1
|
Lempicki MD, Garrigues RJ, Zeczycki TN, Garcia BL, Harris TE, Meher AK. Matrix Metalloproteinase-2 as a novel regulator of glucose utilization by adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.626845. [PMID: 39713289 PMCID: PMC11661172 DOI: 10.1101/2024.12.09.626845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Glucose transporter 4 (GLUT4) expression on white adipocytes is critical for absorbing excess blood glucose, failure of which promotes hyperglycemia. Matrix metalloproteinases (MMPs) play a crucial role in remodeling the white adipose tissue (WAT) during obesity. MMPs have multiple protein substrates, and surprisingly, it is unknown if they can directly target GLUT4 on the adipocyte surface and impair glucose absorption. We identified MMP2 as the highly active gelatinase, a class of MMP, in the gonadal WAT of high-fat diet-induced obese mice. In vitro, metabolic studies in 3T3-L1 adipocytes revealed MMP2 attenuated glucose absorption and glycolysis, which were recovered by an MMP2 inhibitor. In silico structural analysis using AlphaFold identified a putative MMP2 cleavage site on the extracellular domain of GLUT4. Further, in a substrate competition assay, a peptide mimicking the MMP2 cleavage motif on GLUT4 attenuated the cleavage of an MMP substrate by MMP2. Altogether, our results suggest a novel mechanism of impaired glucose absorption by adipocytes, which may contribute to hyperglycemia during obesity.
Collapse
Affiliation(s)
- Melissa D. Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Ryan J. Garrigues
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Tonya N. Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Brandon L. Garcia
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, United States
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| |
Collapse
|
2
|
Wang Y, Zhang Y, Leung V, Heydari Seradj S, Sonmez U, Servin-Vences R, Lipomi D, Ye L, Patapoutian A. A key role of PIEZO2 mechanosensitive ion channel in adipose sensory innervation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624210. [PMID: 39605632 PMCID: PMC11601537 DOI: 10.1101/2024.11.18.624210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Compared to the well-established functions of sympathetic innervation, the role of sensory afferents in adipose tissues remains less understood. Recent work revealed the anatomical and physiological significance of adipose sensory innervation; however, its molecular underpinning remains unclear. Here, using organ-targeted single-cell RNA sequencing, we identified the mechanoreceptor PIEZO2 as one of the most prevalent receptors in fat-innervating dorsal root ganglia (DRG) neurons. We found that selective PIEZO2 deletion in fat-innervating neurons phenocopied the molecular alternations in adipose tissue caused by DRG ablation. Conversely, a gain-of-function PIEZO2 mutant shifted the adipose phenotypes in the opposite direction. These results indicate that PIEZO2 plays a major role in the sensory regulation of adipose tissues. This discovery opens new avenues for exploring mechanosensation in organs not traditionally considered mechanically active, such as the adipose tissues, and therefore sheds light on the broader significance of mechanosensation in regulating organ function and homeostasis.
Collapse
|
3
|
Yang C, You N, Chen Y, Zhang J. Helicobacter pylori infection increases the risk of dyslipidemia in Chinese diabetic Population: a retrospective cross-sectional study. BMC Infect Dis 2024; 24:730. [PMID: 39054452 PMCID: PMC11270938 DOI: 10.1186/s12879-024-09597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND In contemporary times, increased prevalence of Helicobacter pylori (H. pylori) infection and elevated dyslipidemia levels present substantial public health challenges. However, the relationship between H. pylori and dyslipidemia remains inconclusive. No studies have yet conducted a population-based classification to investigate the impact of H. pylori infection on dyslipidemia in individuals with diabetes. METHODS A retrospective cohort study was carried out on a total of 60,535 individuals who underwent health check-ups at the Health Examination Center in Taizhou Hospital from 2017 to 2022. Physical measurements, hematological markers and detection of H. pylori were gathered from all patients. The study population was further stratified into diabetic and non-diabetic groups for analysis. RESULTS H. pylori infection was found to be an autonomous risk factor for dyslipidemia based on the results of multivariate logistic regression analysis (OR = 1.13, 95% CI: 1.03-1.24). However, no notable effect on dyslipidemia in the non-diabetic group was observed. Furthermore, at the follow-up, the group with persistent negative showed a significantly lower incidence ratio of dyslipidemia compared to the group with persistent infection (P = 0.006). The persistent negative group exhibited a significantly higher rate of improvement in dyslipidemia compared to the new infection group (P = 0.038). CONCLUSIONS In the diabetic population, the presence of H. pylori infection heightens the propensity for developing dyslipidemia. Therefore, the implementation of efficient eradication strategies for H. pylori infection could potentially lead to a decrease in the occurrence of dyslipidemia among individuals with diabetes.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, Zhejiang, China
| | - Ningning You
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, Zhejiang, China
| | - Yi Chen
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, Zhejiang, China
| | - Jinshun Zhang
- Health Management Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
4
|
Cesanelli L, Minderis P, Degens H, Satkunskiene D. Passive mechanical properties of adipose tissue and skeletal muscle from C57BL/6J mice. J Mech Behav Biomed Mater 2024; 155:106576. [PMID: 38744119 DOI: 10.1016/j.jmbbm.2024.106576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Skeletal muscle and adipose tissue are characterized by unique structural features finely tuned to meet specific functional demands. In this study, we investigated the passive mechanical properties of soleus (SOL), extensor digitorum longus (EDL) and diaphragm (DIA) muscles, as well as subcutaneous (SAT), visceral (VAT) and brown (BAT) adipose tissues from 13 C57BL/6J mice. Thereto, alongside stress-relaxation assessments we subjected isolated muscles and adipose tissues (ATs) to force-extension tests up to 10% and 30% of their optimal length, respectively. Peak passive stress was highest in the DIA, followed by the SOL and lowest in the EDL (p < 0.05). SOL displayed also the highest Young's modulus and hysteresis among muscles (p < 0.05). BAT demonstrated highest peak passive stress and Young's modulus followed by VAT (p < 0.05), while SAT showed the highest hysteresis (p < 0.05). When comparing data across all six biological specimens at fixed passive force intervals (i.e., 20-40 and 50-70 mN), skeletal muscles exhibited significantly higher peak stresses and strains than ATs (p < 0.05). Young's modulus was higher in skeletal muscles than in ATs (p < 0.05). Muscle specimens exhibited slower force relaxation in the first phase compared to ATs (p < 0.05), while there was no significant difference in behavior between muscles and AT in the second phase of relaxation. The study revealed distinctive mechanical behaviors specific to different tissues, and even between different muscles and ATs. These variations in mechanical properties are likely such to optimize the specific functions performed by each biological tissue.
Collapse
Affiliation(s)
- L Cesanelli
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania; Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania.
| | - P Minderis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - H Degens
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania; Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - D Satkunskiene
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
5
|
Mallah A, Stojkova K, Cohen RN, Abu-Lail N, Brey EM, Gonzalez Porras MA. Atomic force microscopy characterization of white and beige adipocyte differentiation. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00925-z. [PMID: 38831186 DOI: 10.1007/s11626-024-00925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 06/05/2024]
Abstract
Adipose tissue plays an essential role in systemic metabolism with white adipose tissue (WAT) making up most of the tissue and being involved in the regulation of energy homeostasis, and brown and beige adipose tissue (BAT) exhibiting thermogenic activity. There is promise in the conversion of white adipocytes into beige ones as a therapeutic potential to control and enhance systemic metabolism, but it is difficult to maintain this transformation in vivo because we do not fully understand the mechanism of conversion. In this study, we applied atomic force microscopy (AFM) to characterize beige or white adipocytes during the process of differentiation for morphology, roughness, adhesion, and elasticity at different time points. As cells differentiated to white and beige adipocytes, they exhibited morphological changes as they lipid loaded, transitioning from flattened elongated cells to a rounded shape indicating adipogenesis. While there was an initial decrease in elasticity for both beige and white adipocytes, white adipocytes exhibited a higher elasticity than beige adipocytes at all time points. Beige and white adipogenesis exhibited a decrease in adhesion energy compared to preadipocytes, yet at day 12, white adipocytes had a significant increase in adhesion energy compared to beige adipocytes. This work shows significant differences in the mechanical properties of white vs. beige adipocytes during differentiation. Results from this study contribute to a better understanding of the differentiation of adipocytes which are vital to the therapeutic induction, engineered models, and maintenance of beige adipocytes as a potential approach for enhancing systemic metabolism.
Collapse
Affiliation(s)
- Alia Mallah
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, AET 1.3681 UTSA Circle, San Antonio, TX, 78249, USA
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, USA
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, AET 1.3681 UTSA Circle, San Antonio, TX, 78249, USA
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, USA
| | - Ronald N Cohen
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nehal Abu-Lail
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, AET 1.3681 UTSA Circle, San Antonio, TX, 78249, USA
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, USA
| | - Eric M Brey
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, AET 1.3681 UTSA Circle, San Antonio, TX, 78249, USA
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, USA
| | - Maria A Gonzalez Porras
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, AET 1.3681 UTSA Circle, San Antonio, TX, 78249, USA.
