with Oasis HLB (6 cc/500 mg) cartridge. Following the chromatographic separation with Shim-pack FC-ODS column, the all substances were quantified by liquid chromatography-tandem mass spectrometry. The method was optimized and validated for all NPS. Despite the wide variety of physicochemical properties of the analytes, the recoveries for all compounds studied were in the range of 69-117%. The limit of quantitation (LOQ) ranging from 2.5 to 15 ng/L was reached for reliable and accurate quantification of analytes. The analytical method developed was successfully applied to the surface water samples. While synthetic cannabinoids were not detected, mephedrone from the synthetic cathinone group was detected under the LOQ. This novel method was expected to be a part of future environmental routine analyses as a satisfactory method.
Collapse
Affiliation(s)
- Asli Atasoy Aydin
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ankara University, 06620, Ankara, Turkey
| | - İsmail Ethem Gören
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ankara University, 06620, Ankara, Turkey
| | - Evsen Yavuz Guzel
- Department of Basic Science, Faculty of Fisheries, Cukurova University, 01330, Adana, Turkey
| | - Nebile Daglioglu
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ankara University, 06620, Ankara, Turkey.
| |
Collapse
|
11
|
de Oliveira AFB, de Melo Vieira A, Santos JM. Trends and challenges in analytical chemistry for multi-analysis of illicit drugs employing wastewater-based epidemiology. Anal Bioanal Chem 2023; 415:3749-3758. [PMID: 36952026 PMCID: PMC10034891 DOI: 10.1007/s00216-023-04644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023]
Abstract
Wastewater-based epidemiology (WBE) for quantification of illicit drug biomarkers (IDBs) in wastewater samples is an effective tool that can provide information about drug consumption. The most commonly quantified IDBs belong to different chemical classes, including cocaine, amphetamine-type stimulants, opioids, and cannabinoids, so the different chemical properties of these molecules pose a challenge in the development of analytical methods for multi-analyte analysis. Recent workflows include the steps of sampling and storage, sample preparation using solid-phase extraction (SPE) or without extraction, and quantification of analytes employing gas or liquid chromatography coupled with mass spectrometry. The greatest difficulty is due to the fact that wastewater samples are complex chemical mixtures containing analytes with different chemical properties, often present at low concentrations. Therefore, in the development of analytical methods, there is the need to simplify and optimize the analytical workflows, reducing associated uncertainties, analysis times, and costs. The present work provides a critical bibliographic survey of studies published from the year 2020 until now, highlighting the challenges and trends of published analytical workflows for the multi-analysis of IDBs in wastewater samples, considering sampling and sample preparation, method validation, and analytical techniques.
Collapse
Affiliation(s)
- Ana Flávia Barbosa de Oliveira
- Petroleum, Energy and Mass Spectrometry Research Group (PEM), Chemistry Department, Federal Rural University of Pernambuco (UFRPE), Recife, PE, 52171-900, Brazil
| | - Aline de Melo Vieira
- Petroleum, Energy and Mass Spectrometry Research Group (PEM), Chemistry Department, Federal Rural University of Pernambuco (UFRPE), Recife, PE, 52171-900, Brazil
| | - Jandyson Machado Santos
- Petroleum, Energy and Mass Spectrometry Research Group (PEM), Chemistry Department, Federal Rural University of Pernambuco (UFRPE), Recife, PE, 52171-900, Brazil.
| |
Collapse
|
12
|
Chen YC, Hsu JY, Chang CW, Chen PY, Lin YC, Hsu IL, Chu CJ, Lin YP, Liao PC. Investigation of New Psychoactive Substances (NPS), Other Illicit Drugs, and Drug-Related Compounds in a Taiwanese Wastewater Sample Using High-Resolution Mass-Spectrometry-Based Targeted and Suspect Screening. Molecules 2023; 28:5040. [PMID: 37446702 DOI: 10.3390/molecules28135040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The proliferation of new psychoactive substances (NPSs) in recent years has posed a significant challenge to public health. Traditional monitoring methods have proven insufficient in tracking these constantly evolving substances, leading to the development of alternative approaches such as wastewater-based epidemiology (WBE). The present study aims to utilize high-resolution mass spectrometry (HRMS)-based targeted and suspect screening to profile NPS, other illicit drugs, and drug-related compounds in a Taiwanese wastewater sample. For the targeted analysis, 8 out 18 standards of illicit drugs have been identified. The suspect screening approach based on approximately 3600 substances in the SWGDRUG library can further identify 92 compounds, including opiate analgesics, synthetic cathinones, phenylalkylamines derivatives, phenethylamine derivatives, tryptamine derivatives, steroids, and ephedrine-related compounds. Additionally, the presence of 5-methoxy-2-aminoindane (MEAI) in the wastewater indicates that drug dealers have recently sold this potential NPS to evade drug regulations. This study firstly reports the HRMS-based comprehensive profile of NPS, other illicit drugs, and drug-related compounds in Taiwan, which could be applied as biomarkers for estimating the consumption of drugs.
