1
|
Sinha B, Biswas A, Kaushik S, Soni GV. Cellular and Nuclear Forces: An Overview. Methods Mol Biol 2025; 2881:3-39. [PMID: 39704936 DOI: 10.1007/978-1-0716-4280-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Biological cells sample their surrounding microenvironments using nanoscale force sensors on the cell surfaces. These surface-based force and stress sensors generate physical and chemical responses inside the cell. The inherently well-connected cytoskeleton and its physical contacts with the force elements on the nuclear membrane lead these physicochemical responses to cascade all the way inside the cell nucleus, physically altering the nuclear state. These physical alterations of the cell nucleus, through yet-unknown complex steps, elicit physical and functional responses from the chromatin in the form of altered gene expression profiles. This mechanism of force/stress sensing by the cell and then its nuclear response has been shown to play a vital role in maintaining robust cellular homeostasis, controlling gene expression profiles during developmental phases as well as cell differentiation. In the last few years, there has been appreciable progress toward the identification of the molecular players responsible for force sensing. However, the actual sensing mechanism of cell surface-bound force sensors and more importantly cascading of the signals, both physical (via cytosolic force sensing elements such as microtubule and actin framework) as well as chemical (cascade of biochemical signaling from cell surface to nuclear surface and further to the chromatin), inside the cell is poorly understood. In this chapter, we present a review of the currently known molecular players in cellular as well as nuclear force sensing repertoire and their possible mechanistic aspects. We also introduce various biophysical concepts and review some frequently used techniques that are used to describe the force/stress sensing and response of a cell. We hope that this will help in asking clearer questions and designing pointed experiments for better understanding of the force-dependent design principles of the cell surface, nuclear surface, and gene expression.
Collapse
Affiliation(s)
- Bidisha Sinha
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arikta Biswas
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | | | - Gautam V Soni
- Raman Research Institute, Bangalore, Karnataka, India.
| |
Collapse
|
2
|
Curtis BN, Gladfelter AS. Drivers of Morphogenesis: Curvature Sensor Self-Assembly at the Membrane. Cold Spring Harb Perspect Biol 2024; 16:a041528. [PMID: 38697653 PMCID: PMC11610757 DOI: 10.1101/cshperspect.a041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
This review examines the relationships between membrane chemistry, curvature-sensing proteins, and cellular morphogenesis. Curvature-sensing proteins are often orders of magnitude smaller than the membrane curvatures they localize to. How are nanometer-scale proteins used to sense micrometer-scale membrane features? Here, we trace the journey of curvature-sensing proteins as they engage with lipid membranes through a combination of electrostatic and hydrophobic interactions. We discuss how curvature sensing hinges on membrane features like lipid charge, packing, and the directionality of membrane curvature. Once bound to the membrane, many curvature sensors undergo self-assembly (i.e., they oligomerize or form higher-order assemblies that are key for initiating and regulating cell shape transformations). Central to these discussions are the micrometer-scale curvature-sensing proteins' septins. By discussing recent literature surrounding septin membrane association, assembly, and their many functions in morphogenesis with support from other well-studied curvature sensors, we aim to synthesize possible mechanisms underlining cell shape sensing.
Collapse
Affiliation(s)
- Brandy N Curtis
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology, Duke University, Durham, North Carolina 27708, USA
| | - Amy S Gladfelter
- Department of Cell Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
3
|
Sahrmann P, Voth GA. Enhancing the Assembly Properties of Bottom-Up Coarse-Grained Phospholipids. J Chem Theory Comput 2024; 20:10235-10246. [PMID: 39535391 PMCID: PMC11604101 DOI: 10.1021/acs.jctc.4c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
A plethora of key biological events occur at the cellular membrane where the large spatiotemporal scales necessitate dimensionality reduction or coarse-graining approaches over conventional all-atom molecular dynamics simulation. Constructing coarse-grained descriptions of membranes systematically from statistical mechanical principles has largely remained challenging due to the necessity of capturing amphipathic self-assembling behavior in coarse-grained models. We show that bottom-up coarse-grained lipid models can possess metastable morphological behavior and that this potential metastability has ramifications for accurate development and training. We in turn develop a training algorithm which evades metastability issues by linking model training to self-assembling behavior, and demonstrate its robustness via construction of solvent-free coarse-grained models of various phospholipid membranes, including lipid species such as phosphatidylcholines, phosphatidylserines, sphingolipids, and cholesterol. The resulting coarse-grained lipid models are orders of magnitude faster than their atomistic counterparts while retaining structural fidelity and constitute a promising direction for the development of coarse-grained models of realistic cell membranes.
Collapse
Affiliation(s)
- Patrick
G. Sahrmann
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Franck Institute,
and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Franck Institute,
and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Karabiyik G, Jesorka A, Gözen I. Ring-shaped nanoparticle assembly and cross-linking on lipid vesicle scaffolds. SOFT MATTER 2024; 20:8947-8951. [PMID: 39508507 DOI: 10.1039/d4sm01010h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We show the assembly of carboxylate-modified polystyrene nanoparticles into flexible circular, ring-shaped structures with micrometer sized diameters around the base of surface-adhered lipid vesicles. The rings remain around the vesicles but disintegrate when the lipid membranes are dissolved in detergent. The aqueous medium allows carbodiimide-based cross-linking chemistry to be applied to the particle assemblies resulting in the preservation of the rings even after the lipid compartments are dissolved.
Collapse
Affiliation(s)
- Gizem Karabiyik
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway.
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway.
| |
Collapse
|
5
|
Soni J, Gupta S, Mandal T. Recalibration of MARTINI-3 Parameters for Improved Interactions between Peripheral Proteins and Lipid Bilayers. J Chem Theory Comput 2024; 20:9673-9686. [PMID: 39491480 DOI: 10.1021/acs.jctc.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The MARTINI force field is one of the most used coarse-grained models for biomolecular simulations. Many limitations of the model including the protein-protein overaggregation have been improved in its latest version, MARTINI-3. In this study, we investigate the efficacy of the MARTINI-3 parameters for capturing the interactions of peripheral proteins with model plasma membranes. Particularly, we consider two classes of proteins, namely, annexin and epsin, which are known to generate negative and positive membrane curvatures, respectively. We find that current MARTINI-3 parameters are not able to correctly describe the protein-membrane interface and the protein-induced membrane curvatures for any of these proteins. The problem arises due to the lack of proper hydrophobic interactions between the protein residues and lipid tails. Making systematic adjustments, we show that a combination of reduction in the protein-water interactions and enhancement of protein-lipid hydrophobic interactions is essential for accurate prediction of the interfacial structure including the protein-induced membrane curvature. Next, we apply our model to a couple of other peripheral proteins, namely, Snf7, a core component of the ESCRT-III complex, and the PH domain of evectin-2. We find that our model captures the protein-membrane interfacial structure much more accurately than the MARTINI-3 model for all of the peripheral proteins considered in this study. However, the strategy described in this study may not be suitable for oligomeric transmembrane proteins where protein-protein hydrophobic interactions should be increased instead of protein-lipid hydrophobic interactions.
Collapse
Affiliation(s)
- Jatin Soni
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Shivam Gupta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
6
|
Yang Y, Valencia LA, Lu CH, Nakamoto ML, Tsai CT, Liu C, Yang H, Zhang W, Jahed Z, Lee WR, Santoro F, Liou J, Wu JC, Cui B. Plasma membrane curvature regulates the formation of contacts with the endoplasmic reticulum. Nat Cell Biol 2024; 26:1878-1891. [PMID: 39289582 PMCID: PMC11567891 DOI: 10.1038/s41556-024-01511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Contact sites between the endoplasmic reticulum (ER) and plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER-PM contact sites concentrate on tubular PM invaginations known as transverse tubules, we hypothesize that PM curvature plays a role in ER-PM contact formation. Through precise control of PM invaginations, we show that PM curvatures locally induce the formation of ER-PM contacts in cardiomyocytes. Intriguingly, the junctophilin family of ER-PM tethering proteins, specifically expressed in excitable cells, is the key player in this process, whereas the ubiquitously expressed extended synaptotagmin-2 does not show a preference for PM curvature. At the mechanistic level, we find that the low-complexity region (LCR) and membrane occupation and recognition nexus (MORN) motifs of junctophilins can bind independently to the PM, but both the LCR and MORN motifs are required for targeting PM curvatures. By examining the junctophilin interactome, we identify a family of curvature-sensing proteins-Eps15 homology domain-containing proteins-that interact with the MORN_LCR motifs and facilitate the preferential tethering of junctophilins to curved PM. These findings highlight the pivotal role of PM curvature in the formation of ER-PM contacts in cardiomyocytes and unveil a mechanism for the spatial regulation of ER-PM contacts through PM curvature modulation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Luis A Valencia
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Melissa L Nakamoto
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Departments of Physiology and Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical and Nano Engineering, University of California, San Diego, San Diego, CA, USA
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples, Italy
- Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Aachen, Germany
- Institute of Biological Information Processing-Bioelectronics (IBI-3), Forschungszentrum, Jülich, Germany
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
9
|
Bonet-Ponce L, Kluss JH, Cookson MR. Mechanisms of lysosomal tubulation and sorting driven by LRRK2. Biochem Soc Trans 2024; 52:1909-1919. [PMID: 39083004 PMCID: PMC11668303 DOI: 10.1042/bst20240087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024]
Abstract
Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. Lysosomal dysfunction plays a central role in the pathobiology of Parkinson's disease (PD). Gain-of-function mutations in Leucine-rich repeat kinase 2 (LRRK2) cause familial PD and genetic variations in its locus increase the risk of developing the sporadic form of the disease. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by LRRK2), wherein membrane-damaged lysosomes generate tubules sorted into mobile vesicles. Subsequently, these vesicles interact with healthy lysosomes. LYTL is orchestrated by LRRK2 kinase activity, via the recruitment and phosphorylation of a subset of RAB GTPases. Here, we summarize the current understanding of LYTL and its regulation, as well as the unknown aspects of this process.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | | | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
10
|
Kocher F, Applegate V, Reiners J, Port A, Spona D, Hänsch S, Mirzaiebadizi A, Ahmadian MR, Smits SHJ, Hegemann JH, Mölleken K. The Chlamydia pneumoniae effector SemD exploits its host's endocytic machinery by structural and functional mimicry. Nat Commun 2024; 15:7294. [PMID: 39181890 PMCID: PMC11344771 DOI: 10.1038/s41467-024-51681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
To enter epithelial cells, the obligate intracellular pathogen Chlamydia pneumoniae secretes early effector proteins, which bind to and modulate the host-cell's plasma membrane and recruit several pivotal endocytic host proteins. Here, we present the high-resolution structure of an entry-related chlamydial effector protein, SemD. Co-crystallisation of SemD with its host binding partners demonstrates that SemD co-opts the Cdc42 binding site to activate the actin cytoskeleton regulator N-WASP, making active, GTP-bound Cdc42 superfluous. While SemD binds N-WASP much more strongly than Cdc42 does, it does not bind the Cdc42 effector protein FMNL2, indicating effector protein specificity. Furthermore, by identifying flexible and structured domains, we show that SemD can simultaneously interact with the membrane, the endocytic protein SNX9, and N-WASP. Here, we show at the structural level how a single effector protein can hijack central components of the host's endocytic system for efficient internalization.
