1
|
Martins C, Carvalho LM, Cabral IM, Saúde L, Dreij K, Costa PM. A mechanistic study on the interaction effects between legacy and pollutants of emerging concern: A case study with B[a]P and diclofenac. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125189. [PMID: 39454814 DOI: 10.1016/j.envpol.2024.125189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
To study the intricate toxicological mechanisms triggered by exposure to mixed pollutants, we exposed zebrafish embryos to legacy and emerging pollutants through binary mixtures of benzo[a]pyrene (B[a]P) and diclofenac (DFC). The combination of next-generation transcriptomics and toxicopathology disclosed instances where exposure to mixtures did not attain the expected sum of acute effects of individual toxicants, indicating potential antagonism. Despite overall higher mortality in DFC treatments, the same antagonistic trend was noted in genotoxicity and molecular pathways related to RNA turnover, cell proliferation, apoptosis and cell-cycle control. The formation of oedemas in the heart cavity and yolk sac can be an adverse outcome (AO) resulting from exposure to DFC isolated or combined, whose potential key events (KEs) may involve cell cycle arrest and apoptosis via p53 and MAPK pathways. From the findings it can be hypothesised that, rather than genotoxicity, the molecular initiating event (MIE) maybe inflammation triggered by oxidative stress. Nonetheless, the exact role of ROS in the process needs further clarification. Impaired eye function by action of DFC and B[a]P combined may be another AO, in the case caused by ocular degeneration following the suppression of biologic processes and molecular functions involved in eye development and its functionalities, possibly linked to hindered regulation of the expression of hsf4 and cryaa. Altogether, toxicopathology suggests predominance of antagonistic effects, but its integration with mechanism suggests that interactions between DFC and B[a]P in environmentally-relevant concentrations that may lead to hindrance of key functions such as the control of inflammation and cell cycle. These outcomes suggest potentially severe implications for health and survival, in case of prolonged chronic exposure to combined toxicants.
Collapse
Affiliation(s)
- Carla Martins
- Associate Laboratory I4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal.
| | - Lara M Carvalho
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisboa, Portugal; Faculdade de Medicina, Universidade de Lisboa, 1649-035 Lisboa, Portugal
| | - Inês Moutinho Cabral
- Associate Laboratory I4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Leonor Saúde
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisboa, Portugal; Faculdade de Medicina, Universidade de Lisboa, 1649-035 Lisboa, Portugal
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Pedro M Costa
- Associate Laboratory I4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal.
| |
Collapse
|
2
|
Kanungo J, Sorkin BC, Krzykwa J, Mitchell CA, Embry M, Spencer P, Harry GJ, Cannon J, Liu F, McPherson CA, Gafner S, Westerink RH. Screening tools to evaluate the neurotoxic potential of botanicals: building a strategy to assess safety. Expert Opin Drug Metab Toxicol 2024; 20:629-646. [PMID: 38984683 PMCID: PMC11542175 DOI: 10.1080/17425255.2024.2378895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
AREAS COVERED This paper outlines the selection of NAMs, including in vitro assays using primary rat cortical neurons, zebrafish embryos, and Caenorhabditis elegans. These assays aim to assess neurotoxic endpoints such as neuronal activity and behavioral responses. Microelectrode array recordings of rat cortical neurons provide insights into the impact of botanical extracts on neuronal function, while the zebrafish embryos and C. elegans assays evaluate neurobehavioral responses. The paper also provides an account of the selection of botanical case studies based on expert judgment and existing neuroactivity/toxicity information. The proposed battery of assays will be tested with these case studies to evaluate their utility for neurotoxicity screening. EXPERT OPINION The complexity of botanicals necessitates the use of multiple NAMs for effective neurotoxicity screening. This paper discusses the evaluation of methodologies to develop a robust framework for evaluating botanical safety, including complex neuronal models and key neurodevelopmental process assays. It aims to establish a comprehensive screening framework.
Collapse
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079
| | - Barbara C. Sorkin
- Office of Dietary Supplements, Division of Program Coordination, Planning, and Strategic Initiatives, U.S. National Institutes of Health, Bethesda, MD
| | - Julie Krzykwa
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| | - Peter Spencer
- Department of Neurology, School of Medicine, Oregon Health & Science University
| | - G. Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jason Cannon
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079
| | - Christopher A. McPherson
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Stefan Gafner
- American Botanical Council, 6200 Manor Road, Austin, Texas 78723, United States
| | - Remco H.S. Westerink
- Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Busquet F, Laperrouze J, Jankovic K, Krsmanovic T, Ignasiak T, Leoni B, Apic G, Asole G, Guigó R, Marangio P, Palumbo E, Perez-Lluch S, Wucher V, Vlot AH, Anholt R, Mackay T, Escher BI, Grasse N, Huchthausen J, Massei R, Reemtsma T, Scholz S, Schüürmann G, Bondesson M, Cherbas P, Freedman JH, Glaholt S, Holsopple J, Jacobson SC, Kaufman T, Popodi E, Shaw JJ, Smoot S, Tennessen JM, Churchill G, von Clausbruch CC, Dickmeis T, Hayot G, Pace G, Peravali R, Weiss C, Cistjakova N, Liu X, Slaitas A, Brown JB, Ayerbe R, Cabellos J, Cerro-Gálvez E, Diez-Ortiz M, González V, Martínez R, Vives PS, Barnett R, Lawson T, Lee RG, Sostare E, Viant M, Grafström R, Hongisto V, Kohonen P, Patyra K, Bhaskar PK, Garmendia-Cedillos M, Farooq I, Oliver B, Pohida T, Salem G, Jacobson D, Andrews E, Barnard M, Čavoški A, Chaturvedi A, Colbourne JK, Epps DJT, Holden L, Jones MR, Li X, Müller F, Ormanin-Lewandowska A, Orsini L, Roberts R, Weber RJM, Zhou J, Chung ME, Sanchez JCG, Diwan GD, Singh G, Strähle U, Russell RB, Batista D, Sansone SA, Rocca-Serra P, Du Pasquier D, Lemkine G, Robin-Duchesne B, Tindall A. The Precision Toxicology Initiative. Toxicol Lett 2023:S0378-4274(23)00180-7. [PMID: 37211341 DOI: 10.1016/j.toxlet.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The goal of PrecisionTox is to overcome conceptual barriers to replacing traditional mammalian chemical safety testing by accelerating the discovery of evolutionarily conserved toxicity pathways that are shared by descent among humans and more distantly related animals. An international consortium is systematically testing the toxicological effects of a diverse set of chemicals on a suite of five model species comprising fruit flies, nematodes, water fleas, and embryos of clawed frogs and zebrafish along with human cell lines. Multiple forms of omics and comparative toxicology data are integrated to map the evolutionary origins of biomolecular interactions, which are predictive of adverse health effects, to major branches of the animal phylogeny. These conserved elements of adverse outcome pathways (AOPs) and their biomarkers are expect to provide mechanistic insight useful for regulating groups of chemicals based on their shared modes of action. PrecisionTox also aims to quantify risk variation within populations by recognizing susceptibility as a heritable trait that varies with genetic diversity. This initiative incorporates legal experts and collaborates with risk managers to address specific needs within European chemicals legislation, including the uptake of new approach methodologies (NAMs) for setting precise regulatory limits on toxic chemicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nico Grasse
- Helmholtz Centre for Environmental Research, DE
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sertori R, Zhang Y, Wiest DL. Zebrafish: A Tractable Model for Analysis of T Cell Development. Methods Mol Biol 2023; 2580:355-377. [PMID: 36374469 DOI: 10.1007/978-1-0716-2740-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While the zebrafish has for some time been regarded as a powerful model organism with which to study early events in hematopoiesis, recent evidence suggests that it also ideal for unraveling the molecular requirements for T cell development in the thymus. Like mammals, zebrafish possess an adaptive immune system, comprising B lymphocytes as well as both the γδ and αβ lineages of T cells, which develop in the thymus. Moreover, the molecular processes underlying T cell development in zebrafish appear to be remarkably conserved. Thus, findings in the zebrafish model will be of high relevance to the equivalent processes in mammals. Finally, molecular processes can be interrogated in zebrafish far more rapidly than is possible in mammals because the zebrafish possesses many unique advantages. Here, we describe these unique attributes and the methods by which they can be exploited to investigate the role of novel genes in T cell development.
Collapse
Affiliation(s)
- Robert Sertori
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Tan S, Wang W, Jie W, Liu J. FishExp: A comprehensive database and analysis platform for gene expression and alternative splicing of fish species. Comput Struct Biotechnol J 2022; 20:3676-3684. [PMID: 35891795 PMCID: PMC9293738 DOI: 10.1016/j.csbj.2022.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
The publicly archived RNA-seq data has grown exponentially, while its valuable information has not yet been fully discovered and utilized, such as alternative splicing and its integration with gene expression. This is especially true for fish species which play important roles in ecology, research and the food industry. Furthermore, there is a lack of online platform to analyze users’ new data individually and jointly with existing data for the comprehensive analysis of alternative splicing and gene expression. Here, we present FishExp, a web-based data platform covering gene expression and alternative splicing in 26,081 RNA-seq experiments from 44 fishes. It allows users to query the data in a variety of ways, including gene identifier/symbol, functional term, and BLAST alignment. Moreover, users can customize experiments and tools to perform differential/specific expression and alternative splicing analysis, co-expression and cross-species analysis. In addition, functional enrichment is provided to confer biological significance. Notably, users are allowed to submit their own data and perform various analyses using the new data alone or alongside existing data in FishExp. Results of retrieval and analysis can be visualized on the gene-, transcript- and splicing event-level webpage in a highly interactive and intuitive manner. All data in FishExp can be downloaded for more in-depth analysis. The manually curated sample information, uniform data processing and various tools make it efficient for users to gain new insights from these large data sets, facilitating scientific hypothesis generation. FishExp is freely accessible at https://bioinfo.njau.edu.cn/fishExp.
Collapse
Affiliation(s)
- Suxu Tan
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wencai Jie
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jinding Liu
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA.,Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
6
|
de Oliveira Eiras MI, Costa LSD, Barbieri E. Copper II oxide nanoparticles (CuONPs) alter metabolic markers and swimming activity in zebra-fish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109343. [PMID: 35421598 DOI: 10.1016/j.cbpc.2022.109343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
The present study aimed to compare the metabolic effects caused by using copper oxide nanoparticles with two distinct morphologies nanorods and nanosphere. The CuONPs in the form of nanorods were characterized in the order of 500 nm, on a scale of 20, 100, and 500 nm. Meanwhile, the nanosphere CuONPs were characterized in the order of 5 nm, on a 30 nm scale. The analysis of metabolic rate was performed using the closed respirometry technique, specific ammonia excretion, and swimming ability as biomarkers, the physiological effects on Danio rerio were investigated. For the experiments, 88 fish were used, exposed for 24 h at concentrations of 0, 50, 100, and 200 μg/L of copper oxide nanoparticles in the form of nanospheres and nanorods, respectively. The tests carried out with the nanorods demonstrated metabolic alterations in fish, with an increase of 294% and 321% in the metabolic rate at concentrations of 100 μg/L and 200 μg/L, respectively. Furthermore, there was a decrease in specific ammonia excretion by 34% and 83% and in swimming capacity by 34% and 55% at concentrations of 100 and 200 μg/L, respectively, when compared to the control. The tests performed with nanospheres did not show significant changes compared to the control. These experiments showed that different morphological structures of the same copper oxide nanoparticle caused different effects on fish metabolism. It is concluded that the characterization of nanoparticles is essential to understand their effects on fish, since their structural forms can cause different toxic effects on D. rerio.