Collapse
Affiliation(s)
- Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Yi Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pin-Yu Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yung-Chieh Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - I-Lin Hsu
- Public Health Bureau, Tainan City Government, Tainan 704, Taiwan
| | - Chiau-Jun Chu
- Public Health Bureau, Tainan City Government, Tainan 704, Taiwan
| | - Yen-Ping Lin
- Public Health Bureau, Tainan City Government, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
13
|
Martínez-Pérez-Cejuela H, García-Atienza P, Simó-Alfonso EF, Herrero-Martínez JM, Armenta S. Micro-paper-based analytical device decorated with metal-organic frameworks for the assay of synthetic cannabinoids in oral fluids coupled to ion mobility spectrometry. Mikrochim Acta 2023; 190:271. [PMID: 37351649 PMCID: PMC10289984 DOI: 10.1007/s00604-023-05844-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
A new concept of paper-based device has been developed combining the advantages of cellulose supports and the rich surface chemistry of metal-organic frameworks (MOFs). The composite, named as NH2-UiO-66@paper, has been developed for the isolation of synthetic cannabinoid receptor agonists (SCRAs) in oral fluids, trying to mimic the interactions of those compounds with the human CB1R and CB2R receptors, mainly governed by hydrogen bonding and π-interactions with serine and histidine residues. MOF selection (UiO-66) and functionalization of the ligand (2-aminoterephthalic acid) has been done according to the following criteria: (i) water stability of the selected MOF, and (ii) promoting appropriate interactions with SCRAs due to the MOF nature. NH2-UiO-66@paper composite has been characterized in depth and the results confirmed that the material is stable at the temperature selected for thermal desorption (230 °C). Furthermore, the developed method provided appropriate precision values (RSD < 12%) and a limit of detection as low as 10 ng using ion mobility spectrometry as analytical technique. Lastly, the method has been successfully applied to the isolation of several synthetic cannabinoids from oral fluids. This method claims to be an interesting approach for expanding the combination of MOFs with sustainable support and represents a promising alternative to sophisticated and non-portable systems due to the negligible sample treatment required and the simplicity of the operation, which can be applied with screening purposes.
Collapse
Affiliation(s)
| | - Patricia García-Atienza
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | | | | | - Sergio Armenta
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
14
|
Chen S, Qie Y, Hua Z, Zhang H, Wang Y, Di B, Su M. Preparation of poly(methacrylic acid-co-ethylene glycol dimethacrylate)-functionalized magnetic polydopamine nanoparticles for the extraction of six cannabinoids in wastewater followed by UHPLC-MS/MS. Talanta 2023; 264:124752. [PMID: 37276675 DOI: 10.1016/j.talanta.2023.124752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Phytocannabinoids and their synthetic analogs (natural and synthetic cannabinoids) are illicit drugs that are widely abused worldwide. Wastewater-based epidemiology (WBE) is an objective approach for the estimation of population-level exposure to a wide range of substances, especially drugs of abuse. However, the concentrations of cannabinoids in wastewater are extremely low (frequently at the levels of nanograms per liter), and the existing pretreatment procedures for wastewater have the disadvantages of time-consumption or low extraction recoveries. This study aimed to propose a novel poly (methacrylic acid-co-ethylene glycol dimethacrylate)-functionalized polydopamine-coated Fe3O4 nanoparticle (Fe3O4@PDA@poly (MAA-co-EGDMA)) as an adsorbent, and provide a highly sensitive quantitative analytical technique for the detection of five synthetic cannabinoids (SCs: 5 F-EDMB-PINACA, FUB-APINACA, MDMB-4en-PINACA, MDMB-FUBINACA, and PB-22) and one cannabis-related human metabolite (THC-COOH) in wastewater. The magnetic adsorbents were fully characterized by transmission electron microscopy (TEM), infrared spectroscopy (IR), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS). Subsequently, an MSPE-UHPLC-MS/MS method was developed and validated for the determination of six trace analytes in wastewater. The validation results showed that the method has limits of quantification as low as 0.1-1.0 ng/L. Additionally, the recoveries ranged from 62.81 to 124.02%, and the relative standard deviations (RSDs) of intraday and interday precision were less than 15%. This MSPE-UHPLC-MS/MS method was successfully applied to real wastewater samples, and the whole analytical process of one sample from pretreatment to the obtained quantitative results was completed in less than 30 min. Thus, the proposed method based on Fe3O4@PDA@poly (MAA-co-EGDMA) is a convenient, rapid, sensitive and reliable method for the determination of trace psychoactive drugs in wastewater.
Collapse
Affiliation(s)
- Simin Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
| | - Yiqi Qie
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
| | - Zhendong Hua
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, 100741, China
| | - Haoyue Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
| | - Youmei Wang
- China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, 100741, China.
| | - Bin Di
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
| | - Mengxiang Su
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; China National Narcotics Control Commission - China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
| |
Collapse
|
15
|
Bade R, Rousis N, Adhikari S, Baduel C, Bijlsma L, Bizani E, Boogaerts T, Burgard DA, Castiglioni S, Chappell A, Covaci A, Driver EM, Sodre FF, Fatta-Kassinos D, Galani A, Gerber C, Gracia-Lor E, Gracia-Marín E, Halden RU, Heath E, Hernandez F, Jaunay E, Lai FY, Lee HJ, Laimou-Geraniou M, Oh JE, Olafsdottir K, Phung K, Castro MP, Psichoudaki M, Shao X, Salgueiro-Gonzalez N, Feitosa RS, Gomes CS, Subedi B, Löve ASC, Thomaidis N, Tran D, van Nuijs A, Verovšek T, Wang D, White JM, Yargeau V, Zuccato E, Mueller JF. Three years of wastewater surveillance for new psychoactive substances from 16 countries. WATER RESEARCH X 2023; 19:100179. [PMID: 37143710 PMCID: PMC10151418 DOI: 10.1016/j.wroa.2023.100179] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/13/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
The proliferation of new psychoactive substances (NPS) over recent years has made their surveillance complex. The analysis of raw municipal influent wastewater can allow a broader insight into community consumption patterns of NPS. This study examines data from an international wastewater surveillance program that collected and analysed influent wastewater samples from up to 47 sites in 16 countries between 2019 and 2022. Influent wastewater samples were collected over the New Year period and analysed using validated liquid chromatography - mass spectrometry methods. Over the three years, a total of 18 NPS were found in at least one site. Synthetic cathinones were the most found class followed by phenethylamines and designer benzodiazepines. Furthermore, two ketamine analogues, one plant based NPS (mitragynine) and methiopropamine were also quantified across the three years. This work demonstrates that NPS are used across different continents and countries with the use of some more evident in particular regions. For example, mitragynine has highest mass loads in sites in the United States, while eutylone and 3-methylmethcathinone increased considerably in New Zealand and in several European countries, respectively. Moreover, 2F-deschloroketamine, an analogue of ketamine, has emerged more recently and could be quantified in several sites, including one in China, where it is considered as one of the drugs of most concern. Finally, some NPS were detected in specific regions during the initial sampling campaigns and spread to additional sites by the third campaign. Hence, wastewater surveillance can provide an insight into temporal and spatial trends of NPS use.
