1
|
Nyúl-Tóth Á, Patai R, Csiszar A, Ungvari A, Gulej R, Mukli P, Yabluchanskiy A, Benyo Z, Sotonyi P, Prodan CI, Liotta EM, Toth P, Elahi F, Barsi P, Maurovich-Horvat P, Sorond FA, Tarantini S, Ungvari Z. Linking peripheral atherosclerosis to blood-brain barrier disruption: elucidating its role as a manifestation of cerebral small vessel disease in vascular cognitive impairment. GeroScience 2024; 46:6511-6536. [PMID: 38831182 PMCID: PMC11494622 DOI: 10.1007/s11357-024-01194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Aging plays a pivotal role in the pathogenesis of cerebral small vessel disease (CSVD), contributing to the onset and progression of vascular cognitive impairment and dementia (VCID). In older adults, CSVD often leads to significant pathological outcomes, including blood-brain barrier (BBB) disruption, which in turn triggers neuroinflammation and white matter damage. This damage is frequently observed as white matter hyperintensities (WMHs) in neuroimaging studies. There is mounting evidence that older adults with atherosclerotic vascular diseases, such as peripheral artery disease, ischemic heart disease, and carotid artery stenosis, face a heightened risk of developing CSVD and VCID. This review explores the complex relationship between peripheral atherosclerosis, the pathogenesis of CSVD, and BBB disruption. It explores the continuum of vascular aging, emphasizing the shared pathomechanisms that underlie atherosclerosis in large arteries and BBB disruption in the cerebral microcirculation, exacerbating both CSVD and VCID. By reviewing current evidence, this paper discusses the impact of endothelial dysfunction, cellular senescence, inflammation, and oxidative stress on vascular and neurovascular health. This review aims to enhance understanding of these complex interactions and advocate for integrated approaches to manage vascular health, thereby mitigating the risk and progression of CSVD and VCID.
Collapse
Affiliation(s)
- Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Fanny Elahi
- Departments of Neurology and Neuroscience Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Péter Barsi
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- ELKH-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Department of Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Fagali Franchi F, Dos Santos PH, Kubo Fontes P, Valencise Quaglio AE, Gomes Nunes S, Zoccal Mingoti G, de Souza Castilho AC. PAPP-A enhances the antioxidative effects of IGF-1 during bovine in vitro embryo production. Theriogenology 2024; 229:191-201. [PMID: 39197256 DOI: 10.1016/j.theriogenology.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
We investigated whether exogenous pregnancy-associated plasma protein-A (PAPP-A) enhances the antioxidant role of insulin-like growth factor-1 (IGF-1) in bovine in vitro embryo production (IVP). We performed standard in vitro maturation (IVM) and in vitro culture (IVC) or added menadione to promote an oxidative stressed microenvironment and evaluated the antioxidant effect of IGF-1 alone or in combination with PAPP-A (IGF-1/PAPP-A). In IVM, the treatments did not affect oocyte nuclear development, total GSH content, cumulus cell gene expression, and blastocyst yield. Nevertheless, IGF-1/PAPP-A treatment prevented an increase in reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) levels. In IVC, the treatments did not affect the total GSH content on blastocysts and IVC media, but IGF-1 and IGF-1/PAPP-A treatments increased blastocyst yield compared to the menadione group. In addition, IGF-1/PAPP-A treatment had lower ROS levels and regulated genes related to embryonic quality compared to the control and menadione groups. Overall, we showed that PAPP-A could enhance the antioxidant role of IGF-1 during IVP in cattle by avoiding higher ROS levels in oocytes and blastocysts and modulating the transcriptional abundance of genes involved in oxidative protection and embryonic quality.
Collapse
Affiliation(s)
- Fernanda Fagali Franchi
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil; Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy.
| | - Priscila Helena Dos Santos
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Patricia Kubo Fontes
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Ana Elisa Valencise Quaglio
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Sarah Gomes Nunes
- São Paulo State University (Unesp), Department of Pharmacology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| | - Gisele Zoccal Mingoti
- São Paulo State University (Unesp), School of Veterinary Medicine, Laboratory of Reproductive Physiology, Araçatuba, São Paulo, Brazil.
| | | |
Collapse
|
3
|
Csiszar A, Ungvari A, Patai R, Gulej R, Yabluchanskiy A, Benyo Z, Kovacs I, Sotonyi P, Kirkpartrick AC, Prodan CI, Liotta EM, Zhang XA, Toth P, Tarantini S, Sorond FA, Ungvari Z. Atherosclerotic burden and cerebral small vessel disease: exploring the link through microvascular aging and cerebral microhemorrhages. GeroScience 2024; 46:5103-5132. [PMID: 38639833 PMCID: PMC11336042 DOI: 10.1007/s11357-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Angelia C Kirkpartrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Stankovics L, Ungvari A, Fekete M, Nyul-Toth A, Mukli P, Patai R, Csik B, Gulej R, Conley S, Csiszar A, Toth P. The vasoprotective role of IGF-1 signaling in the cerebral microcirculation: prevention of cerebral microhemorrhages in aging. GeroScience 2024:10.1007/s11357-024-01343-5. [PMID: 39271571 DOI: 10.1007/s11357-024-01343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Aging is closely associated with various cerebrovascular pathologies that significantly impact brain function, with cerebral small vessel disease (CSVD) being a major contributor to cognitive decline in the elderly. Consequences of CSVD include cerebral microhemorrhages (CMH), which are small intracerebral bleeds resulting from the rupture of microvessels. CMHs are prevalent in aging populations, affecting approximately 50% of individuals over 80, and are linked to increased risks of vascular cognitive impairment and dementia (VCID). Hypertension is a primary risk factor for CMHs. Vascular smooth muscle cells (VSMCs) adapt to hypertension by undergoing hypertrophy and producing extracellular matrix (ECM) components, which reinforce vessel walls. Myogenic autoregulation, which involves pressure-induced constriction, helps prevent excessive pressure from damaging the vulnerable microvasculature. However, aging impairs these adaptive mechanisms, weakening vessel walls and increasing susceptibility to damage. Insulin-like Growth Factor 1 (IGF-1) is crucial for vascular health, promoting VSMC hypertrophy, ECM production, and maintaining normal myogenic protection. IGF-1 also prevents microvascular senescence, reduces reactive oxygen species (ROS) production, and regulates matrix metalloproteinase (MMP) activity, which is vital for ECM remodeling and stabilization. IGF-1 deficiency, common in aging, compromises these protective mechanisms, increasing the risk of CMHs. This review explores the vasoprotective role of IGF-1 signaling in the cerebral microcirculation and its implications for preventing hypertension-induced CMHs in aging. Understanding and addressing the decline in IGF-1 signaling with age are crucial for maintaining cerebrovascular health and preventing hypertension-related vascular injuries in the aging population.
Collapse
Affiliation(s)
- Levente Stankovics
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Mónika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Boglarka Csik
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
5
|
Lendvai ÁZ, Tóth Z, Mahr K, Pénzes J, Vogel-Kindgen S, Gander BA, Vágási CI. IGF-1 induces sex-specific oxidative damage and mortality in a songbird. Oecologia 2024; 205:561-570. [PMID: 39014256 PMCID: PMC11358184 DOI: 10.1007/s00442-024-05587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/28/2024] [Indexed: 07/18/2024]
Abstract
The insulin-like growth factor 1 (IGF-1) is a pleiotropic hormone that regulates essential life-history traits and is known for its major contribution to determining individual ageing processes. High levels of IGF-1 have been linked to increased mortality and are hypothesised to cause oxidative stress. This effect has been observed in laboratory animals, but whether it pertains to wild vertebrates has not been tested. This is surprising because studying the mechanisms that shape individual differences in lifespan is important to understanding mortality patterns in populations of free-living animals. We tested this hypothesis under semi-natural conditions by simulating elevated IGF-1 levels in captive bearded reedlings, a songbird species with an exceptionally fast pace of life. We subcutaneously injected slow-release biodegradable microspheres loaded with IGF-1 and achieved a systemic 3.7-fold increase of the hormone within the natural range for at least 24 h. Oxidative damage to lipids showed marked sexual differences: it significantly increased the day after the manipulation in treated males and returned to baseline levels four days post-treatment, while no treatment effect was apparent in females. Although there was no overall difference in survival between the treatment groups, high initial (pre-treatment) IGF-1 and low post-treatment plasma malondialdehyde levels were associated with enhanced survival prospects in males. These results suggest that males may be more susceptible to IGF-1-induced oxidative stress than females and quickly restoring oxidative balance may be related to fitness. IGF-1 levels evolve under opposing selection forces, and natural variation in this hormone's level may reflect the outcome of individual optimization.
Collapse
Affiliation(s)
- Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
| | - Zsófia Tóth
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Pál Juhász-Nagy Doctoral School of Biology Environmental Sciences, University of Debrecen, Debrecen, Hungary
- Department of Biology, Lund University, Lund, Sweden
| | - Katharina Mahr
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Konrad Lorenz Institute of Ethology, Vienna, Austria
| | - Janka Pénzes
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Bruno A Gander
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Csongor I Vágási
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Adasheva DA, Serebryanaya DV. IGF Signaling in the Heart in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1402-1428. [PMID: 39245453 DOI: 10.1134/s0006297924080042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 09/10/2024]
Abstract
One of the most vital processes of the body is the cardiovascular system's proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.
Collapse
Affiliation(s)
- Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
7
|
Pietrucha A, Serdar M, Bendix I, Endesfelder S, Brinke EAD, Urkola A, Bührer C, Schmitz T, Scheuer T. Oxygen and HIF1α-dependent SDF1 expression in primary astrocytes. Dev Neurobiol 2024; 84:113-127. [PMID: 38544386 DOI: 10.1002/dneu.22938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 07/17/2024]
Abstract
In the naturally hypoxic in utero fetal environment of preterm infants, oxygen and oxygen-sensitive signaling pathways play an important role in brain development, with hypoxia-inducible factor-1α (HIF1α) being an important regulator. Early exposure to nonphysiological high oxygen concentrations by birth in room can induce HIF1α degradation and may affect neuronal and glial development. This involves the dysregulation of astroglial maturation and function, which in turn might contribute to oxygen-induced brain injury. In this study, we investigated the effects of early high oxygen exposure on astroglial maturation and, specifically, on astroglial stromal cell-derived factor 1 (SDF1) expression in vivo and in vitro. In our neonatal mouse model of hyperoxia preterm birth brain injury in vivo, high oxygen exposure affected astroglial development and cortical SDF1 expression. These results were further supported by reduced Sdf1 expression, impaired proliferation, decreased total cell number, and altered expression of astroglial markers in astrocytes in primary cultures grown under high oxygen conditions. Moreover, to mimic the naturally hypoxic in utero fetal environment, astroglial Sdf1 expression was increased after low oxygen exposure in vitro, which appears to be regulated by HIF1α activity. Additionally, the knockdown of Hif1α revealed HIF1α-dependent Sdf1 expression in vitro. Our results indicate HIF1α and oxygen-dependent chemokine expression in primary astrocytes and highlight the importance of oxygen conditions for brain development.
Collapse
Affiliation(s)
- Andreas Pietrucha
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Meray Serdar
- Department of Pediatrics I, Neonatology and Experimental perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology and Experimental perinatal Neurosciences, Centre for Translational and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Elena Auf dem Brinke
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Ane Urkola
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Till Scheuer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Hou L, Ma J, Feng X, Chen J, Dong BH, Xiao L, Zhang X, Guo B. Caffeic acid and diabetic neuropathy: Investigating protective effects and insulin-like growth factor 1 (IGF-1)-related antioxidative and anti-inflammatory mechanisms in mice. Heliyon 2024; 10:e32623. [PMID: 38975173 PMCID: PMC11225750 DOI: 10.1016/j.heliyon.2024.e32623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Diabetic neuropathy (DN) represents a common and debilitating complication of diabetes, affecting a significant proportion of patients. Despite available treatments focusing on symptom management, there remains an unmet need for therapies that address the underlying pathophysiology. In pursuit of novel interventions, this study evaluated the therapeutic effects of caffeic acid-a natural phenolic compound prevalent in various foods-on diabetic neuropathy using a mouse model, particularly examining its interaction with the Insulin-like Growth Factor 1 (IGF-1) signaling pathway. Caffeic acid was administered orally at two dosages (5 mg/kg and 10 mg/kg), and a comprehensive set of outcomes including fasting blood glucose levels, body weight, sensory behavior, spinal cord oxidative stress markers, inflammatory cytokines, and components of the IGF-1 signaling cascade were assessed. Additionally, to determine the specific contribution of IGF-1 signaling to the observed benefits, IGF1R inhibitor Picropodophyllin (PPP) was co-administered with caffeic acid. Our results demonstrated that caffeic acid, at both dosages, effectively reduced hyperglycemia and alleviated sensory behavioral deficits in diabetic mice. This was accompanied by a marked decrease in oxidative stress markers and an increase in antioxidant enzyme activities within the spinal cord. Significantly lowered microglial activation and inflammatory cytokine expression highlighted the potent antioxidative and anti-inflammatory effects of caffeic acid. Moreover, increases in both serum and spinal levels of IGF-1, along with elevated phosphorylated IGF1R, implicated the IGF-1 signaling pathway as a mediator of caffeic acid's neuroprotective actions. The partial reversal of caffeic acid's benefits by PPP substantiated the pivotal engagement of IGF-1 signaling in mediating its effects. Our findings delineate the capability of caffeic acid to mitigate DN symptoms, particularly through reducing spinal oxidative stress and inflammation, and pinpoint the integral role of IGF-1 signaling in these protective mechanisms. The insights gleaned from this study not only position caffeic acid as a promising dietary adjunct for managing diabetic neuropathy but also highlight the therapeutic potential of targeting spinal IGF-1 signaling as part of a strategic treatment approach.