Collapse
Affiliation(s)
- Maria Izabel de Oliveira Eiras
- Programa de pós Graduação do Instituto de Pesca - APTA-SAA/SP, Governo do Estado de São Paulo, 11990-000 Cananéia, São Paulo, Brazil
| | - Luelc Souza da Costa
- Instituto Federal de Educação, Ciências e Tecnologia de São Paulo - IFSP, 18707-150, Avaré, SP, Brazil
| | - Edison Barbieri
- Instituto de Pesca - APTA SAA/SP, Governo do Estado de São Paulo, 11990-000 Cananeia, SP, Brazil..
| |
Collapse
|
7
|
Aragona M, Porcino C, Guerrera MC, Montalbano G, Laurà R, Cometa M, Levanti M, Abbate F, Cobo T, Capitelli G, Vega JA, Germanà A. The BDNF/TrkB Neurotrophin System in the Sensory Organs of Zebrafish. Int J Mol Sci 2022; 23:ijms23052621. [PMID: 35269763 PMCID: PMC8910639 DOI: 10.3390/ijms23052621] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) was discovered in the last century, and identified as a member of the neurotrophin family. BDNF shares approximately 50% of its amino acid with other neurotrophins such as NGF, NT-3 and NT-4/5, and its linear amino acid sequences in zebrafish (Danio rerio) and human are 91% identical. BDNF functions can be mediated by two categories of receptors: p75NTR and Trk. Intriguingly, BDNF receptors were highly conserved in the process of evolution, as were the other NTs’ receptors. In this review, we update current knowledge about the distribution and functions of the BDNF-TrkB system in the sensory organs of zebrafish. In fish, particularly in zebrafish, the distribution and functions of BDNF and TrkB in the brain have been widely studied. Both components of the system, associated or segregated, are also present outside the central nervous system, especially in sensory organs including the inner ear, lateral line system, retina, taste buds and olfactory epithelium.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Gabriel Capitelli
- Faculty of Medical Sciences, University of Buenos Aires, Viamonte 1053, CABA, Buenos Aires 1056, Argentina;
| | - José A. Vega
- Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain;
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
- Correspondence:
| |
Collapse
|
8
|
Adewoyin M, Teoh SL, Azmai MNA, Nasruddin NS. Exploiting the Differences Between Zebrafish and Medaka in Biological Research: A Complementary Approach. PHARMACOPHORE 2022. [DOI: 10.51847/a5qhctavdz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Ebner JN. Trends in the Application of "Omics" to Ecotoxicology and Stress Ecology. Genes (Basel) 2021; 12:1481. [PMID: 34680873 PMCID: PMC8535992 DOI: 10.3390/genes12101481] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Our ability to predict and assess how environmental changes such as pollution and climate change affect components of the Earth's biome is of paramount importance. This need positioned the fields of ecotoxicology and stress ecology at the center of environmental monitoring efforts. Advances in these interdisciplinary fields depend not only on conceptual leaps but also on technological advances and data integration. High-throughput "omics" technologies enabled the measurement of molecular changes at virtually all levels of an organism's biological organization and thus continue to influence how the impacts of stressors are understood. This bibliometric review describes literature trends (2000-2020) that indicate that more different stressors than species are studied each year but that only a few stressors have been studied in more than two phyla. At the same time, the molecular responses of a diverse set of non-model species have been investigated, but cross-species comparisons are still rare. While transcriptomics studies dominated until 2016, a shift towards proteomics and multiomics studies is apparent. There is now a wealth of data at functional omics levels from many phylogenetically diverse species. This review, therefore, addresses the question of how to integrate omics information across species.
Collapse
Affiliation(s)
- Joshua Niklas Ebner
- Spring Ecology Research Group, Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Hong Y, Luo Y. Zebrafish Model in Ophthalmology to Study Disease Mechanism and Drug Discovery. Pharmaceuticals (Basel) 2021; 14:ph14080716. [PMID: 34451814 PMCID: PMC8400593 DOI: 10.3390/ph14080716] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Visual impairment and blindness are common and seriously affect people’s work and quality of life in the world. Therefore, the effective therapies for eye diseases are of high priority. Zebrafish (Danio rerio) is an alternative vertebrate model as a useful tool for the mechanism elucidation and drug discovery of various eye disorders, such as cataracts, glaucoma, diabetic retinopathy, age-related macular degeneration, photoreceptor degeneration, etc. The genetic and embryonic accessibility of zebrafish in combination with a behavioral assessment of visual function has made it a very popular model in ophthalmology. Zebrafish has also been widely used in ocular drug discovery, such as the screening of new anti-angiogenic compounds or neuroprotective drugs, and the oculotoxicity test. In this review, we summarized the applications of zebrafish as the models of eye disorders to study disease mechanism and investigate novel drug treatments.
Collapse
Affiliation(s)
| | - Yan Luo
- Correspondence: ; Tel.: +86-020-87335931
| |
Collapse
|
11
|
A Confocal Microscopic Study of Gene Transfer into the Mesencephalic Tegmentum of Juvenile Chum Salmon, Oncorhynchus keta, Using Mouse Adeno-Associated Viral Vectors. Int J Mol Sci 2021; 22:ijms22115661. [PMID: 34073457 PMCID: PMC8199053 DOI: 10.3390/ijms22115661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022] Open
Abstract
To date, data on the presence of adenoviral receptors in fish are very limited. In the present work, we used mouse recombinant adeno-associated viral vectors (rAAV) with a calcium indicator of the latest generation GCaMP6m that are usually applied for the dorsal hippocampus of mice but were not previously used for gene delivery into fish brain. The aim of our work was to study the feasibility of transduction of rAAV in the mouse hippocampus into brain cells of juvenile chum salmon and subsequent determination of the phenotype of rAAV-labeled cells by confocal laser scanning microscopy (CLSM). Delivery of the gene in vivo was carried out by intracranial injection of a GCaMP6m-GFP-containing vector directly into the mesencephalic tegmentum region of juvenile (one-year-old) chum salmon, Oncorhynchus keta. AAV incorporation into brain cells of the juvenile chum salmon was assessed at 1 week after a single injection of the vector. AAV expression in various areas of the thalamus, pretectum, posterior-tuberal region, postcommissural region, medial and lateral regions of the tegmentum, and mesencephalic reticular formation of juvenile O. keta was evaluated using CLSM followed by immunohistochemical analysis of the localization of the neuron-specific calcium binding protein HuCD in combination with nuclear staining with DAPI. The results of the analysis showed partial colocalization of cells expressing GCaMP6m-GFP with red fluorescent HuCD protein. Thus, cells of the thalamus, posterior tuberal region, mesencephalic tegmentum, cells of the accessory visual system, mesencephalic reticular formation, hypothalamus, and postcommissural region of the mesencephalon of juvenile chum salmon expressing GCaMP6m-GFP were attributed to the neuron-specific line of chum salmon brain cells, which indicates the ability of hippocampal mammal rAAV to integrate into neurons of the central nervous system of fish with subsequent expression of viral proteins, which obviously indicates the neuronal expression of a mammalian adenoviral receptor homolog by juvenile chum salmon neurons.
Collapse
|
12
|
Shahzad U, Taccone MS, Kumar SA, Okura H, Krumholtz S, Ishida J, Mine C, Gouveia K, Edgar J, Smith C, Hayes M, Huang X, Derry WB, Taylor MD, Rutka JT. Modeling human brain tumors in flies, worms, and zebrafish: From proof of principle to novel therapeutic targets. Neuro Oncol 2021; 23:718-731. [PMID: 33378446 DOI: 10.1093/neuonc/noaa306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For decades, cell biologists and cancer researchers have taken advantage of non-murine species to increase our understanding of the molecular processes that drive normal cell and tissue development, and when perturbed, cause cancer. The advent of whole-genome sequencing has revealed the high genetic homology of these organisms to humans. Seminal studies in non-murine organisms such as Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio identified many of the signaling pathways involved in cancer. Studies in these organisms offer distinct advantages over mammalian cell or murine systems. Compared to murine models, these three species have shorter lifespans, are less resource intense, and are amenable to high-throughput drug and RNA interference screening to test a myriad of promising drugs against novel targets. In this review, we introduce species-specific breeding strategies, highlight the advantages of modeling brain tumors in each non-mammalian species, and underscore the successes attributed to scientific investigation using these models. We conclude with an optimistic proposal that discoveries in the fields of cancer research, and in particular neuro-oncology, may be expedited using these powerful screening tools and strategies.
Collapse
Affiliation(s)
- Uswa Shahzad
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Michael S Taccone
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sachin A Kumar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Hidehiro Okura
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Stacey Krumholtz
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Joji Ishida
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Coco Mine
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Kyle Gouveia
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Julia Edgar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Christian Smith
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Madeline Hayes
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Xi Huang
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - W Brent Derry
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - James T Rutka
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Gu Q, Kanungo J. Effect of ketamine on gene expression in zebrafish embryos. J Appl Toxicol 2021; 41:2083-2089. [PMID: 34002392 DOI: 10.1002/jat.4199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 01/21/2023]
Abstract
Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist. Used as an anesthetic, potential neurotoxic and cardiotoxic effects of ketamine in animal models have been reported. The underlying mechanisms of ketamine-induced toxicity are not clear. The zebrafish is an ideal model for toxicity assays because of its predictive capability in chemical testing, which compares well with that of mammalian models. To gain insight into potential mechanisms of ketamine effects, we performed real-time quantitative polymerase chain reaction-based gene expression array analyses. Gene expression analysis was conducted for multiple genes (a total of 84) related to 10 major signaling pathways including the transforming growth factor β (TGFβ), Wingless and Int-1 (Wnt), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), Janus kinase/signal transducers and activators of transcription (JAK/STAT), p53, Notch, Hedgehog, peroxisome proliferator-activated receptor (PPAR), oxidative stress, and hypoxia pathways. Our results show that ketamine altered the expression of specific genes related to hypoxia, p53, Wnt, Notch, TGFβ, PPAR, and oxidative stress pathways. Thus, we can further focus on these specific pathways to elucidate the mechanisms by which ketamine elicits a toxic response.