Collapse
Affiliation(s)
- Richard Bade
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Nikolaos Rousis
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Sangeet Adhikari
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ, 85281, United States
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, United States
| | - Christine Baduel
- Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Erasmia Bizani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Tim Boogaerts
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Daniel A. Burgard
- Department of Chemistry and Biochemistry, University of Puget Sound, Tacoma, WA 98416, United States
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156, Milan, Italy
| | - Andrew Chappell
- Institute of Environmental Science and Research Limited (ESR), Christchurch Science Centre: 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Erin M. Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, United States
- AquaVitas, LLC, Scottsdale, Arizona, 85251, United States
| | | | - Despo Fatta-Kassinos
- Nireas-International Water Research Centre and Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Cobus Gerber
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Emma Gracia-Lor
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Elisa Gracia-Marín
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Rolf U. Halden
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ, 85281, United States
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ 85281, United States
- AquaVitas, LLC, Scottsdale, Arizona, 85251, United States
- OneWaterOneHealth, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, United States
| | - Ester Heath
- Jožef Stefan Institute and International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Felix Hernandez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Emma Jaunay
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007 Uppsala, Sweden
| | - Heon-Jun Lee
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Maria Laimou-Geraniou
- Jožef Stefan Institute and International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Kristin Olafsdottir
- University of Iceland, Department of Pharmacology and Toxicology, Hofsvallagata 53, 107 Reykjavik, Iceland
| | - Kaitlyn Phung
- Institute of Environmental Science and Research Limited (ESR), Christchurch Science Centre: 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Marco Pineda Castro
- Department of Chemical Engineering, McGill University, Montreal, QC, Abbreviation:
| | - Magda Psichoudaki
- Nireas-International Water Research Centre and Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Xueting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, P. R. China
| | - Noelia Salgueiro-Gonzalez
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156, Milan, Italy
| | | | | | - Bikram Subedi
- Department of Chemistry, Murray State University, Murray, Kentucky 42071-3300, United States
| | - Arndís Sue Ching Löve
- University of Iceland, Department of Pharmacology and Toxicology, Hofsvallagata 53, 107 Reykjavik, Iceland
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Diana Tran
- Department of Chemistry and Biochemistry, University of Puget Sound, Tacoma, WA 98416, United States
| | - Alexander van Nuijs
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Taja Verovšek
- Jožef Stefan Institute and International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, P. R. China
| | - Jason M. White
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, QC, Abbreviation:
| | - Ettore Zuccato
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156, Milan, Italy
| | - Jochen F. Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
16
|
Christodoulou MC, Constantinou MS, Louppis AP, Christou A, Stavrou IJ, Kapnissi-Christodoulou CP. Determination of cannabinoids in human cerumen samples by use of UPLC-MS/MS as a potential biomarker for drug use. J Pharm Biomed Anal 2023; 231:115412. [PMID: 37087774 DOI: 10.1016/j.jpba.2023.115412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/25/2023]
Abstract
A quantitative analytical procedure was developed and validated by the use of Ultra- Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MS/MS) for the determination of Cannabidiol (CBD), Cannabinol (CBN), Δ9-Tetrahydrocannabinol (Δ9-THC), Cannabichromene (CBC), Cannabigerol (CBG) and 11-Nor- 9- Carboxy- Tetrahydrocannabinol (THC-COOH) in an unconventional biological matrix, cerumen. All the investigated calibration curves were characterized by high correlation values (R2 ≥ 0.9965). The LODs and LOQs ranged from 0.004 to 0.009 μg g-1 and 0.012-0.029 μg g-1, respectively. Intra-assay and inter-assay precision were found to be 0.6-2.5%, and 0.8-2.2%, respectively. All recovery values of cannabinoids, with the use of the optimum cotton swab, at low (0.008 μg g-1 of cerumen), medium (0.037 μg g-1of cerumen) and high (0.16 μg g-1 of cerumen) control levels, were estimated to be above 86%. The method developed here permitted the analysis of real cerumen samples obtained from fourteen cannabis users. In twelve out of fourteen cases, Δ9-THC was found to be positive, while in six cases, three major cannabinoids, CBN, CBG and Δ9-THC were quantified at concentrations 0.02-0.21 μg g-1, 0.01-0.24 μg g-1 and 0.01-4.86 μg g-1, respectively. Subject #8 has the highest amount of the detected substances in both left and right ear, with Δ9-THC at a concentration of 1.85 and 4.86 μg g-1, CBG 0.06 and 0.24 μg g-1, CBN 0.10 and 0.21 μg g-1, respectively. In addition, a detection window for the substances Δ9-Tetrahydrocannabinol, Cannabinol and Cannabigerol, in cerumen, was defined with success. In this case, Δ9-THC reached a maximum detection frame of up to fifteen days after smoking 0.5 g of marijuana cigarette. ANOVA-one-way analysis also indicated that the average earwax production of non-cannabis users differs significantly from the one of cannabis users (p = 0.048, <0.05). On the other hand, no significant difference was noticed between male and female users as the p value exceeded 0.05. In addition, no significant effect was observed on earwax production in regard to age, frequency and the last time of use (p > 0.05). These last three factors proved to have a significant impact on cannabinoids concentrations, since p values were less than 0.05.