Collapse
Affiliation(s)
- Fabienne Kocher
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics, Düsseldorf, Germany
| | - Violetta Applegate
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Center for Structural Studies, Düsseldorf, Germany
| | - Jens Reiners
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Center for Structural Studies, Düsseldorf, Germany
| | - Astrid Port
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Center for Structural Studies, Düsseldorf, Germany
| | - Dominik Spona
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics, Düsseldorf, Germany
| | - Sebastian Hänsch
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Center for Advanced Imaging, Düsseldorf, Germany
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Center for Structural Studies, Düsseldorf, Germany
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, Düsseldorf, Germany
| | - Johannes H Hegemann
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics, Düsseldorf, Germany.
| | - Katja Mölleken
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics, Düsseldorf, Germany
| |
Collapse
|
11
|
Jin J, Noid WG, Li J, Kumar R, Cao J, Jang S, Paesani F, Reichman D. A Tribute to Gregory A. Voth. J Phys Chem B 2024; 128:7703-7706. [PMID: 39143864 DOI: 10.1021/acs.jpcb.4c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - William G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Jianing Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Revati Kumar
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seogjoo Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- PhD Programs in Chemistry and Physics, Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, Materials Science and Engineering, Halicioğlu Data Science Institute, San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - David Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
12
|
Fernández-Rico C, Dullens RPA. Liquid crystals from curved colloidal rods: waves, twists and more. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:094601. [PMID: 38996410 DOI: 10.1088/1361-6633/ad627b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
The curvature of elongated microscopic building blocks plays a crucial role on their self-assembly into orientationally ordered phases. While rod-like molecules form a handful of liquid crystal (LC) phases, curved or banana-shaped molecules show more than fifty phases, with fascinating physical properties, such as chirality or polarity. Despite the fundamental and technological importance of these so-called 'banana-shaped liquid crystals', little is known about their microscopic details at the single-molecule level. Curved colloidal liquid crystals-liquid crystals formed by curved colloidal rods-are excellent model systems to optically resolve the structure and dynamics of curved building blocks within these condensed phases. Recent advances in the synthesis of curved rod-like particles have unlocked the potential for studying-at the single-particle level-the intimate relationship between shape and phase symmetry, and even confirmed the stability of elusive LC phases. Further developments in this nascent field promise exciting findings, such as the first observation of the colloidal twist-bend nematic phase or the fabrication of functional materials with curvature-dependent properties. In this Report on Progress, we will highlight recent advances in the synthesis and assembly of curved colloidal liquid crystals and discuss the upcoming challenges and opportunities of this field.
Collapse
Affiliation(s)
| | - Roel P A Dullens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
13
|
Liu J. Roles of membrane mechanics-mediated feedback in membrane traffic. Curr Opin Cell Biol 2024; 89:102401. [PMID: 39018789 PMCID: PMC11297666 DOI: 10.1016/j.ceb.2024.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024]
Abstract
Synthesizing the recent progresses, we present our perspectives on how local modulations of membrane curvature, tension, and bending energy define the feedback controls over membrane traffic processes. We speculate the potential mechanisms of, and the control logic behind, the different membrane mechanics-mediated feedback in endocytosis and exo-endocytosis coupling. We elaborate the path forward with the open questions for theoretical considerations and the grand challenges for experimental validations.
Collapse
Affiliation(s)
- Jian Liu
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
14
|
Wang L, Yang Z, Satoshi F, Prasanna X, Yan Z, Vihinen H, Chen Y, Zhao Y, He X, Bu Q, Li H, Zhao Y, Jiang L, Qin F, Dai Y, Zhang N, Qin M, Kuang W, Zhao Y, Jokitalo E, Vattulainen I, Kajander T, Zhao H, Cen X. Membrane remodeling by FAM92A1 during brain development regulates neuronal morphology, synaptic function, and cognition. Nat Commun 2024; 15:6209. [PMID: 39043703 PMCID: PMC11266426 DOI: 10.1038/s41467-024-50565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
The Bin/Amphiphysin/Rvs (BAR) domain protein FAM92A1 is a multifunctional protein engaged in regulating mitochondrial ultrastructure and ciliogenesis, but its physiological role in the brain remains unclear. Here, we show that FAM92A1 is expressed in neurons starting from embryonic development. FAM92A1 knockout in mice results in altered brain morphology and age-associated cognitive deficits, potentially due to neuronal degeneration and disrupted synaptic plasticity. Specifically, FAM92A1 deficiency impairs diverse neuronal membrane morphology, including the mitochondrial inner membrane, myelin sheath, and synapses, indicating its roles in membrane remodeling and maintenance. By determining the crystal structure of the FAM92A1 BAR domain, combined with atomistic molecular dynamics simulations, we uncover that FAM92A1 interacts with phosphoinositide- and cardiolipin-containing membranes to induce lipid-clustering and membrane curvature. Altogether, these findings reveal the physiological role of FAM92A1 in the brain, highlighting its impact on synaptic plasticity and neural function through the regulation of membrane remodeling and endocytic processes.
Collapse
Affiliation(s)
- Liang Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Ziyun Yang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Fudo Satoshi
- Helsinki Institute of Life Science - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Xavier Prasanna
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ziyi Yan
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Helena Vihinen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Yaxing Chen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yue Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiumei He
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China
| | - Qian Bu
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongchun Li
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ying Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Linhong Jiang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Feng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yanping Dai
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ni Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Weihong Kuang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yinglan Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Eija Jokitalo
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Tommi Kajander
- Helsinki Institute of Life Science - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
- School of Life Sciences, Guangxi Normal University, Guilin, China.
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.
| | - Xiaobo Cen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Mangiarotti A, Dimova R. Biomolecular Condensates in Contact with Membranes. Annu Rev Biophys 2024; 53:319-341. [PMID: 38360555 DOI: 10.1146/annurev-biophys-030722-121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Biomolecular condensates are highly versatile membraneless organelles involved in a plethora of cellular processes. Recent years have witnessed growing evidence of the interaction of these droplets with membrane-bound cellular structures. Condensates' adhesion to membranes can cause their mutual molding and regulation, and their interaction is of fundamental relevance to intracellular organization and communication, organelle remodeling, embryogenesis, and phagocytosis. In this article, we review advances in the understanding of membrane-condensate interactions, with a focus on in vitro models. These minimal systems allow the precise characterization and tuning of the material properties of both membranes and condensates and provide a workbench for visualizing the resulting morphologies and quantifying the interactions. These interactions can give rise to diverse biologically relevant phenomena, such as molecular-level restructuring of the membrane, nano- to microscale ruffling of the condensate-membrane interface, and coupling of the protein and lipid phases.
Collapse
Affiliation(s)
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany;
| |
Collapse
|
16
|
Joshi K, York HM, Wright CS, Biswas RR, Arumugam S, Iyer-Biswas S. Emergent Spatiotemporal Organization in Stochastic Intracellular Transport Dynamics. Annu Rev Biophys 2024; 53:193-220. [PMID: 38346244 DOI: 10.1146/annurev-biophys-030422-044448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The interior of a living cell is an active, fluctuating, and crowded environment, yet it maintains a high level of coherent organization. This dichotomy is readily apparent in the intracellular transport system of the cell. Membrane-bound compartments called endosomes play a key role in carrying cargo, in conjunction with myriad components including cargo adaptor proteins, membrane sculptors, motor proteins, and the cytoskeleton. These components coordinate to effectively navigate the crowded cell interior and transport cargo to specific intracellular locations, even though the underlying protein interactions and enzymatic reactions exhibit stochastic behavior. A major challenge is to measure, analyze, and understand how, despite the inherent stochasticity of the constituent processes, the collective outcomes show an emergent spatiotemporal order that is precise and robust. This review focuses on this intriguing dichotomy, providing insights into the known mechanisms of noise suppression and noise utilization in intracellular transport processes, and also identifies opportunities for future inquiry.