Collapse
Affiliation(s)
- Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
14
|
Alla LNR, Monshi M, Siddiqua Z, Shields J, Alame K, Wahls A, Akemann C, Meyer D, Crofts EJ, Saad F, El-Nachef J, Antoon M, Nakhle R, Hijazi N, Hamid M, Gurdziel K, McElmurry SP, Kashian DR, Baker TR, Pitts DK. Detection of endocrine disrupting chemicals in Danio rerio and Daphnia pulex: Step-one, behavioral screen. CHEMOSPHERE 2021; 271:129442. [PMID: 33476875 DOI: 10.1016/j.chemosphere.2020.129442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 05/27/2023]
Abstract
Anthropogenic surface and ground water contamination by chemicals is a global problem, and there is an urgent need to develop tools to identify and elucidate biological effects. Contaminants of emerging concern (CECs) are not typically monitored or regulated and those with known or suspected endocrine disrupting potential have been termed endocrine disrupting chemicals (EDCs). Many CECs are known to be neurotoxic (e.g., insecticides) and many are incompletely characterized. Behavioral responses can identify chemicals with neuroactive properties, which can be relevant to EDC mechanisms (e.g., neuroendocrine disturbances). Two freshwater species, Daphnia pulex and Danio rerio, were evaluated for swimming behavior alterations resulting from 24-hr exposure to 9 CECs: triclosan, triclocarban, chlorpyrifos, dieldrin, 4-nonylphenol, bisphenol-A, atrazine, metformin, and estrone. This is the first step in the development of a bioassay for detecting estrogenic and/or anti-androgenic activity with the goal to evaluate complex mixtures of uncharacterized contaminants in water samples. The second step, described in a subsequent report, examines transcriptome alterations following chemical exposure. Significant differences in the swimming behavior response and sensitivity were found across chemicals within a species and across species for a given chemical in this unique optical bioassay system. In the concentration ranges studied, significant behavioral alterations were detected for 6 of 9 CECs for D. pulex and 4 of 9 CECs for D. rerio. These results underscore the utility of this bioassay to identify behavioral effects of sublethal concentrations of CECs before exploration of transcriptomic alterations for EDC detection.
Collapse
Affiliation(s)
- Lakshmi Neha Reddy Alla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Manahil Monshi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Zoha Siddiqua
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jeremiah Shields
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Karim Alame
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Andrea Wahls
- Department of Civil and Environmental Engineering, College of Engineering, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Danielle Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Emily J Crofts
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fadie Saad
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Judy El-Nachef
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Merna Antoon
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Raquel Nakhle
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Nemer Hijazi
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Maha Hamid
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | | | - Shawn P McElmurry
- Department of Civil and Environmental Engineering, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Donna R Kashian
- Department of Biological Sciences, College of Liberal Arts, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
15
|
Penha LCDC, Rola RC, Martinez CBDR, Martins CDMG. Effects of anti-inflammatory diclofenac assessed by toxicity tests and biomarkers in adults and larvae of Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108955. [PMID: 33338643 DOI: 10.1016/j.cbpc.2020.108955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022]
Abstract
The entrance of the anti-inflammatory diclofenac in water bodies is a consequence of inappropriate use, incorrect disposal, and inefficiency of wastewater treatment plants (WWTPs) in removing this drug from sewage, among others. Effects of diclofenac on non-target aquatic organisms still need to be clarified. The objective of this work was to evaluate the toxic effects of the diclofenac on larvae and adults of Danio rerio. The LC50 values were 5.49 mg/L and 5.22 mg/L for the adult and larvae, respectively. A set of biochemical and genotoxic biomarkers were evaluated in fish exposed to an environmentally relevant concentration of 2 μg/L DCF and a no observed effect concentration (NOEC) of 3 mg/L diclofenac. At the NOEC, an increase in activities of glutathione-S-transferase (GST) enzyme and an increase in ATP binding cassette (ABC) transporters in gills of adult fish was observed; also, an increase in lipoperoxidation (LPO) was seen in the gills of adults and whole larvae. These results indicate that diclofenac activates the fish detoxification processes and may affect fish health.
Collapse
Affiliation(s)
- Larissa Cristine de Carvalho Penha
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia de ambientes Aquáticos Continentais, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Regina Coimbra Rola
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| | - Claudia Bueno Dos Reis Martinez
- Universidade Estadual de Londrina, Departamento de Ciências Fisiológicas, Rodovia Celso Garcia Cid - PR 445 Km 380 Cx. Postal 10.011 - Campus Universitário, PR 86057-970, Brazil.
| | - Camila de Martinez Gaspar Martins
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia de ambientes Aquáticos Continentais, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil; Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
16
|
Orbán L, Saju JM, Tzung KW, Liew WC. Masculinization of Zebrafish Through Partial Depletion of Primordial Germ Cells by Injecting Diluted Morpholino Oligonucleotides into Embryos. Methods Mol Biol 2021; 2218:49-60. [PMID: 33606222 DOI: 10.1007/978-1-0716-0970-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The regulation of reproduction in zebrafish, the prime model of fish research, is not fully understood. An efficient tool to gain a better understanding of this complicated process is utilization of severely sex-biased families or groups. Here, we describe a method for partial depletion of primordial germ cells (PGCs) that leads to eventual masculinization of zebrafish. The technique is based on injecting early embryos with diluted morpholino oligonucleotides that temporarily interfere with the production of Dead end (Dnd), an RNA-binding protein essential for PGC survival. In addition, we also propose the use of eviscerated trunk, as a suitable alternative for examining gonadal expression in juvenile zebrafish.
Collapse
Affiliation(s)
- László Orbán
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore. .,Frontline Fish Genomics Research Group, Department of Animal Sciences, Georgikon Campus, Szent István University, Keszthely, Hungary. .,Centre for Comparative Genomics, Murdoch University, Murdoch, WA, Australia.
| | - Jolly M Saju
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Keh-Weei Tzung
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
| | - Woei Chang Liew
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| |
Collapse
|
17
|
Identification of Individual Zebrafish ( Danio rerio): A Refined Protocol for VIE Tagging Whilst Considering Animal Welfare and the Principles of the 3Rs. Animals (Basel) 2021; 11:ani11030616. [PMID: 33652779 PMCID: PMC7996851 DOI: 10.3390/ani11030616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
In aquatic ecology, studies have commonly employed a tagging technique known as visible implant elastomer (VIE). This method has not been widely adopted by the zebrafish research community and also lacks refinement with regard to animal welfare. The current paper introduces a new VIE tagging protocol, with the aim of improving existing tagging techniques by placing particular emphasis on the Three Rs. To improve animal welfare and fish survival, we added the use of an analgesic compound (lidocaine) through the marking procedure, followed by after-treatment with antiseptics (melaleuca, aloe vera, and PVP-I as active ingredients) to improve tissue regeneration and healing. The newly improved protocol has been quantitatively evaluated on different populations and age groups of zebrafish. This study will be useful to the scientific zebrafish community and to the wider field including biologist and aquarists, especially in consideration of animal welfare, where tagging techniques are considered as a potential noxious stimulus for fish.
Collapse
|
18
|
Juan-García A, Bind MA, Engert F. Larval zebrafish as an in vitro model for evaluating toxicological effects of mycotoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110909. [PMID: 32800244 PMCID: PMC7431674 DOI: 10.1016/j.ecoenv.2020.110909] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 05/03/2023]
Abstract
The presence of mycotoxins in food has created concern. Mycotoxin prevalence in our environment has changed in the last few years maybe due to climatic and other environmental changes. Evidence has emerged from in vitro and in vivo models: some mycotoxins have been found to be potentially carcinogenic, embryogenically harmful, teratogenic, and to generate nephrotoxicity. The risk assessment of exposures to mycotoxins at early life stages became mandatory. In this regard, the effects of toxic compounds on zebrafish have been widely studied, and more recently, mycotoxins have been tested with respect to their effects on developmental and teratogenic effects in this model system, which offers several advantages as it is an inexpensive and an accessible vertebrate model to study developmental toxicity. External post-fertilization and quick maturation make it sensitive to environmental effects and facilitate the detection of endpoints such as morphological deformities, time of hatching, and behavioral responses. Therefore, there is a potential for larval zebrafish to provide new insights into the toxicological effects of mycotoxins. We provide an overview of recent mycotoxin toxicological research in zebrafish embryos and larvae, highlighting its usefulness to toxicology and discuss the strengths and limitations of this model system.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, USA.
| | - Marie-Abèle Bind
- Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, USA
| |
Collapse
|
19
|
Danio Rerio as Model Organism for Adenoviral Vector Evaluation. Genes (Basel) 2019; 10:genes10121053. [PMID: 31861246 PMCID: PMC6947401 DOI: 10.3390/genes10121053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022] Open
Abstract
Viral vector use is wide-spread in the field of gene therapy, with new clinical trials starting every year for different human pathologies and a growing number of agents being approved by regulatory agencies. However, preclinical testing is long and expensive, especially during the early stages of development. Nowadays, the model organism par excellence is the mouse (Mus musculus), and there are few investigations in which alternative models are used. Here, we assess the possibility of using zebrafish (Danio rerio) as an in vivo model for adenoviral vectors. We describe how E1/E3-deleted adenoviral vectors achieve efficient transduction when they are administered to zebrafish embryos via intracranial injection. In addition, helper-dependent (high-capacity) adenoviral vectors allow sustained transgene expression in this organism. Taking into account the wide repertoire of genetically modified zebrafish lines, the ethical aspects, and the affordability of this model, we conclude that zebrafish could be an efficient alternative for the early-stage preclinical evaluation of adenoviral vectors.
Collapse
|
20
|
Hein S, Hassel D, Kararigas G. The Zebrafish ( Danio rerio) Is a Relevant Model for Studying Sex-Specific Effects of 17β-Estradiol in the Adult Heart. Int J Mol Sci 2019; 20:ijms20246287. [PMID: 31847081 PMCID: PMC6940842 DOI: 10.3390/ijms20246287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases are a major cause of morbidity and mortality, and there are significant sex differences therein. However, the underlying mechanisms are poorly understood. The steroid hormone 17β-estradiol (E2) is thought to play a major role in cardiovascular sex differences and to be protective, but this may not hold true for males. We aimed at assessing whether the zebrafish is an appropriate model for the study of E2 effects in the heart. We hypothesized that E2 regulates the cardiac contractility of adult zebrafish in a sex-specific manner. Male and female zebrafish were treated with vehicle (control) or E2 and the cardiac contractility was measured 0, 4, 7 and 14 days after treatment initiation using echocardiography. There was no significant effect on the heart rate by E2. Notably, there was a significant decrease in the ejection fraction of male zebrafish treated with E2 compared with controls. By contrast, there was no major difference in the ejection fraction between the two female groups. The dramatic effect in male zebrafish occurred as early as 4 days post treatment initiation. Although there was no significant difference in stroke volume and cardiac output between the two male groups, these were significantly higher in female zebrafish treated with E2 compared with controls. Gene expression analysis revealed that the levels of estrogen receptors were comparable among all groups. In conclusion, our data demonstrate that the adult zebrafish heart robustly responds to E2 and this occurs in a sex-specific manner. Given the benefits of using zebrafish as a model, new targets may be identified for the development of novel cardiovascular therapies for male and female patients. This would contribute towards the realization of personalized medicine.