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Wei X, Zhang Y, Wang Z, He Y, Ju S, Fu J. Bone marrow adipocytes is a new player in supporting myeloma cells proliferation and survival in myeloma microenvironment. Transl Oncol 2024; 40:101856. [PMID: 38134840 PMCID: PMC10776777 DOI: 10.1016/j.tranon.2023.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple myeloma (MM) is a lethal B cell neoplasm characterized by clonal expansion of malignant plasma cells in the bone marrow and remains incurable due to disease relapse and drug resistance. Bone marrow adipocytes (BMAs) are emerging as playing active functions that can support myeloma cell growth and survival. The aim of this study is to investigate myeloma-mesenchymal stem cells (MSCs) interaction and the impact of such interactions on the pathogenesis of MM using in vitro co-culture assay. Here we provide evidence that MM cell up-regulated MSCs to express PPAR-γ and pushes MSCs differentiation toward adipocytes at the expense of osteoblasts in co-culture manner. The increased BMAs can effectively enhance MM cell to proliferation, migration, and chemoresistance via cell-cell contact and/or cytokines release regulated by PPAR-γ signal pathway. This effect was partially reversed in medium containing PPAR-γ antagonist G3335 and indicated that G3335 distorts the maturation of MSC-derived adipocytes and cytokines release by adipocytes through inhibition of PPAR-γ, a key transcriptional factor for the activation of adipogenesis, or cell to cell contact, or both. In meantime, we observed higher expression of adipocyte differentiation associated genes DLK1, DGAT1, FABP4, and FASN both in MSCs and MSC derived adipocytes, but the osteoblast differentiation-associated gene ALP was down regulated in MSCs. These finding mean that direct consequence of MM/MSC interaction that play a role in MM pathogenesis. Consistent with those in vitro results, our primary clinical observation also showed that bone marrow samples from MM patients had significantly higher bone adiposity in comparison with controls and the number of adipocytes decreased in those who were response to anti-MM therapy. Our finding suggested that BMAs may have an important contribution to MM progression, particularly in drugs resistant of MM cells, and plays an important contribution in MM bone disease and treatment failure, but more clinical studies are needed to confirm its role.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Yangmin Zhang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Ziyan Wang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Yuanning He
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Songguang Ju
- Institute of Biotechnology, Soochow University, Suzhou 215007, PR China
| | - Jinxiang Fu
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.
| |
Collapse
|
7
|
Karanfil AS, Louis F, Sowa Y, Matsusaki M. ECM proteins and cationic polymers coating promote dedifferentiation of patient-derived mature adipocytes to stem cells. Biomater Sci 2023; 11:7623-7638. [PMID: 37830400 DOI: 10.1039/d3bm00934c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Reprogramming of mature adipocytes is an attractive research area due to the plasticity of these cells. Mature adipocytes can be reprogrammed in vitro, transforming them into dedifferentiated fat cells (DFATs), which are considered a new type of stem cell, and thereby have a high potential for use in tissue engineering and regenerative medicine. However, there are still no reports or findings on in vitro controlling the dedifferentiation. Although ceiling culture performed in related studies is a relatively simple method, its yield is low and does not allow manipulation of mature adipocytes to increase or decrease the dedifferentiation. In this study, to understand the role of physicochemical surface effects on the dedifferentiation of patient-derived mature adipocytes, the surfaces of cell culture flasks were coated with extracellular matrix, basement membrane proteins, and cationic/anionic polymers. Extracellular matrix such as fibronectin and collagen type I, and basement membrane proteins such as collagen type IV and laminin strongly promoted dedifferentiation of mature adipocytes, with laminin showing the highest effect with a DFAT ratio of 2.98 (±0.84). Interestingly, cationic polymers also showed a high dedifferentiation effect, but anionic polymers did not, and poly(diallyl dimethylammonium chloride) showed the highest DFAT ratio of 2.27 (±2.8) among the cationic polymers. Protein assay results revealed that serum proteins were strongly adsorbed on the surfaces of the cationic polymer coating, including inducing high mature adipocyte adhesion. This study demonstrates for the first time the possibility of regulating the transformation of mature adipocytes to DFAT stem cells by controlling the physicochemical properties of the surface of conventional cell culture flasks.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
8
|
Jung BC, You D, Lee I, Li D, Schill RL, Ma K, Pi A, Song Z, Mu WC, Wang T, MacDougald OA, Banks AS, Kang S. TET3 plays a critical role in white adipose development and diet-induced remodeling. Cell Rep 2023; 42:113196. [PMID: 37777963 PMCID: PMC10763978 DOI: 10.1016/j.celrep.2023.113196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
Maintaining healthy adipose tissue is crucial for metabolic health, requiring a deeper understanding of adipocyte development and response to high-calorie diets. This study highlights the importance of TET3 during white adipose tissue (WAT) development and expansion. Selective depletion of Tet3 in adipose precursor cells (APCs) reduces adipogenesis, protects against diet-induced adipose expansion, and enhances whole-body metabolism. Transcriptomic analysis of wild-type and Tet3 knockout (KO) APCs unveiled TET3 target genes, including Pparg and several genes linked to the extracellular matrix, pivotal for adipogenesis and remodeling. DNA methylation profiling and functional studies underscore the importance of DNA demethylation in gene regulation. Remarkably, targeted DNA demethylation at the Pparg promoter restored its transcription. In conclusion, TET3 significantly governs adipogenesis and diet-induced adipose expansion by regulating key target genes in APCs.
Collapse
Affiliation(s)
- Byung Chul Jung
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Dongjoo You
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Ikjun Lee
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca L Schill
- Department of Molecular & Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MO, USA
| | - Katherine Ma
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Anna Pi
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Zehan Song
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Wei-Chieh Mu
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MO, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
9
|
Molière S, Jaulin A, Tomasetto CL, Dali-Youcef N. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Metabolism: Insights into Health and Disease. Int J Mol Sci 2023; 24:10649. [PMID: 37445827 DOI: 10.3390/ijms241310649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-activated peptidases that can be classified into six major classes, including gelatinases, collagenases, stromelysins, matrilysins, membrane type metalloproteinases, and other unclassified MMPs. The activity of MMPs is regulated by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). MMPs are involved in a wide range of biological processes, both in normal physiological conditions and pathological states. While some of these functions occur during development, others occur in postnatal life. Although the roles of several MMPs have been extensively studied in cancer and inflammation, their function in metabolism and metabolic diseases have only recently begun to be uncovered, particularly over the last two decades. This review aims to summarize the current knowledge regarding the metabolic roles of metalloproteinases in physiology, with a strong emphasis on adipose tissue homeostasis, and to highlight the consequences of impaired or exacerbated MMP actions in the development of metabolic disorders such as obesity, fatty liver disease, and type 2 diabetes.
Collapse
Affiliation(s)
- Sébastien Molière
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Department of Radiology, Strasbourg University Hospital, Hôpital de Hautepierre, Avenue Molière, 67200 Strasbourg, France
- Breast and Thyroid Imaging Unit, ICANS-Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Amélie Jaulin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine-Laure Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
| | - Nassim Dali-Youcef
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 67000 Strasbourg, France
| |
Collapse
|
10
|
Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy J, Hwang NS. Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review. Biomater Res 2023; 27:55. [PMID: 37264479 DOI: 10.1186/s40824-023-00393-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Deepthi Sankar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
12
|
A Wrong Fate Decision in Adipose Stem Cells upon Obesity. Cells 2023; 12:cells12040662. [PMID: 36831329 PMCID: PMC9954614 DOI: 10.3390/cells12040662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Progress has been made in identifying stem cell aging as a pathological manifestation of a variety of diseases, including obesity. Adipose stem cells (ASCs) play a core role in adipocyte turnover, which maintains tissue homeostasis. Given aberrant lineage determination as a feature of stem cell aging, failure in adipogenesis is a culprit of adipose hypertrophy, resulting in adiposopathy and related complications. In this review, we elucidate how ASC fails in entering adipogenic lineage, with a specific focus on extracellular signaling pathways, epigenetic drift, metabolic reprogramming, and mechanical stretch. Nonetheless, such detrimental alternations can be reversed by guiding ASCs towards adipogenesis. Considering the pathological role of ASC aging in obesity, targeting adipogenesis as an anti-obesity treatment will be a key area of future research, and a strategy to rejuvenate tissue stem cell will be capable of alleviating metabolic syndrome.
Collapse
|
13
|
Nguyen NTH, Nguyen PA, Huang CW, Wang CH, Lin MC, Hsu MH, Bao HB, Chien SC, Yang HC. Renin-Angiotensin-Aldosterone System Inhibitors and Development of Gynecologic Cancers: A 23 Million Individual Population-Based Study. Int J Mol Sci 2023; 24:ijms24043814. [PMID: 36835224 PMCID: PMC9968233 DOI: 10.3390/ijms24043814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The chronic receipt of renin-angiotensin-aldosterone system (RAAS) inhibitors including angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been assumed to be associated with a significant decrease in overall gynecologic cancer risks. This study aimed to investigate the associations of long-term RAAS inhibitors use with gynecologic cancer risks. A large population-based case-control study was conducted from claim databases of Taiwan's Health and Welfare Data Science Center (2000-2016) and linked with Taiwan Cancer Registry (1979-2016). Each eligible case was matched with four controls using propensity matching score method for age, sex, month, and year of diagnosis. We applied conditional logistic regression with 95% confidence intervals to identify the associations of RAAS inhibitors use with gynecologic cancer risks. The statistical significance threshold was p < 0.05. A total of 97,736 gynecologic cancer cases were identified and matched with 390,944 controls. The adjusted odds ratio for RAAS inhibitors use and overall gynecologic cancer was 0.87 (95% CI: 0.85-0.89). Cervical cancer risk was found to be significantly decreased in the groups aged 20-39 years (aOR: 0.70, 95% CI: 0.58-0.85), 40-64 years (aOR: 0.77, 95% CI: 0.74-0.81), ≥65 years (aOR: 0.87, 95% CI: 0.83-0.91), and overall (aOR: 0.81, 95% CI: 0.79-0.84). Ovarian cancer risk was significantly lower in the groups aged 40-64 years (aOR: 0.76, 95% CI: 0.69-0.82), ≥65 years (aOR: 0.83, 95% CI: 0.75-092), and overall (aOR: 0.79, 95% CI: 0.74-0.84). However, a significantly increased endometrial cancer risk was observed in users aged 20-39 years (aOR: 2.54, 95% CI: 1.79-3.61), 40-64 years (aOR: 1.08, 95% CI: 1.02-1.14), and overall (aOR: 1.06, 95% CI: 1.01-1.11). There were significantly reduced risks of gynecologic cancers with ACEIs users in the groups aged 40-64 years (aOR: 0.88, 95% CI: 0.84-0.91), ≥65 years (aOR: 0.87, 95% CI: 0.83-0.90), and overall (aOR: 0.88, 95% CI: 0.85-0.80), and ARBs users aged 40-64 years (aOR: 0.91, 95% CI: 0.86-0.95). Our case-control study demonstrated that RAAS inhibitors use was associated with a significant decrease in overall gynecologic cancer risks. RAAS inhibitors exposure had lower associations with cervical and ovarian cancer risks, and increased endometrial cancer risk. ACEIs/ARBs use was found to have a preventive effect against gynecologic cancers. Future clinical research is needed to establish causality.