Collapse
Affiliation(s)
- Kunaal Joshi
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
| | - Harrison M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
| | - Charles S Wright
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
| | - Rudro R Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
| | - Senthil Arumugam
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria, Australia
- Single Molecule Science, University of New South Wales, Sydney, New South Wales, Australia
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia;
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Melbourne, Victoria, Australia
| | - Srividya Iyer-Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA;
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
17
|
Yang Y, Valencia LA, Lu CH, Nakamoto ML, Tsai CT, Liu C, Yang H, Zhang W, Jahed Z, Lee WR, Santoro F, Liou J, Wu JC, Cui B. Membrane Curvature Promotes ER-PM Contact Formation via Junctophilin-EHD Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601287. [PMID: 38979311 PMCID: PMC11230412 DOI: 10.1101/2024.06.29.601287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Contact sites between the endoplasmic reticulum (ER) and the plasma membrane (PM) play a crucial role in governing calcium regulation and lipid homeostasis. Despite their significance, the factors regulating their spatial distribution on the PM remain elusive. Inspired by observations in cardiomyocytes, where ER-PM contact sites concentrate on tubular PM invaginations known as transverse tubules (T-tubules), we hypothesize that the PM curvature plays a role in ER-PM contact formation. Through precise control of PM invaginations, we show that PM curvatures locally induce the formation of ER-PM contacts in cardiomyocytes. Intriguingly, the junctophilin family of ER-PM tethering proteins, specifically expressed in excitable cells, is the key player in this process, while the ubiquitously expressed extended synaptotagmin 2 does not show a preference for PM curvature. At the mechanistic level, we find that the low complexity region (LCR) and the MORN motifs of junctophilins can independently bind to the PM, but both the LCR and MORN motifs are required for targeting PM curvatures. By examining the junctophilin interactome, we identify a family of curvature-sensing proteins, Eps15-homology domain containing proteins (EHDs), that interact with the MORN_LCR motifs and facilitate junctophilins' preferential tethering to curved PM. These findings highlight the pivotal role of PM curvature in the formation of ER-PM contacts in cardiomyocytes and unveil a novel mechanism for the spatial regulation of ER-PM contacts through PM curvature modulation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Luis A. Valencia
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Melissa L. Nakamoto
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Present address: Department of Physiology and Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Present address: Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Present address: Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, CA, USA
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Faculty of Electrical Engineering and IT, RWTH, Aachen 52074, Germany
- Institute of Biological Information Processing—Bioelectronics, IBI-3, Forschungszentrum, Juelich 52428, Germany
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine (Division of Cardiology), Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University; Stanford, CA, USA
| |
Collapse
|
18
|
Chen Y, Shokouhi AR, Voelcker NH, Elnathan R. Nanoinjection: A Platform for Innovation in Ex Vivo Cell Engineering. Acc Chem Res 2024; 57:1722-1735. [PMID: 38819691 PMCID: PMC11191407 DOI: 10.1021/acs.accounts.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
ConspectusIn human cells, intracellular access and therapeutic cargo transport, including gene-editing tools (e.g., CRISPR-Cas9 and transposons), nucleic acids (e.g., DNA, mRNA, and siRNA), peptides, and proteins (e.g., enzymes and antibodies), are tightly constrained to ensure healthy cell function and behavior. This principle is exemplified in the delivery mechanisms of chimeric antigen receptor (CAR)-T cells for ex-vivo immunotherapy. In particular, the clinical success of CAR-T cells has established a new standard of care by curing previously incurable blood cancers. The approach involves the delivery, typically via the use of electroporation (EP) and lentivirus, of therapeutic CAR genes into a patient's own T cells, which are then engineered to express CARs that target and combat their blood cancer. But the key difficulty lies in genetically manipulating these cells without causing irreversible damage or loss of function─all the while minimizing complexities of manufacturing, safety concerns, and costs, and ensuring the efficacy of the final CAR-T cell product.Nanoinjection─the process of intracellular delivery using nanoneedles (NNs)─is an emerging physical delivery route that efficiently negotiates the plasma membrane of many cell types, including primary human T cells. It occurs with minimal perturbation, invasiveness, and toxicity, with high efficiency and throughput at high spatial and temporal resolutions. Nanoinjection promises greatly improved delivery of a broad range of therapeutic cargos with little or no damage to those cargos. A nanoinjection platform allows these cargos to function in the intracellular space as desired. The adaptability of nanoinjection platforms is now bringing major advantages in immunomodulation, mechanotransduction, sampling of cell states (nanobiopsy), controlled intracellular interrogation, and the primary focus of this account─intracellular delivery and its applications in ex vivo cell engineering.Mechanical nanoinjection typically exerts direct mechanical force on the cell membrane, offering a straightforward route to improve membrane perturbation by the NNs and subsequent transport of genetic cargo into targeted cell type (adherent or suspension cells). By contrast, electroactive nanoinjection is controlled by coupling NNs with an electric field─a new route for activating electroporation (EP) at the nanoscale─allowing a dramatic reduction of the applied voltage to a cell and so minimizing post-EP damage to cells and cargo, and overcoming many of the limitations of conventional bulk EP. Nanoinjection transcends mere technique; it is an approach to cell engineering ex vivo, offering the potential to endow cells with new, powerful features such as generating chimeric antigen receptor (CAR)-T cells for future CAR-T cell technologies.We first discuss the manufacturing of NN devices (Section 2), then delve into nanoinjection-mediated cell engineering (Section 3), nanoinjection mechanisms and interfacing methodologies (Section 4), and emerging applications in using nanoinjection to create functional CAR-T cells (Section 5).
Collapse
Affiliation(s)
- Yaping Chen
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), Institute of Aging, Key Laboratory of Alzheimer’s
Disease of Zhejiang Province, Zhejiang Provincial Clinical Research
Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ali-Reza Shokouhi
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Nicolas H. Voelcker
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node of the Australian National
Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- Department
of Materials Science and Engineering, Monash
University, 22 Alliance Lane, Clayton, VIC 3168, Australia
| | - Roey Elnathan
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node of the Australian National
Fabrication Facility, 151 Wellington Road, Clayton, VIC 3168, Australia
- School
of Medicine, Faculty of Health, Deakin University, Waurn Ponds, VIC 3216, Australia
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, VIC 3216, Australia
- The
Institute for Mental and Physical Health and Clinical Translation,
School of Medicine, Deakin University, Geelong Waurn Ponds Campus, Melbourne, VIC 3216, Australia
| |
Collapse
|
19
|
Huster D, Maiti S, Herrmann A. Phospholipid Membranes as Chemically and Functionally Tunable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312898. [PMID: 38456771 DOI: 10.1002/adma.202312898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Indexed: 03/09/2024]
Abstract
The sheet-like lipid bilayer is the fundamental structural component of all cell membranes. Its building blocks are phospholipids and cholesterol. Their amphiphilic structure spontaneously leads to the formation of a bilayer in aqueous environment. Lipids are not just structural elements. Individual lipid species, the lipid membrane structure, and lipid dynamics influence and regulate membrane protein function. An exciting field is emerging where the membrane-associated material properties of different bilayer systems are used in designing innovative solutions for widespread applications across various fields, such as the food industry, cosmetics, nano- and biomedicine, drug storage and delivery, biotechnology, nano- and biosensors, and computing. Here, the authors summarize what is known about how lipids determine the properties and functions of biological membranes and how this has been or can be translated into innovative applications. Based on recent progress in the understanding of membrane structure, dynamics, and physical properties, a perspective is provided on how membrane-controlled regulation of protein functions can extend current applications and even offer new applications.
Collapse
Affiliation(s)
- Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107, Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Andreas Herrmann
- Freie Universität Berlin, Department Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
20
|
Makasewicz K, Linse S, Sparr E. Interplay of α-synuclein with Lipid Membranes: Cooperative Adsorption, Membrane Remodeling and Coaggregation. JACS AU 2024; 4:1250-1262. [PMID: 38665673 PMCID: PMC11040681 DOI: 10.1021/jacsau.3c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 04/28/2024]
Abstract
α-Synuclein is a small neuronal protein enriched at presynaptic termini. It is hypothesized to play a role in neurotransmitter release and synaptic vesicle cycling, while the formation of α-synuclein amyloid fibrils is associated with several neurodegenerative diseases, most notably Parkinson's Disease. The molecular mechanisms of both the physiological and pathological functions of α-synuclein remain to be fully understood, but in both cases, interactions with membranes play an important role. In this Perspective, we discuss several aspects of α-synuclein interactions with lipid membranes including cooperative adsorption, membrane remodeling and α-synuclein amyloid fibril formation in the presence of lipid membranes. We highlight the coupling between the different phenomena and their interplay in the context of physiological and pathological functions of α-synuclein.
Collapse
Affiliation(s)
- Katarzyna Makasewicz
- Division
of Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Sara Linse
- Biochemistry
and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | - Emma Sparr
- Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
21
|
Sanchez L, Lensen A, Connor MG, Hamon M, Enninga J, Valenzuela C. Shigella generates distinct IAM subpopulations during epithelial cell invasion to promote efficient intracellular niche formation. Eur J Cell Biol 2024; 103:151381. [PMID: 38183814 DOI: 10.1016/j.ejcb.2023.151381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
The facultative intracellular pathogen Shigella flexneri invades non-phagocytic epithelial gut cells. Through a syringe-like apparatus called type 3 secretion system, it injects effector proteins into the host cell triggering actin rearrangements leading to its uptake within a tight vacuole, termed the bacterial-containing vacuole (BCV). Simultaneously, Shigella induces the formation of large vesicles around the entry site, which we refer to as infection-associated macropinosomes (IAMs). After entry, Shigella ruptures the BCV and escapes into the host cytosol by disassembling the BCV remnants. Previously, IAM formation has been shown to be required for efficient BCV escape, but the molecular events associated with BCV disassembly have remained unclear. To identify host components required for BCV disassembly, we performed a microscopy-based screen to monitor the recruitment of BAR domain-containing proteins, which are a family of host proteins involved in membrane shaping and sensing (e.g. endocytosis and recycling) during Shigella epithelial cell invasion. We identified endosomal recycling BAR protein Sorting Nexin-8 (SNX8) localized to IAMs in a PI(3)P-dependent manner before BCV disassembly. At least two distinct IAM subpopulations around the BCV were found, either being recycled back to cellular compartments such as the plasma membrane or transitioning to become RAB11A positive "contact-IAMs" involved in promoting BCV rupture. The IAM subpopulation duality was marked by the exclusive recruitment of either SNX8 or RAB11A. Hindering PI(3)P production at the IAMs led to an inhibition of SNX8 recruitment at these compartments and delayed both, the step of BCV rupture time and successful BCV disassembly. Finally, siRNA depletion of SNX8 accelerated BCV rupture and unpeeling of BCV remnants, indicating that SNX8 is involved in controlling the timing of the cytosolic release. Overall, our work sheds light on how Shigella establishes its intracellular niche through the subversion of a specific set of IAMs.