Collapse
Affiliation(s)
| | - M S Constantinou
- Analytical Department, MC Analysis Centre LTD, 2563 Nicosia, Cyprus
| | - A P Louppis
- Analytical Department, MC Analysis Centre LTD, 2563 Nicosia, Cyprus
| | - A Christou
- Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
| | - I J Stavrou
- Department of Life Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | | |
Collapse
|
17
|
Bade R, Eaglesham G, Shimko KM, Mueller J. Quantification of new psychoactive substances in Australian wastewater utilising direct injection liquid chromatography coupled to tandem mass spectrometry. Talanta 2023; 251:123767. [DOI: 10.1016/j.talanta.2022.123767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
|
18
|
Enzymatic inhibitive determination of AB-Fubinaca and AB-Pinaca on screen printed carbon tetratiofulvalene electrodes modified with nanoparticles and carbon nanotubes. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Campos-Mañas MC, Van Wichelen N, Covaci A, van Nuijs ALN, Ort C, Béen F, Castiglioni S, Hernández F, Bijlsma L. Analytical investigation of cannabis biomarkers in raw urban wastewater to refine consumption estimates. WATER RESEARCH 2022; 223:119020. [PMID: 36049245 DOI: 10.1016/j.watres.2022.119020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Wastewater analysis of Δ9-tetrahydrocannabinol (THC) biomarkers can provide essential information on trends in cannabis consumption. Although analysis is mostly focused on the aqueous phase, previous studies have illustrated the need of improving the measurements of raw influent wastewater (IWW) considering also suspended solids. This is important for cannabis biomarkers, because a substantial part of them is expected to be found in the suspended solids due to their more lipophilic character compared with other metabolites/drugs included in these types of studies. However, it remains open to which extent trend estimates might be affected by solely analysing the liquid phase. To investigate this aspect, robust analytical methodologies are required to measure both the liquid and solid phases of IWW. In this work, we firstly tested liquid-liquid extraction (LLE) for THC and its major metabolites (THCOH, and THCCOOH). Using LLE, no filtration or centrifugation step was required for raw IWW analysis, and the three analytes were extracted from both the liquid and the solid phase simultaneously. In parallel, the raw IWW was centrifuged and the obtained solid and liquid phases were analyzed separately: the liquid phase by both LLE and solid phase extraction (SPE) for comparison of data, and the suspended solids by solid-liquid extraction (SLE). The separate analysis of both phases in a number of samples revealed that a significant amount of cannabis biomarkers (ranging from 42 to 90%) was found in the suspended solids. In addition, the total amount of cannabis biomarkers obtained by analysing raw IWW on the one hand, and by separate analysis of the liquid and the solid phases, on the other hand, was in good agreement. Data from this study show that the sole analysis of the liquid phase would lead to a notable underestimation of cannabis biomarkers concentrations in IWW.
Collapse
Affiliation(s)
- Marina Celia Campos-Mañas
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón, Spain
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | | | - Christoph Ort
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Frederic Béen
- KWR Water Research Institute, Nieuwegein, The Netherlands
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Milan, Italy
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón, Spain
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón, Spain.
| |
Collapse
|
20
|
Puiu M, Bala C. Affinity Assays for Cannabinoids Detection: Are They Amenable to On-Site Screening? BIOSENSORS 2022; 12:608. [PMID: 36005003 PMCID: PMC9405638 DOI: 10.3390/bios12080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022]
Abstract
Roadside testing of illicit drugs such as tetrahydrocannabinol (THC) requires simple, rapid, and cost-effective methods. The need for non-invasive detection tools has led to the development of selective and sensitive platforms, able to detect phyto- and synthetic cannabinoids by means of their main metabolites in breath, saliva, and urine samples. One may estimate the time passed from drug exposure and the frequency of use by corroborating the detection results with pharmacokinetic data. In this review, we report on the current detection methods of cannabinoids in biofluids. Fluorescent, electrochemical, colorimetric, and magnetoresistive biosensors will be briefly overviewed, putting emphasis on the affinity formats amenable to on-site screening, with possible applications in roadside testing and anti-doping control.
Collapse
Affiliation(s)
- Mihaela Puiu
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Camelia Bala
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
- Department of Analytical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| |
Collapse
|
21
|
Fan X, Zhang J, Fu X, Zhou B, Xu Z, Huang H, Han S, Li X. Analysis of synthetic cannabinoids in wastewater of major cities in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154267. [PMID: 35247413 DOI: 10.1016/j.scitotenv.2022.154267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/30/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Synthetic cannabinoids (SCs) could pose serious health risks to its users. It is necessary to monitor its community consumption. Wastewater-based epidemiology is a potentially useful approach in this regard. However, limited research has been conducted to investigate the occurrence of SCs in wastewater. In this study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was optimized to analyze 8 SCs and metabolites (in total 16 analytes) in wastewater. The limit of quantification for this method for certain analytes in wastewater was as low as 0.03 ng L-1. The validated method was used to examine the stability of the analytes under different conditions and to examine their occurrence in wastewater collected from 31 major cities across China. The overwhelming majority of the analytes were stable within 24 h, even at room temperature. However, 5-fluoro MDMB-PICA and MDMB-4en-PINACA butanoic acid metabolite showed significant degradation within 120 days even when stored at -20 °C or -80 °C. At least one cannabinoid or their metabolite was detected in 21 cities. In the city with the highest detection rate, at least one synthetic cannabinoid or metabolite was detected in 95% of samples of the city. MDMB-4en-PINACA butanoic acid metabolite had the highest detection frequency (in 13.4% of the samples). These results indicated that SCs were used in a significant number of Chinese cities. A few parent drugs (MDMB-4en-PINACA, ADB-BUTINACA, 5-fluoro MDMB-PICA, 4-fluoro MDMB-BUTINACA) were detected in a small fraction of wastewater samples, possibly due to release from manufacturing of these cannabinoids or illegal addition of electronic cigarettes.