Collapse
Affiliation(s)
- Selina Hein
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - David Hassel
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Georgios Kararigas
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-525355
| |
Collapse
|
21
|
Horak V, Palanova A, Cizkova J, Miltrova V, Vodicka P, Kupcova Skalnikova H. Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma. Genes (Basel) 2019; 10:E915. [PMID: 31717496 PMCID: PMC6895830 DOI: 10.3390/genes10110915] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
National cancer databases document that melanoma is the most aggressive and deadly cutaneous malignancy with worldwide increasing incidence in the Caucasian population. Around 10% of melanomas occur in families. Several germline mutations were identified that might help to indicate individuals at risk for preventive interventions and early disease detection. More than 50% of sporadic melanomas carry mutations in Ras/Raf/mitogen-activated protein kinase (MAPK/MEK) pathway, which may represent aims of novel targeted therapies. Despite advances in targeted therapies and immunotherapies, the outcomes in metastatic tumor are still unsatisfactory. Here, we review animal models that help our understanding of melanoma development and treatment, including non-vertebrate, mouse, swine, and other mammal models, with an emphasis on those with spontaneously developing melanoma. Special attention is paid to the melanoma-bearing Libechov minipig (MeLiM). This original swine model of hereditary metastatic melanoma enables studying biological processes underlying melanoma progression, as well as spontaneous regression. Current histological, immunohistochemical, biochemical, genetic, hematological, immunological, and skin microbiome findings in the MeLiM model are summarized, together with development of new therapeutic approaches based on tumor devitalization. The ongoing study of molecular and immunological base of spontaneous regression in MeLiM model has potential to bring new knowledge of clinical importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Helena Kupcova Skalnikova
- Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Laboratory of Applied Proteome Analyses and Research Center PIGMOD, 277 21 Libechov, Czech Republic; (V.H.); (A.P.); (J.C.); (V.M.); (P.V.)
| |
Collapse
|
22
|
Uechi T, Kenmochi N. Zebrafish Models of Diamond-Blackfan Anemia: A Tool for Understanding the Disease Pathogenesis and Drug Discovery. Pharmaceuticals (Basel) 2019; 12:ph12040151. [PMID: 31600948 PMCID: PMC6958429 DOI: 10.3390/ph12040151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome characterized by red blood cell aplasia. Currently, mutations in 19 ribosomal protein genes have been identified in patients. However, the pathogenic mechanism of DBA remains unknown. Recently, several DBA models were generated in zebrafish (Danio rerio) to elucidate the molecular pathogenesis of disease and to explore novel treatments. Zebrafish have strong advantages in drug discovery due to their rapid development and transparency during embryogenesis and their applicability to chemical screens. Together with mice, zebrafish have now become a powerful tool for studying disease mechanisms and drug discovery. In this review, we introduce recent advances in DBA drug development and discuss the usefulness of zebrafish as a disease model.
Collapse
Affiliation(s)
- Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
23
|
Robinson BL, Gu Q, Tryndyak V, Ali SF, Dumas M, Kanungo J. Nifedipine toxicity is exacerbated by acetyl l-carnitine but alleviated by low-dose ketamine in zebrafish in vivo. J Appl Toxicol 2019; 40:257-269. [PMID: 31599005 DOI: 10.1002/jat.3901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
Calcium channel blocker (CCB) poisoning is a common and sometimes life-threatening emergency. Our previous studies have shown that acetyl l-carnitine (ALCAR) prevents cardiotoxicity and developmental toxicity induced by verapamil, a CCB used to treat patients with hypertension. Here, we tested whether toxicities of nifedipine, a dihydropyridine CCB used to treat hypertension, can also be mitigated by co-treatment with ALCAR. In the zebrafish embryos at three different developmental stages, nifedipine induced developmental toxicity with pericardial sac edema in a dose-dependent manner, which were surprisingly exacerbated with ALCAR co-treatment. Even with low-dose nifedipine (5 μm), when the pericardial sac looked normal, ALCAR co-treatment showed pericardial sac edema. We hypothesized that toxicity by nifedipine, a vasodilator, may be prevented by ketamine, a known vasoconstrictor. Nifedipine toxicity in the embryos was effectively prevented by co-treatment with low (subanesthetic) doses (25-100 μm added to the water) of ketamine, although a high dose of ketamine (2 mm added to the water) partially prevented the toxicity.As expected of a CCB, nifedipine either in the presence or absence of ketamine-reduced metabolic reactive oxygen species (ROS), a downstream product of calcium signaling, in the rapidly developing digestive system. However, nifedipine induced ROS in the trunk region that showed significantly stunted growth indicating that the tissues under stress potentially produced pathologic ROS. To the best of our knowledge, these studies for the first time show that nifedipine and the dietary supplement ALCAR together induce adverse effects while providing evidence on the therapeutic efficacy of subanesthetic doses of ketamine against nifedipine toxicity in vivo.
Collapse
Affiliation(s)
- Bonnie L Robinson
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| | - Qiang Gu
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Syed F Ali
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| | | | - Jyotshna Kanungo
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
24
|
Brenet A, Hassan-Abdi R, Somkhit J, Yanicostas C, Soussi-Yanicostas N. Defective Excitatory/Inhibitory Synaptic Balance and Increased Neuron Apoptosis in a Zebrafish Model of Dravet Syndrome. Cells 2019; 8:cells8101199. [PMID: 31590334 PMCID: PMC6829503 DOI: 10.3390/cells8101199] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/04/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
Dravet syndrome is a type of severe childhood epilepsy that responds poorly to current anti-epileptic drugs. In recent years, zebrafish disease models with Scn1Lab sodium channel deficiency have been generated to seek novel anti-epileptic drug candidates, some of which are currently undergoing clinical trials. However, the spectrum of neuronal deficits observed following Scn1Lab depletion in zebrafish larvae has not yet been fully explored. To fill this gap and gain a better understanding of the mechanisms underlying neuron hyperexcitation in Scn1Lab-depleted larvae, we analyzed neuron activity in vivo using combined local field potential recording and transient calcium uptake imaging, studied the distribution of excitatory and inhibitory synapses and neurons as well as investigated neuron apoptosis. We found that Scn1Lab-depleted larvae displayed recurrent epileptiform seizure events, associating massive synchronous calcium uptakes and ictal-like local field potential bursts. Scn1Lab-depletion also caused a dramatic shift in the neuronal and synaptic balance toward excitation and increased neuronal death. Our results thus provide in vivo evidence suggesting that Scn1Lab loss of function causes neuron hyperexcitation as the result of disturbed synaptic balance and increased neuronal apoptosis.
Collapse
Affiliation(s)
- Alexandre Brenet
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.
| | | | - Julie Somkhit
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.
| | | | | |
Collapse
|
25
|
Black Raspberry ( Rubus coreanus Miquel) Promotes Browning of Preadipocytes and Inguinal White Adipose Tissue in Cold-Induced Mice. Nutrients 2019; 11:nu11092164. [PMID: 31509935 PMCID: PMC6769844 DOI: 10.3390/nu11092164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
The alteration of white adipose tissue (WAT) "browning", a change of white into beige fat, has been considered as a new therapeutic strategy to treat obesity. In this study, we investigated the browning effect of black raspberry (Rubus coreanus Miquel) using in vitro and in vivo models. Black raspberry water extract (BRWE) treatment inhibited lipid accumulation in human mesenchymal stem cells (hMSCs) and zebrafish. To evaluate the thermogenic activity, BRWE was orally administered for 2 weeks, and then, the mice were placed in a 4 °C environment. As a result, BRWE treatment increased rectal temperature and inguinal WAT (iWAT) thermogenesis by inducing the expression of beige fat specific markers such as PR domain zinc-finger protein 16 (PRDM16), uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), and t-box protein 1 (TBX1) in cold-exposed mice. Furthermore, ellagic acid (EA), a constituent of BRWE, markedly promoted beige specific markers: UCP1, PGC1α, TBX1, and nuclear respiratory factor 1 in beige differentiation media (DM)-induced 3T3-L1 adipocytes. Our findings indicate that BRWE can promote beige differentiation/activation, and EA is the active compound responsible for such effect. Thus, we suggest the nature-derived agents BRWE and EA as potential agents for obesity treatment.
Collapse
|
26
|
Allen TA, Asad D, Amu E, Hensley MT, Cores J, Vandergriff A, Tang J, Dinh PU, Shen D, Qiao L, Su T, Hu S, Liang H, Shive H, Harrell E, Campbell C, Peng X, Yoder JA, Cheng K. Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential. J Cell Sci 2019; 132:jcs231563. [PMID: 31409692 PMCID: PMC6771143 DOI: 10.1242/jcs.231563] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Metastasis accounts for the majority of all cancer deaths, yet the process remains poorly understood. A pivotal step in the metastasis process is the exiting of tumor cells from the circulation, a process known as extravasation. However, it is unclear how tumor cells extravasate and whether multicellular clusters of tumor cells possess the ability to exit as a whole or must first disassociate. In this study, we use in vivo zebrafish and mouse models to elucidate the mechanism tumor cells use to extravasate. We found that circulating tumor cells exit the circulation using the recently identified extravasation mechanism, angiopellosis, and do so as both clusters and individual cells. We further show that when melanoma and cervical cancer cells utilize this extravasation method to exit as clusters, they exhibit an increased ability to form tumors at distant sites through the expression of unique genetic profiles. Collectively, we present a new model for tumor cell extravasation of both individual and multicellular circulating tumor cells.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tyler A Allen
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Dana Asad
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| | - Emmanuel Amu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - M Taylor Hensley
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Jhon Cores
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| | - Adam Vandergriff
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Deliang Shen
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Li Qiao
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Teng Su
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Hongxia Liang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Heather Shive
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Erin Harrell
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Connor Campbell
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27607, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| |
Collapse
|
27
|
Park M, Lee Y, Khan A, Aleta P, Cho Y, Park H, Park YH, Kim S. Metabolite tracking to elucidate the effects of environmental pollutants. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:112-124. [PMID: 31128390 DOI: 10.1016/j.jhazmat.2019.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/30/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to determine whether behavioral tests and metabolic profiling of organisms can be promising alternatives for assessing the health of aquatic systems. Water samples from four potential pollution sources in South Korea were collected for toxicity evaluation. First, conventional acute toxicity test in Daphnia magna and behavioral test in zebrafish was conducted to assess water quality. Second, metabolomic analysis was performed on zebrafish exposed to water samples and on environmental fish collected from the same source. Acute toxicity test in D. magna showed that none of the water samples exerted significant adverse effects. However, activity of zebrafish larvae exposed to samples from the zinc smelter (ZS) and industrial complex (IND) sites decreased compared to those exposed to samples from the reference site (RS). Metabolomic analysis using the Manhattan plot and Partial Least Square (PLS)/Orthogonal PLS Discriminant Analysis (OPLS-DA) showed differences in metabolic profiles between RS and ZS, and between IND and abandoned mine site (M). Interestingly, applying the same metabolomic analysis to environmental fish revealed patterns similar to those for zebrafish, despite the uncontrollable variables involved in environmental sampling. This study shows that metabolomics is a promising tool in assessing the health of aquatic environments.