Collapse
Affiliation(s)
- Lisa Sanchez
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France
| | - Arthur Lensen
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France
| | - Michael G Connor
- Institut Pasteur, Université Paris Cité, Chromatin and Infection Unit, 75015 Paris, France
| | - Mélanie Hamon
- Institut Pasteur, Université Paris Cité, Chromatin and Infection Unit, 75015 Paris, France
| | - Jost Enninga
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France.
| | - Camila Valenzuela
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France.
| |
Collapse
|
22
|
Chadwick SR, Barreda D, Wu JZ, Ye G, Yusuf B, Ren D, Freeman SA. Two-pore channels regulate endomembrane tension to enable remodeling and resolution of phagolysosomes. Proc Natl Acad Sci U S A 2024; 121:e2309465121. [PMID: 38354262 PMCID: PMC10895354 DOI: 10.1073/pnas.2309465121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Phagocytes promptly resolve ingested targets to replenish lysosomes and maintain their responsiveness. The resolution process requires that degradative hydrolases, solute transporters, and proteins involved in lipid traffic are delivered and made active in phagolysosomes. It also involves extensive membrane remodeling. We report that cation channels that localize to phagolysosomes were essential for resolution. Specifically, the conductance of Na+ by two-pore channels (TPCs) and the presence of a Na+ gradient between the phagolysosome lumen and the cytosol were critical for the controlled release of membrane tension that permits deformation of the limiting phagolysosome membrane. In turn, membrane deformation was a necessary step to efficiently transport the cholesterol extracted from cellular targets, permeabilizing them to hydrolases. These results place TPCs as regulators of endomembrane remodeling events that precede target degradation in cases when the target is bound by a cholesterol-containing membrane. The findings may help to explain lipid metabolism dysfunction and autophagic flux impairment reported in TPC KO mice and establish stepwise regulation to the resolution process that begins with lysis of the target.
Collapse
Affiliation(s)
- Sarah R. Chadwick
- Program in Cell Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Dante Barreda
- Program in Cell Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Jing Ze Wu
- Program in Cell Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Gang Ye
- Program in Cell Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Bushra Yusuf
- Program in Cell Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Spencer A. Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
23
|
van Hilten N, Verwei N, Methorst J, Nase C, Bernatavicius A, Risselada HJ. PMIpred: a physics-informed web server for quantitative protein-membrane interaction prediction. Bioinformatics 2024; 40:btae069. [PMID: 38317055 PMCID: PMC11212490 DOI: 10.1093/bioinformatics/btae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
MOTIVATION Many membrane peripheral proteins have evolved to transiently interact with the surface of (curved) lipid bilayers. Currently, methods to quantitatively predict sensing and binding free energies for protein sequences or structures are lacking, and such tools could greatly benefit the discovery of membrane-interacting motifs, as well as their de novo design. RESULTS Here, we trained a transformer neural network model on molecular dynamics data for >50 000 peptides that is able to accurately predict the (relative) membrane-binding free energy for any given amino acid sequence. Using this information, our physics-informed model is able to classify a peptide's membrane-associative activity as either non-binding, curvature sensing, or membrane binding. Moreover, this method can be applied to detect membrane-interaction regions in a wide variety of proteins, with comparable predictive performance as state-of-the-art data-driven tools like DREAMM, PPM3, and MODA, but with a wider applicability regarding protein diversity, and the added feature to distinguish curvature sensing from general membrane binding. AVAILABILITY AND IMPLEMENTATION We made these tools available as a web server, coined Protein-Membrane Interaction predictor (PMIpred), which can be accessed at https://pmipred.fkt.physik.tu-dortmund.de.
Collapse
Affiliation(s)
- Niek van Hilten
- Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Nino Verwei
- Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Jeroen Methorst
- Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Carsten Nase
- Department of Physics, Technical University Dortmund, Dortmund 44227, Germany
| | - Andrius Bernatavicius
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden 2333 CA, Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Herre Jelger Risselada
- Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
- Department of Physics, Technical University Dortmund, Dortmund 44227, Germany
| |
Collapse
|
24
|
Houngue R, Sangaré LO, Alayi TD, Dieng A, Bitard-Feildel T, Boulogne C, Slomianny C, Atindehou CM, Fanou LA, Hathout Y, Callebaut I, Tomavo S. Toxoplasma membrane inositol phospholipid binding protein TgREMIND is essential for secretory organelle function and host infection. Cell Rep 2024; 43:113601. [PMID: 38157297 DOI: 10.1016/j.celrep.2023.113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Apicomplexan parasites possess specialized secretory organelles called rhoptries, micronemes, and dense granules that play a vital role in host infection. In this study, we demonstrate that TgREMIND, a protein found in Toxoplasma gondii, is necessary for the biogenesis of rhoptries and dense granules. TgREMIND contains a Fes-CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain, which binds to membrane phospholipids, as well as a novel uncharacterized domain that we have named REMIND (regulator of membrane-interacting domain). Both the F-BAR domain and the REMIND are crucial for TgREMIND functions. When TgREMIND is depleted, there is a significant decrease in the abundance of dense granules and abnormal transparency of rhoptries, leading to a reduction in protein secretion from these organelles. The absence of TgREMIND inhibits host invasion and parasite dissemination, demonstrating that TgREMIND is essential for the proper function of critical secretory organelles required for successful infection by Toxoplasma.
Collapse
Affiliation(s)
- Rodrigue Houngue
- Université Paris Saclay, CNRS UMR 9198-CEA, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif sur Yvette, France
| | - Lamba Omar Sangaré
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Tchilabalo Dilezitoko Alayi
- Department of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Johnson City, NY 13790, USA
| | - Aissatou Dieng
- Université Paris Saclay, CNRS UMR 9198-CEA, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif sur Yvette, France
| | - Tristan Bitard-Feildel
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Claire Boulogne
- Université Paris Saclay, CNRS UMR 9198-CEA, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif sur Yvette, France; Plateforme Imagerie-Gif, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif sur Yvette, France
| | - Christian Slomianny
- University of Lille, Laboratory of Cell Physiology, INSERM U 1003, 59655 Villeneuve d'Ascq, France
| | - Cynthia Menonve Atindehou
- Université d'Abomey Calavi, Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des Sciences et Technologies, Cotonou, Bénin
| | - Lucie Ayi Fanou
- Université d'Abomey Calavi, Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des Sciences et Technologies, Cotonou, Bénin
| | - Yetrib Hathout
- Department of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Johnson City, NY 13790, USA
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Stanislas Tomavo
- Université Paris Saclay, CNRS UMR 9198-CEA, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif sur Yvette, France.
| |
Collapse
|
25
|
Pajtinka P, Vácha R. Amphipathic Helices Can Sense Both Positive and Negative Curvatures of Lipid Membranes. J Phys Chem Lett 2024; 15:175-179. [PMID: 38153203 PMCID: PMC10788957 DOI: 10.1021/acs.jpclett.3c02785] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Curvature sensing is an essential ability of biomolecules to preferentially localize to membrane regions of a specific curvature. It has been shown that amphipathic helices (AHs), helical peptides with both hydrophilic and hydrophobic regions, could sense a positive membrane curvature. The origin of this AH sensing has been attributed to their ability to exploit lipid-packing defects that are enhanced in regions of positive curvature. In this study, we revisit an alternative framework where AHs act as sensors of local internal stress within the membrane, suggesting the possibility of an AH sensing a negative membrane curvature. Using molecular dynamics simulations, we gradually tuned the hydrophobicity of AHs, thereby adjusting their insertion depth so that the curvature preference of AHs is switched from positive to negative. This study suggests that highly hydrophobic AHs could preferentially localize proteins to regions of a negative membrane curvature.
Collapse
Affiliation(s)
- Peter Pajtinka
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Robert Vácha
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech
Republic
| |
Collapse
|
26
|
Rombouts J, Elliott J, Erzberger A. Forceful patterning: theoretical principles of mechanochemical pattern formation. EMBO Rep 2023; 24:e57739. [PMID: 37916772 PMCID: PMC10792592 DOI: 10.15252/embr.202357739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Biological pattern formation is essential for generating and maintaining spatial structures from the scale of a single cell to tissues and even collections of organisms. Besides biochemical interactions, there is an important role for mechanical and geometrical features in the generation of patterns. We review the theoretical principles underlying different types of mechanochemical pattern formation across spatial scales and levels of biological organization.