Collapse
Affiliation(s)
- Xiaolin Fan
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Jianhe Zhang
- Foundation Department, Engineering University of People's Armed Police, 710086 Xi'an, PR China
| | - Xiaofang Fu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Bo Zhou
- Weiming Environmental Molecular Diagnostics Inc., 215500 Changshu, PR China
| | - Zeqiong Xu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Hongmei Huang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Sheng Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China.
| |
Collapse
|
22
|
Li X, Feng L, Fan X, Huang J, Du Y. Wastewater-based monitoring of 2-fluoro-deschloroketamine abuse from 2019 to 2021 in a southern Chinese province. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154191. [PMID: 35240165 DOI: 10.1016/j.scitotenv.2022.154191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
2-fluoro-deschloroketamine (FDCK) is a ketamine (KET) analog and new psychoactive substance that has appeared on the drug market in Europe and China in the past few years. The substance has been recently listed as a controlled drug by the narcotics control authority of China. In this work, FDCK and its metabolite nor-fluoro-deschloroketmaine (N-FDCK) in wastewater were analyzed for the first time to monitor FDCK abuse in a southern Chinese province that used to be a major producer and consumer of ketamine. For comparison, KET and its metabolite, nor-ketamine (N-KET) were monitored simultaneously. The concentration ratios between FDCK and N-FDCK were not statistically different from those of KET and N-KET. The average FDCK loads in the province in 2019 were higher than KET loads in most major cities in China in 2014 (when KET abuse hit its peak in the country). Rough estimation of FDCK and KET consumption revealed that FDCK was the predominant synthetic drug in the province in 2019, indicating rapid spread of the substance since its first appearance on the market. FDCK consumption decreased dramatically in 2020 and 2021, due to proactive actions by the local drug police before its listing as a controlled drug. Despite the dramatic decrease, FDCK was still the drug with greatest consumption by 2021, indicating that this substance persisted on the market even in the presence of forceful law enforcement. This finding also demonstrates that this substance may indeed have similar or even improved psychoactive effects relative to KET. Quick spread and persistence of FDCK demonstrated here indicates the urgent need to conduct wastewater-based monitoring of the abuse of the substance in other Chinese provinces and other countries.
Collapse
Affiliation(s)
- Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| | - Lizhou Feng
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiaolin Fan
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Jianwen Huang
- Weiming Environmental Molecular Diagnostics (Guangdong) Inc., 528300 Foshan, PR China
| | - Yueyin Du
- Weiming Environmental Molecular Diagnostics (Guangdong) Inc., 528300 Foshan, PR China
| |
Collapse
|
23
|
Kumar R, Adhikari S, Halden RU. Comparison of sorption models to predict analyte loss during sample filtration and evaluation of the impact of filtration on data quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152624. [PMID: 34963584 DOI: 10.1016/j.scitotenv.2021.152624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Although filtration has been a widely applied sample pretreatment step in environmental analytical chemistry, its impact on the quality of the data produced is often underappreciated in the scientific community. The objective of this literature review and modeling exercise was to examine nine existing sorption models with input parameters including hydrophobic interactions, pH, and structural features to predict the loss of analytes during wastewater filtration due to sorption to suspended solids and to assess the impact of filtration on data quality. Models' sorption estimates were further validated with a set of comprehensive metadata collected and analyzed from 20 peer-reviewed research papers that reported physical measurements of the suspended solids sorbed fraction of analytes obtained during wastewater filtration of contaminants of emerging concern (CECs). Data on the impact of filtration were obtained from the literature for 156 organic compounds reported both for the dissolved and particulate bound analyte mass. Approximately 40% of CECs (62/156) showed significant filtration loss (>20%) as a result of the removal of suspended solids during filtration. The loss of analyte mass due to filtration ranged from <1% for atenolol to >95% for acenaphthene. Collected literature data were then used to evaluate the utility of sorption modeling to predict analyte losses during sample pretreatment. Among nine sorption models, three were found to predict filtration loss of at least 70% of the CECs evaluated within a range of ±20% of the actually measured filtration loss of analytes, assuming a suspended solid concentration of 200 mg/L and a fraction of organic carbon in suspended solids of 0.43. Thus, sorption modeling can help reduce error when calculating mass loadings based on samples filtered before analysis. It is concluded that the estimates could be further improved by considering the following factors: ionic interactions, characteristics of the water-borne sorbents, and filtration media properties.
Collapse
Affiliation(s)
- Rahul Kumar
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA; OneWaterOneHealth, Non-profit Project of Arizona State University Foundation, Tempe, AZ 85287, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA; AquaVitas, LLC, 9260 E. Raintree Dr., Suite 130, Scottsdale, AZ 85260, USA.
| |
Collapse
|
24
|
Klingberg J, Keen B, Cawley A, Pasin D, Fu S. Developments in high-resolution mass spectrometric analyses of new psychoactive substances. Arch Toxicol 2022; 96:949-967. [PMID: 35141767 PMCID: PMC8921034 DOI: 10.1007/s00204-022-03224-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
The proliferation of new psychoactive substances (NPS) has necessitated the development and improvement of current practices for the detection and identification of known NPS and newly emerging derivatives. High-resolution mass spectrometry (HRMS) is quickly becoming the industry standard for these analyses due to its ability to be operated in data-independent acquisition (DIA) modes, allowing for the collection of large amounts of data and enabling retrospective data interrogation as new information becomes available. The increasing popularity of HRMS has also prompted the exploration of new ways to screen for NPS, including broad-spectrum wastewater analysis to identify usage trends in the community and metabolomic-based approaches to examine the effects of drugs of abuse on endogenous compounds. In this paper, the novel applications of HRMS techniques to the analysis of NPS is reviewed. In particular, the development of innovative data analysis and interpretation approaches is discussed, including the application of machine learning and molecular networking to toxicological analyses.