Collapse
Affiliation(s)
- Leina Hou
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Jiaqi Ma
- Department of Radiology, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Xugang Feng
- Department of General Surgery, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Jing Chen
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Bu-huai Dong
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| | - Li Xiao
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| | - Xi Zhang
- Department of Pediatric Neurology, Northwest Women and Children's Hospital, Xi'an, 710049, China
| | - Bin Guo
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| |
Collapse
|
9
|
Liu Z, Fu Q, Yu Q, Ma X, Yang R. Assessing causal associations of blood counts and biochemical indicators with pulmonary arterial hypertension: a Mendelian randomization study and results from national health and nutrition examination survey 2003-2018. Front Endocrinol (Lausanne) 2024; 15:1418835. [PMID: 38952391 PMCID: PMC11215008 DOI: 10.3389/fendo.2024.1418835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Background Blood counts and biochemical markers are among the most common tests performed in hospitals and most readily accepted by patients, and are widely regarded as reliable biomarkers in the literature. The aim of this study was to assess the causal relationship between blood counts, biochemical indicators and pulmonary arterial hypertension (PAH). Methods A two-sample Mendelian randomization (MR) analysis was performed to assess the causal relationship between blood counts and biochemical indicators with PAH. The genome-wide association study (GWAS) for blood counts and biochemical indicators were obtained from the UK Biobank (UKBB), while the GWAS for PAH were sourced from the FinnGen Biobank. Inverse variance weighting (IVW) was used as the primary analysis method, supplemented by three sensitivity analyses to assess the robustness of the results. And we conducted an observational study using data from National Health and Nutrition Examination Survey (NHANES) 2003-2018 to verify the relationship. Results The MR analysis primarily using the IVW method revealed genetic variants of platelet count (OR=2.51, 95% CI 1.56-4.22, P<0.001), platelet crit(OR=1.87, 95% CI1.17-7.65, P=0.022), direct bilirubin (DBIL)(OR=1.71, 95%CI 1.18-2.47,P=0.004), insulin-like growth factor (IGF-1)(OR=0.51, 95% CI 0.27-0.96, P=0.038), Lipoprotein A (Lp(a))(OR=0.66, 95% CI 0.45-0.98, P=0.037) and total bilirubin (TBIL)(OR=0.51, 95% CI 0.27-0.96, P=0.038) were significantly associated with PAH. In NHANES, multivariate logistic regression analyses revealed a significant positive correlation between platelet count and volume and the risk of PAH, and a significant negative correlation between total bilirubin and PAH. Conclusion Our study reveals a causal relationship between blood counts, biochemical indicators and pulmonary arterial hypertension. These findings offer novel insights into the etiology and pathological mechanisms of PAH, and emphasizes the important value of these markers as potential targets for the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Zhekang Liu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingan Fu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingyun Yu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaowei Ma
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Renqiang Yang
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Silaidos CV, Reutzel M, Wachter L, Dieter F, Ludin N, Blum WF, Wudy SA, Matura S, Pilatus U, Hattingen E, Pantel J, Eckert GP. Age-related changes in energy metabolism in peripheral mononuclear blood cells (PBMCs) and the brains of cognitively healthy seniors. GeroScience 2024; 46:981-998. [PMID: 37308768 PMCID: PMC10828287 DOI: 10.1007/s11357-023-00810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 06/14/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of cellular senescence and many age-related neurodegenerative diseases. We therefore investigated the relationship between mitochondrial function in peripheral blood cells and cerebral energy metabolites in young and older sex-matched, physically and mentally healthy volunteers. Cross-sectional observational study involving 65 young (26.0 ± 0.49 years) and 65 older (71.7 ± 0.71 years) women and men recruited. Cognitive health was evaluated using established psychometric methods (MMSE, CERAD). Blood samples were collected and analyzed, and fresh peripheral blood mononuclear cells (PBMCs) were isolated. Mitochondrial respiratory complex activity was measured using a Clarke electrode. Adenosine triphosphate (ATP) and citrate synthase activity (CS) were determined by bioluminescence and photometrically. N-aspartyl-aspartate (tNAA), ATP, creatine (Cr), and phosphocreatine (PCr) were quantified in brains using 1H- and 31P-magnetic resonance spectroscopic imaging (MRSI). Levels of insulin-like growth factor 1 (IGF-1) were determined using a radio-immune assay (RIA). Complex IV activity (CIV) (- 15%) and ATP levels (- 11%) were reduced in PBMCs isolated from older participants. Serum levels of IGF-1 were significantly reduced (- 34%) in older participants. Genes involved in mitochondrial activity, antioxidant mechanisms, and autophagy were unaffected by age. tNAA levels were reduced (- 5%), Cr (+ 11%), and PCr (+ 14%) levels were increased, and ATP levels were unchanged in the brains of older participants. Markers of energy metabolism in blood cells did not significantly correlate with energy metabolites in the brain. Age-related bioenergetic changes were detected in peripheral blood cells and the brains of healthy older people. However, mitochondrial function in peripheral blood cells does not reflect energy related metabolites in the brain. While ATP levels in PBMCs may be be a valid marker for age-related mitochondrial dysfunction in humans, cerebral ATP remained constant.
Collapse
Affiliation(s)
- Carmina V Silaidos
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Martina Reutzel
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Lena Wachter
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Fabian Dieter
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Nasir Ludin
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
| | - Werner F Blum
- Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Peptide Hormone Research Unit Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Peptide Hormone Research Unit Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Ulrich Pilatus
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
- Brain Imaging Center (BIC), University Hospital Frankfurt, Frankfurt a. M, Germany
| | - Elke Hattingen
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
| | - Johannes Pantel
- Geriatric Medicine, Institute of General Practice, Goethe University, Frankfurt a. M, Germany
| | - Gunter P Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
11
|
Chen F, Lu K, Bai N, Hao Y, Wang H, Zhao X, Yue F. Oral administration of ellagic acid mitigates perioperative neurocognitive disorders, hippocampal oxidative stress, and neuroinflammation in aged mice by restoring IGF-1 signaling. Sci Rep 2024; 14:2509. [PMID: 38291199 PMCID: PMC10827749 DOI: 10.1038/s41598-024-53127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
This study investigates the potential of ellagic acid (EA), a phytochemical with antioxidant and anti-inflammatory properties, in managing perioperative neurocognitive disorders (PND). PND, which represents a spectrum of cognitive impairments often faced by elderly patients, is principally linked to surgical and anesthesia procedures, and heavily impacted by oxidative stress in the hippocampus and microglia-induced neuroinflammation. Employing an aged mice model subjected to abdominal surgery, we delve into EA's ability to counteract postoperative oxidative stress and cerebral inflammation by engaging the Insulin-like growth factor-1 (IGF-1) pathway. Our findings revealed that administering EA orally notably alleviated post-surgical cognitive decline in older mice, a fact that was manifested in improved performance during maze tests. This enhancement in the behavioral performance of the EA-treated mice corresponded with the rejuvenation of IGF-1 signaling, a decrease in oxidative stress markers in the hippocampus (like MDA and carbonylated protein), and an increase in the activity of antioxidant enzymes such as SOD and CAT. Alongside these, we observed a decrease in microglia-driven neuroinflammation in the hippocampus, thus underscoring the antioxidant and anti-inflammatory roles of EA. Interestingly, when EA was given in conjunction with an IGF1R inhibitor, these benefits were annulled, accentuating the pivotal role that the IGF-1 pathway plays in the neuroprotective potential of EA. Hence, EA could serve as a potent candidate for safeguarding against PND in older patients by curbing oxidative stress and neuroinflammation through the activation of the IGF-1 pathway.
Collapse
Affiliation(s)
- Fang Chen
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Kai Lu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Ning Bai
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Yabo Hao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Hui Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Xinrong Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Fang Yue
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
12
|
Tang W, Zhang M, Wang Y, Ma D, Hu M, Zhang Y, Lin H, Jiang W, Ouyang Y, Jiang L, He P, Zhao G, Ouyang X. IGF‑1 inhibits palmitic acid‑induced mitochondrial apoptosis in macrophages. Mol Med Rep 2023; 28:234. [PMID: 37921069 PMCID: PMC10636768 DOI: 10.3892/mmr.2023.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Insulin growth factor‑1 (IGF‑1) is an endocrine regulator that plays an important role in normal growth and development. IGF‑1 mediated effects may result in protecting macrophages from immunometabolic response. However, it is unclear whether IGF‑1 has a protective effect on fatty acid‑induced macrophages damage. In the present study, THP‑1 cells were differentiated into macrophages and stimulated with palmitic acid (PA) in the absence or presence of IGF‑1. Macrophages apoptosis was measured by Cell Counting Kit‑8 assay, flow cytometry, Hoechst 33342 staining and western blotting. The mitochondrial damage was evaluated using JC‑1 staining and mitochondrial reactive oxygen species detection. The activation of mitophagy was assessed using immunofluorescence and western blotting. As a result, IGF‑1 significantly restored the survival rate in macrophages, while the apoptosis was inhibited through mitochondrial pathway. In addition, IGF‑1 protected the mitochondrial damage induced by PA. Furthermore, PA induced mitophagy via phosphatase and tensin homolog‑induced putative kinase protein 1/Parkin, which was reversed by IGF‑1. Taken together, the present study demonstrated the protective effect of IGF‑1 on PA‑induced mitochondrial apoptosis in macrophages, which might provide a potential therapeutic strategy for treatment of lipotoxicity.
Collapse
Affiliation(s)
- Wanying Tang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan 421001, P.R. China
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Department of Physiology, Medical College, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Ming Zhang
- Institute of Cardiovascular Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511500, P.R. China
| | - Yu Wang
- Institute of Cardiovascular Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511500, P.R. China
| | - Dan Ma
- School of Pharmacy Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Mi Hu
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yangkai Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Huiling Lin
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weiwei Jiang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yuxin Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pingping He
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Department of Physiology, Medical College, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Guojun Zhao
- Institute of Cardiovascular Disease, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong 511500, P.R. China
| | - Xinping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, Hunan 421001, P.R. China
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Department of Physiology, Medical College, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
13
|
Silva Tesser GL, Junior NR, Campos FP, Costa APGC, Sartor H, Kaufmann C, de Vargas Junior JG, Eyng C, Nunes RV. Effects of feeding diets with zinc-l-selenomethionine on growth performance of broilers subjected to cyclic heat stress. Trop Anim Health Prod 2023; 55:384. [PMID: 37897539 DOI: 10.1007/s11250-023-03779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
Limited information exists on the use of zinc-l-selenomethionine (Zn-L-SeMet) in broiler diets and its effects on the growth performance, body temperature, mortality rates, blood profile, and gene expression, especially when animals are reared under cyclic heat stress conditions. This study aimed to investigate the impact of Zn-L-SeMet in broiler diets from 1 to 42 days of age reared under cyclic heat stress and its effects on growth performance, cloacal temperatures, mortality rate, blood parameters, and insulin-like growth factor 1 (IGF-1) and growth hormone receptor (GHR) gene expression in the breast muscle. A total of 1000 male Cobb 500® broiler chicks were randomly assigned to five treatments: 0, 0.15, 0.23, 0.47, and 1.30 mg/kg of Zn-L-SeMet. Each treatment consisted of 10 replicates with 20 birds each. No statistically significant differences in growth performance were observed from 1 to 21 days of age (P > 0.05). However, from 1 to 42 days, feed intake (FI) and feed conversion ratio (FCR) decreased linearly (P < 0.05). Cloacal temperatures showed no significant effects (P > 0.05), while overall mortality rate exhibited a quadratic response (P < 0.05), with the optimal inclusion level predicted to reduce broiler mortality at 0.71 mg/kg. Triglyceride (TRG) levels increased with 0.97 mg/kg (P < 0.05), and gama-glutamil transferase (GGT) levels decreased with the inclusion of 1.19 mg/kg (P < 0.05). No significant effects on IGF-1 and GHR gene expression were found (P > 0.05). In conclusion, the inclusion of 1.30 mg/kg of Zn-L-SeMet in diets of heat-stressed broilers improved growth performance from 1 to 42 days of age. An inclusion of 0.71 mg/kg reduced mortality rate, while 0.97 mg and 1.19 mg increased and reduced TRG and GGT levels, respectively.