Collapse
Affiliation(s)
- Jan Rombouts
- Cell Biology and Biophysics
UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Developmental Biology Unit, European Molecular Biology Laboratory
(EMBL)HeidelbergGermany
| | - Jenna Elliott
- Cell Biology and Biophysics
UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Department of Physics and
AstronomyHeidelberg UniversityHeidelbergGermany
| | - Anna Erzberger
- Cell Biology and Biophysics
UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Department of Physics and
AstronomyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
27
|
Gonthier A, Botvinick EL, Grosberg A, Mohraz A. Effect of Porous Substrate Topographies on Cell Dynamics: A Computational Study. ACS Biomater Sci Eng 2023; 9:5666-5678. [PMID: 37713253 PMCID: PMC10565724 DOI: 10.1021/acsbiomaterials.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Controlling cell-substrate interactions via the microstructural characteristics of biomaterials offers an advantageous path for modulating cell dynamics, mechanosensing, and migration, as well as for designing immune-modulating implants, all without the drawbacks of chemical-based triggers. Specifically, recent in vivo studies have suggested that a porous implant's microscale curvature landscape can significantly impact cell behavior and ultimately the immune response. To investigate such cell-substrate interactions, we utilized a 3D computational model incorporating the minimum necessary physics of cell migration and cell-substrate interactions needed to replicate known in vitro behaviors. This model specifically incorporates the effect of membrane tension, which was found to be necessary to replicate in vitro cell behavior on curved surfaces. Our simulated substrates represent two classes of porous materials recently used in implant studies, which have markedly different microscale curvature distributions and pore geometries. We found distinct differences between the overall migration behaviors, shapes, and actin polymerization dynamics of cells interacting with the two substrates. These differences were correlated to the shape energy of the cells as they interacted with the porous substrates, in effect interpreting substrate topography as an energetic landscape interrogated by cells. Our results demonstrate that microscale curvature directly influences cell shape and migration and, therefore, is likely to influence cell behavior. This supports further investigation of the relationship between the surface topography of implanted materials and the characteristic immune response, a complete understanding of which would broadly advance principles of biomaterial design.
Collapse
Affiliation(s)
- Alyse
R. Gonthier
- Department
of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Elliot L. Botvinick
- Department
of Biomedical Engineering, University of
California, Irvine, Irvine, California 92697, United States
- Center
for Complex Biological Systems, University
of California, Irvine, Irvine, California 92697, United States
- Beckman
Laser Institute and Medical Clinic, University
of California, Irvine, Irvine, California 92697, United States
- Department
of Surgery,University of California, Irvine, Irvine, California 92697, United States
- Edwards
Lifesciences
Foundation Cardiovascular Innovation & Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Anna Grosberg
- Department
of Biomedical Engineering, University of
California, Irvine, Irvine, California 92697, United States
- Center
for Complex Biological Systems, University
of California, Irvine, Irvine, California 92697, United States
- Edwards
Lifesciences
Foundation Cardiovascular Innovation & Research Center, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- The
NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California 92697, United States
- Sue
and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ali Mohraz
- Department
of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
28
|
Träger J, Meister A, Hause G, Harauz G, Hinderberger D. Shaping membrane interfaces in lipid vesicles mimicking the cytoplasmic leaflet of myelin through variation of cholesterol and myelin basic protein contents. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184179. [PMID: 37244538 DOI: 10.1016/j.bbamem.2023.184179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/23/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Myelin basic protein (MBP) is an intrinsically disordered protein and in the central nervous system (CNS) mainly responsible for connecting the cytoplasmic surfaces of the multilamellar, compact myelin. Increased posttranslational modification of MBP is linked to both, the natural development (from adolescent to adult brains) of myelin, and features of multiple sclerosis. Here, we study how a combination of this intrinsically disordered myelin protein with varying the natural cholesterol content may alter the characteristics of myelin-like membranes and interactions between these membranes. Large unilamellar vesicles (LUVs) with a composition mimicking the cytoplasmic leaflet of myelin were chosen as the model system, in which different parameters contributing to the interactions between the lipid membrane and MBP were investigated. While we use cryo-transmission electron microscopy (TEM) for imaging, dynamic light scattering (DLS) and electrophoretic measurements through continuously-monitored phase-analysis light scattering (cmPALS) were used for a more global overview of particle size and charge, and electron paramagnetic resonance (EPR) spectroscopy was utilized for local behavior of lipids in the vesicles' membranes in aqueous solution. The cholesterol content was varied from 060 % in these LUVs and measurements were performed in the presence and absence of MBP. We find that the composition of the lipid layers is relevant to the interaction with MBP. Not only the size, the shape and the aggregation behavior of the vesicles depend on the cholesterol content, but also within each membrane, cholesterol's freedom of movement, its environmental polarity and its distribution were found to depend on the content using the EPR-active spin-labeled cholesterol (CSOSL). In addition, DLS and EPR measurements probing the transition temperatures of the lipid phases allow a correlation of specific behavior with the human body temperature of 37 °C. Overall, our results aid in understanding the importance of the native cholesterol content in the healthy myelin membrane, which serves as the basis for stable and optimum protein-bilayer interactions. Although studied in this specific myelin-like system, from a more general and materials science-oriented point of view, we could establish how membrane and vesicle properties depend on cholesterol and/or MBP content, which might be useful generally when specific membrane and vesicle characteristics are sought for.
Collapse
Affiliation(s)
- Jennica Träger
- Institute of Chemistry, Physical Chemistry - Complex Self-organizing Systems, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany; Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, Germany; Institute of Biochemistry, Physical Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Gerd Hause
- Biocenter, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Dariush Hinderberger
- Institute of Chemistry, Physical Chemistry - Complex Self-organizing Systems, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany; Interdisciplinary Research Center HALOmem at the Martin-Luther-Universität Halle-Wittenberg, Germany.
| |
Collapse
|
29
|
Noordally ZB, Hindle MM, Martin SF, Seaton DD, Simpson TI, Le Bihan T, Millar AJ. A phospho-dawn of protein modification anticipates light onset in the picoeukaryote Ostreococcus tauri. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5514-5531. [PMID: 37481465 PMCID: PMC10540734 DOI: 10.1093/jxb/erad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Diel regulation of protein levels and protein modification had been less studied than transcript rhythms. Here, we compare transcriptome data under light-dark cycles with partial proteome and phosphoproteome data, assayed using shotgun MS, from the alga Ostreococcus tauri, the smallest free-living eukaryote. A total of 10% of quantified proteins but two-thirds of phosphoproteins were rhythmic. Mathematical modelling showed that light-stimulated protein synthesis can account for the observed clustering of protein peaks in the daytime. Prompted by night-peaking and apparently dark-stable proteins, we also tested cultures under prolonged darkness, where the proteome changed less than under the diel cycle. Among the dark-stable proteins were prasinophyte-specific sequences that were also reported to accumulate when O. tauri formed lipid droplets. In the phosphoproteome, 39% of rhythmic phospho-sites reached peak levels just before dawn. This anticipatory phosphorylation suggests that a clock-regulated phospho-dawn prepares green cells for daytime functions. Acid-directed and proline-directed protein phosphorylation sites were regulated in antiphase, implicating the clock-related casein kinases 1 and 2 in phase-specific regulation, alternating with the CMGC protein kinase family. Understanding the dynamic phosphoprotein network should be facilitated by the minimal kinome and proteome of O. tauri. The data are available from ProteomeXchange, with identifiers PXD001734, PXD001735, and PXD002909.
Collapse
Affiliation(s)
- Zeenat B Noordally
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Matthew M Hindle
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sarah F Martin
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - T Ian Simpson
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Thierry Le Bihan
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
30
|
Quiroga X, Walani N, Disanza A, Chavero A, Mittens A, Tebar F, Trepat X, Parton RG, Geli MI, Scita G, Arroyo M, Le Roux AL, Roca-Cusachs P. A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale. eLife 2023; 12:e72316. [PMID: 37747150 PMCID: PMC10569792 DOI: 10.7554/elife.72316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/24/2023] [Indexed: 09/26/2023] Open
Abstract
As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nanoscale topography. Here, we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nanoscale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by I-BAR proteins, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios.
Collapse
Affiliation(s)
- Xarxa Quiroga
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST)BarcelonaSpain
- Departament de Biomedicina, Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de BarcelonaBarcelonaSpain
| | - Nikhil Walani
- Department of Applied Mechanics, IIT DelhiNew DelhiIndia
| | - Andrea Disanza
- IFOM ETS - The AIRC Institute of Molecular OncologyMilanItaly
| | - Albert Chavero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de BarcelonaBarcelonaSpain
| | - Alexandra Mittens
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST)BarcelonaSpain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de BarcelonaBarcelonaSpain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST)BarcelonaSpain
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of QueenslandBrisbaneAustralia
| | | | - Giorgio Scita
- IFOM ETS - The AIRC Institute of Molecular OncologyMilanItaly
- Department of Oncology and Haemato-Oncology, University of MilanMilanItaly
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST)BarcelonaSpain
- Universitat Politècnica de Catalunya (UPC), Campus Nord, Carrer de Jordi GironaBarcelonaSpain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)BarcelonaSpain
| | - Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST)BarcelonaSpain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, the Barcelona Institute of Technology (BIST)BarcelonaSpain
- Departament de Biomedicina, Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de BarcelonaBarcelonaSpain
| |
Collapse
|
31
|
Sitarska E, Almeida SD, Beckwith MS, Stopp J, Czuchnowski J, Siggel M, Roessner R, Tschanz A, Ejsing C, Schwab Y, Kosinski J, Sixt M, Kreshuk A, Erzberger A, Diz-Muñoz A. Sensing their plasma membrane curvature allows migrating cells to circumvent obstacles. Nat Commun 2023; 14:5644. [PMID: 37704612 PMCID: PMC10499897 DOI: 10.1038/s41467-023-41173-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
To navigate through diverse tissues, migrating cells must balance persistent self-propelled motion with adaptive behaviors to circumvent obstacles. We identify a curvature-sensing mechanism underlying obstacle evasion in immune-like cells. Specifically, we propose that actin polymerization at the advancing edge of migrating cells is inhibited by the curvature-sensitive BAR domain protein Snx33 in regions with inward plasma membrane curvature. The genetic perturbation of this machinery reduces the cells' capacity to evade obstructions combined with faster and more persistent cell migration in obstacle-free environments. Our results show how cells can read out their surface topography and utilize actin and plasma membrane biophysics to interpret their environment, allowing them to adaptively decide if they should move ahead or turn away. On the basis of our findings, we propose that the natural diversity of BAR domain proteins may allow cells to tune their curvature sensing machinery to match the shape characteristics in their environment.