Collapse
Affiliation(s)
- Joshua Klingberg
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, 2000, Australia.
| | - Bethany Keen
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Adam Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, 2000, Australia
| | - Daniel Pasin
- Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Shanlin Fu
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
25
|
Pandopulos AJ, Simpson BS, White JM, Bade R, Gerber C. Partitioning of phytocannabinoids between faeces and water - Implications for wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150269. [PMID: 34536871 DOI: 10.1016/j.scitotenv.2021.150269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Evaluating consumption estimates for lipophilic drugs in wastewater has proven to be a challenge. A common feature for these compounds is that they are excreted in faeces and in conjugated form in urine. Limited research with no obvious experimental evidence has been conducted to investigate the degree to which faecal-bound chemical markers contribute towards mass loads in wastewater. Cannabis chemical markers, known as phytocannabinoids, have been suggested in literature to fall into this category. In this study, cannabis users (n = 9) and non-cannabis users (n = 5) were recruited and provided faecal and urine samples after using the substance. The common chemical markers of cannabis consumption, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), 11-hydroxy-Δ9-tetrahydrocannabinol (THC-OH), Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), were investigated. An extraction method was developed for the cannabis chemical markers in faecal matter and urine and analysis was performed by liquid chromatography-mass spectrometry. Participant samples were used to establish adsorption and desorption dissolution kinetics models and to assess the equilibrium between faeces and water for these compounds. Equilibration between phases were found to be fast (<5 min). THC-COOH, which is the primary metabolite used in wastewater studies, partitioned ~40% in water while the less polar metabolite and CBD remained largely associated with the particulate fraction. Faecal loads of both cannabis users and non-users affected the total measured amounts of cannabinoids in the aqueous phase. The implications for wastewater monitoring of lipophilic substances are discussed.
Collapse
Affiliation(s)
- Aaron J Pandopulos
- University of South Australia, Clinical and Health Sciences (CHS), Health and Biomedical Innovation, South Australia 5000, Australia
| | - Bradley S Simpson
- University of South Australia, Clinical and Health Sciences (CHS), Health and Biomedical Innovation, South Australia 5000, Australia
| | - Jason M White
- University of South Australia, Clinical and Health Sciences (CHS), Health and Biomedical Innovation, South Australia 5000, Australia
| | - Richard Bade
- University of South Australia, Clinical and Health Sciences (CHS), Health and Biomedical Innovation, South Australia 5000, Australia
| | - Cobus Gerber
- University of South Australia, Clinical and Health Sciences (CHS), Health and Biomedical Innovation, South Australia 5000, Australia.
| |
Collapse
|
26
|
Danila GM, Puiu M, Zamfir LG, Bala C. Early detection of cannabinoids in biological samples based on their affinity interaction with the growth hormone secretagogue receptor. Talanta 2022; 237:122905. [PMID: 34736642 DOI: 10.1016/j.talanta.2021.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
Herein we report on the early detection of cannabinoids in urine samples according to their affinity profiles in competitive assays with labelled ghrelin (GHR). We have demonstrated for the first time that cannabidiol (CBD) and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (carboxy-THC) act as extracellular ligands for the growth hormone secretagogue receptor (GHS-R1a), strongly promoting the binding of ghrelin (GHR), the endogenous ligand of GHS-R1a. The affinity profiles of CBD and carboxy-THC are significantly different from the profiles of synthetic GHR mimetics such as CJC-1295 or [D-Arg1-D-Phe5-D-Trp7,9-Leu11]-Substance P peptides, which are the most common interferents; the cannabinoids promoted the GHR/GHS-R1a interaction, while the ghrelin mimetics acted rather as competitive inhibitors. The analysis of 1:4 diluted urine samples proved that the proposed method displays good linearity and sensitivity in the range of 5-30 ng/mL for both CBD and carboxy-THC, whereas GHR mimetics display no interference at concentrations up to 100 ng/mL. The results were validated by comparison with the gas chromatography tandem mass spectrometry reference method. CBD may exert the same promoting effect on the interaction of GHS-R1a with other GHR mimetics listed as performance-enhancing substances.
Collapse
Affiliation(s)
- George Madalin Danila
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 030018, Bucharest, Romania; Romanian Doping Control Laboratory, 022103, Bucharest, Romania
| | - Mihaela Puiu
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 030018, Bucharest, Romania
| | - Lucian-Gabriel Zamfir
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 030018, Bucharest, Romania; ICUB, University of Bucharest, 050107, Bucharest, Romania
| | - Camelia Bala
- Laboratory for Quality Control and Process Monitoring, University of Bucharest, 030018, Bucharest, Romania; Department of Analytical Chemistry, University of Bucharest, 030018, Bucharest, Romania.
| |
Collapse
|
27
|
Pandopulos AJ, Simpson BS, Bade R, O'Brien JW, Yadav MK, White JM, Gerber C. A method and its application to determine the amount of cannabinoids in sewage sludge and biosolids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59652-59664. [PMID: 34143389 DOI: 10.1007/s11356-021-14921-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Xenobiotic cannabinoids (phyto and synthetic) are highly lipophilic compounds and have been shown to accumulate within the particulate fraction of wastewater. Limited research has been conducted to investigate the occurrence of cannabinoids in sewage sludge and/or biosolids. The analysis of excreted cannabinoids from sewage sludge or biosolids can provide information about community health, as well as potentially long-term environmental impacts. In this study, a liquid-liquid extraction method was developed for the extraction and detection method for 50 cannabinoids by liquid chromatography-mass spectrometry, including the cannabis urinary biomarker 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and a variety of different generation synthetic cannabinoids and their respective metabolites. Method validation assessed criteria including linearity, selectivity, recovery, and matrix effects. The method was applied to samples collected from a conventional activated sludge reactor treatment facility from various stages of the treatment process. Three cannabinoids were abundant in primary sludge including THC, THC-COOH, and CBD, where THC was the most ubiquitous with concentrations up to 3200 μg kg-1. Only THC and THC-COOH were detectable in aged biosolids. The detection of some cannabinoids in biosolids demonstrated that these compounds are stable throughout the treatment process.