Collapse
Affiliation(s)
- Minseung Park
- Bio Monitoring Laboratory, Program in Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Yeseung Lee
- Metabolomics Laboratory, College of Pharmacy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Adnan Khan
- Metabolomics Laboratory, College of Pharmacy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Prince Aleta
- Bio Monitoring Laboratory, Program in Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Yunchul Cho
- Department of Environmental Engineering, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 300-716, Republic of Korea
| | | | - Youngja Hwang Park
- Metabolomics Laboratory, College of Pharmacy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea.
| | - Sungpyo Kim
- Bio Monitoring Laboratory, Program in Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea.
| |
Collapse
|
28
|
Haghani S, Karia M, Cheng RK, Mathuru AS. An Automated Assay System to Study Novel Tank Induced Anxiety. Front Behav Neurosci 2019; 13:180. [PMID: 31481885 PMCID: PMC6709859 DOI: 10.3389/fnbeh.2019.00180] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/18/2019] [Indexed: 02/04/2023] Open
Abstract
New environments are known to be anxiogenic initially for many animals including the zebrafish. In the zebrafish, a novel tank diving (NTD) assay for solitary fish has been used extensively to model anxiety and the effect of anxiolytics. However, studies can differ in the conditions used to perform this assay. Here, we report the development of an efficient, automated toolset and optimal conditions for effective use of this assay. Applying these tools, we found that two important variables in previous studies, the direction of illumination of the novel tank and the age of the subject fish, both influence endpoints commonly measured to assess anxiety. When tanks are illuminated from underneath, several parameters such as the time spent at the bottom of the tank, or the transitions to the top half of the tank become poor measures of acclimation to the novel environment. Older fish acclimate faster to the same settings. The size of the novel tank and the intensity of the illuminating light can also influence acclimation. Among the parameters measured, reduction in the frequency of erratic swimming (darting) is the most reliable indicator of anxiolysis. Open source pipeline for automated data acquisition and systematic analysis generated here and available to other researchers will improve accessibility and uniformity in measurements. They can also be directly applied to study other fish. As this assay is commonly used to model anxiety phenotype of neuropsychiatric ailments in zebrafish, we expect our tools will further aid comparative and meta-analyses.
Collapse
Affiliation(s)
- Sara Haghani
- Yale-NUS College, Science Division, Singapore, Singapore
| | | | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ajay S Mathuru
- Yale-NUS College, Science Division, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Ielciu I, Frédérich M, Hanganu D, Angenot L, Olah NK, Ledoux A, Crișan G, Păltinean R. Flavonoid Analysis and Antioxidant Activities of the Bryonia alba L. Aerial Parts. Antioxidants (Basel) 2019; 8:antiox8040108. [PMID: 31010032 PMCID: PMC6523950 DOI: 10.3390/antiox8040108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/29/2022] Open
Abstract
Bryonia alba L. is the only Bryonia species found in Romanian flora, being known as a remedy for inflammatory pathologies or for its hepatoprotective and adaptogen activities. The present investigation studied the flavonoid composition and antioxidant activities of the aerial parts of this species. Flavonoid profile was evaluated by HPLC coupled with Diode Array Detection (DAD), while antioxidant capacity was assessed by various methods, testing different antioxidant mechanisms: DPPH (2,2-diphenyl-1-picrylhydrazyl), CUPRAC (cupric reducing antioxidant capacity), FRAP (ferric reducing ability of plasma), TEAC (Trolox equivalent antioxidant capacity), EPR (electron paramagnetic resonance method) and SNPAC (silver nanoparticles antioxidant capacity). Cytotoxicity was tested on human cancerous and healthy cell lines. Anti-plasmodial tests were performed on two strains of Plasmodium falciparum. Whole organism toxicity was assessed on zebrafish larvae. The HPLC-DAD analysis proved the presence of lutonarin, saponarin, isoorientin, and isovitexin as the major flavonoids in the composition of tested samples. Significant results were obtained for all antioxidant capacity assays. The cytotoxicity tests proved the absence of cellular and parasitic toxicity and these results were confirmed by the lack of toxicity on the zebrafish larvae model. This study proves a promising potential of the aerial parts of Bryonia alba L. as antioxidant agents.
Collapse
Affiliation(s)
- Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 400337 Romania.
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium.
| | - Michel Frédérich
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium.
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania.
| | - Luc Angenot
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium.
| | - Neli-Kinga Olah
- PlantExtrakt Ltd., Rădaia, 407059 Cluj-Napoca, Romania.
- Department of Pharmaceutical Industry, Faculty of Pharmacy, "Vasile Goldiş" Western University of Arad, 310045 Arad, Romania.
| | - Allison Ledoux
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium.
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 400337 Romania.
| | - Ramona Păltinean
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 400337 Romania.
| |
Collapse
|
30
|
Langevin C, Boudinot P, Collet B. IFN Signaling in Inflammation and Viral Infections: New Insights from Fish Models. Viruses 2019; 11:v11030302. [PMID: 30917538 PMCID: PMC6466407 DOI: 10.3390/v11030302] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
The overarching structure of the type I interferon (IFN) system is conserved across vertebrates. However, the variable numbers of whole genome duplication events during fish evolution offer opportunities for the expansion, diversification, and new functionalization of the genes that are involved in antiviral immunity. In this review, we examine how fish models provide new insights about the implication of virus-driven inflammation in immunity and hematopoiesis. Mechanisms that have been discovered in fish, such as the strong adjuvant effect of type I IFN that is used with DNA vaccination, constitute good models to understand how virus-induced inflammatory mechanisms can interfere with adaptive responses. We also comment on new discoveries regarding the role of pathogen-induced inflammation in the development and guidance of hematopoietic stem cells in zebrafish. These findings raise issues about the potential interferences of viral infections with the establishment of the immune system. Finally, the recent development of genome editing provides new opportunities to dissect the roles of the key players involved in the antiviral response in fish, hence enhancing the power of comparative approaches.
Collapse
Affiliation(s)
- Christelle Langevin
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Bertrand Collet
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| |
Collapse
|
31
|
Loontiens S, Depestel L, Vanhauwaert S, Dewyn G, Gistelinck C, Verboom K, Van Loocke W, Matthijssens F, Willaert A, Vandesompele J, Speleman F, Durinck K. Purification of high-quality RNA from a small number of fluorescence activated cell sorted zebrafish cells for RNA sequencing purposes. BMC Genomics 2019; 20:228. [PMID: 30894119 PMCID: PMC6425699 DOI: 10.1186/s12864-019-5608-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/14/2019] [Indexed: 11/30/2022] Open
Abstract
Background Transgenic zebrafish lines with the expression of a fluorescent reporter under the control of a cell-type specific promoter, enable transcriptome analysis of FACS sorted cell populations. RNA quality and yield are key determinant factors for accurate expression profiling. Limited cell number and FACS induced cellular stress make RNA isolation of sorted zebrafish cells a delicate process. We aimed to optimize a workflow to extract sufficient amounts of high-quality RNA from a limited number of FACS sorted cells from Tg(fli1a:GFP) zebrafish embryos, which can be used for accurate gene expression analysis. Results We evaluated two suitable RNA isolation kits (the RNAqueous micro and the RNeasy plus micro kit) and determined that sorting cells directly into lysis buffer is a critical step for success. For low cell numbers, this ensures direct cell lysis, protects RNA from degradation and results in a higher RNA quality and yield. We showed that this works well up to 0.5× dilution of the lysis buffer with sorted cells. In our sort settings, this corresponded to 30,000 and 75,000 cells for the RNAqueous micro kit and RNeasy plus micro kit respectively. Sorting more cells dilutes the lysis buffer too much and requires the use of a collection buffer. We also demonstrated that an additional genomic DNA removal step after RNA isolation is required to completely clear the RNA from any contaminating genomic DNA. For cDNA synthesis and library preparation, we combined SmartSeq v4 full length cDNA library amplification, Nextera XT tagmentation and sample barcoding. Using this workflow, we were able to generate highly reproducible RNA sequencing results. Conclusions The presented optimized workflow enables to generate high quality RNA and allows accurate transcriptome profiling of small populations of sorted zebrafish cells. Electronic supplementary material The online version of this article (10.1186/s12864-019-5608-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siebe Loontiens
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Lisa Depestel
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Suzanne Vanhauwaert
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Givani Dewyn
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Charlotte Gistelinck
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Karen Verboom
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Jo Vandesompele
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Kaat Durinck
- Department of Biomolecular Medicine & Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium.
| |
Collapse
|
32
|
Sourbron J, Partoens M, Scheldeman C, Zhang Y, Lagae L, de Witte P. Drug repurposing for Dravet syndrome in scn1Lab -/- mutant zebrafish. Epilepsia 2019; 60:e8-e13. [PMID: 30663052 PMCID: PMC6850687 DOI: 10.1111/epi.14647] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 11/28/2022]
Abstract
Dravet syndrome (DS) is a severe genetic epileptic encephalopathy with onset during the first year of life. Zebrafish models recapitulating human diseases are often used as drug discovery platforms, but also for drug repurposing testing. It was recently shown that pharmacological modulation of three serotonergic (5-HT) receptors (5-HT1D , 5-HT2C , 5-HT2A ) exerts antiseizure effects in a zebrafish scn1Lab-/- mutant model of DS. Using the zebrafish DS model, our aim was to examine the possibility of repurposing efavirenz (EFA), lisuride (LIS), and rizatriptan (RIZA), marketed medicines with a 5-HT on- or off-target profile, as antiepileptic drugs for DS. To examine whether these compounds have a broader antiseizure profile, they were tested in pentylenetetrazol and ethyl ketopentenoate (EKP) zebrafish models. Pharmacological effects were assessed by locomotor behavior, local field potential brain recordings, and bioluminescence. EFA was active in all models, whereas LIS was selectively active in the zebrafish DS model. Mainly, a poor response was observed to RIZA. Taken together, our preclinical results show that LIS could be a potential candidate for DS treatment. EFA was also active in the EKP model, characterized by a high level of treatment resistance, and hence these data are potentially important for future treatment of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Jo Sourbron
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Michèle Partoens
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Chloë Scheldeman
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium.,Neurogenetics Research Group, VUB (Vrije Universiteit Brussel), Brussels, Belgium
| | - Yifan Zhang
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University of Leuven University Hospital, Leuven, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Zebrafish disease models in hematology: Highlights on biological and translational impact. Biochim Biophys Acta Mol Basis Dis 2018; 1865:620-633. [PMID: 30593895 DOI: 10.1016/j.bbadis.2018.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
Zebrafish (Danio rerio) has proven to be a versatile and reliable in vivo experimental model to study human hematopoiesis and hematological malignancies. As vertebrates, zebrafish has significant anatomical and biological similarities to humans, including the hematopoietic system. The powerful genome editing and genome-wide forward genetic screening tools have generated models that recapitulate human malignant hematopoietic pathologies in zebrafish and unravel cellular mechanisms involved in these diseases. Moreover, the use of zebrafish models in large-scale chemical screens has allowed the identification of new molecular targets and the design of alternative therapies. In this review we summarize the recent achievements in hematological research that highlight the power of the zebrafish model for discovery of new therapeutic molecules. We believe that the model is ready to give an immediate translational impact into the clinic.