Collapse
Affiliation(s)
- Ewa Sitarska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Silvia Dias Almeida
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | | | - Julian Stopp
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Jakub Czuchnowski
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Marc Siggel
- EMBL Hamburg, European Molecular Biology Laboratory, 22607, Hamburg, Germany
- Centre for Structural Systems Biology, 22607, Hamburg, Germany
| | - Rita Roessner
- EMBL Hamburg, European Molecular Biology Laboratory, 22607, Hamburg, Germany
- Centre for Structural Systems Biology, 22607, Hamburg, Germany
| | - Aline Tschanz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Christer Ejsing
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Jan Kosinski
- EMBL Hamburg, European Molecular Biology Laboratory, 22607, Hamburg, Germany
- Centre for Structural Systems Biology, 22607, Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Michael Sixt
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Anna Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
| |
Collapse
|
32
|
Panda A, Brown C, Gupta K. Studying Membrane Protein-Lipid Specificity through Direct Native Mass Spectrometric Analysis from Tunable Proteoliposomes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1917-1927. [PMID: 37432128 PMCID: PMC10932607 DOI: 10.1021/jasms.3c00110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Native mass spectrometry (nMS) has emerged as a key analytical tool to study the organizational states of proteins and their complexes with both endogenous and exogenous ligands. Specifically, for membrane proteins, it provides a key analytical dimension to determine the identity of bound lipids and to decipher their effects on the observed structural assembly. We recently developed an approach to study membrane proteins directly from intact and tunable lipid membranes where both the biophysical properties of the membrane and its lipid compositions can be customized. Extending this, we use our liposome-nMS platform to decipher the lipid specificity of membrane proteins through their multiorganelle trafficking pathways. To demonstrate this, we used VAMP2 and reconstituted it in the endoplasmic reticulum (ER), Golgi, synaptic vesicle (SV), and plasma membrane (PM) mimicking liposomes. By directly studying VAMP2 from these customized liposomes, we show how the same transmembrane protein can bind to different sets of lipids in different organellar-mimicking membranes. Considering that the cellular trafficking pathway of most eukaryotic integral membrane proteins involves residence in multiple organellar membranes, this study highlights how the lipid-specificity of the same integral membrane protein may change depending on the membrane context. Further, leveraging the capability of the platform to study membrane proteins from liposomes with curated biophysical properties, we show how we can disentangle chemical versus biophysical properties, of individual lipids in regulating membrane protein assembly.
Collapse
Affiliation(s)
- Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Caroline Brown
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
33
|
Lu CH, Tsai CT, Jones Iv T, Chim V, Klausen LH, Zhang W, Li X, Jahed Z, Cui B. A NanoCurvS platform for quantitative and multiplex analysis of curvature-sensing proteins. Biomater Sci 2023; 11:5205-5217. [PMID: 37337788 PMCID: PMC10809791 DOI: 10.1039/d2bm01856j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The cell membrane is characterized by a rich variety of topographical features such as local protrusions or invaginations. Curvature-sensing proteins, including the Bin/Amphiphysin/Rvs (BAR) or epsin N-terminal homology (ENTH) family proteins, sense the bending sharpness and the positive/negative sign of these topographical features to induce subsequent intracellular signaling. A number of assays have been developed to study curvature-sensing properties of proteins in vitro, but it is still challenging to probe low curvature regime with the diameter of curvature from hundreds of nanometers to micrometers. It is particularly difficult to generate negative membrane curvatures with well-defined curvature values in the low curvature regime. In this work, we develop a nanostructure-based curvature sensing (NanoCurvS) platform that enables quantitative and multiplex analysis of curvature-sensitive proteins in the low curvature regime, in both negative and positive directions. We use NanoCurvS to quantitatively measure the sensing range of a negative curvature-sensing protein IRSp53 (an I-BAR protein) and a positive curvature-sensing protein FBP17 (an F-BAR protein). We find that, in cell lysates, the I-BAR domain of IRSp53 is able to sense shallow negative curvatures with the diameter-of-curvature up to 1500 nm, a range much wider than previously expected. NanoCurvS is also used to probe the autoinhibition effect of IRSp53 and the phosphorylation effect of FBP17. Therefore, the NanoCurvS platform provides a robust, multiplex, and easy-to-use tool for quantitative analysis of both positive and negative curvature-sensing proteins.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Taylor Jones Iv
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Vincent Chim
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Lasse H Klausen
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Xiao Li
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
34
|
Würthner L, Goychuk A, Frey E. Geometry-induced patterns through mechanochemical coupling. Phys Rev E 2023; 108:014404. [PMID: 37583206 DOI: 10.1103/physreve.108.014404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/15/2023] [Indexed: 08/17/2023]
Abstract
Intracellular protein patterns regulate a variety of vital cellular processes such as cell division and motility, which often involve dynamic cell-shape changes. These changes in cell shape may in turn affect the dynamics of pattern-forming proteins, hence leading to an intricate feedback loop between cell shape and chemical dynamics. While several computational studies have examined the rich resulting dynamics, the underlying mechanisms are not yet fully understood. To elucidate some of these mechanisms, we explore a conceptual model for cell polarity on a dynamic one-dimensional manifold. Using concepts from differential geometry, we derive the equations governing mass-conserving reaction-diffusion systems on time-evolving manifolds. Analyzing these equations mathematically, we show that dynamic shape changes of the membrane can induce pattern-forming instabilities in parts of the membrane, which we refer to as regional instabilities. Deformations of the local membrane geometry can also (regionally) suppress pattern formation and spatially shift already existing patterns. We explain our findings by applying and generalizing the local equilibria theory of mass-conserving reaction-diffusion systems. This allows us to determine a simple onset criterion for geometry-induced pattern-forming instabilities, which is linked to the phase-space structure of the reaction-diffusion system. The feedback loop between membrane shape deformations and reaction-diffusion dynamics then leads to a surprisingly rich phenomenology of patterns, including oscillations, traveling waves, and standing waves, even if these patterns do not occur in systems with a fixed membrane shape. Our paper reveals that the local conformation of the membrane geometry acts as an important dynamical control parameter for pattern formation in mass-conserving reaction-diffusion systems.
Collapse
Affiliation(s)
- Laeschkir Würthner
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 Munich, Germany
| | - Andriy Goychuk
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 Munich, Germany
- Max Planck School Matter to Life, Hofgartenstraße 8, D-80539 Munich, Germany
| |
Collapse
|
35
|
Mandal T, Gupta S, Soni J. Simulation study of membrane bending by protein crowding: a case study with the epsin N-terminal homology domain. SOFT MATTER 2023. [PMID: 37376999 DOI: 10.1039/d3sm00280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The mechanisms by which peripheral membrane proteins generate curvature is currently an active area of research. One of the proposed mechanisms is amphipathic insertion or the 'wedge' mechanism in which the protein shallowly inserts an amphipathic helix inside the membrane to drive the curvature. However, recent experimental studies have challenged the efficiency of the 'wedge' mechanism as it requires unusual protein densities. These studies proposed an alternative mechanism, namely 'protein-crowding', in which the lateral pressure generated by the random collisions among the membrane bound proteins drives the bending. In this study, we employ atomistic and coarse-grained molecular dynamics simulations to investigate the effects of amphipathic insertion and protein crowding on the membrane surface. Considering epsin N-terminal homology (ENTH) domain as a model protein, we show that amphipathic insertion is not essential for membrane bending. Our results suggest that ENTH domains can aggregate on the membrane surface by employing another structured region (H3 helix). And this protein crowding decreases the cohesive energy of the lipid tails which causes a significant decrease in the membrane bending rigidity. The ENTH domain can generate a similar degree of membrane curvature irrespective of the activity of its H0 helix. Our results are consistent with the recent experimental results.
Collapse
Affiliation(s)
- Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Shivam Gupta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Jatin Soni
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
36
|
Cao X, Lenk GM, Mikusevic V, Mindell JA, Meisler MH. The chloride antiporter CLCN7 is a modifier of lysosome dysfunction in FIG 4 and VAC14 mutants. PLoS Genet 2023; 19:e1010800. [PMID: 37363915 DOI: 10.1371/journal.pgen.1010800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The phosphatase FIG 4 and the scaffold protein VAC14 function in the biosynthesis of PI(3,5)P2, a signaling lipid that inhibits the lysosomal chloride transporter ClC-7. Loss-of-function mutations of FIG 4 and VAC14 reduce PI(3,5)P2 and result in lysosomal disorders characterized by accumulation of enlarged lysosomes and neurodegeneration. Similarly, a gain of function mutation of CLCN7 encoding ClC-7 also results in enlarged lysosomes. We therefore tested the ability of reduced CLCN7 expression to compensate for loss of FIG 4 or VAC14. Knock-out of CLCN7 corrected lysosomal swelling and partially corrected lysosomal hyperacidification in FIG 4 null cell cultures. Knockout of the related transporter CLCN6 (ClC-6) in FIG 4 null cells did not affect the lysosome phenotype. In the Fig 4 null mouse, reduction of ClC-7 by expression of the dominant negative CLCN7 variant p.Gly215Arg improved growth and neurological function and increased lifespan by 20%. These observations demonstrate a role for the CLCN7 chloride transporter in pathogenesis of FIG 4 and VAC14 disorders. Reduction of CLCN7 provides a new target for treatment of FIG 4 and VAC14 deficiencies that lack specific therapies, such as Charcot-Marie-Tooth Type 4J and Yunis-Varón syndrome.