Collapse
Affiliation(s)
- Guilherme Luis Silva Tesser
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil.
| | - Nilton Rohloff Junior
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil
| | - Felipe Potenza Campos
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil
| | | | - Heloísa Sartor
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil
| | - Cristine Kaufmann
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil
| | | | - Cinthia Eyng
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil
| | - Ricardo Vianna Nunes
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil
| |
Collapse
|
14
|
Wang S, Hou K, Gui S, Ma Y, Wang S, Zhao S, Zhu X. Insulin-like growth factor 1 in heat stress-induced neuroinflammation: novel perspective about the neuroprotective role of chromium. STRESS BIOLOGY 2023; 3:23. [PMID: 37676529 PMCID: PMC10441889 DOI: 10.1007/s44154-023-00105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 09/08/2023]
Abstract
Heat stress (HS) can cause a series of stress responses, resulting in numerous negative effects on the body, such as the diminished food intake, carcass quality and reproductive capacity. In addition to the negative effects on the peripheral system, HS leads to central nervous system (CNS) disorders given its toll on neuroinflammation. This neuroinflammatory process is mainly mediated by microglia and astrocytes, which are involved in the activation of glial cells and the secretion of cytokines. While the regulation of inflammatory signaling has a close relationship with the expression of heat shock protein 70 (Hsp70), HS-induced neuroinflammation is closely related to the activation of the TLR4/NF-κB pathway. Moreover, oxidative stress and endoplasmic reticulum (ER) stress are key players in the development of neuroinflammation. Chromium (Cr) has been widely shown to have neuroprotective effects in both humans and animals, despite the lack of mechanistic evidence. Evidence has shown that Cr supplementation can increase the levels of insulin-like growth factor 1 (IGF-1), a major neurotrophic factor with anti-inflammatory and antioxidant effects. This review highlights recent advances in the attenuating effects and potential mechanisms of Cr-mediated IGF-1 actions on HS-induced neuroinflammation, providing presently existing evidence supporting the neuroprotective role of Cr.
Collapse
Affiliation(s)
- Songlin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Kanghui Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Siqi Gui
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
15
|
Wang H, Yu R, Wang M, Wang S, Ouyang X, Yan Z, Chen S, Wang W, Wu F, Fan C. Insulin-like growth factor binding protein 4 loaded electrospun membrane ameliorating tendon injury by promoting retention of IGF-1. J Control Release 2023; 356:162-174. [PMID: 36868516 DOI: 10.1016/j.jconrel.2023.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Tendon injury is one of the most common musculoskeletal disorders that impair joint mobility and lower quality of life. The limited regenerative capacity of tendon remains a clinical challenge. Local delivery of bioactive protein is a viable therapeutic approach for tendon healing. Insulin-like growth factor binding protein 4 (IGFBP-4) is a secreted protein capable of binding and stabilizing insulin-like growth factor 1 (IGF-1). Here, we applied an aqueous-aqueous freezing-induced phase separation technology to obtain the IGFBP4-encapsulated dextran particles. Then, we added the particles into poly (L-lactic acid) (PLLA) solution to fabricate IGFBP4-PLLA electrospun membrane for efficient IGFBP-4 delivery. The scaffold showed excellent cytocompatibility and a sustained release of IGFBP-4 for nearly 30 days. In cellular experiments, IGFBP-4 promoted tendon-related and proliferative markers expression. In a rat Achilles tendon injury model, immunohistochemistry and quantitative real-time polymerase chain reaction confirmed better outcomes by using the IGFBP4-PLLA electrospun membrane at the molecular level. Furthermore, the scaffold effectively promoted tendon healing in functional performance, ultrastructure and biomechanical properties. We found addition of IGFBP-4 promoted IGF-1 retention in tendon postoperatively and then facilitated protein synthesis via IGF-1/AKT signaling pathway. Overall, our IGFBP4-PLLA electrospun membrane provides a promising therapeutic strategy for tendon injury.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Ruyue Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Meng Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shikun Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Xingyu Ouyang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Shuai Chen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Wei Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China.
| | - Fei Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China.
| |
Collapse
|
16
|
IGF-1 Controls Metabolic Homeostasis and Survival in HEI-OC1 Auditory Cells through AKT and mTOR Signaling. Antioxidants (Basel) 2023; 12:antiox12020233. [PMID: 36829792 PMCID: PMC9952701 DOI: 10.3390/antiox12020233] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a trophic factor for the nervous system where it exerts pleiotropic effects, including the regulation of metabolic homeostasis. IGF-1 deficiency induces morphological alterations in the cochlea, apoptosis and hearing loss. While multiple studies have addressed the role of IGF-1 in hearing protection, its potential function in the modulation of otic metabolism remains unclear. Here, we report that "House Ear Institute-organ of Corti 1" (HEI-OC1) auditory cells express IGF-system genes that are regulated during their differentiation. Upon binding to its high-affinity receptor IGF1R, IGF-1 activates AKT and mTOR signaling to stimulate anabolism and, concomitantly, to reduce autophagic catabolism in HEI-OC1 progenitor cells. Notably, IGF-1 stimulation during HEI-OC1 differentiation to mature otic cells sustained both constructive metabolism and autophagic flux, possibly to favor cell remodeling. IGF1R engagement and downstream AKT signaling promoted HEI-OC1 cell survival by maintaining redox balance, even when cells were challenged with the ototoxic agent cisplatin. Our findings establish that IGF-1 not only serves an important function in otic metabolic homeostasis but also activates antioxidant defense mechanisms to promote hair cell survival during the stress response to insults.
Collapse
|
17
|
Dya GA, Klychnikov OI, Adasheva DA, Vladychenskaya EA, Katrukha AG, Serebryanaya DV. IGF-Binding Proteins and Their Proteolysis as a Mechanism of Regulated IGF Release in the Nervous Tissue. BIOCHEMISTRY (MOSCOW) 2023; 88:S105-S122. [PMID: 37069117 DOI: 10.1134/s0006297923140079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) play a key role in the maintenance of the nervous tissue viability. IGF-1 and IGF-2 exhibit the neuroprotective effects by stimulating migration and proliferation of nervous cells, activating cellular metabolism, inducing regeneration of damaged cells, and regulating various stages of prenatal and postnatal development of the nervous system. The availability of IGFs for the cells is controlled via their interaction with the IGF-binding proteins (IGFBPs) that inhibit their activity. On the contrary, the cleavage of IGFBPs by specific proteases leads to the IGF release and activation of its cellular effects. The viability of neurons in the nervous tissue is controlled by a complex system of trophic factors secreted by auxiliary glial cells. The main source of IGF for the neurons are astrocytes. IGFs can accumulate as an extracellular free ligand near the neuronal membranes as a result of proteolytic degradation of IGFBPs by proteases secreted by astrocytes. This mechanism promotes interaction of IGFs with their genuine receptors and triggers intracellular signaling cascades. Therefore, the release of IGF by proteolytic cleavage of IGFBPs is an important mechanism of neuronal protection. This review summarizes the published data on the role of IGFs and IGFBPs as the key players in the neuroprotective regulation with a special focus on the specific proteolysis of IGFBPs as a mechanism for the regulation of IGF bioavailability and viability of neurons.
Collapse
Affiliation(s)
- German A Dya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oleg I Klychnikov
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elizaveta A Vladychenskaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey G Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
18
|
Liu X, Wang X, Ma H, Zhang W. Mechanisms underlying acupuncture therapy in chronic kidney disease: A narrative overview of preclinical studies and clinical trials. FRONTIERS IN NEPHROLOGY 2022; 2:1006506. [PMID: 37675019 PMCID: PMC10479635 DOI: 10.3389/fneph.2022.1006506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2023]
Abstract
Chronic kidney disease (CKD) is associated with high incidence, low awareness, and high disability rates among the population. Moreover, the disease significantly affects the physical and mental health of patients. Approximately 25% of patients with CKD develop end-stage renal disease (ESRD) within 20 years of diagnosis and have to rely on renal replacement therapy, which is associated with high mortality, heavy economic burden, and symptoms including fatigue, pain, insomnia, uremia pruritus, and restless leg syndrome. Currently, the means to delay the progress of CKD are insufficient; therefore, developing strategies for delaying CKD progression has important practical implications. In recent years, more and more people are accepting the traditional Chinese medical technique "acupuncture." Acupuncture has been shown to improve the uncomfortable symptoms of various diseases through stimulation (needling, medicinal moxibustion, infrared radiation, and acupressure) of acupoints. Its application has been known for thousands of years, and its safety and efficacy have been verified. As a convenient and inexpensive complementary therapy for CKD, acupuncture has recently been gaining interest among clinicians and scientists. Nevertheless, although clinical trials and meta-analysis findings have demonstrated the efficacy of acupuncture in reducing albuminuria, improving glomerular filtration rate, relieving symptoms, and improving the quality of life of patients with CKD, the underlying mechanisms involved are still not completely understood. Few studies explored the correlation between acupuncture and renal pathological diagnosis. The aim of this study was to conduct a literature review summarizing the currently known mechanisms by which acupuncture could delay the progress of CKD and improve symptoms in patients with ESRD. This review help provide a theoretical basis for further research regarding the influence of acupuncture on renal pathology in patients with CKD, as well as the differences between specific therapeutic mechanisms of acupuncture in different renal pathological diagnosis. The evidence in this review indicates that acupuncture may produce marked effects on blocking and reversing the critical risk factors of CKD progression (e.g., hyperglycemia, hypertension, hyperlipidemia, obesity, aging, and anemia) to improve the survival of patients with CKD via mechanisms including oxidative stress inhibition, reducing inflammatory effects, improving hemodynamics, maintaining podocyte structure, and increasing energy metabolism.
Collapse
Affiliation(s)
- Xinyin Liu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoran Wang
- Department of Nephrology, The First People’s Hospital of Hangzhou Lin’An District, Hangzhou, China
| | - Hongzhen Ma
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wen Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
19
|
Meshchaninov VN, Tsyvian PB, Myakotnykh VS, Kovtun OP, Shcherbakov DL, Blagodareva MS. Ontogenetic Principles of Accelerated Aging and the Prospects for Its Prevention and Treatment. ADVANCES IN GERONTOLOGY 2022. [DOI: 10.1134/s2079057022030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Dang R, Chen L, Sefat F, Li X, Liu S, Yuan X, Ning X, Zhang YS, Ji P, Zhang X. A Natural Hydrogel with Prohealing Properties Enhances Tendon Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105255. [PMID: 35304821 DOI: 10.1002/smll.202105255] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Tendon regeneration and reduction of peritendinous adhesion remain major clinical challenges. This study addresses these challenges by adopting a unique hydrogel derived from the skin secretion of Andrias davidianus (SSAD) and taking advantage of its biological effects, adhesiveness, and controllable microstructures. The SSAD-derived hydrogel contains many cytokines, which could promote tendon healing. In vitro, leach liquid of SSAD powder could promote tendon stem/progenitor cells migration. In vivo, the SSAD-derived hydrogel featuring double layers possesses strong adhesiveness and could reconnect ruptured Achilles tendons of Sprague-Dawley rats without suturing. The intimal SSAD-derived hydrogel, with a pore size of 241.7 ± 21.0 µm, forms the first layer of the hydrogel to promote tendon healing, and the outer layer SSAD-derived hydrogel, with a pore size of 3.3 ± 1.4 µm, reducing peritendinous adhesion by serving as a dense barrier. Additionally, the SSAD-derived hydrogel exhibits antioxidant and antibacterial characteristics, which further contribute to the reduction of peritendinous adhesion. In vivo studies suggest that the SSAD-derived hydrogel reduces peritendinous adhesion, increases collagen fiber deposition, promotes cell proliferation, and improves the biomechanical properties of the regenerated tendons, indicating better functional restoration. The SSAD-derived bilayer hydrogel may be a feasible biomaterial for tendon repair in the future.
Collapse
Affiliation(s)
- Ruyi Dang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Liling Chen
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Farshid Sefat
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford, BD7 1DP, UK
- Biomedical and Electronics Engineering Department, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK
| | - Xian Li
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Shilin Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Xulei Yuan
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Xiaoqiao Ning
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ping Ji
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| |
Collapse
|
21
|
Lin X, Shan SK, Xu F, Zhong JY, Wu F, Duan JY, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Wu YY, Tang KX, Ullah MHE, Liao XB, Yuan LQ. The crosstalk between endothelial cells and vascular smooth muscle cells aggravates high phosphorus-induced arterial calcification. Cell Death Dis 2022; 13:650. [PMID: 35882857 PMCID: PMC9325771 DOI: 10.1038/s41419-022-05064-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023]
Abstract
Arterial calcification is highly prevalent, particularly in patients with end-stage renal disease (ESRD). The osteogenic differentiation of vascular smooth muscle cells (VSMCs) is the critical process for the development of arterial calcification. However, the detailed mechanism of VSMCs calcification remains to be elucidated. Here, we investigated the role of exosomes (Exos) derived from endothelial cells (ECs) in arterial calcification and its potential mechanisms in ESRD. Accelerated VSMCs calcification was observed when VSMCs were exposed to ECs culture media stimulated by uremic serum or high concentration of inorganic phosphate (3.5 mM Pi). and the pro-calcification effect of the ECs culture media was attenuated by exosome depletion. Exosomes derived from high concentrations of inorganic phosphate-induced ECs (ECsHPi-Exos) could be uptaken by VSMCs and promoted VSMCs calcification. Microarray analysis showed that miR-670-3p was dramatically increased in ECsHPi-Exos compared with exosomes derived from normal concentrations of inorganic phosphate (0.9 mM Pi) induced ECs (ECsNPi-Exos). Mechanistically, insulin-like growth factor 1 (IGF-1) was identified as the downstream target of miR-670-3p in regulating VSMCs calcification. Notably, ECs-specific knock-in of miR-670-3p of the 5/6 nephrectomy with a high-phosphate diet (miR-670-3pEC-KI + NTP) mice that upregulated the level of miR-670-3p in artery tissues and significantly increased artery calcification. Finally, we validated that the level of circulation of plasma exosomal miR-670-3p was much higher in patients with ESRD compared with healthy controls. Elevated levels of plasma exosomal miR-670-3p were associated with a decline in IGF-1 and more severe artery calcification in patients with ESRD. Collectively, these findings suggested that ECs-derived exosomal miR-670-3p could promote arterial calcification by targeting IGF-1, which may serve as a potential therapeutic target for arterial calcification in ESRD patients.