Collapse
|
34
|
Fuentes R, Letelier J, Tajer B, Valdivia LE, Mullins MC. Fishing forward and reverse: Advances in zebrafish phenomics. Mech Dev 2018; 154:296-308. [PMID: 30130581 PMCID: PMC6289646 DOI: 10.1016/j.mod.2018.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Understanding how the genome instructs the phenotypic characteristics of an organism is one of the major scientific endeavors of our time. Advances in genetics have progressively deciphered the inheritance, identity and biological relevance of genetically encoded information, contributing to the rise of several, complementary omic disciplines. One of them is phenomics, an emergent area of biology dedicated to the systematic multi-scale analysis of phenotypic traits. This discipline provides valuable gene function information to the rapidly evolving field of genetics. Current molecular tools enable genome-wide analyses that link gene sequence to function in multi-cellular organisms, illuminating the genome-phenome relationship. Among vertebrates, zebrafish has emerged as an outstanding model organism for high-throughput phenotyping and modeling of human disorders. Advances in both systematic mutagenesis and phenotypic analyses of embryonic and post-embryonic stages in zebrafish have revealed the function of a valuable collection of genes and the general structure of several complex traits. In this review, we summarize multiple large-scale genetic efforts addressing parental, embryonic, and adult phenotyping in the zebrafish. The genetic and quantitative tools available in the zebrafish model, coupled with the broad spectrum of phenotypes that can be assayed, make it a powerful model for phenomics, well suited for the dissection of genotype-phenotype associations in development, physiology, health and disease.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joaquín Letelier
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Seville, Spain; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonardo E Valdivia
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Khezri A, Herranz-Jusdado JG, Ropstad E, Fraser TW. Mycotoxins induce developmental toxicity and behavioural aberrations in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:500-506. [PMID: 30005262 DOI: 10.1016/j.envpol.2018.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 05/19/2023]
Abstract
Mycotoxins are secondary metabolites produced by varieties of fungi that contaminate food and feed resources and are capable of inducing a wide range of toxicity. In the current study, we investigated developmental and behavioural toxicity in zebrafish larvae after exposure to six different mycotoxins; ochratoxin A (OTA), type A trichothecenes mycotoxin (T-2 toxin), type B trichothecenes mycotoxin (deoxynivalenol - DON), and zearalenone (ZEN) and its metabolites alpha-zearalenol (α-ZOL) and beta-zearalenol (β-ZOL). Developmental defects, hatching time, and survival were monitored until 96 h post fertilisation (hpf). The EC50, LC50, and IC50 values were calculated. Subsequently, to assess behavioural toxicity, new sets of embryos were exposed to a series of non-lethal doses within the range of environmental and/or developmental concern. Results indicated that all the tested mycotoxins were toxic, they all induced developmental defects, and with the exception of OTA, all affected hatching time. Behavioural effects were only observed following exposure to OTA and ZEN and its metabolites, α ZOL and β ZOL. These results demonstrate that mycotoxins are teratogenic and can influence behaviour in a vertebrate model.
Collapse
Affiliation(s)
- Abdolrahman Khezri
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033, Oslo, Norway.
| | | | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033, Oslo, Norway
| | - Thomas Wk Fraser
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|
36
|
Ielciu I, Mouithys-Mickalad A, Franck T, Angenot L, Ledoux A, Păltinean R, Cieckiewicz E, Etienne D, Tits M, Crişan G, Frédérich M. Flavonoid composition, cellular antioxidant activity and (myelo)peroxidase inhibition of a Bryonia alba L. (Cucurbitaceae) leaves extract. J Pharm Pharmacol 2018; 71:230-239. [PMID: 30324727 DOI: 10.1111/jphp.13025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/17/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The aim of the present study consisted in the isolation of flavonoids from the leaves of Bryonia alba L. and evaluation of their antioxidant activity and inhibition on peroxidase-catalysed reactions. METHODS Flavonoids were isolated by preparative HPLC-DAD and their structures were elucidated by MS and NMR. Inhibitory effect was tested by the horseradish peroxidase and the myeloperoxidase assays. Cellular antioxidant assays consisted in testing the inhibitory activity on the reactive oxygen species released upon activation of neutrophils freshly isolated ex vivo from equine blood and of human monocytes-derived macrophages in vitro. Whole organism toxicity was assessed on zebrafish larvae. KEY FINDINGS Four flavonoids (lutonarin, saponarin, isoorientin and isovitexin) were isolated. The performed assays showed significant antioxidant activity and inhibition for the peroxidase-catalysed reactions. Absence of cellular and zebrafish toxicity was confirmed. CONCLUSIONS Bryonia alba L. leaves are particularly interesting for their flavonoids content and showed significant inhibitory effect on peroxidase-catalysed oxidation of substrates (Amplex Red and L012), as well as antioxidant/antiradical activity, proving that this species has a medicinal potential. Moreover, the present study highlights the absence of the toxicity of these leaves and offers though a novel perspective on the species, previously known as being toxic.
Collapse
Affiliation(s)
- Irina Ielciu
- Center for Interdisciplinary Research on Medicines, Laboratory of Pharmacognosy, University of Liège, Liège, Belgium.,Faculty of Pharmacy, Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ange Mouithys-Mickalad
- Center for Oxygen Research and Development (CORD), Institute of Chemistry, University of Liège, Liège, Belgium
| | - Thierry Franck
- Center for Oxygen Research and Development (CORD), Institute of Chemistry, University of Liège, Liège, Belgium
| | - Luc Angenot
- Center for Interdisciplinary Research on Medicines, Laboratory of Pharmacognosy, University of Liège, Liège, Belgium
| | - Allison Ledoux
- Center for Interdisciplinary Research on Medicines, Laboratory of Pharmacognosy, University of Liège, Liège, Belgium
| | - Ramona Păltinean
- Faculty of Pharmacy, Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ewa Cieckiewicz
- Center for Interdisciplinary Research on Medicines, Laboratory of Pharmacognosy, University of Liège, Liège, Belgium
| | - Delphine Etienne
- Center for Interdisciplinary Research on Medicines, Laboratory of Pharmacognosy, University of Liège, Liège, Belgium
| | - Monique Tits
- Center for Interdisciplinary Research on Medicines, Laboratory of Pharmacognosy, University of Liège, Liège, Belgium
| | - Gianina Crişan
- Faculty of Pharmacy, Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Michel Frédérich
- Center for Interdisciplinary Research on Medicines, Laboratory of Pharmacognosy, University of Liège, Liège, Belgium
| |
Collapse
|
37
|
Russo G, Lehne F, Pose Méndez SM, Dübel S, Köster RW, Sassen WA. Culture and Transfection of Zebrafish Primary Cells. J Vis Exp 2018:57872. [PMID: 30175992 PMCID: PMC6128108 DOI: 10.3791/57872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Zebrafish embryos are transparent and develop rapidly outside the mother, thus allowing for excellent in vivo imaging of dynamic biological processes in an intact and developing vertebrate. However, the detailed imaging of the morphologies of distinct cell types and subcellular structures is limited in whole mounts. Therefore, we established an efficient and easy-to-use protocol to culture live primary cells from zebrafish embryos and adult tissue. In brief, 2 dpf zebrafish embryos are dechorionated, deyolked, sterilized, and dissociated to single cells with collagenase. After a filtration step, primary cells are plated onto glass bottom dishes and cultivated for several days. Fresh cultures, as much as long term differenciated ones, can be used for high resolution confocal imaging studies. The culture contains different cell types, with striated myocytes and neurons being prominent on poly-L-lysine coating. To specifically label subcellular structures by fluorescent marker proteins, we also established an electroporation protocol which allows the transfection of plasmid DNA into different cell types, including neurons. Thus, in the presence of operator defined stimuli, complex cell behavior, and intracellular dynamics of primary zebrafish cells can be assessed with high spatial and temporal resolution. In addition, by using adult zebrafish brain, we demonstrate that the described dissociation technique, as well as the basic culturing conditions, also work for adult zebrafish tissue.
Collapse
Affiliation(s)
- Giulio Russo
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Braunschweig University of Technology; Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology
| | - Franziska Lehne
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Braunschweig University of Technology
| | - Sol M Pose Méndez
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Braunschweig University of Technology
| | - Stefan Dübel
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology
| | - Reinhard W Köster
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Braunschweig University of Technology;
| | - Wiebke A Sassen
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Braunschweig University of Technology
| |
Collapse
|
38
|
Cornet C, Di Donato V, Terriente J. Combining Zebrafish and CRISPR/Cas9: Toward a More Efficient Drug Discovery Pipeline. Front Pharmacol 2018; 9:703. [PMID: 30018554 PMCID: PMC6037853 DOI: 10.3389/fphar.2018.00703] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
The use of zebrafish larvae in basic and applied research has grown exponentially during the last 20 years. The reasons for this success lay in its specific experimental advantages: on the one hand, the small size, the large number of progeny and the fast life cycle greatly facilitate large-scale approaches while maintaining 3Rs amenability; on the other hand, high genetic and physiological homology with humans and ease of genetic manipulation make zebrafish larvae a highly robust model for understanding human disease. Together, these advantages allow using zebrafish larvae for performing high-throughput research, both in terms of chemical and genetic phenotypic screenings. Therefore, the zebrafish larva as an animal model is placed between more reductionist in vitro high-throughput screenings and informative but low-throughput preclinical assays using mammals. However, despite its biological advantages and growing translational validation, zebrafish remains scarcely used in current drug discovery pipelines. In a context in which the pharmaceutical industry is facing a productivity crisis in bringing new drugs to the market, the combined advantages of zebrafish and the CRISPR/Cas9 system, the most powerful technology for genomic editing to date, has the potential to become a valuable tool for streamlining the generation of models mimicking human disease, the validation of novel drug targets and the discovery of new therapeutics. This review will focus on the most recent advances on CRISPR/Cas9 implementation in zebrafish and all their potential uses in biomedical research and drug discovery.