Collapse
Affiliation(s)
- Nhi Thi Hong Nguyen
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei 11031, Taiwan
- Health Personnel Training Institute, University of Medicine and Pharmacy, Hue University, Hue 491-20, Vietnam
| | - Phung-Anh Nguyen
- Clinical Data Center, Office of Data Science, Taipei Medical University, Taipei 106339, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chih-Wei Huang
- International Center for Health Information Technology (ICHIT), College of Medical Science and Technology, Taipei Medical University, Taipei 106339, Taiwan
| | - Ching-Huan Wang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 106339, Taiwan
- Biomedical Informatics & Data Science (BIDS) Section, School of Medicine, Johns Hopkins University, 2024 E Monument St, Suite 1-200, Baltimore, MD 21205, USA
| | - Ming-Chin Lin
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 106339, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Min-Huei Hsu
- Clinical Data Center, Office of Data Science, Taipei Medical University, Taipei 106339, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan
| | - Hoang Bui Bao
- Health Personnel Training Institute, University of Medicine and Pharmacy, Hue University, Hue 491-20, Vietnam
- Internal Medicine Department, University of Medicine and Pharmacy, Hue University, Hue 491-20, Vietnam
| | - Shuo-Chen Chien
- International Center for Health Information Technology (ICHIT), College of Medical Science and Technology, Taipei Medical University, Taipei 106339, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 106339, Taiwan
| | - Hsuan-Chia Yang
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- International Center for Health Information Technology (ICHIT), College of Medical Science and Technology, Taipei Medical University, Taipei 106339, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 106339, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 116079, Taiwan
- Correspondence:
| |
Collapse
|
14
|
Chun JJ, Chang J, Soedono S, Oh J, Kim YJ, Wee SY, Cho KW, Choi CY. Mechanical Stress Improves Fat Graft Survival by Promoting Adipose-Derived Stem Cells Proliferation. Int J Mol Sci 2022; 23:ijms231911839. [PMID: 36233141 PMCID: PMC9569524 DOI: 10.3390/ijms231911839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cell-assisted lipotransfer (CAL), defined as co-transplantation of aspirated fat with enrichment of adipose-derived stem cells (ASCs), is a novel technique for cosmetic and reconstructive surgery to overcome the low survival rate of traditional fat grafting. However, clinically approved techniques for increasing the potency of ASCs in CAL have not been developed yet. As a more clinically applicable method, we used mechanical stress to reinforce the potency of ASCs. Mechanical stress was applied to the inguinal fat pad by needling. Morphological and cellular changes in adipose tissues were examined by flow cytometric analysis 1, 3, 5, and 7 days after the procedure. The proliferation and adipogenesis potencies of ASCs were evaluated. CAL with ASCs treated with mechanical stress or sham control were performed, and engraftment was determined at 4 weeks post-operation. Flow cytometry analysis revealed that mechanical stress significantly increased the number as well as the frequency of ASC proliferation in fat. Proliferation assays and adipocyte-specific marker gene analysis revealed that mechanical stress promoted proliferation potential but did not affect the differentiation capacity of ASCs. Moreover, CAL with cells derived from mechanical stress-treated fat increased the engraftment. Our results indicate that mechanical stress may be a simple method for improving the efficacy of CAL by enhancing the proliferation potency of ASCs.
Collapse
Affiliation(s)
- Jeong Jin Chun
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Gumi 39371, Korea
| | - Jiyeon Chang
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
| | - Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
| | - Jieun Oh
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31583, Korea
| | - Yeong Jin Kim
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Bucheon 14584, Korea
| | - Syeo Young Wee
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Gumi 39371, Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: (K.W.C.); (C.Y.C.); Tel.: +82-41-413-5028 (K.W.C.); +82-32-621-5319 (C.Y.C.)
| | - Chang Yong Choi
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Bucheon 14584, Korea
- Correspondence: (K.W.C.); (C.Y.C.); Tel.: +82-41-413-5028 (K.W.C.); +82-32-621-5319 (C.Y.C.)
| |
Collapse
|
15
|
Liu J, Zhang Y, Zhou Y, Wang QQ, Ding K, Zhao S, Lu P, Liu JL. Cytoophidia coupling adipose architecture and metabolism. Cell Mol Life Sci 2022; 79:534. [PMID: 36180607 DOI: 10.1007/s00018-022-04567-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023]
Abstract
Tissue architecture determines its unique physiology and function. How these properties are intertwined has remained unclear. Here we show that the metabolic enzyme CTP synthase (CTPS) form filamentous structures termed cytoophidia along the adipocyte cortex in Drosophila adipose tissue. Loss of cytoophidia, whether due to reduced CTPS expression or a point mutation that specifically abrogates its polymerization ability, causes impaired adipocyte adhesion and defective adipose tissue architecture. Moreover, CTPS influences integrin distribution and dot-like deposition of type IV collagen (Col IV). Col IV-integrin signaling reciprocally regulates the assembly of cytoophidia in adipocytes. Our results demonstrate that a positive feedback signaling loop containing both cytoophidia and integrin adhesion complex couple tissue architecture and metabolism in Drosophila adipose tissue.
Collapse
Affiliation(s)
- Jingnan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuanbing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Youfang Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiao-Qi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kang Ding
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Suwen Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
16
|
Hillers-Ziemer LE, Kuziel G, Williams AE, Moore BN, Arendt LM. Breast cancer microenvironment and obesity: challenges for therapy. Cancer Metastasis Rev 2022; 41:627-647. [PMID: 35435599 PMCID: PMC9470689 DOI: 10.1007/s10555-022-10031-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Women with obesity who develop breast cancer have a worsened prognosis with diminished survival rates and increased rates of metastasis. Obesity is also associated with decreased breast cancer response to endocrine and chemotherapeutic treatments. Studies utilizing multiple in vivo models of obesity as well as human breast tumors have enhanced our understanding of how obesity alters the breast tumor microenvironment. Changes in the complement and function of adipocytes, adipose-derived stromal cells, immune cells, and endothelial cells and remodeling of the extracellular matrix all contribute to the rapid growth of breast tumors in the context of obesity. Interactions of these cells enhance secretion of cytokines and adipokines as well as local levels of estrogen within the breast tumor microenvironment that promote resistance to multiple therapies. In this review, we will discuss our current understanding of the impact of obesity on the breast tumor microenvironment, how obesity-induced changes in cellular interactions promote resistance to breast cancer treatments, and areas for development of treatment interventions for breast cancer patients with obesity.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Genevra Kuziel
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr. Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
17
|
Compera N, Atwell S, Wirth J, von Törne C, Hauck SM, Meier M. Adipose microtissue-on-chip: a 3D cell culture platform for differentiation, stimulation, and proteomic analysis of human adipocytes. LAB ON A CHIP 2022; 22:3172-3186. [PMID: 35875914 PMCID: PMC9400584 DOI: 10.1039/d2lc00245k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/16/2022] [Indexed: 06/01/2023]
Abstract
Human fat tissue has evolved to serve as a major energy reserve. An imbalance between energy intake and expenditure leads to an expansion of adipose tissue. Maintenance of this energy imbalance over long periods leads to obesity and metabolic disorders such as type 2 diabetes, for which a clinical cure is not yet available. In this study, we developed a microfluidic large-scale integration chip platform to automate the formation, long-term culture, and retrieval of 3D adipose microtissues to enable longitudinal studies of adipose tissue in vitro. The chip was produced from soft-lithography molds generated by 3D-printing, which allowed scaling of pneumatic membrane valves for parallel fluid routing and thus incorporated microchannels with variable dimensions to handle 3D cell cultures with diameters of several hundred micrometers. In 32 individual fluidically accessible cell culture chambers, designed to enable the self-aggregation process of three microtissues, human adipose stem cells differentiated into mature adipocytes over a period of two weeks. Coupling mass spectrometry to the cell culture platform, we determined the minimum cell numbers required to obtain robust and complex proteomes with over 1800 identified proteins. The adipose microtissues on the chip platform were then used to periodically simulate food intake by alternating the glucose level in the cell-feeding media every 6 h over the course of one week. The proteomes of adipocytes under low/high glucose conditions exhibited unique protein profiles, confirming the technical functionality and applicability of the chip platform. Thus, our adipose tissue-on-chip in vitro model may prove useful for elucidating the molecular and functional mechanisms of adipose tissue in normal and pathological conditions, such as obesity.
Collapse
Affiliation(s)
- Nina Compera
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany.
| | - Scott Atwell
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany.
| | - Johannes Wirth
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany.
| | - Christine von Törne
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany.
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Matrix stiffness and architecture drive fibro-adipogenic progenitors' activation into myofibroblasts. Sci Rep 2022; 12:13582. [PMID: 35945422 PMCID: PMC9363488 DOI: 10.1038/s41598-022-17852-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
Fibro-adipogenic progenitors (FAPs) are essential in supporting regeneration in skeletal muscle, but in muscle pathologies FAPs the are main source of excess extracellular matrix (ECM) resulting in fibrosis. Fibrotic ECM has altered mechanical and architectural properties, but the feedback onto FAPs of stiffness or ECM properties is largely unknown. In this study, FAPs’ sensitivity to their ECM substrate was assessed using collagen coated polyacrylamide to control substrate stiffness and collagen hydrogels to engineer concentration, crosslinking, fibril size, and alignment. FAPs on substrates of fibrotic stiffnesses had increased myofibroblast activation, depicted by αSMA expression, compared to substrates mimicking healthy muscle, which correlated strongly YAP nuclear localization. Surprisingly, fibrosis associated collagen crosslinking and larger fibril size inhibited myofibroblast activation, which was independent of YAP localization. Additionally, collagen crosslinking and larger fibril diameters were associated with decreased remodeling of the collagenous substrate as measured by second harmonic generation imaging. Inhibition of YAP activity through verteporfin reduced myofibroblast activation on stiff substrates but not substrates with altered architecture. This study is the first to demonstrate that fibrotic muscle stiffness can elicit FAP activation to myofibroblasts through YAP signaling. However, fibrotic collagen architecture actually inhibits myofibroblast activation through a YAP independent mechanism. These data expand knowledge of FAPs sensitivity to ECM and illuminate targets to block FAP’s from driving progression of muscle fibrosis.