Collapse
Affiliation(s)
- Aaron J Pandopulos
- Clinical and Health Sciences (CHS), Health and Biomedical Innovation, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5000, Australia
| | - Bradley S Simpson
- Clinical and Health Sciences (CHS), Health and Biomedical Innovation, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5000, Australia
| | - Richard Bade
- Clinical and Health Sciences (CHS), Health and Biomedical Innovation, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5000, Australia
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 20 Cornwall Street Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Meena K Yadav
- Allwater, Adelaide Services Alliance, 77 Wakefield Street, Adelaide, 5000, Australia
| | - Jason M White
- Clinical and Health Sciences (CHS), Health and Biomedical Innovation, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5000, Australia
| | - Cobus Gerber
- Clinical and Health Sciences (CHS), Health and Biomedical Innovation, University of South Australia, GPO Box 2471, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
28
|
Hehet P, Köke N, Zahn D, Frömel T, Rößler T, Knepper TP, Pütz M. Synthetic cannabinoid receptor agonists and their human metabolites in sewage water: Stability assessment and identification of transformation products. Drug Test Anal 2021; 13:1758-1767. [PMID: 34272823 DOI: 10.1002/dta.3129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022]
Abstract
Since their first appearance in 2008, synthetic cannabinoid receptor agonists (SCRAs) remain the most popular new psychoactive substances (NPS) in the EU. Following consumption, these drugs and their metabolites are urinary excreted and enter the sewage system enabling the application of wastewater-based epidemiology (WBE). Knowing the fate of target analytes in sewage water is essential for successful application of WBE. This study investigates the stability of several chemically diverse SCRAs and selected human metabolites under sewage conditions utilizing a combination of liquid chromatography-tandem mass spectrometry and high-resolution mass spectrometry (HRMS). Target analytes included SCRAs with indole (5F-PB-22, PB-22 pentanoic acid), indazole (AMB-FUBINACA, 5F-ADB, 5F-ADB dimethylbutanoic acid), carbazole (MDMB-CHMCZCA, EG-018), and γ-carboline (Cumyl-PeGaClone) chemical core structures representing most of the basic core structures that have occurred up to now. Stability tests were performed using wastewater effluent containing 5% activated sludge as inoculum to monitor degradation processes and formation of transformation products (TPs). The majority of investigated SCRAs, excluding the selected human metabolites, was recalcitrant to microbial degradation in sewage systems over a period of 29 days. Their stability was rather controlled by physico-chemical processes like sorption and hydrolysis. Considering a typical hydraulic in-sewer retention time of 24 h, the concentration of AMB-FUBINACA decreased by 90% thus representing the most unstable SCRA investigated in this study. Among the 10 newly identified TPs, three could be considered as relevant markers and should be included into future WBE studies to gain further insight into use and prevalence of SCRAs on the drug market.
Collapse
Affiliation(s)
- Petra Hehet
- Hochschule Fresenius gem. GmbH, Institute for Analytical Research, Idstein, Germany.,Federal Criminal Police Office (BKA), Forensic Science Institute, Wiesbaden, Germany
| | - Niklas Köke
- Hochschule Fresenius gem. GmbH, Institute for Analytical Research, Idstein, Germany
| | - Daniel Zahn
- Hochschule Fresenius gem. GmbH, Institute for Analytical Research, Idstein, Germany
| | - Tobias Frömel
- Hochschule Fresenius gem. GmbH, Institute for Analytical Research, Idstein, Germany
| | - Thorsten Rößler
- Federal Criminal Police Office (BKA), Forensic Science Institute, Wiesbaden, Germany
| | - Thomas P Knepper
- Hochschule Fresenius gem. GmbH, Institute for Analytical Research, Idstein, Germany
| | - Michael Pütz
- Hochschule Fresenius gem. GmbH, Institute for Analytical Research, Idstein, Germany.,Federal Criminal Police Office (BKA), Forensic Science Institute, Wiesbaden, Germany
| |
Collapse
|
29
|
Nahar L, Uddin SJ, Alam MA, Sarker SD. Extraction of naturally occurring cannabinoids: an update. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:228-241. [PMID: 32893413 DOI: 10.1002/pca.2987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Organic molecules that interact with the cannabinoid receptors are called cannabinoids, which can be endogenous, natural or synthetic compounds. They possess similar pharmacological properties as produced by the plant, Cannabis sativa L. Before cannabinoids can be analysed, they need to be extracted from the matrices. OBJECTIVE To review literature on the methods and protocols for the extraction of naturally occurring cannabinoids. METHODOLOGY An extensive literature search was performed incorporating several databases, notably, Web of Knowledge, PubMed and Google Scholar, and other relevant published materials. The keywords used in the search, in various combinations, with cannabinoids and extraction being present in all combinations, were Cannabis, hemp, cannabinoids, Cannabis sativa, marijuana, and extraction. RESULTS In addition to classical maceration with organic solvents, e.g. ethanol, pressurised solvent extraction, solvent heat reflux, Soxhlet extraction, supercritical fluid extraction, ultrasound-assisted extraction and microwave-assisted extraction, are routinely used nowadays for the extraction of cannabinoids from plant materials and cannabis consumer products. For the extraction of cannabinoids from biological samples, e.g. human blood, and also from food and beverages, and wastewater, solid-phase extraction and its variants, as well as liquid-liquid extraction are commonly used. Parameters for extraction can be optimised by response surface methodology or other mathematical modelling tools. There are at least six US patents on extraction of cannabinoids available to date. CONCLUSIONS Irrespective of the extraction method, extraction temperature, extraction time and extraction pressure play a vital role in overall yield of extraction. Solvent polarity can also be an important factor in some extraction methods.