Collapse
Affiliation(s)
- Carles Cornet
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), Barcelona, Spain
| | - Vincenzo Di Donato
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), Barcelona, Spain
| | - Javier Terriente
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), Barcelona, Spain
| |
Collapse
|
39
|
Zebrafish Models of Rare Hereditary Pediatric Diseases. Diseases 2018; 6:diseases6020043. [PMID: 29789451 PMCID: PMC6023479 DOI: 10.3390/diseases6020043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances in sequencing technologies have made it significantly easier to find the genetic roots of rare hereditary pediatric diseases. These novel methods are not panaceas, however, and they often give ambiguous results, highlighting multiple possible causative mutations in affected patients. Furthermore, even when the mapping results are unambiguous, the affected gene might be of unknown function. In these cases, understanding how a particular genotype can result in a phenotype also needs carefully designed experimental work. Model organism genetics can offer a straightforward experimental setup for hypothesis testing. Containing orthologs for over 80% of the genes involved in human diseases, zebrafish (Danio rerio) has emerged as one of the top disease models over the past decade. A plethora of genetic tools makes it easy to create mutations in almost any gene of the zebrafish genome and these mutant strains can be used in high-throughput preclinical screens for active molecules. As this small vertebrate species offers several other advantages as well, its popularity in biomedical research is bound to increase, with “aquarium to bedside” drug development pipelines taking a more prevalent role in the near future.
Collapse
|
40
|
Martins T, Diniz E, Félix LM, Antunes L. Evaluation of anaesthetic protocols for laboratory adult zebrafish (Danio rerio). PLoS One 2018; 13:e0197846. [PMID: 29787611 PMCID: PMC5963751 DOI: 10.1371/journal.pone.0197846] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/09/2018] [Indexed: 11/18/2022] Open
Abstract
In the last decades, the use of zebrafish (Danio rerio) in biomedical research has increased. Anaesthesia is daily used in fish during experimental procedures to avoid discomfort, stress or pain. Also, fish welfare and the reliability of results can be compromised if an unsuitable anaesthetic protocol is used. Therefore, we aimed to refine anaesthetic protocols to be used in adult zebrafish by evaluating the efficacy of different anaesthetics, used alone or in combination. For that, zebrafish were randomly assigned to 8 different groups: 100 μg/mLMS-222 (MS); 0.2 μg/mL etomidate (E); 0.2 μg/mL etomidate + 100 μg/mL lidocaine (E+L); 1.25 μg/mL propofol (P); 1.25 μg/mL propofol + 100 μg/mL lidocaine (P+L); 100 μg/mL ketamine (K); 100 μg/mL ketamine + 1.25 μg/mL medetomidine (K+M); and 100 μg/mL ketamine + 1.25 μg/mL medetomidine/3.125 μg/mL atipamezole (K+M/A). The animals were placed in an anaesthetic water bath, then, the following parameters were registered: time for equilibrium loss and anaesthesia induction, loss of sensitivity to soft and painful stimuli, respiratory rate, recovery time, and activity after recovery. The combined forms of E+L, P+L and K+M were the fastest to induce a surgical anaesthetic stage. Nevertheless, E+L induced respiratory depression, while K+M was shown to have the longer recovery time compared to MS-222, even when atipamezole was added. In conclusion, the P+L combination was shown to provide good anaesthesia with analgesia, without causing a major respiratory depression, providing as well a quick recovery, similar to MS-222.
Collapse
Affiliation(s)
- Tânia Martins
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Enoque Diniz
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Departamento de Sanidade Animal (DSA), Faculdade de Medicina Veterinária (FMV), Universidade José Eduardo dos Santos (UJES), Huambo, Angola
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Luís Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Institute for Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
41
|
Gutiérrez-Lovera C, Vázquez-Ríos AJ, Guerra-Varela J, Sánchez L, de la Fuente M. The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines. Genes (Basel) 2017; 8:E349. [PMID: 29182542 PMCID: PMC5748667 DOI: 10.3390/genes8120349] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/06/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
In the last few decades, the field of nanomedicine applied to cancer has revolutionized cancer treatment: several nanoformulations have already reached the market and are routinely being used in the clinical practice. In the case of genetic nanomedicines, i.e., designed to deliver gene therapies to cancer cells for therapeutic purposes, advances have been less impressive. This is because of the many barriers that limit the access of the therapeutic nucleic acids to their target site, and the lack of models that would allow for an improvement in the understanding of how nanocarriers can be tailored to overcome them. Zebrafish has important advantages as a model species for the study of anticancer therapies, and have a lot to offer regarding the rational development of efficient delivery of genetic nanomedicines, and hence increasing the chances of their successful translation. This review aims to provide an overview of the recent advances in the development of genetic anticancer nanomedicines, and of the zebrafish models that stand as promising tools to shed light on their mechanisms of action and overall potential in oncology.
Collapse
Affiliation(s)
- C Gutiérrez-Lovera
- Zoology, Genetics and Physical Anthropology Department Veterinary Faculty, Universidade de Santiago de Compostela, Lugo 27002, Spain.
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela 15706, Spain.
| | - A J Vázquez-Ríos
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela 15706, Spain.
| | - J Guerra-Varela
- Zoology, Genetics and Physical Anthropology Department Veterinary Faculty, Universidade de Santiago de Compostela, Lugo 27002, Spain.
- Geneaqua S.L., Lugo 27002, Spain.
| | - L Sánchez
- Zoology, Genetics and Physical Anthropology Department Veterinary Faculty, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - M de la Fuente
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela 15706, Spain.
| |
Collapse
|
42
|
Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017; 6. [PMID: 28892296 DOI: 10.1002/adhm.201700258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Approaches to increase the efficiency in developing drugs and diagnostics tools, including new drug delivery and diagnostic technologies, are needed for improved diagnosis and treatment of major diseases and health problems such as cancer, inflammatory diseases, chronic wounds, and antibiotic resistance. Development within several areas of research ranging from computational sciences, material sciences, bioengineering to biomedical sciences and bioimaging is needed to realize innovative drug development and diagnostic (DDD) approaches. Here, an overview of recent progresses within key areas that can provide customizable solutions to improve processes and the approaches taken within DDD is provided. Due to the broadness of the area, unfortunately all relevant aspects such as pharmacokinetics of bioactive molecules and delivery systems cannot be covered. Tailored approaches within (i) bioinformatics and computer-aided drug design, (ii) nanotechnology, (iii) novel materials and technologies for drug delivery and diagnostic systems, and (iv) disease models to predict safety and efficacy of medicines under development are focused on. Current developments and challenges ahead are discussed. The broad scope reflects the multidisciplinary nature of the field of DDD and aims to highlight the convergence of biological, pharmaceutical, and medical disciplines needed to meet the societal challenges of the 21st century.
Collapse
Affiliation(s)
- Cecilia Sahlgren
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Annika Meinander
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Hongbo Zhang
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Fang Cheng
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Maren Preis
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Chunlin Xu
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Tiina A. Salminen
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Diana Toivola
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Center for Disease Modeling; University of Turku; FI-20520 Turku Finland
| | - Daniel Abankwa
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Ari Rosling
- Faculty of Science and Engineering; Polymer Technologies; Åbo Akademi University; FI-20500 Turku Finland
| | - Didem Şen Karaman
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Outi M. H. Salo-Ahen
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Ronald Österbacka
- Faculty of Science and Engineering; Physics; Åbo Akademi University; FI-20500 Turku Finland
| | - John E. Eriksson
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
| | - Stefan Willför
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Ion Petre
- Faculty of Science and Engineering; Computer Science; Åbo Akademi University; FI-20500 Turku Finland
| | - Jouko Peltonen
- Faculty of Science and Engineering; Physical Chemistry; Åbo Akademi University; FI-20500 Turku Finland
| | - Reko Leino
- Faculty of Science and Engineering; Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; FI-20500 Turku Finland
| | - Mark Johnson
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Jessica Rosenholm
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Niklas Sandler
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| |
Collapse
|
43
|
Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017. [DOI: 10.1002/adhm.201700258 10.1002/adhm.201700258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Cecilia Sahlgren
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Annika Meinander
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Hongbo Zhang
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Fang Cheng
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Maren Preis
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Chunlin Xu
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Tiina A. Salminen
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Diana Toivola
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Center for Disease Modeling; University of Turku; FI-20520 Turku Finland
| | - Daniel Abankwa
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Ari Rosling
- Faculty of Science and Engineering; Polymer Technologies; Åbo Akademi University; FI-20500 Turku Finland
| | - Didem Şen Karaman
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Outi M. H. Salo-Ahen
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Ronald Österbacka
- Faculty of Science and Engineering; Physics; Åbo Akademi University; FI-20500 Turku Finland
| | - John E. Eriksson
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
| | - Stefan Willför
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Ion Petre
- Faculty of Science and Engineering; Computer Science; Åbo Akademi University; FI-20500 Turku Finland
| | - Jouko Peltonen
- Faculty of Science and Engineering; Physical Chemistry; Åbo Akademi University; FI-20500 Turku Finland
| | - Reko Leino
- Faculty of Science and Engineering; Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; FI-20500 Turku Finland
| | - Mark Johnson
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Jessica Rosenholm
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Niklas Sandler
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| |
Collapse
|
44
|
Sassen WA, Lehne F, Russo G, Wargenau S, Dübel S, Köster RW. Embryonic zebrafish primary cell culture for transfection and live cellular and subcellular imaging. Dev Biol 2017; 430:18-31. [DOI: 10.1016/j.ydbio.2017.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|
45
|
Behavioral Comorbidities and Drug Treatments in a Zebrafish scn1lab Model of Dravet Syndrome. eNeuro 2017; 4:eN-NWR-0066-17. [PMID: 28812061 PMCID: PMC5555352 DOI: 10.1523/eneuro.0066-17.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/11/2017] [Accepted: 07/30/2017] [Indexed: 12/15/2022] Open
Abstract
Loss-of-function mutations in SCN1A cause Dravet syndrome (DS), a catastrophic childhood epilepsy in which patients experience comorbid behavioral conditions, including movement disorders, sleep abnormalities, anxiety, and intellectual disability. To study the functional consequences of voltage-gated sodium channel mutations, we use zebrafish with a loss-of-function mutation in scn1lab, a zebrafish homolog of human SCN1A. Homozygous scn1labs552/s552 mutants exhibit early-life seizures, metabolic deficits, and early death. Here, we developed in vivo assays using scn1labs552 mutants between 3 and 6 d postfertilization (dpf). To evaluate sleep disturbances, we monitored larvae for 24 h with locomotion tracking software. Locomotor activity during dark (night phase) was significantly higher in mutants than in controls. Among anticonvulsant drugs, clemizole and diazepam, but not trazodone or valproic acid, decreased distance moved at night for scn1labs552 mutant larvae. To monitor exploratory behavior in an open field, we tracked larvae in a novel arena. Mutant larvae exhibited impaired exploratory behavior, with increased time spent near the edge of the arena and decreased mobility, suggesting greater anxiety. Both clemizole and diazepam, but not trazodone or valproic acid, decreased distance moved and increased time spent in the center of the arena. Counting inhibitory neurons in vivo revealed no differences between scn1labs552 mutants and siblings. Taken together, our results demonstrate conserved features of sleep, anxiety, and movement disorders in scn1lab mutant zebrafish, and provide evidence that a zebrafish model allows effective tests of treatments for behavioral comorbidities associated with DS.