Collapse
|
19
|
Uetaki M, Onishi N, Oki Y, Shimizu T, Sugihara E, Sampetrean O, Watanabe T, Yanagi H, Suda K, Fujii H, Kano K, Saya H, Nobusue H. Regulatory roles of fibronectin and integrin α5 in reorganization of the actin cytoskeleton and completion of adipogenesis. Mol Biol Cell 2022; 33:ar78. [PMID: 35704469 PMCID: PMC9582638 DOI: 10.1091/mbc.e21-12-0609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular differentiation is characterized by changes in cell morphology that are largely determined by actin dynamics. We previously showed that depolymerization of the actin cytoskeleton triggers the differentiation of preadipocytes into mature adipocytes as a result of inhibition of the transcriptional coactivator activity of megakaryoblastic leukemia 1 (MKL1). The extracellular matrix (ECM) influences cell morphology via interaction with integrins, and reorganization of the ECM is associated with cell differentiation. Here we show that interaction between actin dynamics and ECM rearrangement plays a key role in adipocyte differentiation. We found that depolymerization of the actin cytoskeleton precedes disruption and degradation of fibrillar fibronectin (FN) structures at the cell surface after the induction of adipogenesis in cultured preadipocytes. A FN matrix suppressed both reorganization of the actin cytoskeleton into the pattern characteristic of adipocytes and terminal adipocyte differentiation, and these inhibitory effects were overcome by knockdown of integrin α5 (ITGα5). Peroxisome proliferator–activated receptor γ was required for down-regulation of FN during adipocyte differentiation, and MKL1 was necessary for the expression of ITGα5. Our findings suggest that cell-autonomous down-regulation of FN-ITGα5 interaction contributes to reorganization of the actin cytoskeleton and completion of adipocyte differentiation.
Collapse
Affiliation(s)
- Megumi Uetaki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Onishi
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takatsune Shimizu
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Eiji Sugihara
- Open Facility Center, Fujita Health University, Toyoake, Japan.,Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Watanabe
- Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Hisano Yanagi
- Department of Medical Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kiyoshi Suda
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Hiroya Fujii
- Medical & Biological Laboratories Co., Ltd., Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| |
Collapse
|
20
|
Lecoutre S, Lambert M, Drygalski K, Dugail I, Maqdasy S, Hautefeuille M, Clément K. Importance of the Microenvironment and Mechanosensing in Adipose Tissue Biology. Cells 2022; 11:cells11152310. [PMID: 35954152 PMCID: PMC9367348 DOI: 10.3390/cells11152310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
The expansion of adipose tissue is an adaptive mechanism that increases nutrient buffering capacity in response to an overall positive energy balance. Over the course of expansion, the adipose microenvironment undergoes continual remodeling to maintain its structural and functional integrity. However, in the long run, adipose tissue remodeling, typically characterized by adipocyte hypertrophy, immune cells infiltration, fibrosis and changes in vascular architecture, generates mechanical stress on adipose cells. This mechanical stimulus is then transduced into a biochemical signal that alters adipose function through mechanotransduction. In this review, we describe the physical changes occurring during adipose tissue remodeling, and how they regulate adipose cell physiology and promote obesity-associated dysfunction in adipose tissue.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Mélanie Lambert
- Labex Inflamex, Université Sorbonne Paris Nord, INSERM, F-93000 Bobigny, France;
| | - Krzysztof Drygalski
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR 7622), IBPS, Sorbonne Université, F-75005 Paris, France;
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
- Assistance Publique Hôpitaux de Paris, Nutrition Department, CRNH Ile-de-France, Pitié-Salpêtrière Hospital, F-75013 Paris, France
- Correspondence: or
| |
Collapse
|
21
|
Horino M, Ikeda K, Yamada T. The Role of Thermogenic Fat Tissue in Energy Consumption. Curr Issues Mol Biol 2022; 44:3166-3179. [PMID: 35877443 PMCID: PMC9317885 DOI: 10.3390/cimb44070219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022] Open
Abstract
Mammalian adipose tissues are broadly divided into white adipose tissue (WAT) and thermogenic fat tissue (brown adipose tissue and beige adipose tissue). Uncoupling protein 1 (UCP1) is the central protein in thermogenesis, and cells that exhibit induced UCP1 expression and appear scattered throughout WAT are called beige adipocytes, and their induction in WAT is referred to as “beiging”. Beige adipocytes can differentiate from preadipocytes or convert from mature adipocytes. UCP1 was thought to contribute to non-shivering thermogenesis; however, recent studies demonstrated the presence of UCP1-independent thermogenic mechanisms. There is evidence that thermogenic fat tissue contributes to systemic energy expenditure even in human beings. This review discusses the roles that thermogenic fat tissue plays in energy consumption and offers insight into the possibility and challenges associated with its application in the treatment of obesity and type 2 diabetes.
Collapse
|
22
|
Bouzid T, Esfahani AM, Safa BT, Kim E, Saraswathi V, Kim JK, Yang R, Lim JY. Rho/ROCK mechanosensor in adipocyte stiffness and traction force generation. Biochem Biophys Res Commun 2022; 606:42-48. [PMID: 35339750 PMCID: PMC9035097 DOI: 10.1016/j.bbrc.2022.03.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022]
Abstract
It is increasingly recognized that interaction of adipose cells with extracellular mechanophysical milieus may play a role in regulating adipogenesis and differentiated adipocyte function and such interaction can be mediated by the mechanics of adipose cells. We measured the stiffness and traction force of adipose cells and examined the role of Rho/ROCK, the upstream effector of actin cytoskeletal contractility, in affecting these mechanical properties. Cellular Young's modulus obtained from atomic force microscopy (AFM) was significantly reduced by ROCK inhibitor (Y-27632) but elevated by Rho activator (CN01), for both preadipocytes and differentiated adipocytes. Immunofluorescent imaging suggested this could be attributed to the changes in Rho/ROCK-induced stressed actin filament formation. AFM also confirmed that differentiated adipocytes had higher stiffness than preadipocytes. On the other hand, traction force microscopy (TFM) revealed differentiated adipocytes exerted lower traction forces than preadipocytes. Traction forces of both preadipocytes and adipocytes were decreased by ROCK inhibition, but not significantly altered by Rho activation. Notably, an increasing trend of traction force with respect to cell spreading area was detected, and this trend was substantially amplified by Rho activation. Such traction force-cell area correlation was an order-of-magnitude smaller for differentiated adipocytes relative to preadipocytes, potentially due to disrupted force transmission through cytoskeleton-focal adhesion linkage by lipid droplets. Our work provides new data evidencing the Rho/ROCK control in adipose cell mechanics, laying the groundwork for adipocyte mechanotransduction studies on adipogenesis and adipose tissue remodeling.
Collapse
Affiliation(s)
- Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bahareh Tajvidi Safa
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Viswanathan Saraswathi
- Department of Internal Medicine, University of Nebraska Medical Center and VA Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Jason K Kim
- Program in Molecular Medicine and Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
23
|
Al-Ali MM, Khan AA, Fayyad AM, Abdallah SH, Khattak MNK. Transcriptomic profiling of the telomerase transformed Mesenchymal stromal cells derived adipocytes in response to rosiglitazone. BMC Genom Data 2022; 23:17. [PMID: 35264099 PMCID: PMC8905835 DOI: 10.1186/s12863-022-01027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Differentiation of Immortalized Human Bone Marrow Mesenchymal Stromal Cells - hTERT (iMSC3) into adipocytes is in vitro model of obesity. In our earlier study, rosiglitazone enhanced adipogenesis particularly the brown adipogenesis of iMSC3. In this study, the transcriptomic profiles of iMSC3 derived adipocytes with and without rosiglitazone were analyzed through mRNA sequencing. Results A total of 1508 genes were differentially expressed between iMSC3 and the derived adipocytes without rosiglitazone treatment. GO and KEGG enrichment analyses revealed that rosiglitazone regulates PPAR and PI3K-Akt pathways. The constant rosiglitazone treatment enhanced the expression of Fatty Acid Binding Protein 4 (FABP4) which enriched GO terms such as fatty acid binding, lipid droplet, as well as white and brown fat cell differentiation. Moreover, the constant treatment upregulated several lipid droplets (LDs) associated proteins such as PLIN1. Rosiglitazone also activated the receptor complex PTK2B that has essential roles in beige adipocytes thermogenic program. Several uniquely expressed novel regulators of brown adipogenesis were also expressed in adipocytes derived with rosiglitazone: PRDM16, ZBTB16, HOXA4, and KLF15 in addition to other uniquely expressed genes. Conclusions Rosiglitazone regulated several differentially regulated genes and non-coding RNAs that warrant further investigation about their roles in adipogenesis particularly brown adipogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01027-z.
Collapse
Affiliation(s)
- Moza Mohamed Al-Ali
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE. .,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE.
| | - Abeer Maher Fayyad
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE.,Department of Molecular and Genetic Diagnostics, Megalabs Group, Amman, 11953, Jordan
| | - Sallam Hasan Abdallah
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE. .,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE.
| |
Collapse
|
24
|
de Frutos S, Griera M, Hatem-Vaquero M, Campillo S, Gutiérrez-Calabres E, García-Ayuso D, Pardo M, Calleros L, Rodríguez-Puyol M, Rodríguez-Puyol D. The integrin beta1 modulator Tirofiban prevents adipogenesis and obesity by the overexpression of integrin-linked kinase: a pre-clinical approach in vitro and in vivo. Cell Biosci 2022; 12:10. [PMID: 35090553 PMCID: PMC8796419 DOI: 10.1186/s13578-022-00746-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background Obesity is caused by the enlargement of the white adipose tissue (WAT) depots, characterized by the hypertrophic enlargement of malfunctioning adipocytes within WAT which increases the storage of triglycerides (TG) in the lipid droplets (LD). Adipogenesis pathways as well as the expression and activity of some extracellular matrix receptors integrins are upregulated. Integrinβ1 (INTB1) is the main isoform involved in WAT remodeling during obesity and insulin resistance-related diseases. We recently described Integrin Linked Kinase (ILK), a scaffold protein recruited by INTB1, as an important mediator of WAT remodeling and insulin resistance. As the few approved drugs to fight obesity have brought long-term cardiovascular side effects and given that the consideration of INTB1 and/or ILK modulation as anti-obesogenic strategies remains unexplored, we aimed to evaluate the anti-obesogenic capacity of the clinically approved anticoagulant Tirofiban (TF), stated in preclinical studies as a cardiovascular protector. Methods Fully differentiated adipocytes originating from C3H10T1/2 were exposed to TF and were co-treated with specific INTB1 blockers or with siRNA-based knockdown ILK expression. Lipid-specific dyes were used to determine the TG content in LD. The genetic expression pattern of ILK, pro-inflammatory cytokines (MCP1, IL6), adipogenesis (PPARγ, Leptin), thermogenesis (UCP1), proliferation (PCNA), lipid metabolism (FASN, HSL, ATGL), and metabolite transporters (FABP4, FAT, AQP7) were detected using quantitative PCR. Cytoskeletal actin polymerization was detected by confocal microscopy. Immunoblotting was performed to detect INTB1 phosphorylation at Thr788/9 and ILK activity as phosphorylation levels of protein kinase B (AKT) in Ser473 and glycogen synthase kinase 3β (GSK3β) at Ser9. TF was intraperitoneally administered once per day to wildtype and ILK knockdown mice (cKDILK) challenged with a high-fat diet (HFD) or control diet (STD) for 2 weeks. Body and WAT weight gains were compared. The expression of ILK and other markers was determined in the visceral epididymal (epi) and inguinal subcutaneous (sc) WAT. Results TF reduced TG content and the expression of adipogenesis markers and transporters in adipocytes, while UCP-1 expression was increased and the expression of lipases, cytokines or PCNA was not affected. Mechanistically, TF rapidly increased and faded the intracellular phosphorylation of INTB1 but not AKT or GSK3β. F-actin levels were rapidly decreased, and INTB1 blockade avoided the TF effect. After 24 h, ILK expression and phosphorylation rates of AKT and GSK3β were upregulated, while ILK silencing increased TG content. INTB1 blockade and ILK silencing avoided TF effects on the TG content and the transcriptional expression of PPARγ and UCP1. In HFD-challenged mice, the systemic administration of TF for several days reduced the weight gain on WAT depots. TF reduced adipogenesis and pro-inflammatory biomarkers and increased lipolysis markers HSL and FAT in epiWAT from HFD, while increased UCP1 in scWAT. In both WATs, TF upregulated ILK expression and activity, while no changes were observed in other tissues. In HFD-fed cKDILK, the blunted ILK in epiWAT worsened weight gain and avoided the anti-obesogenic effect of in vivo TF administration. Conclusions ILK downregulation in WAT can be considered a biomarker of obesity establishment. Via an INTB1-ILK axis, TF restores malfunctioning hypertrophied WAT by changing the expression of adipocyte-related genes, increasing ILK expression and activity, and reducing TG storage. TF prevents obesity, a property to be added to its anticoagulant and cardiovascular protective advantages. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00746-1.