Collapse
Affiliation(s)
- Xiao Lin
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China ,grid.216417.70000 0001 0379 7164Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Feng Xu
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Jia-Yu Zhong
- grid.216417.70000 0001 0379 7164Department of PET Center, the Xiangya Hospital, Central South University, Changsha, China
| | - Feng Wu
- grid.216417.70000 0001 0379 7164Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yue Duan
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Bei Guo
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Fu-Xing-Zi Li
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Yi Wang
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Ming-Hui Zheng
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Qiu-Shuang Xu
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Li-Min Lei
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Wen-Lu Ou-Yang
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Yun-Yun Wu
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Ke-Xin Tang
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Muhammad Hasnain Ehsan Ullah
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| | - Xiao-Bo Liao
- grid.216417.70000 0001 0379 7164Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- grid.216417.70000 0001 0379 7164National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000 China
| |
Collapse
|
22
|
Di Fabrizio C, Giorgione V, Khalil A, Murdoch CE. Antioxidants in Pregnancy: Do We Really Need More Trials? Antioxidants (Basel) 2022; 11:812. [PMID: 35624676 PMCID: PMC9137466 DOI: 10.3390/antiox11050812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Human pregnancy can be affected by numerous pathologies, from those which are mild and reversible to others which are life-threatening. Among these, gestational diabetes mellitus and hypertensive disorders of pregnancy with subsequent consequences stand out. Health problems experienced by women during pregnancy and postpartum are associated with significant costs to health systems worldwide and contribute largely to maternal mortality and morbidity. Major risk factors for mothers include obesity, advanced maternal age, cardiovascular dysfunction, and endothelial damage; in these scenarios, oxidative stress plays a major role. Markers of oxidative stress can be measured in patients with preeclampsia, foetal growth restriction, and gestational diabetes mellitus, even before their clinical onset. In consequence, antioxidant supplements have been proposed as a possible therapy; however, results derived from large scale randomised clinical trials have been disappointing as no positive effects were demonstrated. This review focuses on the latest evidence on oxidative stress in pregnancy complications, their early diagnosis, and possible therapies to prevent or treat these pathologies.
Collapse
Affiliation(s)
- Carolina Di Fabrizio
- Vascular Biology Research Center, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0QT, UK; (C.D.F.); (V.G.); (A.K.)
- Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Veronica Giorgione
- Vascular Biology Research Center, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0QT, UK; (C.D.F.); (V.G.); (A.K.)
| | - Asma Khalil
- Vascular Biology Research Center, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0QT, UK; (C.D.F.); (V.G.); (A.K.)
- Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Colin E. Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
23
|
Can B, Olcay Coskun F, Ozkok S, Takir M. Genetic Etiology of Ichthyosis in Turkish Patients: Nextgeneration Sequencing Identified Seven Novel Mutations. Medeni Med J 2022; 37:131-137. [PMID: 35734972 PMCID: PMC9234366 DOI: 10.4274/mmj.galenos.2022.42492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Acromegaly is a rare disease associated with increased mortality. Reports on coronary artery disease in acromegaly are controversial. This study aimed to investigate the possible association of epicardial adipose tissue thickness with cardiovascular risk in patients with acromegaly. Methods: The study included 38 patients followed up with the diagnosis of acromegaly and 29 healthy controls. Patients with acromegaly were divided into controlled and uncontrolled acromegaly groups based on insulin-like growth factor-1 levels. Epicardial adipose tissue thickness measurements were obtained from chest computed tomography, and laboratory data were extracted from patient files. Results: Twenty-nine patients (76.3%) had controlled acromegaly. Eleven patients with acromegaly had diabetes mellitus (28.9%), 18 (47.4%) had hypertension, and 27 (71%) had a concomitant chronic disease. Epicardial adipose tissue thickness was significantly increased in the acromegaly group (p<0.001). No significant difference was observed between the controlled and uncontrolled acromegaly groups in terms of the epicardial adipose tissue thickness. Age was the only parameter that was significantly correlated with the epicardial adipose tissue thickness. When the Framingham risk score was calculated, the 10-year cardiovascular risk of patients with acromegaly was 5.63%. Conclusions: The epicardial adipose tissue thickness is increased in acromegaly. However, this increase may not have clinical relevance in terms of cardiovascular risk.
Collapse
|
24
|
Betzmann D, Döring M, Blumenstock G, Erdmann F, Grabow D, Lang P, Binder G. Impact of serum insulin-like growth factor-1 on HSCT outcome in pediatric cancer patients. Transplant Cell Ther 2022; 28:355.e1-355.e9. [PMID: 35405367 DOI: 10.1016/j.jtct.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hematopoietic stem cell transplantation (HSCT) is associated with severe medical complications and variable outcome depending on the recipient's disease stage and health condition. Biomarkers predicting outcome may have therapeutic relevance in pediatric cancer care. Insulin like growth factor 1 (IGF 1) is a mitogenic and anabolic peptide hormone that is expressed in almost all tissues. This hormone is the major growth factor in childhood. As IGF 1 is decreased in conditions that cause catabolic metabolism, it may reflect the degree of physical robustness of the patient and serve as predictive biomarker for transplant outcome. OBJECTIVES AND STUDY DESIGN We evaluated the impact of pre-transplant serum-IGF 1 on both survival and adverse events in 587 pediatric cancer patients, who underwent autologous or allogeneic HSCT between 1987 and 2014 at the University Children's Hospital Tübingen, Germany. Survival probabilities of the entire cohort and of defined subgroups according to pre-transplant serum-IGF-1 were estimated using the Kaplan-Meier method. RESULTS Mean pre-transplant IGF 1 (n = 498) was low: -1.67 SDS (SD, 1.54). Completeness of follow-up three and ten years post HSCT was 96 % and 83 %, respectively. The ten-year overall survival was 44.8 % (95 % confidence interval [CI], 40.6-48.9). With decreasing IGF-1 SDS, there was a significant increase of transplant-related mortality (p = 0.027), sinusoidal obstruction syndrome (quartiles 4 to 1: 3; 1; 12; 12%; p < 0.001) and thrombotic microangiopathy (quartiles 4 to 1: 0: 0: 2; 5%; p = 0.004). IGF 1 decile 1 showed a significantly poorer outcome (p=0.042) with lower median (12 versus 68 months) and ten-year overall survival (37 % versus 52 %) when compared to decile 2-10. CONCLUSIONS This retrospective study suggests pre-transplant serum-IGF 1 as a predictor of survival and selected vascular adverse events that may have diagnostic and therapeutic relevance in pediatric cancer care.
Collapse
Affiliation(s)
- Deborah Betzmann
- University Children's Hospital Tübingen, Hoppe-Seyler-Str.1, 72076 Tübingen, Germany
| | - Michaela Döring
- University Children's Hospital Tübingen, Hoppe-Seyler-Str.1, 72076 Tübingen, Germany
| | - Gunnar Blumenstock
- Department of Clinical Epidemiology and Applied Biometry, University of Tübingen, Silcherstraße 5, 72076 Tübingen, Germany
| | - Friederike Erdmann
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI) University Medical Center of the Johannes Gutenberg University Mainz, Mainz
| | - Desiree Grabow
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI) University Medical Center of the Johannes Gutenberg University Mainz, Mainz
| | - Peter Lang
- University Children's Hospital Tübingen, Hoppe-Seyler-Str.1, 72076 Tübingen, Germany
| | - Gerhard Binder
- University Children's Hospital Tübingen, Hoppe-Seyler-Str.1, 72076 Tübingen, Germany.
| |
Collapse
|
25
|
Rahmani J, Montesanto A, Giovannucci E, Zand H, Barati M, Kopchick JJ, Mirisola MG, Lagani V, Bawadi H, Vardavas R, Laviano A, Christensen K, Passarino G, Longo VD. Association between IGF-1 levels ranges and all-cause mortality: A meta-analysis. Aging Cell 2022; 21:e13540. [PMID: 35048526 PMCID: PMC8844108 DOI: 10.1111/acel.13540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
The association between IGF‐1 levels and mortality in humans is complex with low levels being associated with both low and high mortality. The present meta‐analysis investigates this complex relationship between IGF‐1 and all‐cause mortality in prospective cohort studies. A systematic literature search was conducted in PubMed/MEDLINE, Scopus, and Cochrane Library up to September 2019. Published studies were eligible for the meta‐analysis if they had a prospective cohort design, a hazard ratio (HR) and 95% confidence interval (CI) for two or more categories of IGF‐1 and were conducted among adults. A random‐effects model with a restricted maximum likelihood heterogeneity variance estimator was used to find combined HRs for all‐cause mortality. Nineteen studies involving 30,876 participants were included. Meta‐analysis of the 19 eligible studies showed that with respect to the low IGF‐1 category, higher IGF‐1 was not associated with increased risk of all‐cause mortality (HR = 0.84, 95% CI = 0.68–1.05). Dose–response analysis revealed a U‐shaped relation between IGF‐1 and mortality HR. Pooled results comparing low vs. middle IGF‐1 showed a significant increase of all‐cause mortality (HR = 1.33, 95% CI = 1.14–1.57), as well as comparing high vs. middle IGF‐1 categories (HR = 1.23, 95% CI = 1.06–1.44). Finally, we provide data on the association between IGF‐1 levels and the intake of proteins, carbohydrates, certain vitamins/minerals, and specific foods. Both high and low levels of IGF‐1 increase mortality risk, with a specific 120–160 ng/ml range being associated with the lowest mortality. These findings can explain the apparent controversy related to the association between IGF‐1 levels and mortality.
Collapse
Affiliation(s)
- Jamal Rahmani
- Department of Community Nutrition Faculty of Nutrition and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences University of Calabria Rende Italy
| | - Edward Giovannucci
- Departments of Nutrition Harvard TH Chan School of Public Health Boston Massachusetts USA
| | - Hamid Zand
- National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Meisam Barati
- National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - John J. Kopchick
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio and Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Mario G. Mirisola
- Department of Surgical, Oncological and Stomatological Disciplines Università di Palermo Palermo Italy
| | - Vincenzo Lagani
- Institute of Chemical Biology Ilia State University Tbilisi Georgia USA
- Biological and Environmental Sciences and Engineering Division (BESE) King Abdullah University of Science and Technology KAUST Thuwal Saudi Arabia
| | - Hiba Bawadi
- Human Nutrition Department College of Health Sciences QU‐Health Qatar University Doha Qatar
| | | | - Alessandro Laviano
- Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Kaare Christensen
- Danish Aging Research Center University of Southern Denmark Odense Denmark
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences University of Calabria Rende Italy
| | - Valter D. Longo
- Longevity Institute Davis School of Gerontology and Department of Biological Sciences University of Southern California Los Angeles California USA
- IFOM FIRC Institute of Molecular Oncology Milan Italy
| |
Collapse
|
26
|
A global view on physical activity recommendation for people with Alzheimer's disease. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Queen NJ, Deng H, Huang W, Mo X, Wilkins RK, Zhu T, Wu X, Cao L. Environmental Enrichment Mitigates Age-Related Metabolic Decline and Lewis Lung Carcinoma Growth in Aged Female Mice. Cancer Prev Res (Phila) 2021; 14:1075-1088. [PMID: 34535449 PMCID: PMC8639669 DOI: 10.1158/1940-6207.capr-21-0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/05/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Aging is a complex physiological process that leads to the progressive decline of metabolic and immune function, among other biological mechanisms. As global life expectancy increases, it is important to understand determinants of healthy aging-including environmental and genetic factors-and thus slow the onset or progression of age-related disease. Environmental enrichment (EE) is a housing environment wherein laboratory animals engage with complex physical and social stimulation. EE is a prime model to understand environmental influences on aging dynamics, as it confers an antiobesity and anticancer phenotype that has been implicated in healthy aging and health span extension. Although EE is frequently used to study malignancies in young mice, fewer studies characterize EE-cancer outcomes in older mice. Here, we used young (3-month-old) and aged (14-month-old) female C57BL/6 mice to determine whether EE would be able to mitigate age-related deficiencies in metabolic function and thus alter Lewis lung carcinoma (LLC) growth. Overall, EE improved metabolic function, resulting in reduced fat mass, increased lean mass, and improved glycemic processing; many of these effects were stronger in the aged cohort than in the young cohort, indicating an age-driven effect on metabolic responses. In the aged-EE cohort, subcutaneously implanted LLC tumor growth was inhibited and tumors exhibited alterations in various markers of apoptosis, proliferation, angiogenesis, inflammation, and malignancy. These results validate EE as an anticancer model in aged mice and underscore the importance of understanding environmental influences on cancer malignancy in aged populations. PREVENTION RELEVANCE: Environmental enrichment (EE) serves as a model of complex physical and social stimulation. This study validates EE as an anticancer intervention paradigm in aged mice and underscores the importance of understanding environmental influences on cancer malignancy in aged populations.