Collapse
Affiliation(s)
- Xu Cao
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vedrana Mikusevic
- Membrane Transport Biophysics Section, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Joseph A Mindell
- Membrane Transport Biophysics Section, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
37
|
Mahapatra A, Rangamani P. Formation of protein-mediated bilayer tubes is governed by a snapthrough transition. SOFT MATTER 2023; 19:4345-4359. [PMID: 37255421 PMCID: PMC10330560 DOI: 10.1039/d2sm01676a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plasma membrane tubes are ubiquitous in cellular membranes and in the membranes of intracellular organelles. They play crucial roles in trafficking, ion transport, and cellular motility. These tubes can be formed due to localized forces acting on the membrane or by the curvature induced by membrane-bound proteins. Here, we present a mathematical framework to model cylindrical tubular protrusions formed by proteins that induce anisotropic spontaneous curvature. Our analysis revealed that the tube radius depends on an effective tension that includes contributions from the bare membrane tension and the protein-induced curvature. We also found that the length of the tube undergoes an abrupt transition from a short, dome-shaped membrane to a long cylinder and this transition is characteristic of a snapthrough instability. Finally, we show that the snapthrough instability depends on the different parameters including coat area, bending modulus, and extent of protein-induced curvature. Our findings have implications for tube formation due to BAR-domain proteins in processes such as endocytosis, t-tubule formation in myocytes, and cristae formation in mitochondria.
Collapse
Affiliation(s)
- Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Spona D, Hanisch PT, Hegemann JH, Mölleken K. A single chlamydial protein reshapes the plasma membrane and serves as recruiting platform for central endocytic effector proteins. Commun Biol 2023; 6:520. [PMID: 37179401 PMCID: PMC10182996 DOI: 10.1038/s42003-023-04913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Uptake of obligate intracellular bacterial pathogens into mammalian epithelial cells is critically dependent on modulation of the host's endocytic machinery. It is an open question how the invading pathogens generate a membrane-bound vesicle appropriate to their size. This requires extensive deformation of the host plasma membrane itself by pathogen-derived membrane-binding proteins, accompanied by substantial F-actin-based forces to further expand and finally pinch off the vesicle. Here we show that upon adhesion to the host cell, the human pathogenic bacterium Chlamydia pneumoniae secretes the scaffolding effector protein CPn0677, which binds to the inner leaflet of the invaginating host's PM, induces inwardly directed, negative membrane curvature, and forms a recruiting platform for the membrane-deforming BAR-domain containing proteins Pacsin and SNX9. In addition, while bound to the membrane, CPn0677 recruits monomeric G-actin, and its C-terminal region binds and activates N-WASP, which initiates branching actin polymerization via the Arp2/3 complex. Together, these membrane-bound processes enable the developing endocytic vesicle to engulf the infectious elementary body, while the associated actin network generates the forces required to reshape and detach the nascent vesicle from the PM. Thus, Cpn0677 (now renamed SemD) acts as recruiting platform for central components of the endocytic machinery during uptake of chlamydia.
Collapse
Affiliation(s)
- Dominik Spona
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp T Hanisch
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Katja Mölleken
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
39
|
Ravid Y, Penič S, Mimori-Kiyosue Y, Suetsugu S, Iglič A, Gov NS. Theoretical model of membrane protrusions driven by curved active proteins. Front Mol Biosci 2023; 10:1153420. [PMID: 37228585 PMCID: PMC10203436 DOI: 10.3389/fmolb.2023.1153420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Eukaryotic cells intrinsically change their shape, by changing the composition of their membrane and by restructuring their underlying cytoskeleton. We present here further studies and extensions of a minimal physical model, describing a closed vesicle with mobile curved membrane protein complexes. The cytoskeletal forces describe the protrusive force due to actin polymerization which is recruited to the membrane by the curved protein complexes. We characterize the phase diagrams of this model, as function of the magnitude of the active forces, nearest-neighbor protein interactions and the proteins' spontaneous curvature. It was previously shown that this model can explain the formation of lamellipodia-like flat protrusions, and here we explore the regimes where the model can also give rise to filopodia-like tubular protrusions. We extend the simulation with curved components of both convex and concave species, where we find the formation of complex ruffled clusters, as well as internalized invaginations that resemble the process of endocytosis and macropinocytosis. We alter the force model representing the cytoskeleton to simulate the effects of bundled instead of branched structure, resulting in shapes which resemble filopodia.
Collapse
Affiliation(s)
- Yoav Ravid
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Minatojima-minaminachi, Kobe, Hyogo, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
- Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Japan
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
40
|
Placidi G, Mattu C, Ciardelli G, Campa CC. Small molecules targeting endocytic uptake and recycling pathways. Front Cell Dev Biol 2023; 11:1125801. [PMID: 36968200 PMCID: PMC10036367 DOI: 10.3389/fcell.2023.1125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Over the past years a growing number of studies highlighted the pivotal role of intracellular trafficking in cell physiology. Among the distinct transport itineraries connecting the endocytic system, both internalization (endocytosis) and recycling (endocytic recycling) pathways were found fundamental to ensure cellular sensing, cell-to-cell communication, cellular division, and collective cell migration in tissue specific-contexts. Consistently, the dysregulation of endocytic trafficking pathways is correlated with several human diseases including both cancers and neurodegeneration. Aimed at suppress specific intracellular trafficking routes involved in disease onset and progression, huge efforts have been made to identify small molecule inhibitors with suitable pharmacological properties for in vivo administration. Here, we review most used drugs and recently discovered small molecules able to block endocytosis and endocytic recycling pathways. We characterize such pharmacological inhibitors by emphasizing their target specificity, molecular affinity, biological activity and efficacy in both in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Giampaolo Placidi
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Chemical-Physical Processes, National Research Council (CNR-IPCF), Pisa, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
41
|
Vaisey G, Banerjee P, North AJ, Haselwandter CA, MacKinnon R. Piezo1 as a force-through-membrane sensor in red blood cells. eLife 2022; 11:e82621. [PMID: 36515266 PMCID: PMC9750178 DOI: 10.7554/elife.82621] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Piezo1 is the stretch activated Ca2+ channel in red blood cells that mediates homeostatic volume control. Here, we study the organization of Piezo1 in red blood cells using a combination of super-resolution microscopy techniques and electron microscopy. Piezo1 adopts a non-uniform distribution on the red blood cell surface, with a bias toward the biconcave 'dimple'. Trajectories of diffusing Piezo1 molecules, which exhibit confined Brownian diffusion on short timescales and hopping on long timescales, also reflect a bias toward the dimple. This bias can be explained by 'curvature coupling' between the intrinsic curvature of the Piezo dome and the curvature of the red blood cell membrane. Piezo1 does not form clusters with itself, nor does it colocalize with F-actin, Spectrin, or the Gardos channel. Thus, Piezo1 exhibits the properties of a force-through-membrane sensor of curvature and lateral tension in the red blood cell.
Collapse
Affiliation(s)
- George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Alison J North
- Bio-Imaging Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Christoph A Haselwandter
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
42
|
Remodeling of the Plasma Membrane by Surface-Bound Protein Monomers and Oligomers: The Critical Role of Intrinsically Disordered Regions. J Membr Biol 2022; 255:651-663. [PMID: 35930019 PMCID: PMC9718270 DOI: 10.1007/s00232-022-00256-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
The plasma membrane (PM) of cells is a dynamic structure whose morphology and composition is in constant flux. PM morphologic changes are particularly relevant for the assembly and disassembly of signaling platforms involving surface-bound signaling proteins, as well as for many other mechanochemical processes that occur at the PM surface. Surface-bound membrane proteins (SBMP) require efficient association with the PM for their function, which is often achieved by the coordinated interactions of intrinsically disordered regions (IDRs) and globular domains with membrane lipids. This review focuses on the role of IDR-containing SBMPs in remodeling the composition and curvature of the PM. The ability of IDR-bearing SBMPs to remodel the Gaussian and mean curvature energies of the PM is intimately linked to their ability to sort subsets of phospholipids into nanoclusters. We therefore discuss how IDRs of many SBMPs encode lipid-binding specificity or facilitate cluster formation, both of which increase their membrane remodeling capacity, and how SBMP oligomers alter membrane shape by monolayer surface area expansion and molecular crowding.
Collapse
|
43
|
Abstract
Multiple membrane-shaping and remodeling processes are associated with tetraspanin proteins by yet unknown mechanisms. Tetraspanins constitute a family of proteins with four transmembrane domains present in every cell type. Prominent examples are tetraspanin4 and CD9, which are required for the fundamental cellular processes of migrasome formation and fertilization, respectively. These proteins are enriched in curved membrane structures, such as cellular retraction fibers and oocyte microvilli. The factors driving this enrichment are, however, unknown. Here, we revealed that tetraspanin4 and CD9 are curvature sensors with a preference for positive membrane curvature. To this end, we used a biomimetic system emulating membranes of cell retraction fibers and oocyte microvilli by membrane tubes pulled out of giant plasma membrane vesicles with controllable membrane tension and curvature. We developed a simple thermodynamic model for the partitioning of curvature sensors between flat and tubular membranes, which allowed us to estimate the individual intrinsic curvatures of the two proteins. Overall, our findings illuminate the process of migrasome formation and oocyte microvilli shaping and provide insight into the role of tetraspanin proteins in membrane remodeling processes.