Collapse
|
25
|
Kislev N, Izgilov R, Adler R, Benayahu D. Exploring the Cell Stemness and the Complexity of the Adipose Tissue Niche. Biomolecules 2021; 11:biom11121906. [PMID: 34944549 PMCID: PMC8699211 DOI: 10.3390/biom11121906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a complex organ composed of different cellular populations, including mesenchymal stem and progenitor cells, adipocytes, and immune cells such as macrophages and lymphocytes. These cellular populations alter dynamically during aging or as a response to pathophysiology such as obesity. Changes in the various inflammatory cells are associated with metabolic complications and the development of insulin resistance, indicating that immune cells crosstalk with the adipocytes. Therefore, a study of the cell populations in the adipose tissue and the extracellular matrix maintaining the tissue niche is important for the knowledge on the regulatory state of the organ. We used a combination of methods to study various parameters to identify the composition of the resident cells in the adipose tissue and evaluate their profile. We analyzed the tissue structure and cells based on histology, immune fluorescence staining, and flow cytometry of cells present in the tissue in vivo and these markers’ expression in vitro. Any shift in cells’ composition influences self-renewal of the mesenchymal progenitors, and other cells affect the functionality of adipogenesis.
Collapse
|
26
|
Bi X, Li Y, Dong Z, Zhao J, Wu W, Zou J, Guo L, Lu F, Gao J. Recent Developments in Extracellular Matrix Remodeling for Fat Grafting. Front Cell Dev Biol 2021; 9:767362. [PMID: 34977018 PMCID: PMC8716396 DOI: 10.3389/fcell.2021.767362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Remodeling of the extracellular matrix (ECM), which provides structural and biochemical support for surrounding cells, is vital for adipose tissue regeneration after autologous fat grafting. Rapid and high-quality ECM remodeling can improve the retention rate after fat grafting by promoting neovascularization, regulating stem cells differentiation, and suppressing chronic inflammation. The degradation and deposition of ECM are regulated by various factors, including hypoxia, blood supply, inflammation, and stem cells. By contrast, ECM remodeling alters these regulatory factors, resulting in a dynamic relationship between them. Although researchers have attempted to identify the cellular sources of factors associated with tissue regeneration and regulation of the microenvironment, the factors and mechanisms that affect adipose tissue ECM remodeling remain incompletely understood. This review describes the process of adipose ECM remodeling after grafting and summarizes the factors that affect ECM reconstruction. Also, this review provides an overview of the clinical methods to avoid poor ECM remodeling. These findings may provide new ideas for improving the retention of adipose tissue after fat transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Jo B, Morimoto Y, Takeuchi S. Skeletal muscle-adipose cocultured tissue fabricated using cell-laden microfibers and a hydrogel sheet. Biotechnol Bioeng 2021; 119:636-643. [PMID: 34761805 DOI: 10.1002/bit.27989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
The emerging interest in skeletal muscle tissue originates from its unique properties that control body movements. In particular, recent research advances in engineered skeletal muscle tissue have broadened the possibilities of applications in nonclinical models. However, due to the lack of adipose tissue, current engineered skeletal muscle tissue has the limitation of satisfying in vivo-like position and proportion of intermuscular fat. Adipose tissue within the skeletal muscle affects their functional properties. Here, a fabrication method for cocultured tissue composed of skeletal muscle and adipose tissues is proposed to reproduce the functional and morphological characteristics of muscle. By implementing prematured adipose microfibers in a myoblast-laden hydrogel sheet, both the accumulation of large lipid droplets and control of the position of adipose tissue within the skeletal muscle tissue becomes feasible. The findings of this study provide helpful information regarding engineered skeletal muscle, which has strong potential in drug screening models.
Collapse
Affiliation(s)
- Byeongwook Jo
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuya Morimoto
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.,International Research for Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Hypoxia induces stress fiber formation in adipocytes in the early stage of obesity. Sci Rep 2021; 11:21473. [PMID: 34728615 PMCID: PMC8563745 DOI: 10.1038/s41598-021-00335-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023] Open
Abstract
In obese adipose tissue (AT), hypertrophic expansion of adipocytes is not matched by new vessel formation, leading to AT hypoxia. As a result, hypoxia inducible factor-1⍺ (HIF-1⍺) accumulates in adipocytes inducing a transcriptional program that upregulates profibrotic genes and biosynthetic enzymes such as lysyl oxidase (LOX) synthesis. This excess synthesis and crosslinking of extracellular matrix (ECM) components cause AT fibrosis. Although fibrosis is a hallmark of obese AT, the role of fibroblasts, cells known to regulate fibrosis in other fibrosis-prone tissues, is not well studied. Here we have developed an in vitro model of AT to study adipocyte-fibroblast crosstalk in a hypoxic environment. Further, this in vitro model was used to investigate the effect of hypoxia on adipocyte mechanical properties via ras homolog gene family member A (RhoA)/Rho-associated coiled-coil kinases (ROCK) signaling pathways. We confirmed that hypoxia creates a diseased phenotype by inhibiting adipocyte maturation and inducing actin stress fiber formation facilitated by myocardin-related transcription factor A (MRTF-A/MKL1) nuclear translocation. This work presents new potential therapeutic targets for obesity by improving adipocyte maturation and limiting mechanical stress in obese AT.
Collapse
|
29
|
Su X, Cheng Y, Zhang G, Wang B. Novel insights into the pathological mechanisms of metabolic related dyslipidemia. Mol Biol Rep 2021; 48:5675-5687. [PMID: 34218408 DOI: 10.1007/s11033-021-06529-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
Due to the technological advances, it has been well-established that obesity is strongly correlated with various health problems. Among these problems, dyslipidemia is one of the most important concomitant symptoms under obese status which is the main driving force behind the pathological progression of cardio-metabolic disorder diseases. Importantly, the type of dyslipidemia, arising from concerted action of obesity, has been identified as "metabolic related dyslipidemia", which is characterized by increased circulating levels of Low density lipoprotein cholesterol (LDL-C), Triglycerides (TG) accompanied by lower circulating levels of High density lipoprotein cholesterol (HDL-C). On the other hand, the metabolic related dyslipidemia is being verified as a vital link between obesity and hypertension, diabetes mellitus, and Cardiovascular disease (CVD). In this review, we summarized the current understanding of metabolic related dyslipidemia and the potential mechanisms which lead to the pathogenesis of obesity. Meanwhile, we also summarized the emerging results which focused on several novel lipid bio-markers in metabolic related dyslipidemia, such as pro-protein convertase subtilisin/kexin type 9 (PCSK9) and sphingosine-1-phosphate (S1P), and their potential use as biomarkers of metabolic related dyslipidemia.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Ye Cheng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| | - Bin Wang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
30
|
Goddi A, Schroedl L, Brey EM, Cohen RN. Laminins in metabolic tissues. Metabolism 2021; 120:154775. [PMID: 33857525 DOI: 10.1016/j.metabol.2021.154775] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
Laminins are extracellular matrix proteins that reside in the basement membrane and provide structural support in addition to promoting cellular adhesion and migration. Through interactions with cell surface receptors, laminins stimulate intracellular signaling cascades which direct specific survival and differentiation outcomes. In metabolic tissues such as the pancreas, adipose, muscle, and liver, laminin isoforms are expressed in discrete temporal and spatial patterns suggesting that certain isoforms may support the development and function of particular metabolic cell types. This review focuses on the research to date detailing the expression of laminin isoforms, their potential function, as well as known pathways involved in laminin signaling in metabolic tissues. We will also discuss the current biomedical therapies involving laminins in these tissues in addition to prospective applications, with the goal being to encourage future investigation of laminins in the context of metabolic disease.