Collapse
Affiliation(s)
- Nicholas J Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Hong Deng
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wei Huang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Ryan K Wilkins
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Tao Zhu
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaoyu Wu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, Ohio.
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
28
|
Wang J, Jia R, Gong H, Celi P, Zhuo Y, Ding X, Bai S, Zeng Q, Yin H, Xu S, Liu J, Mao X, Zhang K. The Effect of Oxidative Stress on the Chicken Ovary: Involvement of Microbiota and Melatonin Interventions. Antioxidants (Basel) 2021; 10:1422. [PMID: 34573054 PMCID: PMC8472688 DOI: 10.3390/antiox10091422] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The poultry ovary is used as a classic model to study ovarian biology and ovarian cancer. Stress factors induced oxidative stress to cause follicle atresia, which may be a fundamental reason for the reduction in fertility in older laying hens or in aging women. In the present study, we set out to characterize the relationships between oxidative stress and ovarian function. Layers (62 weeks of age; BW = 1.42 ± 0.12 kg) were injected with tert-butyl hydroperoxide (tBHP) at 0 (CON) and 800 μmol/kg BW (oxidative stress group, OS) for 24 days and the role of melatonin (Mel) on tBHP-induced ovary oxidative stress was assessed through ovary culture in vitro. The OS (800 μmol/kg BW tert-butyl hydroperoxide) treatment decreased the reproduction performance and ovarian follicle numbers. OS decreased the expression of SIRT1 and increased the P53 and FoxO1 expression of the ovary. A decreased Firmicutes to Bacteroidetes ratio, enriched Marinifilaceae (family), Odoribacter (genus) and Bacteroides_plebeius (species) were observed in the cecum of the OS group. Using Mel in vitro enhanced the follicle numbers and decreased the ovary cell apoptosis induced by tBHP. In addition, it increased the expression of SIRT1 and decreased the P53 and FoxO1 expression. These findings indicated that oxidative stress could decrease the laying performance, ovarian function and influence gut microbiota and body metabolites in the layer model, while the melatonin exerts an amelioration the ovary oxidative stress through SIRT1-P53/FoxO1 pathway.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Ru Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Haojie Gong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, Australia;
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Xuemei Ding
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Shiping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Qiufeng Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Huadong Yin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| | - Keying Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (R.J.); (H.G.); (Y.Z.); (X.D.); (S.B.); (Q.Z.); (H.Y.); (S.X.); (X.M.); (K.Z.)
| |
Collapse
|
29
|
Sharma HS, Lafuente JV, Muresanu DF, Sahib S, Tian ZR, Menon PK, Castellani RJ, Nozari A, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Neuroprotective effects of insulin like growth factor-1 on engineered metal nanoparticles Ag, Cu and Al induced blood-brain barrier breakdown, edema formation, oxidative stress, upregulation of neuronal nitric oxide synthase and brain pathology. PROGRESS IN BRAIN RESEARCH 2021; 266:97-121. [PMID: 34689867 DOI: 10.1016/bs.pbr.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are vulnerable to environmental or industrial exposure of engineered nanoparticles (NPs) from metals. Long-term exposure of NPs from various sources affect sensory-motor or cognitive brain functions. Thus, a possibility exists that chronic exposure of NPs affect blood-brain barrier (BBB) breakdown and brain pathology by inducing oxidative stress and/or nitric oxide production. This hypothesis was examined in the rat intoxicated with Ag, Cu or Al (50-60nm) nanoparticles (50mg/kg, i.p. once daily) for 7 days. In these NPs treated rats the BBB permeability, brain edema, neuronal nitric oxide synthase (nNOS) immunoreactivity and brain oxidants levels, e.g., myeloperoxidase (MP), malondialdehyde (MD) and glutathione (GT) was examined on the 8th day. Cu and Ag but not Al nanoparticles increased the MP and MD levels by twofold in the brain although, GT showed 50% decline. At this time increase in brain water content and BBB breakdown to protein tracers were seen in areas exhibiting nNOS positive neurons and cell injuries. Pretreatment with insulin like growth factor-1 (IGF-1) in high doses (1μg/kg, i.v. but not 0.5μg/kg daily for 7 days) together with NPs significantly reduced the oxidative stress, nNOS upregulation, BBB breakdown, edema formation and cell injuries. These novel observations demonstrate that (i) NPs depending on their metal constituent (Cu, Ag but not Al) induce oxidative stress and nNOS expression leading to BBB disruption, brain edema and cell damage, and (ii) IGF-1 depending on doses exerts powerful neuroprotection against nanoneurotoxicity, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
La Valle A, Crocco M, Chiarenza DS, Maghnie M, d'Annunzio G. Endothelial impairment evaluation by peripheral arterial tonometry in pediatric endocrinopathies: A narrative review. World J Diabetes 2021; 12:810-826. [PMID: 34168730 PMCID: PMC8192248 DOI: 10.4239/wjd.v12.i6.810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction (ED) is characterized by an imbalance between vasodilator and vasoconstriction agents. Several pathological conditions clinically diagnosed in childhood and adolescence are characterized by ED and increased risk for early development of microangiopathic and macroangiopathic impairment, in particular type 1 diabetes mellitus (T1DM), T2DM, obesity, metabolic syndromeand pituitary dysfunction associated to various endocrinopathies. More recently insulin resistance following chemotherapy or radiotherapy for tumors, bone marrow transplantation for hematological malignancies (i.e., cancer survivors), or immunosuppressive treatment for solid organ transplantation has been observed. Assessment of ED by means of non-invasive techniques is the gold standard for early ED detection before clinical manifestation. It is aimed to recognize patients at risk and to avoid the development and progression of more serious illnesses. Reactive hyperemia-peripheral artery tonometry is a noninvasive technique to assess peripheral endothelial function by measuring modifications in digital pulse volume during reactive hyperemia, and represents a non-invasive, reproducible and operator-independent tool able to detect precocious ED. This narrative review aimed to provide an overview of the most important papers regarding ED detection by EndoPat 2000 in children and adolescents with different endocrine diseases. A comprehensive search of English language articles was performed in the MEDLINE database without using other search filters except the publication interval between 2005 and 2020.
Collapse
Affiliation(s)
- Alberto La Valle
- Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa16147, Italy
- Pediatric Clinic and Endocrinology, IRCCS Giannina Gaslini Institute, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa, Genoa16147, Italy
| | - Marco Crocco
- Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa16147, Italy
- Pediatric Clinic and Endocrinology, IRCCS Giannina Gaslini Institute, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa, Genoa16147, Italy
| | - Decimo Silvio Chiarenza
- Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa16147, Italy
- Pediatric Clinic and Endocrinology, IRCCS Giannina Gaslini Institute, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa, Genoa16147, Italy
| | - Mohamad Maghnie
- Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa16147, Italy
- Pediatric Clinic and Endocrinology, IRCCS Giannina Gaslini Institute, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa, Genoa16147, Italy
| | - Giuseppe d'Annunzio
- Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, Genoa16147, Italy
| |
Collapse
|
31
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
32
|
Yang H, Tan H, Huang H, Li J. Advances in Research on the Cardiovascular Complications of Acromegaly. Front Oncol 2021; 11:640999. [PMID: 33869029 PMCID: PMC8050332 DOI: 10.3389/fonc.2021.640999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/16/2021] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular-related complications are one of the most common complications in patients with acromegaly, and can lead to an increased risk of death. Hypertension and cardiomyopathy are the main cardiovascular complications. The characteristics of acromegalic cardiomyopathy are concentric biventricular hypertrophy and diastolic dysfunction. In addition, arrhythmia and heart valve disease are common cardiac complications in acromegaly. Although the underlying pathophysiology has not been fully elucidated, the spontaneous overproduction of GH and IGF-1, increasing age, prolonged duration of disease and the coexistence of other cardiovascular risk factors are crucial to cardiac complications in patients with acromegaly. Early diagnosis and appropriate treatment of acromegaly might be beneficial for the prevention of cardiomyopathy and premature death.
Collapse
Affiliation(s)
- Han Yang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Chongqing Sixth People’s Hospital, Chongqing, China
| | - Huiwen Tan
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - He Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianwei Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Shang Y, Ma C, Zhang J, Wang Z, Ren C, Luo X, Peng R, Liu J, Mao J, Shi Y, Fan G. Bifunctional supramolecular nanofiber inhibits atherosclerosis by enhancing plaque stability and anti-inflammation in apoE -/- mice. Theranostics 2020; 10:10231-10244. [PMID: 32929345 PMCID: PMC7481406 DOI: 10.7150/thno.48410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023] Open
Abstract
Background and Purpose: Atherosclerosis is vascular disease of chronic inflammation and lipid disorder, which is a major cause of coronary heart disease. Foam cell formation is key progress during the atherosclerosis development. Insulin-like growth factor (IGF)-1 is a growth hormone that plays a crucial role in growth, metabolism, and homeostasis. Previous studies have demonstrated that increase in circulating IGF-1 can reduce atherosclerotic burden. However, active IGF-1 is characterized with poor tissue retention and is at a very low level in circulation system. Therefore, supplementation of exogenous IGF-1 to restore the physiological level is a promising approach to inhibit atherosclerosis. In this study, we develop a self-assembling, anti-inflammatory drug-modified peptide derived from IGF-1 to mimic IGF-1 bioactivity and simultaneously with an anti-inflammatory property for the treatment of atherosclerosis. Methods: ApoE-/- mice were subcutaneously (s.c.) injected with the different hydrogels or natural IGF-1 protein solution per week and simultaneously fed a high-fat diet for 16 weeks. Atherosclerotic lesion formation and stability were assessed after treatment. Moreover, peritoneal macrophage and serum samples were collected to determine lipid profile and inflammatory cytokines. Concurrently, we determined the effect of bifunctional supramolecular nanofibers/hydrogel on cholesterol efflux, foam cell formation, phenotypic transformation of VSMC to macrophage-like cells, and macrophage polarization in vitro or in vivo. Results: Bifunctional supramolecular nanofibers/hydrogel for the treatment of atherosclerosis was formed by a short peptide consisting of a tetrapeptide SSSR from C-region of growth factor IGF-1, an anti-inflammatory drug naproxen (Npx), and a powerful self-assembling D-peptide DFDF. The resulting hydrogel of Npx-DFDFGSSSR (Hydrogel 1, H1) possessed both the anti-inflammatory and IGF-1 mimicking properties, and it efficiently promoted the expression of ABCA1 and ABCG1, thereby significantly reducing cholesterol accumulation in macrophages and preventing foam cell formation. Moreover, H1 markedly inhibited the transformation of vascular smooth muscle cells (VSMCs) into macrophage-like cells which also contributed to foam cell formation. In addition, H1 significantly reduced the inflammatory response in vitro and in vivo. Most importantly, the IGF-1 mimetic peptide showed comparable performance to IGF-1 in vivo and inhibited atherosclerosis by markedly reducing lesion area and enhancing plaque stability. Conclusions: Our study provides a novel supramolecular nanomaterial to inhibit pathological progress of atherosclerosis through regulating cholesterol efflux and inflammation, which may contribute to the development of a promising nanomedicine for the treatment of atherosclerosis in the clinic.
Collapse
|
34
|
El Saftawy EA, Amin NM, Sabry RM, El-Anwar N, Shash RY, Elsebaie EH, Wassef RM. Can Toxoplasma gondii Pave the Road for Dementia? J Parasitol Res 2020; 2020:8859857. [PMID: 32802484 PMCID: PMC7414348 DOI: 10.1155/2020/8859857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023] Open
Abstract
Dementia is an ominous neurological disease. Scientists proposed a link between its occurrence and the presence of Toxoplasma gondii (T. gondii). The long-term sequels of anti-Toxoplasma premunition, chiefly dominated by TNF-α, on the neurons and their receptors as the insulin-like growth factor-1 receptor (IGF-1R), which is tangled in cognition and synaptic plasticity, are still not clear. IGF-1R mediates its action via IGF-1, and its depletion is incorporated in the pathogenesis of dementia. The activated TNF-α signaling pathway induces NF-κβ that may induce or inhibit neurogenesis. This study speculates the potential impact of anti-Toxoplasma immune response on the expression of IGF-1R in chronic cerebral toxoplasmosis. The distributive pattern of T. gondii cysts was studied in association with TNF-α serum levels, the in situ expression of NF-κβ, and IGF-1R in mice using the low virulent ME-49 T. gondii strain. There was an elevation of the TNF-α serum level (p value ≤ 0.004) and significant upsurge in NF-κβ whereas IGF-1R was of low abundance (p value < 0.05) compared to the controls. TNF-α had a strong positive correlation with the intracerebral expression of NF-κβ (r value ≈ 0.943, p value ≈ 0.005) and a strong negative correlation to IGF-1R (r value -0.584 and -0.725 for area% and O.D., respectively). This activated TNF-α/NF-κβ keeps T. gondii under control at the expense of IGF-1R expression, depriving neurons of the effect of IGF-1, the receptor's ligand. We therefore deduce that T. gondii immunopathological reaction may be a road paver for developing dementia.