Collapse
|
46
|
Kossack M, Hein S, Juergensen L, Siragusa M, Benz A, Katus HA, Most P, Hassel D. Induction of cardiac dysfunction in developing and adult zebrafish by chronic isoproterenol stimulation. J Mol Cell Cardiol 2017; 108:95-105. [PMID: 28554511 DOI: 10.1016/j.yjmcc.2017.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/05/2023]
Abstract
Zebrafish is a widely used model to evaluate genetic variants and modifiers that can cause heart muscle diseases. Surprisingly, the β-adrenergic receptor (β-AR) pathway in zebrafish is not well characterized, although abnormal β-AR signaling is a major contributor to human heart failure (HF). Chronic β-AR activation in the attempt to normalize heart function in the failing heart results in a reduction of the β-ARs expression and receptor desensitization, largely mediated through G-protein coupled receptor kinase 2 (GRK2) upregulation. This in turn leads to further deterioration of heart function and progression towards HF. This study seeks to systematically characterize the function of the β-AR signaling in developing and adult zebrafish to ultimately assess the ability to induce HF through chronic β-AR activation by isoproterenol (ISO) as established in the mouse model. Larval hearts first responded to ISO by 3dpf, in concordance with robust expression of key components of the β-AR signaling pathway. Although ISO-induced β1-AR and β2-AR isoform upregulation persisted, chronic ISO stimulation for 5d caused systolic cardiac dysfunction concurrently with maximal expression of G-protein-coupled receptor kinase-2 (GRK2). More consistent to mammalians, adult zebrafish developed significant heart failure in concert with β1-AR downregulation, and GRK2 and brain natriuretic peptide (BNP) upregulation in response to prolonged, 14d ISO-stimulation. This was accompanied by significant cell death and inflammation without detectable fibrosis. Our study unveils important characteristics of larvae and adult zebrafish hearts pertaining to β-AR signaling. A lack of β-AR responsiveness and atypical β-AR/GRK2 ratios in larval zebrafish should be considered. Adult zebrafish resembled the mammalian situation on the functional and molecular level more closely, but also revealed differences to dysfunctional mammalian hearts, i.e. lack of fibrosis. Our study establishes the first ISO-inducible HF model in adult zebrafish and present critical characteristics of the zebrafish heart essential to be considered when utilizing the zebrafish as a human disease and future drug discovery model.
Collapse
Affiliation(s)
- Mandy Kossack
- Department of Medicine III, Cardiology, Angiology, Pneumology, University Hospital Heidelberg, INF 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, INF 669, 69120 Heidelberg, Germany
| | - Selina Hein
- Department of Medicine III, Cardiology, Angiology, Pneumology, University Hospital Heidelberg, INF 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, INF 669, 69120 Heidelberg, Germany
| | - Lonny Juergensen
- Department of Medicine III, Cardiology, Angiology, Pneumology, University Hospital Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Mauro Siragusa
- Department of Medicine III, Cardiology, Angiology, Pneumology, University Hospital Heidelberg, INF 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, INF 669, 69120 Heidelberg, Germany
| | - Alexander Benz
- Department of Medicine III, Cardiology, Angiology, Pneumology, University Hospital Heidelberg, INF 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, INF 669, 69120 Heidelberg, Germany
| | - Hugo A Katus
- Department of Medicine III, Cardiology, Angiology, Pneumology, University Hospital Heidelberg, INF 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, INF 669, 69120 Heidelberg, Germany
| | - Patrick Most
- Department of Medicine III, Cardiology, Angiology, Pneumology, University Hospital Heidelberg, INF 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, INF 669, 69120 Heidelberg, Germany; Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 1020 Walnut Street, Philadelphia, Pennsylvania, USA.
| | - David Hassel
- Department of Medicine III, Cardiology, Angiology, Pneumology, University Hospital Heidelberg, INF 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, INF 669, 69120 Heidelberg, Germany.
| |
Collapse
|
47
|
Chen Q, Li C, Gong Z, Chan ECY, Snyder SA, Lam SH. Common deregulated gene expression profiles and morphological changes in developing zebrafish larvae exposed to environmental-relevant high to low concentrations of glucocorticoids. CHEMOSPHERE 2017; 172:429-439. [PMID: 28092764 DOI: 10.1016/j.chemosphere.2017.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Synthetic glucocorticoids have been detected in environmental waters and their biological potency have raised concerns of their impact on aquatic vertebrates especially fish. In this study, developing zebrafish larvae exposed to representative glucocorticoids (dexamethasone, prednisolone and triamcinolone) at 50 pM to 50 nM from 3 h post-fertilisation to 5 days post-fertilisation were investigated. Microarray analysis identified 1255, 1531, and 2380 gene probes, which correspondingly mapped to 660, 882 and 1238 human/rodent homologs, as deregulated by dexamethasone, prednisolone and triamcinolone, respectively. A total of 248 gene probes which mapped to 159 human/rodent homologs were commonly deregulated by the three glucocorticoids. These homologs were associated with over 20 molecular functions from cell cycle to cellular metabolisms, and were involved in the development and function of connective tissue, nervous, haematological, and digestive systems. Glucocorticoid receptor signalling, NRF2-mediated oxidative stress response and RAR signalling were among the top perturbed canonical pathways. Morphological analyses using four transgenic zebrafish lines revealed that the hepatic and endothelial-vascular systems were affected by all three glucocorticoids while nervous, pancreatic and myeloid cell systems were affected by one of them. Quantitative real-time PCR detected significant change in the expression of seven genes at 50 pM of all three glucocorticoids, a concentration comparable to total glucocorticoids reported in environmental waters. Three genes (cry2b, fbxo32, and klhl38b) responded robustly to all glucocorticoid concentrations tested. The common deregulated genes with the associated biological processes and morphological changes can be used for biological inference of glucocorticoid exposure in fish for future studies.
Collapse
Affiliation(s)
- Qiyu Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Caixia Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zhiyuan Gong
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Shane A Snyder
- University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Siew Hong Lam
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
48
|
Forn-Cuní G, Varela M, Pereiro P, Novoa B, Figueras A. Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci Rep 2017; 7:41905. [PMID: 28157230 PMCID: PMC5291205 DOI: 10.1038/srep41905] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential.
Collapse
Affiliation(s)
- G Forn-Cuní
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - M Varela
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - P Pereiro
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - B Novoa
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - A Figueras
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| |
Collapse
|
49
|
Yu T, Winkler C. Drug Treatment and In Vivo Imaging of Osteoblast-Osteoclast Interactions in a Medaka Fish Osteoporosis Model. J Vis Exp 2017. [PMID: 28117826 DOI: 10.3791/55025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone-forming osteoblasts interact with bone-resorbing osteoclasts to coordinate the turnover of bone matrix and to control skeletal homeostasis. Medaka and zebrafish larvae are widely used to analyze the behavior of bone cells during bone formation, degeneration, and repair. Their optical clarity allows the visualization of fluorescently labeled bone cells and fluorescent dyes bound to the mineralized skeletal matrix. Our lab has generated transgenic medaka fish that express the osteoclast-inducing factor Receptor Activator of Nuclear-factor κB Ligand (RANKL) under the control of a heat shock-inducible promoter. Ectopic expression of RANKL results in the excess formation of activated osteoclasts, which can be visualized in reporter lines with nlGFP expression under the control of the cathepsin K (ctsk) promoter. RANKL induction and ectopic osteoclast formation leads to severe osteoporosis-like phenotypes. Compound transgenic medaka lines that express ctsk:nlGFP in osteoclasts, as well as mCherry under the control of the osterix (osx) promoter in premature osteoblasts, can be used to study the interaction of both cell types. This facilitates the in vivo observation of cellular behavior under conditions of bone degeneration and repair. Here, we describe the use of this system to test a drug commonly used in human osteoporosis therapy and describe a protocol for live imaging. The medaka model complements studies in cell culture and mice, and offers a novel system for the in vivo analysis of drug action in the skeletal system.
Collapse
Affiliation(s)
- Tingsheng Yu
- Department of Biological Sciences, National University of Singapore; NUS Centre for Bioimaging Sciences (CBIS), National University of Singapore
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore; NUS Centre for Bioimaging Sciences (CBIS), National University of Singapore;
| |
Collapse
|
50
|
Noyes PD, Garcia GR, Tanguay RL. ZEBRAFISH AS AN IN VIVO MODEL FOR SUSTAINABLE CHEMICAL DESIGN. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:6410-6430. [PMID: 28461781 PMCID: PMC5408959 DOI: 10.1039/c6gc02061e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Heightened public awareness about the many thousands of chemicals in use and present as persistent contaminants in the environment has increased the demand for safer chemicals and more rigorous toxicity testing. There is a growing recognition that the use of traditional test models and empirical approaches is impractical for screening for toxicity the many thousands of chemicals in the environment and the hundreds of new chemistries introduced each year. These realities coupled with the green chemistry movement have prompted efforts to implement more predictive-based approaches to evaluate chemical toxicity early in product development. While used for many years in environmental toxicology and biomedicine, zebrafish use has accelerated more recently in genetic toxicology, high throughput screening (HTS), and behavioral testing. This review describes major advances in these testing methods that have positioned the zebrafish as a highly applicable model in chemical safety evaluations and sustainable chemistry efforts. Many toxic responses have been shown to be shared among fish and mammals owing to their generally well-conserved development, cellular networks, and organ systems. These shared responses have been observed for chemicals that impair endocrine functioning, development, and reproduction, as well as those that elicit cardiotoxicity and carcinogenicity, among other diseases. HTS technologies with zebrafish enable screening large chemical libraries for bioactivity that provide opportunities for testing early in product development. A compelling attribute of the zebrafish centers on being able to characterize toxicity mechanisms across multiple levels of biological organization from the genome to receptor interactions and cellular processes leading to phenotypic changes such as developmental malformations. Finally, there is a growing recognition of the links between human and wildlife health and the need for approaches that allow for assessment of real world multi-chemical exposures. The zebrafish is poised to be an important model in bridging these two conventionally separate areas of toxicology and characterizing the biological effects of chemical mixtures that could augment its role in sustainable chemistry.
Collapse
Affiliation(s)
- Pamela D. Noyes
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Gloria R. Garcia
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|