Collapse
Affiliation(s)
- Anna Goddi
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, 900 East 57th St, Chicago, IL 60637, USA
| | - Liesl Schroedl
- Pritzker School of Medicine, The University of Chicago, 924 E 57th St, Chicago, IL 60637, USA
| | - Eric M Brey
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ronald N Cohen
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, 900 East 57th St, Chicago, IL 60637, USA; Section of Endocrinology, Diabetes, and Metabolism, The University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
31
|
Su X, Chen X, Wang B. Pathology of metabolically-related dyslipidemia. Clin Chim Acta 2021; 521:107-115. [PMID: 34192528 DOI: 10.1016/j.cca.2021.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
It is well established that overweight/obesity is closely associated with multiple health problems. Among these, dyslipidemia is the most important and main driving force behind pathologic development of cardio-metabolic disorders such as diabetes mellitus, atherosclerotic-related cardiovascular disease and hypertension. Notably, a subtype of dyslipidemia, metabolic related dyslipidemia, is now recognized as a vital link between obesity and multiple different cardiovascular diseases. This condition is characterized by increased low density lipoprotein cholesterol (LDL-C) and triglyceride (TG) and very low density lipoprotein cholesterol (VLDL-C) as well as decreased high density lipoprotein cholesterol (HDL-C) in serum. In this review, we summarize the current understanding of metabolic related dyslipidemia and the potential mechanisms which lead to the pathogenesis of obesity/overweight. We focus on several novel lipid biomarkers such as pro-protein convertase subtilisin/kexin type 9 (PCSK9) and sphingosine-1-phosphate (S1P) and their potential use as biomarkers of metabolic related dyslipidemia.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiang Chen
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Bin Wang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
32
|
De Luca M, Mandala M, Rose G. Towards an understanding of the mechanoreciprocity process in adipocytes and its perturbation with aging. Mech Ageing Dev 2021; 197:111522. [PMID: 34147549 DOI: 10.1016/j.mad.2021.111522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Adipose tissue (AT) is a complex organ, with multiple functions that are essential for maintaining metabolic health. A feature of AT is its capability to expand in response to physiological challenges, such as pregnancy and aging, and during chronic states of positive energy balance occurring throughout life. AT grows through adipogenesis and/or an increase in the size of existing adipocytes. One process that is required for healthy AT growth is the remodeling of the extracellular matrix (ECM), which is a necessary step to restore mechanical homeostasis and maintain tissue integrity and functionality. While the relationship between mechanobiology and adipogenesis is now well recognized, less is known about the role of adipocyte mechanosignaling pathways in AT growth. In this review article, we first summarize evidence linking ECM remodelling to AT expansion and how its perturbation is associated to a metabolically unhealthy phenotype. Subsequently, we highlight findings suggesting that molecules involved in the dynamic, bidirectional process (mechanoreciprocity) enabling adipocytes to sense changes in the mechanical properties of the ECM are interconnected to pathways regulating lipid metabolism. Finally, we discuss processes through which aging may influence the ability of adipocytes to appropriately respond to alterations in ECM composition.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Maurizio Mandala
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Science, University of Calabria, Rende, 87036, Italy
| |
Collapse
|
33
|
Guiotto M, Raffoul W, Hart AM, Riehle MO, di Summa PG. Human Platelet Lysate Acts Synergistically With Laminin to Improve the Neurotrophic Effect of Human Adipose-Derived Stem Cells on Primary Neurons in vitro. Front Bioeng Biotechnol 2021; 9:658176. [PMID: 33816456 PMCID: PMC8017201 DOI: 10.3389/fbioe.2021.658176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 01/13/2023] Open
Abstract
Background Despite the advancements in microsurgical techniques and noteworthy research in the last decade, peripheral nerve lesions have still weak functional outcomes in current clinical practice. However, cell transplantation of human adipose-derived stem cells (hADSC) in a bioengineered conduit has shown promising results in animal studies. Human platelet lysate (hPL) has been adopted to avoid fetal bovine serum (FBS) in consideration of the biosafety concerns inherent with the use of animal-derived products in tissue processing and cell culture steps for translational purposes. In this work, we investigate how the interplay between hPL-expanded hADSC (hADSChPL) and extracellular matrix (ECM) proteins influences key elements of nerve regeneration. Methods hADSC were seeded on different ECM coatings (laminin, LN; fibronectin, FN) in hPL (or FBS)-supplemented medium and co-cultured with primary dorsal root ganglion (DRG) to establish the intrinsic effects of cell–ECM contact on neural outgrowth. Co-cultures were performed “direct,” where neural cells were seeded in contact with hADSC expanded on ECM-coated substrates (contact effect), or “indirect,” where DRG was treated with their conditioned medium (secretome effect). Brain-derived nerve factor (BDNF) levels were quantified. Tissue culture plastic (TCPS) was used as the control substrate in all the experiments. Results hPL as supplement alone did not promote higher neurite elongation than FBS when combined with DRG on ECM substrates. However, in the presence of hADSC, hPL could dramatically enhance the stem cell effect with increased DRG neurite outgrowth when compared with FBS conditions, regardless of the ECM coating (in both indirect and direct co-cultures). The role of ECM substrates in influencing neurite outgrowth was less evident in the FBS conditions, while it was significantly amplified in the presence of hPL, showing better neural elongation in LN conditions when compared with FN and TCPS. Concerning hADSC growth factor secretion, ELISA showed significantly higher concentrations of BDNF when cells were expanded in hPL compared with FBS-added medium, without significant differences between cells cultured on the different ECM substrates. Conclusion The data suggest how hADSC grown on LN and supplemented with hPL could be active and prone to support neuron–matrix interactions. hPL enhanced hADSC effects by increasing both proliferation and neurotrophic properties, including BDNF release.
Collapse
Affiliation(s)
- Martino Guiotto
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland.,Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, United Kingdom
| | - Wassim Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Andrew M Hart
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, United Kingdom.,Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Mathis O Riehle
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, United Kingdom
| | - Pietro G di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
34
|
Subia B, Dahiya UR, Mishra S, Ayache J, Casquillas GV, Caballero D, Reis RL, Kundu SC. Breast tumor-on-chip models: From disease modeling to personalized drug screening. J Control Release 2021; 331:103-120. [PMID: 33417986 PMCID: PMC8172385 DOI: 10.1016/j.jconrel.2020.12.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the leading causes of mortality worldwide being the most common cancer among women. Despite the significant progress obtained during the past years in the understanding of breast cancer pathophysiology, women continue to die from it. Novel tools and technologies are needed to develop better diagnostic and therapeutic approaches, and to better understand the molecular and cellular players involved in the progression of this disease. Typical methods employed by the pharmaceutical industry and laboratories to investigate breast cancer etiology and evaluate the efficiency of new therapeutic compounds are still based on traditional tissue culture flasks and animal models, which have certain limitations. Recently, tumor-on-chip technology emerged as a new generation of in vitro disease model to investigate the physiopathology of tumors and predict the efficiency of drugs in a native-like microenvironment. These microfluidic systems reproduce the functional units and composition of human organs and tissues, and importantly, the rheological properties of the native scenario, enabling precise control over fluid flow or local gradients. Herein, we review the most recent works related to breast tumor-on-chip for disease modeling and drug screening applications. Finally, we critically discuss the future applications of this emerging technology in breast cancer therapeutics and drug development.
Collapse
Affiliation(s)
- Bano Subia
- Elvesys Microfluidics Innovation Centre, Paris 75011, France..
| | | | - Sarita Mishra
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India..
| | - Jessica Ayache
- Elvesys Microfluidics Innovation Centre, Paris 75011, France..
| | | | - David Caballero
- 3B's Research Group, I3Bs-Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarãaes 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarãaes 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs-Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, Guimarãaes 4805-017, Portugal; ICVS/3B's - PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal.
| |
Collapse
|
35
|
Gonzalez Porras MA, Stojkova K, Vaicik MK, Pelowe A, Goddi A, Carmona A, Long B, Qutub AA, Gonzalez A, Cohen RN, Brey EM. Integrins and extracellular matrix proteins modulate adipocyte thermogenic capacity. Sci Rep 2021; 11:5442. [PMID: 33686208 PMCID: PMC7940610 DOI: 10.1038/s41598-021-84828-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and the metabolic disease epidemic has led to an increase in morbidity and mortality. A rise in adipose thermogenic capacity via activation of brown or beige fat is a potential treatment for metabolic diseases. However, an understanding of how local factors control adipocyte fate is limited. Mice with a null mutation in the laminin α4 (LAMA4) gene (KO) exhibit resistance to obesity and enhanced expression of thermogenic fat markers in white adipose tissue (WAT). In this study, changes in WAT extracellular matrix composition in the absence of LAMA4 were evaluated using liquid chromatography/tandem mass spectrometry. KO-mice showed lower levels of collagen 1A1 and 3A1, and integrins α7 (ITA7) and β1 (ITB1). ITA7-ITB1 and collagen 1A1-3A1 protein levels were lower in brown adipose tissue compared to WAT in wild-type mice. Immunohistochemical staining confirmed lower levels and different spatial distribution of ITA7 in KO-WAT. In culture studies, ITA7 and LAMA4 levels decreased following a 12-day differentiation of adipose-derived stem cells into beige fat, and knock-down of ITA7 during differentiation increased beiging. These results demonstrate that extracellular matrix interactions regulate adipocyte thermogenic capacity and that ITA7 plays a role in beige adipose formation. A better understanding of the mechanisms underlying these interactions can be used to improve systemic energy metabolism and glucose homeostasis.
Collapse
Affiliation(s)
- Maria A Gonzalez Porras
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Marcella K Vaicik
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Amanda Pelowe
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Anna Goddi
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Alanis Carmona
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Byron Long
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Amina A Qutub
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ronald N Cohen
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Eric M Brey
- Department of Biomedical Engineering and Chemical Engineering, AET 1.102, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
36
|
Effect of 3D printed polycaprolactone scaffold with a bionic structure on the early stage of fat grafting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111973. [PMID: 33812601 DOI: 10.1016/j.msec.2021.111973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 11/24/2022]
Abstract
Mature adipocytes are sensitive to stress and hypoxia, which are the two major obstacles in large-volume fat grafting. Bionic scaffolds are considered beneficial for fat grafting; however, their mechanism is still unclear. In this study, polycaprolactone scaffolds were fabricated by a 3D-printing technique and compounded with liposuction fat. They were implanted subcutaneously into nude mice. At different times, gross and histological observations were performed to evaluate the retention rates and histological morphologies. Adipocyte viability, apoptosis, and vascularization were analyzed by special immunostaining. Quantitative polymerase chain reaction was used to detect the variations in hypoxia and inflammation. The results showed that the volume and weight retentions in the scaffold group were higher than those in the fat group with the former exhibiting fewer vacuoles and less fibrosis. In immunostaining, elevated CD31+ capillaries, more perilipin+ adipocytes, and fewer TUNEL+ apoptotic cells were observed in the scaffold group by week 4. The lower expression of HIF-1α indicated the alleviation of hypoxia. In conclusion, the scaffold provided mechanical support to resist skin tension, thereby decreasing the interstitial pressure, and improving substance exchange and vascular ingrowth. In this regard, the scaffold attenuated hypoxia and promoted vascularization, making it a feasible method to increase long-term retention in fat grafting using scaffolds with suitable degradation rates and additional vascular maturation stimulation.