Collapse
Affiliation(s)
- Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Olomouc, Czech Republic
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
30
|
Bade R, White JM, Chen J, Baz-Lomba JA, Been F, Bijlsma L, Burgard DA, Castiglioni S, Salgueiro-Gonzalez N, Celma A, Chappell A, Emke E, Steenbeek R, Wang D, Zuccato E, Gerber C. International snapshot of new psychoactive substance use: Case study of eight countries over the 2019/2020 new year period. WATER RESEARCH 2021; 193:116891. [PMID: 33582495 DOI: 10.1016/j.watres.2021.116891] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
There is considerable concern around the use of new psychoactive substances (NPS), but still little is known about how much they are really consumed. Analysis by forensics laboratories of seized drugs and post-mortem samples as well as hospital emergency rooms are the first line of identifying both 'new' NPS and those that are most dangerous to the community. However, NPS are not necessarily all seized by law enforcement agencies and only substances that contribute to fatalities or serious afflictions are recorded in post-mortem and emergency room samples. To gain a better insight into which NPS are most prevalent within a community, complementary data sources are required. In this work, influent wastewater was analysed from 14 sites in eight countries for a variety of NPS. All samples were collected over the 2019/2020 New Year period, a time which is characterized by celebrations and parties and therefore a time when more NPS may be consumed. Samples were extracted in the country of origin following a validated protocol and shipped to Australia for final analysis using two different mass spectrometric strategies. In total, more than 200 were monitored of which 16 substances were found, with geographical differences seen. This case study is the most comprehensive wastewater analysis study ever carried out for the identification of NPS and provides a starting point for future, ongoing monitoring of these substances.
Collapse
Affiliation(s)
- Richard Bade
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Jason M White
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Jingjing Chen
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | | | - Frederic Been
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Daniel A Burgard
- Department of Chemistry, University of Puget Sound, Tacoma, WA 98416, United States
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Noelia Salgueiro-Gonzalez
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Andrew Chappell
- Institute of Environmental Science and Research Limited (ESR), Christchurch Science Centre: 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Erik Emke
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Ruud Steenbeek
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, P. R. China, 116026
| | - Ettore Zuccato
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Cobus Gerber
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia.
| |
Collapse
|
31
|
Bijlsma L, Bade R, Been F, Celma A, Castiglioni S. Perspectives and challenges associated with the determination of new psychoactive substances in urine and wastewater - A tutorial. Anal Chim Acta 2020; 1145:132-147. [PMID: 33453874 DOI: 10.1016/j.aca.2020.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022]
Abstract
New psychoactive substances (NPS), often designed as (legal) substitutes to conventional illicit drugs, are constantly emerging in the drug market and being commercialized in different ways and forms. Their use continues to cause public health problems and is therefore of major concern in many countries. Monitoring NPS use, however, is arduous and different sources of information are required to get more insight of the prevalence and diffusion of NPS use. The determination of NPS in pooled urine and wastewater has shown great potential, adding a different and complementary light on this issue. However, it also presents analytical challenges and limitations that must be taken into account such as the complexity of the matrices, the high sensitivity and selectivity required in the analytical methods as a consequence of the low analyte concentrations as well as the rapid transience of NPS on the drug market creating a scenario with constantly moving analytical targets. Analytical investigation of NPS in pooled urine and wastewater is based on liquid chromatography hyphenated to mass spectrometry and can follow different strategies: target, suspect and non-target analysis. This work aims to discuss the advantages and disadvantages of the different data acquisition workflows and data exploration approaches in mass spectrometry, but also pays attention to new developments such as ion mobility and the use of in-silico prediction tools to improve the identification capabilities in high-complex samples. This tutorial gives an insight into this emerging topic of current concern, and describes the experience gathered within different collaborations and projects supported by key research articles and illustrative practical examples.
Collapse
Affiliation(s)
- L Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071, Castellón, Spain.
| | - R Bade
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, South Australia, 5000, Australia.
| | - F Been
- KWR Water Research Institute, Chemical Water Quality and Health, 3430 BB, Nieuwegein, the Netherlands
| | - A Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071, Castellón, Spain
| | - S Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, 20156, Milan, Italy
| |
Collapse
|
32
|
Dybowski MP, Dawidowicz AL, Typek R, Rombel M. Conversion of cannabidiol (CBD) to Δ9-tetrahydrocannabinol (Δ9-THC) during protein precipitations prior to plasma samples analysis by chromatography - Troubles with reliable CBD quantitation when acidic precipitation agents are applied. Talanta 2020; 220:121390. [PMID: 32928411 DOI: 10.1016/j.talanta.2020.121390] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022]
Abstract
The growing popularity of supplements containing cannabidiol (CBD), mainly CBD oils, in self-medication of humans and the increased interest in this compound in different preclinical and clinical trials stimulates the development of procedures of CBD analysis in plasma for the study of CBD pharmacology in people and animals or in establishing dose-therapeutic effect relationships of this compound. Preliminary removal of protein by its precipitation from plasma is still one of the willingly applied plasma sample preparation methods in many analytical procedures estimating plasma drug concentration, including CBD. The present paper shows that a significant amount of CBD transforms to Δ9-tetrahydrocannabinol (Δ9-THC) in a hot GC injection system when acidic precipitation agents, such as TFA, TCA, HClO4, H2SO4, ZnSO4 or CHCl3, are used for plasma protein precipitation. The transformation degree depends on the temperature of the GC injector, the concentration of the precipitation agent and the incubation time of plasma with the precipitating agent. At the CBD plasma concentration equal to 50 ng/ml, which is approximately the mean level for patients treated for epileptic syndromes, the CBD transformation degree can exceed 20%. For a reliable estimate of CBD in blood plasma, neutral precipitation agents (e.g. ACN, MeOH, acetone) should be used when plasma deproteinization precedes GC analysis. The presented results are important not only for analysts cooperating with pharmacologists and for medicine doctors examining the activity of CBD-containing drugs in the therapeutic process, but also for forensic scientists who may erroneously find innocent people guilty of using marijuana or its preparations.
Collapse
Affiliation(s)
- Michal P Dybowski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University in Lublin, 20-031, Lublin, Poland.
| | - Andrzej L Dawidowicz
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Rafal Typek
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Michal Rombel
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University in Lublin, 20-031, Lublin, Poland
| |
Collapse
|