Collapse
Affiliation(s)
- Enas A. El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Armed Forces College of Medicine, Cairo, Egypt
| | - Noha M. Amin
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania M. Sabry
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha El-Anwar
- Armed Forces College of Medicine, Cairo, Egypt
- Pathology Department, Faculty of Medicine, Tanta University, Egypt
| | - Rania Y. Shash
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman H. Elsebaie
- Public Health and Community Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rita M. Wassef
- Medical Parasitology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
35
|
Major depressive disorder and accelerated aging from a peripheral IGF-1 overexpression perspective. Med Hypotheses 2020; 138:109610. [DOI: 10.1016/j.mehy.2020.109610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
|
36
|
Barinda AJ, Ikeda K, Nugroho DB, Wardhana DA, Sasaki N, Honda S, Urata R, Matoba S, Hirata KI, Emoto N. Endothelial progeria induces adipose tissue senescence and impairs insulin sensitivity through senescence associated secretory phenotype. Nat Commun 2020; 11:481. [PMID: 31980643 PMCID: PMC6981212 DOI: 10.1038/s41467-020-14387-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
Vascular senescence is thought to play a crucial role in an ageing-associated decline of organ functions; however, whether vascular senescence is causally implicated in age-related disease remains unclear. Here we show that endothelial cell (EC) senescence induces metabolic disorders through the senescence-associated secretory phenotype. Senescence-messaging secretomes from senescent ECs induced a senescence-like state and reduced insulin receptor substrate-1 in adipocytes, which thereby impaired insulin signaling. We generated EC-specific progeroid mice that overexpressed the dominant negative form of telomeric repeat-binding factor 2 under the control of the Tie2 promoter. EC-specific progeria impaired systemic metabolic health in mice in association with adipose tissue dysfunction even while consuming normal chow. Notably, shared circulation with EC-specific progeroid mice by parabiosis sufficiently transmitted the metabolic disorders into wild-type recipient mice. Our data provides direct evidence that EC senescence impairs systemic metabolic health, and thus establishes EC senescence as a bona fide risk for age-related metabolic disease.
Collapse
Affiliation(s)
- Agian Jeffilano Barinda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan.,Department of Pharmacology and Therapeutic, Faculty of Medicine, Universitas Indonesia, Salemba Raya 6, Jakarta, 10430, Indonesia
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan.
| | - Dhite Bayu Nugroho
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan
| | - Donytra Arby Wardhana
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan
| | - Naoto Sasaki
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan
| | - Sakiko Honda
- Department of Cardiology, Kyoto Prefectural University Graduate School of Medical Science, 465 Kajii, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Ryota Urata
- Department of Cardiology, Kyoto Prefectural University Graduate School of Medical Science, 465 Kajii, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiology, Kyoto Prefectural University Graduate School of Medical Science, 465 Kajii, Kawaramachi-Hirokoji, Kyoto, 602-8566, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, 6500017, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada, Kobe, 658-8558, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, 6500017, Japan
| |
Collapse
|
37
|
Staerk L, Preis SR, Lin H, Lubitz SA, Ellinor PT, Levy D, Benjamin EJ, Trinquart L. Protein Biomarkers and Risk of Atrial Fibrillation: The FHS. Circ Arrhythm Electrophysiol 2020; 13:e007607. [PMID: 31941368 DOI: 10.1161/circep.119.007607] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Identification of protein biomarkers associated with incident atrial fibrillation (AF) may improve the understanding of the pathophysiology, risk prediction, and development of new therapeutics for AF. We examined the associations between 85 protein biomarkers and incident AF. METHODS We included participants ≥50 years of age from the FHS (Framingham Heart Study) Offspring and Third Generation cohorts, who had 85 fasting plasma proteins measured using Luminex xMAP platform. Hazard ratios (per 1 SD increment of rank-normalized biomarker [hazard ratio]) and 95% CIs for incident AF were calculated using Cox regression models adjusted for age, sex, height, weight, current smoking, systolic blood pressure, diastolic blood pressure, hypertension treatment, diabetes mellitus, valvular heart disease, prevalent myocardial infarction, and prevalent heart failure. We used the false discovery rate to account for multiple testing. RESULTS The study sample comprised 3378 participants (54% women) with mean (SD) age of 61.5 (8.4) years. In total, 401 developed AF over a mean follow-up of 12.3±3.8 years. We observed lower hazard of incident AF associated with higher mean levels of IGF1 (insulin-like growth factor 1; hazard ratio per 1 SD increment in protein level, 0.84 [95% CI, 0.76-0.93]), and higher hazard of incident AF associated with higher mean levels of both IGFBP1 (insulin-like growth factor-binding protein 1; hazard ratio, 1.24 [95% CI, 1.1-1.39]) and NT-proBNP (N-terminal pro-B-type natriuretic peptide; hazard ratio, 1.73 [95% CI, 1.52-1.96]). CONCLUSIONS Decreased levels of IGF1 and increased levels of IGFBP1 and NT-proBNP were associated with higher risk of incident AF.
Collapse
Affiliation(s)
- Laila Staerk
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, MA (L.S., H.L., D.L., E.J.B., L.T.).,Department of Cardiology, Copenhagen University Hospital Herlev and Gentofte, Helleup, Denmark (L.S.)
| | - Sarah R Preis
- Department of Biostatistics (S.R.P., L.T.), Boston University School of Public Health, MA
| | - Honghuang Lin
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, MA (L.S., H.L., D.L., E.J.B., L.T.).,Section of Computational Biomedicine (H.L.), Department of Medicine, Boston University School of Medicine, MA
| | - Steven A Lubitz
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston (S.A.L., P.T.E.)
| | - Patrick T Ellinor
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston (S.A.L., P.T.E.)
| | - Daniel Levy
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, MA (L.S., H.L., D.L., E.J.B., L.T.)
| | - Emelia J Benjamin
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, MA (L.S., H.L., D.L., E.J.B., L.T.).,Department of Epidemiology (E.J.B.), Boston University School of Public Health, MA.,Cardiology and Preventive Medicine Sections (E.J.B.), Department of Medicine, Boston University School of Medicine, MA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (E.J.B.)
| | - Ludovic Trinquart
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, MA (L.S., H.L., D.L., E.J.B., L.T.).,Department of Biostatistics (S.R.P., L.T.), Boston University School of Public Health, MA
| |
Collapse
|
38
|
Pharaoh G, Owen D, Yeganeh A, Premkumar P, Farley J, Bhaskaran S, Ashpole N, Kinter M, Van Remmen H, Logan S. Disparate Central and Peripheral Effects of Circulating IGF-1 Deficiency on Tissue Mitochondrial Function. Mol Neurobiol 2019; 57:1317-1331. [PMID: 31732912 PMCID: PMC7060968 DOI: 10.1007/s12035-019-01821-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022]
Abstract
Age-related decline in circulating levels of insulin-like growth factor (IGF)-1 is associated with reduced cognitive function, neuronal aging, and neurodegeneration. Decreased mitochondrial function along with increased reactive oxygen species (ROS) and accumulation of damaged macromolecules are hallmarks of cellular aging. Based on numerous studies indicating pleiotropic effects of IGF-1 during aging, we compared the central and peripheral effects of circulating IGF-1 deficiency on tissue mitochondrial function using an inducible liver IGF-1 knockout (LID). Circulating levels of IGF-1 (~ 75%) were depleted in adult male Igf1f/f mice via AAV-mediated knockdown of hepatic IGF-1 at 5 months of age. Cognitive function was evaluated at 18 months using the radial arm water maze and glucose and insulin tolerance assessed. Mitochondrial function was analyzed in hippocampus, muscle, and visceral fat tissues using high-resolution respirometry O2K as well as redox status and oxidative stress in the cortex. Peripherally, IGF-1 deficiency did not significantly impact muscle mass or mitochondrial function. Aged LID mice were insulin resistant and exhibited ~ 60% less adipose tissue but increased fat mitochondrial respiration (20%). The effects on fat metabolism were attributed to increases in growth hormone. Centrally, IGF-1 deficiency impaired hippocampal-dependent spatial acquisition as well as reversal learning in male mice. Hippocampal mitochondrial OXPHOS coupling efficiency and cortex ATP levels (~ 50%) were decreased and hippocampal oxidative stress (protein carbonylation and F2-isoprostanes) was increased. These data suggest that IGF-1 is critical for regulating mitochondrial function, redox status, and spatial learning in the central nervous system but has limited impact on peripheral (liver and muscle) metabolism with age. Therefore, IGF-1 deficiency with age may increase sensitivity to damage in the brain and propensity for cognitive deficits. Targeting mitochondrial function in the brain may be an avenue for therapy of age-related impairment of cognitive function. Regulation of mitochondrial function and redox status by IGF-1 is essential to maintain brain function and coordinate hippocampal-dependent spatial learning. While a decline in IGF-1 in the periphery may be beneficial to avert cancer progression, diminished central IGF-1 signaling may mediate, in part, age-related cognitive dysfunction and cognitive pathologies potentially by decreasing mitochondrial function.
Collapse
Affiliation(s)
- Gavin Pharaoh
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel Owen
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alexander Yeganeh
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Pavithra Premkumar
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Julie Farley
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicole Ashpole
- Department of Biomolecular Sciences, University of Mississippi, Oxford, MS, USA
| | - Michael Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sreemathi Logan
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
39
|
Żurawska-Płaksej E, Płaczkowska S, Pawlik-Sobecka L, Czapor-Irzabek H, Stachurska A, Mysiak A, Sebzda T, Gburek J, Piwowar A. Parameters of Oxidative and Inflammatory Status in a Three-Month Observation of Patients with Acute Myocardial Infarction Undergoing Coronary Angioplasty-A Preliminary Study. ACTA ACUST UNITED AC 2019; 55:medicina55090585. [PMID: 31540292 PMCID: PMC6780791 DOI: 10.3390/medicina55090585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Background and Objectives: Patients with acute myocardial infarction (MI) are usually treated with percutaneous transluminal coronary angioplasty (PTCA), which is burdened with a risk of postoperative complications, often accompanied by biochemical disturbances. The aim of our study was to evaluate a set of selected parameters of oxidative and inflammatory status, which could be useful in the management of post-procedural care in MI patients after PTCA. Materials and Methods: In this preliminary study, ischemia modified albumin (IMA), advanced oxidation protein products (AOPP), thiol groups (SH), total antioxidant status (TAS), insulin growth factor-1 (IGF-1), presepsin (PSP), and trimethylamine N-oxide (TMAO) were chosen as candidate biomarkers, and were determined in patients with MI who underwent PTCA at two time points: During cardiac episodes (at admission to the hospital, T0) and 3 months later (T3). Results: Most of the examined parameters were significantly different between patients and control subjects (except for IMA and TAS), but only hsCRP changed significantly during the time of observation (T0 vs. T3). Discriminant analysis created a model composed of AOPP, hsCRP, PSP, and TMAO, which differentiated male subjects into a group with MI and a control (without cardiovascular diseases). Conclusion: This set of parameters seems useful in evaluating inflammatory and oxidative status in MI patients after PTCA.
Collapse
Affiliation(s)
- Ewa Żurawska-Płaksej
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Sylwia Płaczkowska
- Diagnostics Laboratory for Teaching and Research, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Lilla Pawlik-Sobecka
- Department of Laboratory Diagnostics, Wroclaw Medical University, 50-556 Wroclaw, Poland.
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, 51-618 Wroclaw, Poland.
| | - Hanna Czapor-Irzabek
- Laboratory of Elemental Analysis and Structural Research, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Aneta Stachurska
- Department and Clinic of Cardiology, Wroclaw Medical University, 50-556 Wroclaw, Poland.