Collapse
|
37
|
Goossens GH, Jocken JWE, Blaak EE. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat Rev Endocrinol 2021; 17:47-66. [PMID: 33173188 DOI: 10.1038/s41574-020-00431-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Obesity is associated with many adverse health effects, such as an increased cardiometabolic risk. Despite higher adiposity for a given BMI, premenopausal women are at lower risk of cardiometabolic disease than men of the same age. This cardiometabolic advantage in women seems to disappear after the menopause or when type 2 diabetes mellitus develops. Sexual dimorphism in substrate supply and utilization, deposition of excess lipids and mobilization of stored lipids in various key metabolic organs (such as adipose tissue, skeletal muscle and the liver) are associated with differences in tissue-specific insulin sensitivity and cardiometabolic risk profiles between men and women. Moreover, lifestyle-related factors and epigenetic and genetic mechanisms seem to affect metabolic complications and disease risk in a sex-specific manner. This Review provides insight into sexual dimorphism in adipose tissue distribution, adipose tissue, skeletal muscle and liver substrate metabolism and tissue-specific insulin sensitivity in humans, as well as the underlying mechanisms, and addresses the effect of these sex differences on cardiometabolic health. Additionally, this Review highlights the implications of sexual dimorphism in the pathophysiology of obesity-related cardiometabolic risk for the development of sex-specific prevention and treatment strategies.
Collapse
Affiliation(s)
- Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.
| | - Johan W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.
| |
Collapse
|
38
|
Pope BD, Warren CR, Dahl MO, Pizza CV, Henze DE, Sinatra NR, Gonzalez GM, Chang H, Liu Q, Glieberman AL, Ferrier JP, Cowan CA, Parker KK. Fattening chips: hypertrophy, feeding, and fasting of human white adipocytes in vitro. LAB ON A CHIP 2020; 20:4152-4165. [PMID: 33034335 PMCID: PMC7818847 DOI: 10.1039/d0lc00508h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Adipose is a distributed organ that performs vital endocrine and energy homeostatic functions. Hypertrophy of white adipocytes is a primary mode of both adaptive and maladaptive weight gain in animals and predicts metabolic syndrome independent of obesity. Due to the failure of conventional culture to recapitulate adipocyte hypertrophy, technology for production of adult-size adipocytes would enable applications such as in vitro testing of weight loss therapeutics. To model adaptive adipocyte hypertrophy in vitro, we designed and built fat-on-a-chip using fiber networks inspired by extracellular matrix in adipose tissue. Fiber networks extended the lifespan of differentiated adipocytes, enabling growth to adult sizes. By micropatterning preadipocytes in a native cytoarchitecture and by adjusting cell-to-cell spacing, rates of hypertrophy were controlled independent of culture time or differentiation efficiency. In vitro hypertrophy followed a nonlinear, nonexponential growth model similar to human development and elicited transcriptomic changes that increased overall similarity with primary tissue. Cells on the chip responded to simulated meals and starvation, which potentiated some adipocyte endocrine and metabolic functions. To test the utility of the platform for therapeutic development, transcriptional network analysis was performed, and retinoic acid receptors were identified as candidate drug targets. Regulation by retinoid signaling was suggested further by pharmacological modulation, where activation accelerated and inhibition slowed hypertrophy. Altogether, this work presents technology for mature adipocyte engineering, addresses the regulation of cell growth, and informs broader applications for synthetic adipose in pharmaceutical development, regenerative medicine, and cellular agriculture.
Collapse
Affiliation(s)
- Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA. and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Curtis R Warren
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Madeleine O Dahl
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Christina V Pizza
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Douglas E Henze
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Nina R Sinatra
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Grant M Gonzalez
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Huibin Chang
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Qihan Liu
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - John P Ferrier
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA.
| | - Chad A Cowan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, Room 318, 29 Oxford Street, Cambridge, MA 02138, USA. and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Wang L, Wang S, Shi Y, Li R, Günther S, Ong YT, Potente M, Yuan Z, Liu E, Offermanns S. YAP and TAZ protect against white adipocyte cell death during obesity. Nat Commun 2020; 11:5455. [PMID: 33116140 PMCID: PMC7595161 DOI: 10.1038/s41467-020-19229-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The expansion of the white adipose tissue (WAT) in obesity goes along with increased mechanical, metabolic and inflammatory stress. How adipocytes resist this stress is still poorly understood. Both in human and mouse adipocytes, the transcriptional co-activators YAP/TAZ and YAP/TAZ target genes become activated during obesity. When fed a high-fat diet (HFD), mice lacking YAP/TAZ in white adipocytes develop severe lipodystrophy with adipocyte cell death. The pro-apoptotic factor BIM, which is downregulated in adipocytes of obese mice and humans, is strongly upregulated in YAP/TAZ-deficient adipocytes under HFD, and suppression of BIM expression reduces adipocyte apoptosis. In differentiated adipocytes, TNFα and IL-1β promote YAP/TAZ nuclear translocation via activation of RhoA-mediated actomyosin contractility and increase YAP/TAZ-mediated transcriptional regulation by activation of c-Jun N-terminal kinase (JNK) and AP-1. Our data indicate that the YAP/TAZ signaling pathway may be a target to control adipocyte cell death and compensatory adipogenesis during obesity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Animals
- Bcl-2-Like Protein 11/metabolism
- Cell Cycle Proteins/deficiency
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Death
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Transcriptional Coactivator with PDZ-Binding Motif Proteins
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta District, Xi'an, China.
| | - Yue Shi
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta District, Xi'an, China
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Yu Ting Ong
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Zuyi Yuan
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center Xi'an Jiaotong University, Xi'an, China
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
- Center for Molecular Medicine, Medical Faculty, Goethe University, Frankfurt am Main, 60590, Germany.
| |
Collapse
|
40
|
Bahmad HF, Daouk R, Azar J, Sapudom J, Teo JCM, Abou-Kheir W, Al-Sayegh M. Modeling Adipogenesis: Current and Future Perspective. Cells 2020; 9:cells9102326. [PMID: 33092038 PMCID: PMC7590203 DOI: 10.3390/cells9102326] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is contemplated as a dynamic organ that plays key roles in the human body. Adipogenesis is the process by which adipocytes develop from adipose-derived stem cells to form the adipose tissue. Adipose-derived stem cells’ differentiation serves well beyond the simple goal of producing new adipocytes. Indeed, with the current immense biotechnological advances, the most critical role of adipose-derived stem cells remains their tremendous potential in the field of regenerative medicine. This review focuses on examining the physiological importance of adipogenesis, the current approaches that are employed to model this tightly controlled phenomenon, and the crucial role of adipogenesis in elucidating the pathophysiology and potential treatment modalities of human diseases. The future of adipogenesis is centered around its crucial role in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Reem Daouk
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Joseph Azar
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, 2460 Abu Dhabi, UAE;
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, 2460 Abu Dhabi, UAE;
- Correspondence: (J.C.M.T.); (W.A.-K.); (M.A.-S.); Tel.: +97126286689 (J.C.M.T.); +9611350000 (ext. 4778) (W.A.-K.); +97126284560 (M.A.-S.)
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
- Correspondence: (J.C.M.T.); (W.A.-K.); (M.A.-S.); Tel.: +97126286689 (J.C.M.T.); +9611350000 (ext. 4778) (W.A.-K.); +97126284560 (M.A.-S.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, 2460 Abu Dhabi, UAE
- Correspondence: (J.C.M.T.); (W.A.-K.); (M.A.-S.); Tel.: +97126286689 (J.C.M.T.); +9611350000 (ext. 4778) (W.A.-K.); +97126284560 (M.A.-S.)
| |
Collapse
|
41
|
Su X, Peng D. Emerging functions of adipokines in linking the development of obesity and cardiovascular diseases. Mol Biol Rep 2020; 47:7991-8006. [PMID: 32888125 DOI: 10.1007/s11033-020-05732-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
Increasing evidence shows that obesity is the critical factor in shaping cardio-metabolic phenotypes. However, the pathogenic mechanisms remain incompletely clarified. According to the published reports, adipose tissue communicates with several diverse organs, such as heart, lungs, and kidneys through the secretion of various cytokines named adipokines. The adipocytes isolated from obese mice or humans are dysfunctional with aberrant production of pro-inflammatory adipokines, which subsequently induce both acute and chronic inflammatory reaction and facilitate the process of cardio-metabolic disorder complications. Furthermore, the microenvironment within adipose tissue under obese status also influence the secretion of adipokines. Recently, given that several important adipokines have been completely researched and causally involved in various diseases, we could make a conclusion that adipokines play an essential role in modulating the development of cardio-metabolic disorder diseases, whereas several novel adipokines continue to be explored and elucidated. In the present review, we summarized the current knowledge of the microenvironment of adipose tissue and the published mechanisms whereby adipocytes affects obesity and cardiovascular diseases. On the other hand, we also provide the evidence to elucidate the functions of adipokines in controlling and regulating the inflammatory reactions which contribute to obesity and cardiovascular disease.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.,Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
42
|
DeBari MK, Abbott RD. Adipose Tissue Fibrosis: Mechanisms, Models, and Importance. Int J Mol Sci 2020; 21:ijms21176030. [PMID: 32825788 PMCID: PMC7503256 DOI: 10.3390/ijms21176030] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Increases in adipocyte volume and tissue mass due to obesity can result in inflammation, further dysregulation in adipose tissue function, and eventually adipose tissue fibrosis. Like other fibrotic diseases, adipose tissue fibrosis is the accumulation and increased production of extracellular matrix (ECM) proteins. Adipose tissue fibrosis has been linked to decreased insulin sensitivity, poor bariatric surgery outcomes, and difficulty in weight loss. With the rising rates of obesity, it is important to create accurate models for adipose tissue fibrosis to gain mechanistic insights and develop targeted treatments. This article discusses recent research in modeling adipose tissue fibrosis using in vivo and in vitro (2D and 3D) methods with considerations for biomaterial selections. Additionally, this article outlines the importance of adipose tissue in treating other fibrotic diseases and methods used to detect and characterize adipose tissue fibrosis.