Collapse
|
44
|
Baldauf L, van Buren L, Fanalista F, Koenderink GH. Actomyosin-Driven Division of a Synthetic Cell. ACS Synth Biol 2022; 11:3120-3133. [PMID: 36164967 PMCID: PMC9594324 DOI: 10.1021/acssynbio.2c00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 01/24/2023]
Abstract
One of the major challenges of bottom-up synthetic biology is rebuilding a minimal cell division machinery. From a reconstitution perspective, the animal cell division apparatus is mechanically the simplest and therefore attractive to rebuild. An actin-based ring produces contractile force to constrict the membrane. By contrast, microbes and plant cells have a cell wall, so division requires concerted membrane constriction and cell wall synthesis. Furthermore, reconstitution of the actin division machinery helps in understanding the physical and molecular mechanisms of cytokinesis in animal cells and thus our own cells. In this review, we describe the state-of-the-art research on reconstitution of minimal actin-mediated cytokinetic machineries. Based on the conceptual requirements that we obtained from the physics of the shape changes involved in cell division, we propose two major routes for building a minimal actin apparatus capable of division. Importantly, we acknowledge both the passive and active roles that the confining lipid membrane can play in synthetic cytokinesis. We conclude this review by identifying the most pressing challenges for future reconstitution work, thereby laying out a roadmap for building a synthetic cell equipped with a minimal actin division machinery.
Collapse
Affiliation(s)
| | | | - Federico Fanalista
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
45
|
Gnidovec A, Božič A, Čopar S. Dense packings of geodesic hard ellipses on a sphere. SOFT MATTER 2022; 18:7670-7678. [PMID: 36172841 DOI: 10.1039/d2sm00624c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Packing problems are abundant in nature and have been researched thoroughly both experimentally and in numerical models. In particular, packings of anisotropic, elliptical particles often emerge in models of liquid crystals, colloids, and granular and jammed matter. While most theoretical studies on anisotropic particles have thus far dealt with packings in Euclidean geometry, there are many experimental systems where anisotropically-shaped particles are confined to a curved surface, such as Pickering emulsions stabilized by ellipsoidal particles or protein adsorbates on lipid vesicles. Here, we study random close packing configurations in a two-dimensional model of spherical geodesic ellipses. We focus on the interplay between finite-size effects and curvature that is most prominent at smaller system sizes. We demonstrate that on a spherical surface, monodisperse ellipse packings are inherently disordered, with a non-monotonic dependence of both their packing fraction and the mean contact number on the ellipse aspect ratio, as has also been observed in packings of ellipsoids in both 2D and 3D flat space. We also point out some fundamental differences with previous Euclidean studies and discuss the effects of curvature on our results. Importantly, we show that the underlying spherical surface introduces frustration and results in disordered packing configurations even in systems of monodispersed particles, in contrast to the 2D Euclidean case of ellipse packing. This demonstrates that closed curved surfaces can be effective at introducing disorder in a system and could facilitate the study of monodispersed random packings.
Collapse
Affiliation(s)
- Andraž Gnidovec
- University of Ljubljana, Faculty of Mathematics and Physics, SI-1000 Ljubljana, Slovenia.
| | - Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Simon Čopar
- University of Ljubljana, Faculty of Mathematics and Physics, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
46
|
Strength in numbers: effect of protein crowding on the shape of cell membranes. Biochem Soc Trans 2022; 50:1257-1267. [PMID: 36214373 DOI: 10.1042/bst20210883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
Continuous reshaping of the plasma membrane into pleomorphic shapes is critical for a plethora of cellular functions. How the cell carries out this enigmatic control of membrane remodeling has remained an active research field for decades and several molecular and biophysical mechanisms have shown to be involved in overcoming the energy barrier associated with membrane bending. The reported mechanisms behind membrane bending have been largely concerned with structural protein features, however, in the last decade, reports on the ability of densely packed proteins to bend membranes by protein-protein crowding, have challenged prevailing mechanistic views. Crowding has now been shown to generate spontaneous vesicle formation and tubular morphologies on cell- and model membranes, demonstrating crowding as a relevant player involved in the bending of membranes. Still, current research is largely based on unnatural overexpression of proteins in non-native domains, and together with efforts in modeling, this has led to questioning the in vivo impact of crowding. In this review, we examine this previously overlooked mechanism by summarizing recent advances in the understanding of protein-protein crowding and its prevalence in cellular membrane-shaping processes.
Collapse
|
47
|
Niemann-Pick Type C Proteins Are Required for Sterol Transport and Appressorium-Mediated Plant Penetration of Colletotrichum orbiculare. mBio 2022; 13:e0223622. [PMID: 36154185 PMCID: PMC9600679 DOI: 10.1128/mbio.02236-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many biotrophic and hemibiotrophic fungal pathogens use appressoria to directly penetrate the host plant surface. In the cucumber anthracnose fungus Colletotrichum orbiculare, differentiation of appressoria requires a proper G1/S cell cycle progression, regulated by the GTPase-activating protein complex CoBub2-CoBfa1 and its downstream GTPase CoTem1. To explore the mechanisms by which the CoTem1 cascade regulates plant infection, we screened for CoTem1 interaction factors and identified a Niemann-Pick type C2 homolog (CoNpc2). Niemann-Pick type C proteins NPC1 and NPC2 are sterol-binding proteins required for sterol export from lysosomes (vacuoles) in humans and yeasts. We showed that CoNpc2 colocalized with CoNpc1 in late endosomes and vacuoles and that disruption of its gene resulted in aberrant sterol accumulation in vacuoles and loss of sterol membrane localization, indicating that NPC proteins are engaged in sterol transport in C. orbiculare. For appressorium infection, sterol transport and proper distribution mediated by CoNpc1 and CoNpc2 are critical for membrane integrity and membrane curvature with actin assembly, leading to penetration peg emergence and appressorial cone formation. Our results revealed a novel mechanism by which NPC proteins regulate appressorium-mediated plant infection.
Collapse
|
48
|
Govendir MA, Kempe D, Sianati S, Cremasco J, Mazalo JK, Colakoglu F, Golo M, Poole K, Biro M. T cell cytoskeletal forces shape synapse topography for targeted lysis via membrane curvature bias of perforin. Dev Cell 2022; 57:2237-2247.e8. [PMID: 36113483 DOI: 10.1016/j.devcel.2022.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/20/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) lyse target cells by delivering lytic granules that contain the pore former perforin to the cytotoxic immunological synapse. Here, we establish that opposing cytoskeletal forces drive lytic granule polarization and simultaneously shape T cell synapse topography to enhance target perforation. At the cell rear, actomyosin contractility drives the anterograde movement of lytic granules toward the nucleus. At the synapse, dynein-derived forces induce negatively curved membrane pockets to which granules are transported around the nucleus. These highly concave degranulation pockets are located directly opposite positively curved bulges on the target cell membrane. We identify a curvature bias in the action of perforin, which preferentially perforates positively curved tumor cell membrane. Together, these findings demonstrate murine and human T cell-mediated cytotoxicity to be a highly tuned mechano-biochemical system, in which the forces that polarize lytic granules locally bend the synaptic membrane to favor the unidirectional perforation of the target cell.
Collapse
Affiliation(s)
- Matt A Govendir
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Setareh Sianati
- Cellular and Systems Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - James Cremasco
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jessica K Mazalo
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Feyza Colakoglu
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Matteo Golo
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kate Poole
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Cellular and Systems Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
49
|
Mahata P, Vennamneni L, Chattopadhyay S. A mechanical-thermodynamic model for understanding endocytosis of COVID-19 virus SARS-CoV-2. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS. PART C. JOURNAL OF MECHANICAL ENGINEERING SCIENCE 2022; 236:9431-9440. [PMID: 38603131 PMCID: PMC9127454 DOI: 10.1177/09544062221098538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 04/11/2022] [Indexed: 04/13/2024]
Abstract
We analyze the endocytosis process of COVID-19 (coronavirus disease 2019) virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) using a mechanical-thermodynamic model. The virus particle is designed to interface with the cell membrane as a hard sphere. The role of cytoplasmic BAR (Bin/Amphiphysin/RVs) proteins is considered in the endocytosis. Interestingly, the Endophilin N-BAR cytoplasmic proteins show resistance in participating endocytosis, whereas F-BAR, Arfaptin BAR, Amphiphysin N-BAR, and PX-BAR proteins participate in endocytosis. The increase in membrane tension, concentrated force between the cell membrane receptor, and spike glycoprotein present on the surface of virus particle promote the endocytosis. Also, the increase in the bending modulus of membrane leads to the two-phase solution of BAR protein concentration on the interior of cell membrane surface. We observe an unstable region of protein concentration, which may help one to retard the endocytosis process and thus the viral infection. Though the present study is focused on SARS-CoV-2, it can be extended to understand any other viral infections, involving endocytosis process.
Collapse
Affiliation(s)
- Paritosh Mahata
- Department of Mechanical Engineering, Birla Institute of Technology, Ranchi, India
| | | | | |
Collapse
|
50
|
Larsen AH. Molecular Dynamics Simulations of Curved Lipid Membranes. Int J Mol Sci 2022; 23:8098. [PMID: 35897670 PMCID: PMC9331392 DOI: 10.3390/ijms23158098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic cells contain membranes with various curvatures, from the near-plane plasma membrane to the highly curved membranes of organelles, vesicles, and membrane protrusions. These curvatures are generated and sustained by curvature-inducing proteins, peptides, and lipids, and describing these mechanisms is an important scientific challenge. In addition to that, some molecules can sense membrane curvature and thereby be trafficked to specific locations. The description of curvature sensing is another fundamental challenge. Curved lipid membranes and their interplay with membrane-associated proteins can be investigated with molecular dynamics (MD) simulations. Various methods for simulating curved membranes with MD are discussed here, including tools for setting up simulation of vesicles and methods for sustaining membrane curvature. The latter are divided into methods that exploit scaffolding virtual beads, methods that use curvature-inducing molecules, and methods applying virtual forces. The variety of simulation tools allow researcher to closely match the conditions of experimental studies of membrane curvatures.
Collapse
|