- Department and Clinic of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Andrzej Mysiak
- Department and Clinic of Cardiology, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Tadeusz Sebzda
- Department of Pathophysiology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Jakub Gburek
- Department of Pharmaceutical Biochemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| | - Agnieszka Piwowar
- Department of Toxicology, Wroclaw Medical University, 50-556 Wroclaw, Poland.
| |
Collapse
|
40
|
Madkour MI, T El-Serafi A, Jahrami HA, Sherif NM, Hassan RE, Awadallah S, Faris MAIE. Ramadan diurnal intermittent fasting modulates SOD2, TFAM, Nrf2, and sirtuins (SIRT1, SIRT3) gene expressions in subjects with overweight and obesity. Diabetes Res Clin Pract 2019; 155:107801. [PMID: 31356832 DOI: 10.1016/j.diabres.2019.107801] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/23/2019] [Accepted: 07/10/2019] [Indexed: 01/30/2023]
Abstract
AIM A growing body of evidence supports the impact of intermittent fasting on normalizing body metabolism and lowering oxidative stress and inflammation. Mounting evidence confirms that oxidative stress and chronic inflammation trigger the way for the development of metabolic diseases, such as diabetes. This research was conducted to evaluate the impact of Ramadan intermittent fasting (RIF) on the expression of cellular metabolism (SIRT1 and SIRT3) and antioxidant genes (TFAM, SOD2, and Nrf2). METHODS Fifty-six (34 males and 22 females) overweight and obese subjects and six healthy body weight controls were recruited and monitored before and after Ramadan. RESULTS Results showed that the relative gene expressions in obese subjects in comparison to counterpart expressions of controls for the antioxidant genes (TFAM, SOD2, and Nrf2) were significantly increased at the end of Ramadan, with percent increments of 90.5%, 54.1% and 411.5% for the three genes, respectively. However, the metabolism-controlling gene (SIRT3) showed a highly significant (P < 0.001) downregulation accompanied with a trend for reduction in SIRT1 gene at the end of Ramadan month, with percent decrements of 61.8% and 10.4%, respectively. Binary regression analysis revealed significant positive correlation (P < 0.05) between high energy intake (>2000 Kcal/day vs. <2000 Kcal/day) and expressions of SOD2 and TFAM (r = 0.84 and r = 0.9, respectively). CONCLUSION Results suggest that RIF ameliorates the genetic expression of antioxidant and anti-inflammatory, and metabolic regulatory genes. Thus, RIF presumably may entail a protective impact against oxidative stress and its adverse metabolic-related derangements in non-diabetic obese patients.
Collapse
Affiliation(s)
- Mohamed I Madkour
- Department of Medical Laboratory Sciences, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed T El-Serafi
- Department of Basic Sciences, College of Medicine/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates and Medical Biochemistry Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Haitham A Jahrami
- Rehabilitation Services, Periphery Hospitals, Ministry of Health, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Naglaa M Sherif
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Rasha E Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Samir Awadallah
- Department of Medical Laboratory Sciences, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates
| | - Mo'ez Al-Islam E Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences/Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
41
|
Is maternal lipid profile in early pregnancy associated with pregnancy complications and blood pressure in pregnancy and long term postpartum? Am J Obstet Gynecol 2019; 221:150.e1-150.e13. [PMID: 30940559 DOI: 10.1016/j.ajog.2019.03.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND An atherogenic lipid profile is a risk factor for the initiation and progression of atherosclerosis. This ultimately leads to cardiovascular disease. Women with a history of hypertensive disorders of pregnancy are at increased risk of sustained hypertension and cardiovascular disease later in life. Currently it is unclear whether dyslipidemia during pregnancy contributes to these risks. OBJECTIVE The objective of the study was to determine the associations between early pregnancy maternal lipid profile, hypertensive disorders of pregnancy, and blood pressure during and years after pregnancy. STUDY DESIGN We included 5690 women from the Generation R Study, an ongoing population-based prospective birth cohort. Two hundred eighteen women (3.8%) developed gestational hypertension and 139 (2.4%) preeclampsia. A maternal lipid profile consisting of total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, remnant cholesterol, and non-high-density lipoprotein cholesterol was determined in early pregnancy (median, 13.4 weeks of gestation). Systolic and diastolic blood pressures were measured in early, mid-, and late pregnancy and 6 and 9 years after pregnancy. RESULTS Triglycerides and remnant cholesterol in early pregnancy were positively associated with preeclampsia. Maternal lipid levels in early pregnancy were not associated with gestational hypertension. Total cholesterol, low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and especially triglycerides and remnant cholesterol were positively associated with blood pressure in pregnancy and 6 and 9 years after pregnancy. Triglycerides and remnant cholesterol are positively associated with sustained hypertension 6 and 9 years after pregnancy. CONCLUSION An atherogenic lipid profile in early pregnancy reflecting impaired triglyceride-rich lipoprotein metabolism is independently associated with preeclampsia and blood pressure throughout pregnancy but also with sustained hypertension long term postpartum. Lipid levels in early pregnancy may help to identify women at risk for future hypertension and perhaps also women at risk for future cardiovascular disease.
Collapse
|
42
|
Higashi Y, Gautam S, Delafontaine P, Sukhanov S. IGF-1 and cardiovascular disease. Growth Horm IGF Res 2019; 45:6-16. [PMID: 30735831 PMCID: PMC6504961 DOI: 10.1016/j.ghir.2019.01.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/17/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is an inflammatory arterial pathogenic condition, which leads to ischemic cardiovascular diseases, such as coronary artery disease and myocardial infarction, stroke, and peripheral arterial disease. Atherosclerosis is a multifactorial disorder and its pathophysiology is highly complex. Changes in expression of multiple genes coupled with environmental and lifestyle factors initiate cascades of adverse events involving multiple types of cells (e.g. vascular endothelial cells, smooth muscle cells, and macrophages). IGF-1 is a pleiotropic factor, which is found in the circulation (endocrine IGF-1) and is also produced locally in arteries (endothelial cells and smooth muscle cells). IGF-1 exerts a variety of effects on these cell types in the context of the pathogenesis of atherosclerosis. In fact, there is an increasing body of evidence suggesting that IGF-1 has beneficial effects on the biology of atherosclerosis. This review will discuss recent findings relating to clinical investigations on the relation between IGF-1 and cardiovascular disease and basic research using animal models of atherosclerosis that have elucidated some of the mechanisms underlying atheroprotective effects of IGF-1.
Collapse
Affiliation(s)
- Yusuke Higashi
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States.
| | - Sandeep Gautam
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Patrick Delafontaine
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sergiy Sukhanov
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
43
|
Kaur P, Choudhury D. Insulin Promotes Wound Healing by Inactivating NFkβP50/P65 and Activating Protein and Lipid Biosynthesis and alternating Pro/Anti-inflammatory Cytokines Dynamics. Biomol Concepts 2019; 10:11-24. [DOI: 10.1515/bmc-2019-0002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
AbstractFour hundred and twenty-two million people have diabetes due to excess free body glucose in their body fluids. Diabetes leads to various problems including retinopathy, neuropathy, arthritis, damage blood vessels etc; it also causes a delay in wound healing. Insufficiency of insulin is the main reason for diabetes-I and systemic insulin treatment is a remedy. The perspective of the potential use of insulin/insulin based drugs to treat chronic wounds in diabetic conditions is focused on in this review. At the site of the wound, TNF-ɑ, IFN-ϒ, IL-1β and IL-6 pro-inflammatory cytokines cause the generation of free radicals, leading to inflammation which becomes persistent in diabetes. Insulin induces expression of IL-4/IL-13, IL-10 anti-inflammatory cytokines etc which further down-regulates NFkβP50/P65 assembly. Insulin shifts the equilibrium towards NFkβP50/P50 which leads to down-regulation of inflammatory cytokines such as IL-6, IL-10 etc through STAT6, STAT3 and c-Maf activation causing nullification of an inflammatory condition. Insulin also promotes protein and lipid biosynthesis which indeed promotes wound recovery. Here, in this article, the contributions of insulin in controlling wound tissue microenvironments and remodulation of tissue have been summarised, which may be helpful to develop novel insulin-based formulation(s) for effective treatment of wounds in diabetic conditions.
Collapse
Affiliation(s)
- Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147004, Punjab, India
| |
Collapse
|
44
|
Vitale G, Pellegrino G, Vollery M, Hofland LJ. ROLE of IGF-1 System in the Modulation of Longevity: Controversies and New Insights From a Centenarians' Perspective. Front Endocrinol (Lausanne) 2019; 10:27. [PMID: 30774624 PMCID: PMC6367275 DOI: 10.3389/fendo.2019.00027] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Human aging is currently defined as a physiological decline of biological functions in the body with a continual adaptation to internal and external damaging. The endocrine system plays a major role in orchestrating cellular interactions, metabolism, growth, and aging. Several in vivo studies from worms to mice showed that downregulated activity of the GH/IGF-1/insulin pathway could be beneficial for the extension of human life span, whereas results are contradictory in humans. In the present review, we discuss the potential role of the IGF-1 system in modulation of longevity, hypothesizing that the endocrine and metabolic adaptation observed in centenarians and in mammals during caloric restriction may be a physiological strategy for extending lifespan through a slower cell growing/metabolism, a better physiologic reserve capacity, a shift of cellular metabolism from cell proliferation to repair activities and a decrease in accumulation of senescent cells. Therefore, understanding of the link between IGF-1/insulin system and longevity may have future clinical applications in promoting healthy aging and in Rehabilitation Medicine.
Collapse
Affiliation(s)
- Giovanni Vitale
- Laboratorio Sperimentale di Ricerche di Neuroendocrinologia Geriatrica ed Oncologica, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Giovanni Vitale
| | - Giuseppe Pellegrino
- Faculty of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Leo J. Hofland
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
45
|
Feter N, Spanevello RM, Soares MSP, Spohr L, Pedra NS, Bona NP, Freitas MP, Gonzales NG, Ito LGMS, Stefanello FM, Rombaldi AJ. How does physical activity and different models of exercise training affect oxidative parameters and memory? Physiol Behav 2018; 201:42-52. [PMID: 30552921 DOI: 10.1016/j.physbeh.2018.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 10/27/2022]
Abstract
The present study investigated the chronic effects of different physical exercise and physical activity models on cognitive function, cholinergic activity, and oxidative stress markers in the cerebral cortex and hippocampus. Eighty 60-day old C57BL/6 mice were divided into the following five groups: Sedentary (SED), moderate-intensity continuous training (MICT), high-intensity interval training (HIIT), resistance training (RT), and physical activity (RW, for "running wheel"). Cognitive function (recognition and spatial memory), oxidative stress parameters, and acetylcholinesterase (AChE) activity in the cerebral cortex and hippocampus were evaluated. MICT mice exhibited enhanced recognition memory compared to SED mice (p = .046) and other exercised groups (HIIT: p < .001; RW: p = .003; RT: p < .001). The RT group showed better spatial memory compared to the SED (p = .004), MICT (p = .019), and RW (p = .003) groups. RW, MICT, HIIT, and RT training models reduced nitrites in the hippocampus compared to the SED group. RT led to a significant increase in both lipid peroxidation (p = .01) and reactive oxygen species (ROS) (p < .001) levels compared to the SED group in the hippocampus. MICT promoted an increase in catalase (CAT) activity (p = .002), while superoxide dismutase (SOD) activity was diminished by RT compared to MICT and HIIT (p = .008). In the cerebral cortex, RT increased ROS levels, but exhibited the lowest lipid peroxidation level among the groups (p < .001). The RW group showed an activity-induced increase in lipid peroxidation level compared to the SED group, and the highest level of CAT activity among all groups (p < .001). AChE activity was higher in the RT group compared to the SED, MICT, and RW groups (p = .039) in the cerebral cortex. In summary, nitrite levels in the hippocampus were decreased in all intervention groups regardless of activity or exercise model. Likewise, MICT improved recognition memory besides increasing CAT activity. We conclude that the MICT and RT protocols seem to act as oxidative stress regulators and non-pharmacological strategies to improve cognitive function.
Collapse
Affiliation(s)
- Natan Feter
- Post-graduate Program in Physical Education, Federal University of Pelotas, Pelotas 96055-630, Brazil.
| | | | | | - Luiza Spohr
- Post-graduate Program in Biochemistry, Federal University of Pelotas, Pelotas 96055-630, Brazil
| | - Nathalia Stark Pedra
- Post-graduate Program in Biochemistry, Federal University of Pelotas, Pelotas 96055-630, Brazil
| | - Natália Pontes Bona
- Post-graduate Program in Biochemistry, Federal University of Pelotas, Pelotas 96055-630, Brazil
| | | | | | | | | | - Airton José Rombaldi
- Post-graduate Program in Physical Education, Federal University of Pelotas, Pelotas 96055-630, Brazil
| |
Collapse
|
46
|
Wen HJ, Liu GF, Xiao LZ, Wu YG. Involvement of endothelial nitric oxide synthase pathway in IGF‑1 protects endothelial progenitor cells against injury from oxidized LDLs. Mol Med Rep 2018; 19:660-666. [PMID: 30431094 DOI: 10.3892/mmr.2018.9633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/08/2018] [Indexed: 11/05/2022] Open
Abstract
A high level of oxidized low‑density lipoproteins (oxLDLs) is an independent risk factor for cardiovascular disease. The aim of the present study was to investigate whether insulin‑like growth factor‑1 (IGF‑1) protected endothelial progenitor cells (EPCs) from injury caused by ox‑LDLs, and whether the endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway was involved in this process. EPCs were isolated from human peripheral blood and characterized. In order to evaluate the effect of IGF‑1 on EPCs, cells were incubated with ox‑LDLs (100 mg/ml) for 24 h to induce a model of EPC dysfunction in vitro, which demonstrated a decrease in the number of EPCs, concomitant with increased apoptosis and decreased proliferation rates. IGF‑1 dose‑dependently increased the number of EPCs. Concurrently, IGF‑1 decreased the levels of apoptosis of EPCs and improved EPCs proliferation following ox‑LDLs challenge. In addition, IGF‑1 significantly increased NO levels in ox‑LDLs‑treated EPCs, accompanied by an upregulation in eNOS expression. The protective effects of IGF‑1 on EPCs and NO production were abolished by L‑NAME, a specific eNOS inhibitor. These results suggested that IGF‑1 protects EPCs from dysfunction induced by oxLDLs through a mechanism involving the eNOS/NO pathway.