Collapse
Affiliation(s)
- Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
43
|
Su X, Peng D. Adipokines as novel biomarkers of cardio-metabolic disorders. Clin Chim Acta 2020; 507:31-38. [PMID: 32283064 DOI: 10.1016/j.cca.2020.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/16/2022]
|
44
|
Maternal high-fat diet induces long-term obesity with sex-dependent metabolic programming of adipocyte differentiation, hypertrophy and dysfunction in the offspring. Clin Sci (Lond) 2020; 134:921-939. [PMID: 32239178 DOI: 10.1042/cs20191229] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Maternal obesity determines obesity and metabolic diseases in the offspring. The white adipose tissue (WAT) orchestrates metabolic pathways, and its dysfunction contributes to metabolic disorders in a sex-dependent manner. Here, we tested if sex differences influence the molecular mechanisms of metabolic programming of WAT in offspring of obese dams. To this end, maternal obesity was induced with high-fat diet (HFD) and the offspring were studied at an early phase [postnatal day 21 (P21)], a late phase (P70) and finally P120. In the early phase we found a sex-independent increase in WAT in offspring of obese dams using magnetic resonance imaging (MRI), which was more pronounced in females than males. While the adipocyte size increased in both sexes, the distribution of WAT differed in males and females. As mechanistic hints, we identified an inflammatory response in females and a senescence-associated reduction in the preadipocyte factor DLK in males. In the late phase, the obese body composition persisted in both sexes, with a partial reversal in females. Moreover, female offspring recovered completely from both the adipocyte hypertrophy and the inflammatory response. These findings were linked to a dysregulation of lipolytic, adipogenic and stemness-related markers as well as AMPKα and Akt signaling. Finally, the sex-dependent metabolic programming persisted with sex-specific differences in adipocyte size until P120. In conclusion, we do not only provide new insights into the molecular mechanisms of sex-dependent metabolic programming of WAT dysfunction, but also highlight the sex-dependent development of low- and high-grade pathogenic obesity.
Collapse
|
45
|
Wang S, Cao S, Arhatte M, Li D, Shi Y, Kurz S, Hu J, Wang L, Shao J, Atzberger A, Wang Z, Wang C, Zang W, Fleming I, Wettschureck N, Honoré E, Offermanns S. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat Commun 2020; 11:2303. [PMID: 32385276 PMCID: PMC7211025 DOI: 10.1038/s41467-020-16026-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
White adipose tissue (WAT) expansion in obesity occurs through enlargement of preexisting adipocytes (hypertrophy) and through formation of new adipocytes (adipogenesis). Adipogenesis results in WAT hyperplasia, smaller adipocytes and a metabolically more favourable form of obesity. How obesogenic WAT hyperplasia is induced remains, however, poorly understood. Here, we show that the mechanosensitive cationic channel Piezo1 mediates diet-induced adipogenesis. Mice lacking Piezo1 in mature adipocytes demonstrated defective differentiation of preadipocyte into mature adipocytes when fed a high fat diet (HFD) resulting in larger adipocytes, increased WAT inflammation and reduced insulin sensitivity. Opening of Piezo1 in mature adipocytes causes the release of the adipogenic fibroblast growth factor 1 (FGF1), which induces adipocyte precursor differentiation through activation of the FGF-receptor-1. These data identify a central feed-back mechanism by which mature adipocytes control adipogenesis during the development of obesity and suggest Piezo1-mediated adipocyte mechano-signalling as a mechanism to modulate obesity and its metabolic consequences. Adipose tissue expansion occurs via enlargement of adipocytes as well as the generation of new fat cells, the latter being associated with more favorable metabolic outcomes. Here, the authors show that activation of adipocyte Piezo1 results in release of FGF1 and stimulates the differentiation of adipocyte precursor cells.
Collapse
Affiliation(s)
- ShengPeng Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany. .,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, No.76 West Yanta Road, Yanta District, Xi'an, China.
| | - Shuang Cao
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, No.76 West Yanta Road, Yanta District, Xi'an, China
| | - Malika Arhatte
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Dahui Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Yue Shi
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, No.76 West Yanta Road, Yanta District, Xi'an, China
| | - Sabrina Kurz
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lei Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Jingchen Shao
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Ann Atzberger
- Max Planck Institute for Heart and Lung Research, Flow Cytometry Service Group, Ludwigstr. 43, 61231, Bad Nauheim, Germany
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Changhe Wang
- Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Nina Wettschureck
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany.,Center for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Eric Honoré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Ludwigstr. 43, 61231, Bad Nauheim, Germany. .,Center for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
46
|
Friesen M, Warren CR, Yu H, Toyohara T, Ding Q, Florido MHC, Sayre C, Pope BD, Goff LA, Rinn JL, Cowan CA. Mitoregulin Controls β-Oxidation in Human and Mouse Adipocytes. Stem Cell Reports 2020; 14:590-602. [PMID: 32243843 PMCID: PMC7160386 DOI: 10.1016/j.stemcr.2020.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/27/2023] Open
Abstract
We previously discovered in mouse adipocytes an lncRNA (the homolog of human LINC00116) regulating adipogenesis that contains a highly conserved coding region. Here, we show human protein expression of a peptide within LINC00116, and demonstrate that this peptide modulates triglyceride clearance in human adipocytes by regulating lipolysis and mitochondrial β-oxidation. This gene has previously been identified as mitoregulin (MTLN). We conclude that MTLN has a regulatory role in adipocyte metabolism as demonstrated by systemic lipid phenotypes in knockout mice. We also assert its adipocyte-autonomous phenotypes in both isolated murine adipocytes as well as human stem cell-derived adipocytes. MTLN directly interacts with the β subunit of the mitochondrial trifunctional protein, an enzyme critical in the β-oxidation of long-chain fatty acids. Our human and murine models contend that MTLN could be an avenue for further therapeutic research, albeit not without caveats, for example, by promoting white adipocyte triglyceride clearance in obese subjects.
Collapse
Affiliation(s)
- Max Friesen
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Curtis R Warren
- Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, CT 06877, USA
| | - Haojie Yu
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Takafumi Toyohara
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Mary H C Florido
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Carolyn Sayre
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Benjamin D Pope
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Loyal A Goff
- McKusick-Nathans Institute of Genomic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - John L Rinn
- University of Colorado Boulder, Boulder, CO 80303, USA
| | - Chad A Cowan
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Adipocytes in Breast Cancer, the Thick and the Thin. Cells 2020; 9:cells9030560. [PMID: 32120856 PMCID: PMC7140407 DOI: 10.3390/cells9030560] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
It is well established that breast cancer development and progression depend not only on tumor-cell intrinsic factors but also on its microenvironment and on the host characteristics. There is growing evidence that adipocytes play a role in breast cancer progression. This is supported by: (i) epidemiological studies reporting the association of obesity with a higher cancer risk and poor prognosis, (ii) recent studies demonstrating the existence of a cross-talk between breast cancer cells and adipocytes locally in the breast that leads to acquisition of an aggressive tumor phenotype, and (iii) evidence showing that cancer cachexia applies also to fat tissue and shares similarities with stromal-carcinoma metabolic synergy. This review summarizes the current knowledge on the epidemiological link between obesity and breast cancer and outlines the results of the tumor-adipocyte crosstalk. We also focus on systemic changes in body fat in patients with cachexia developed in the course of cancer. Moreover, we discuss and compare adipocyte alterations in the three pathological conditions and the mechanisms through which breast cancer progression is induced.
Collapse
|
48
|
Samuelson I, Vidal-Puig A. Studying Brown Adipose Tissue in a Human in vitro Context. Front Endocrinol (Lausanne) 2020; 11:629. [PMID: 33042008 PMCID: PMC7523498 DOI: 10.3389/fendo.2020.00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
New treatments for obesity and associated metabolic disease are increasingly warranted with the growth of the obesity pandemic. Brown adipose tissue (BAT) may represent a promising therapeutic target to treat obesity, as this tissue has been shown to regulate energy expenditure through non-shivering thermogenesis. Three different strategies could be employed for therapeutic targeting of human thermogenic adipocytes: increasing BAT mass through stimulation of BAT progenitors, increasing BAT function through regulatory pathways, and increasing WAT browning through promotion of beige adipocyte formation. However, these strategies require deeper understanding of human brown and beige adipocytes. While murine studies have greatly increased our understanding of BAT, it is becoming clear that human BAT does not exactly resemble that of the mouse, highlighting the need for human in vitro models of brown adipocytes. Several different human brown adipocyte models will be discussed here, along with the potential to improve brown adipocyte culture through recreation of the BAT microenvironment.
Collapse
Affiliation(s)
- Isabella Samuelson
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
- Department of Cellular Genetics, Wellcome Sanger Institute (WT), Hinxton, United Kingdom
- *Correspondence: Isabella Samuelson
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
- Department of Cellular Genetics, Wellcome Sanger Institute (WT), Hinxton, United Kingdom
| |
Collapse
|
49
|
Zhang Z, Cai J, Li Y, He Y, Dong Z, Dai J, Lu F. External Volume Expansion Adjusted Adipose Stem Cell by Shifting the Ratio of Fibronectin to Laminin. Tissue Eng Part A 2020; 26:66-77. [PMID: 31347463 DOI: 10.1089/ten.tea.2019.0095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ziang Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, P.R. China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, P.R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
50
|
Stepwise Adipogenesis of Decellularized Cellular Extracellular Matrix Regulates Adipose Tissue-Derived Stem Cell Migration and Differentiation. Stem Cells Int 2019; 2019:1845926. [PMID: 31781233 PMCID: PMC6875313 DOI: 10.1155/2019/1845926] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/31/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Microenvironmental factors can modulate the cellular status of adipose tissue-derived stem cells (ASCs). In response to microenvironmental changes, cells can remodel extracellular matrix (ECM) proteins, which play an important role in regulating cell behaviors. During adipogenic differentiation, ECM components secreted from ASCs remodel dramatically. To evaluate the role of stepwise adipogenesis-induced cellular secretion of ECM on the behavior of ASCs, we cultured ASCs in growth and adipogenic media, and ECM secreted from cells was characterized and decellularized. The ASCs were then reseeded on decellularized ECM (d-ECM) to determine the regulatory effects of ECM on cellular behaviors. During adipogenesis, cell-secreted ECM underwent remodeling characterized by conversion from fibronectin-rich ECM to laminin-rich ECM. The cellular status of ASCs was tested after reseeding on decellularized ECM. When reseeded on growth d-ECM, ASCs exhibited greater migration ability. In contrast, ASCs seeded on adipogenic d-ECM underwent adipogenic differentiation. In addition, integrin subunit αv and integrins α6 and α7 were detected at significantly greater levels in ASCs cultured on growth and adipogenic d-ECM, respectively, suggesting that integrins play an important role in ASC migration and adipogenesis. This study demonstrated that stepwise adipogenesis-induced ECM production plays an important role in ASC migration and differentiation. In addition, this study provided a strategy to achieve precise regulation of stem cell function in adipose tissue engineering.
Collapse
|