Collapse
Affiliation(s)
- Hao-Jing Wen
- Positron Emission Tomography‑Computed Tomography Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Guo-Feng Liu
- Department of Nuclear Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Li-Zhi Xiao
- Positron Emission Tomography‑Computed Tomography Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yong-Gang Wu
- Positron Emission Tomography‑Computed Tomography Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
47
|
Sukhanov S, Higashi Y, Shai SY, Snarski P, Danchuk S, D'Ambra V, Tabony M, Woods TC, Hou X, Li Z, Ozoe A, Chandrasekar B, Takahashi SI, Delafontaine P. SM22α (Smooth Muscle Protein 22-α) Promoter-Driven IGF1R (Insulin-Like Growth Factor 1 Receptor) Deficiency Promotes Atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38:2306-2317. [PMID: 30354209 PMCID: PMC6287936 DOI: 10.1161/atvbaha.118.311134] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective- IGF-1 (insulin-like growth factor 1) is a major autocrine/paracrine growth factor, which promotes cell proliferation, migration, and survival. We have shown previously that IGF-1 reduced atherosclerosis and promoted features of stable atherosclerotic plaque in Apoe-/- mice-an animal model of atherosclerosis. The aim of this study was to assess effects of smooth muscle cell (SMC) IGF-1 signaling on the atherosclerotic plaque. Approach and Results- We generated Apoe-/- mice with IGF1R (IGF-1 receptor) deficiency in SMC and fibroblasts (SM22α [smooth muscle protein 22 α]-CreKI/IGF1R-flox mice). IGF1R was decreased in the aorta and adventitia of SM22α-CreKI/IGF1R-flox mice and also in aortic SMC, embryonic, skin, and lung fibroblasts isolated from SM22α-CreKI/IGF1R-flox mice. IGF1R deficiency downregulated collagen mRNA-binding protein LARP6 (La ribonucleoprotein domain family, member 6) and vascular collagen, and mice exhibited growth retardation. The high-fat diet-fed SM22α-CreKI/IGF1R-flox mice had increased atherosclerotic burden and inflammatory responses. α-SMA (α-smooth muscle actin)-positive plaque cells had reduced proliferation and elevated apoptosis. SMC/fibroblast-targeted decline in IGF-1 signaling decreased atherosclerotic plaque SMC, markedly depleted collagen, reduced plaque fibrous cap, and increased plaque necrotic cores. Aortic SMC isolated from SM22α-CreKI/IGF1R-flox mice had decreased cell proliferation, migration, increased sensitivity to apoptosis, and these effects were associated with disruption of IGF-1-induced Akt signaling. Conclusions- IGF-1 signaling in SMC and in fibroblast is a critical determinant of normal vascular wall development and atheroprotection.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Apoptosis
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Autoantigens/metabolism
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Collagen/metabolism
- Disease Models, Animal
- Female
- Fibroblasts/metabolism
- Fibrosis
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Microfilament Proteins/genetics
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, IGF Type 1/deficiency
- Receptor, IGF Type 1/genetics
- Ribonucleoproteins/metabolism
- Signal Transduction
- SS-B Antigen
Collapse
Affiliation(s)
- Sergiy Sukhanov
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| | - Yusuke Higashi
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| | - Shaw-Yung Shai
- Heart and Vascular Institute (S.-Y.S., V.D., M.T.), Tulane University School of Medicine, New Orleans, LA
| | - Patricia Snarski
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| | - Svitlana Danchuk
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| | - Veronica D'Ambra
- Heart and Vascular Institute (S.-Y.S., V.D., M.T.), Tulane University School of Medicine, New Orleans, LA
| | - Michael Tabony
- Heart and Vascular Institute (S.-Y.S., V.D., M.T.), Tulane University School of Medicine, New Orleans, LA
| | - T Cooper Woods
- Department of Physiology (T.C.W.), Tulane University School of Medicine, New Orleans, LA
| | - Xuwei Hou
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| | - Zhaohui Li
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| | - Atsufumi Ozoe
- Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Japan (A.O., S.-I.T.)
| | - Bysani Chandrasekar
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
- Harry Truman Memorial Veterans Hospital, Columbia, MO (B.C.)
| | - Shin-Ichiro Takahashi
- Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Japan (A.O., S.-I.T.)
| | - Patrice Delafontaine
- From the University of Missouri-Columbia School of Medicine (S.S., Y.H., P.S., S.D., X.H., Z.L., B.C., P.D.)
| |
Collapse
|
48
|
García E, Silva-García R, Flores-Romero A, Blancas-Espinoza L, Rodríguez-Barrera R, Ibarra A. The Severity of Spinal Cord Injury Determines the Inflammatory Gene Expression Pattern after Immunization with Neural-Derived Peptides. J Mol Neurosci 2018; 65:190-195. [PMID: 29796836 DOI: 10.1007/s12031-018-1077-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/27/2018] [Indexed: 11/28/2022]
Abstract
Previous studies revealed that the intensity of spinal cord injury (SCI) plays a key role in the therapeutic effects induced by immunizing with neural-derived peptides (INDP), as severe injuries abolish the beneficial effects induced by INDP. In the present study, we analyzed the expression of some inflammation-related genes (IL6, IL12, IL-1β, IFNɣ, TNFα, IL-10, IL-4, and IGF-1) by quantitative PCR in rats subjected to SCI and INDP. We investigated the expression of these genes after a moderate or severe contusion. In addition, we evaluated the effect of INDP by utilizing two different peptides: A91 and Cop-1. After moderate injury, both A91 and Cop-1 elicited a pattern of genes characterized by a significant reduction of IL6, IL1β, and TNFα but an increase in IL10, IL4, and IGF-1 expression. There was no effect on IL-12 and INFɣ. In contrast, the opposite pattern was observed when rats were subjected to a severe spinal cord contusion. Immunization with either peptide caused a significant increase in the expression of IL-12, IL-1β, IFNɣ (pro-inflammatory genes), and IGF-1. There was no effect on IL-4 and IL-10 compared to controls. After a moderate SCI, INDP reduced pro-inflammatory gene expression and generated a microenvironment prone to neuroprotection. Nevertheless, severe injury elicits the expression of pro-inflammatory genes that could be aggravated by INDP. These findings correlate with our previous results demonstrating that severe injury inhibits the beneficial effects of protective autoimmunity.
Collapse
Affiliation(s)
- Elisa García
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac No. 46, Col. Lomas Anáhuac, C.P. 52786, Huixquilucan Edo. de México, México.,Centro de Investigación del Proyecto CAMINA A.C., 14050, Mexico City, Mexico
| | - Raúl Silva-García
- Departamento de Inmunología, CMN Siglo XXI, 06720, Mexico City, Mexico
| | - Adrian Flores-Romero
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac No. 46, Col. Lomas Anáhuac, C.P. 52786, Huixquilucan Edo. de México, México.,Centro de Investigación del Proyecto CAMINA A.C., 14050, Mexico City, Mexico
| | | | - Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac No. 46, Col. Lomas Anáhuac, C.P. 52786, Huixquilucan Edo. de México, México.,Centro de Investigación del Proyecto CAMINA A.C., 14050, Mexico City, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Av. Universidad Anáhuac No. 46, Col. Lomas Anáhuac, C.P. 52786, Huixquilucan Edo. de México, México. .,Centro de Investigación del Proyecto CAMINA A.C., 14050, Mexico City, Mexico.
| |
Collapse
|
49
|
Doñate Puertas R, Jalabert A, Meugnier E, Euthine V, Chevalier P, Rome S. Analysis of the microRNA signature in left atrium from patients with valvular heart disease reveals their implications in atrial fibrillation. PLoS One 2018; 13:e0196666. [PMID: 29723239 PMCID: PMC5933750 DOI: 10.1371/journal.pone.0196666] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Among the potential factors which may contribute to the development and perpetuation of atrial fibrillation, dysregulation of miRNAs has been suggested. Thus in this study, we have quantified the basal expressions of 662 mature human miRNAs in left atrium (LA) from patients undergoing cardiac surgery for valve repair, suffering or not from atrial fibrillation (AF) by using TaqMan® Low Density arrays (v2.0). RESULTS Among the 299 miRNAs expressed in all patients, 42 miRNAs had altered basal expressions in patients with AF. Binding-site predictions with Targetscan (conserved sites among species) indicated that the up- and down-regulated miRNAs controlled respectively 3,310 and 5,868 genes. To identify the most relevant cellular functions under the control of the altered miRNAs, we focused on the 100 most targeted genes of each list and identified 5 functional protein-protein networks among these genes. Up-regulated networks were involved in synchronisation of circadian rythmicity and in the control of the AKT/PKC signaling pathway (i.e., proliferation/adhesion). Down-regulated networks were the IGF-1 pathway and TGF-beta signaling pathway and a network involved in RNA-mediated gene silencing, suggesting for the first time that alteration of miRNAs in AF would also perturbate the whole miRNA machinery. Then we crossed the list of miRNA predicted genes, and the list of mRNAs altered in similar patients suffering from AF and we found that respectively 44.5% and 55% of the up- and down-regulated mRNA are predicted to be conserved targets of the altered miRNAs (at least one binding site in 3'-UTR). As they were involved in the same biological processes mentioned above, these data demonstrated that a great part of the transcriptional defects previously published in LA from AF patients are likely due to defects at the post-transcriptional level and involved the miRNAs. CONCLUSIONS Our stringent analysis permitted us to identify highly targeted protein-protein networks under the control of miRNAs in LA and, among them, to highlight those specifically affected in AF patients with altered miRNA signature. Further studies are now required to determine whether alterations of miRNA levels in AF pathology are causal or represent an adaptation to prevent cardiac electrical and structural remodeling.
Collapse
Affiliation(s)
- Rosa Doñate Puertas
- Institut NeuroMyoGene (INMG), UMR CNRS 5310-INSERM U1217 / University of Lyon, Lyon, France
| | - Audrey Jalabert
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
| | - Emmanuelle Meugnier
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
| | - Vanessa Euthine
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
| | - Philippe Chevalier
- Institut NeuroMyoGene (INMG), UMR CNRS 5310-INSERM U1217 / University of Lyon, Lyon, France
- Rhythmology Unit, Louis Pradel Cardiology Hospital, Hospices Civils de Lyon, Bron, France
- * E-mail: (SR); (PC)
| | - Sophie Rome
- CarMeN Laboratory (UMR INSERM 1060-INRA 1397, INSA), Lyon-Sud Faculty of Medicine, University of Lyon, Pierre-Bénite, France
- * E-mail: (SR); (PC)
| |
Collapse
|
50
|
Waldron J, Raymond W, Ostli-Eilertsen G, Nossent J. Insulin-like growth factor-1 (IGF1) in systemic lupus erythematosus: relation to disease activity, organ damage and immunological findings. Lupus 2018; 27:963-970. [PMID: 29385899 DOI: 10.1177/0961203318756288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Insulin growth factor-1 (IGF1) activates cell proliferation pathways and inhibits apoptosis. IGF1 is involved in tumour growth and required for T-cell independent activation of B cells. Activated B cells and autoantibody production are a hallmark of systemic lupus erythematosus (SLE). To investigate the possible role of IGF1 in SLE, we studied IGF1 across clinical characteristics, immunological biomarkers, disease activity and organ damage in SLE patients. Method In a cross-sectional study, we collected clinical characteristics, medication, disease activity (SLEDAI-2K) and organ damage (SDI) for 94 SLE patients. Autoantibodies and cytokines were measured by ELISA, and levels of IGF1 and IGF binding protein 3 (IGFBP3) by chemiluminescence. Free IGF1 was estimated by the IGF1:IGFBP3 ratio. Healthy controls served as a comparator group. Results There was a significant age-related decline in IGF1, IGFBP3 and free IGF1 (IGF1:IGFBP3 ratio) that was similar in SLE patients and controls with very few outliers. Free IGF1 was inversely related to blood pressure (Rs -0.327, p < 0.01) and HbA1c (Rs -0.31, p < 0.01). Free IGF1 was higher in disease-modifying antirheumatic drug-treated patients ( p < 0.01), but there was no significant association between the IGF1 axis and autoantibody profiles, cytokine levels or SLEDAI-2K or SDI categories. IGF1 correlated inversely with BAFF level and B, natural killer and CD8 + cell counts. Conclusion Free IGF1 levels in SLE patients declined appropriately with age. IGF1 levels were not associated with disease activity, severity or autoantibody levels in SLE. Free IGF1 had positive metabolic effects in SLE and may play an indirect role in dampening the cellular immune response by downregulating B- and T-cell activity.
Collapse
Affiliation(s)
- J Waldron
- 1 Rheumatology Group, School of Medicine, The University of Western Australia, Perth, Australia
| | - W Raymond
- 1 Rheumatology Group, School of Medicine, The University of Western Australia, Perth, Australia
| | - G Ostli-Eilertsen
- 2 Inflammation Group, Department of Clinical Medicine, Arctic University, Tromsø, Norway
| | - J Nossent
- 1 Rheumatology Group, School of Medicine, The University of Western Australia, Perth, Australia.,3 Department of Rheumatology, Sir Charles Gairdner Hospital, Perth, Australia
| |
Collapse
|