1
|
Fan S, Qiu Y, Liu J, Zhu T, Wang C, Liu D, Yan L, Ren M. Effect of the glucagon-like peptide-1 receptor agonists on diabetic peripheral neuropathy: A meta-analysis. J Neurochem 2024. [PMID: 39453834 DOI: 10.1111/jnc.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Previous researches found that glucagon-like peptide 1 receptor agonists (GLP-1RA) offer benefits beyond their anti-diabetic properties, including weight loss and cardiovascular disease prevention. However, the effects of GLP-1RA on diabetic peripheral neuropathy (DPN) remain unclear. This meta-analysis aims to assess the potential benefits of GLP-1RA treatment in DPN patients by evaluating peripheral neural function. Following the Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a meta-analysis of the clinical trials investigating the impact of GLP-1RA treatment on peripheral neural function in patients with DPN. Outcomes were measured using electrophysiological tests, including nerve conduction velocity (NCV) and action potential amplitude. Our meta-analysis included six studies with 271 participants. Following GLP-1RA treatment, NCV significantly improved compared to the control group (MD 1.74; 95% CI 1.16 to 2.33; p < 0.001) and before treatment (MD 2.16; 95% CI 1.04 to 3.27; p < 0.001). Despite the improvement in NCV, blood glucose levels did not change significantly (MD -0.20 95% CI -0.87 to 0.46, p = 0.55) indicating that GLP-1RA enhances NCV through mechanisms other than glucose lowering. Nonetheless, as a result of the limited population studied, further research is needed to strengthen the reliability of these findings.
Collapse
Affiliation(s)
- Shujin Fan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Yue Qiu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Jing Liu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Tianxin Zhu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Chuan Wang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Dan Liu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| |
Collapse
|
2
|
Son JW, Lim S. Glucagon-Like Peptide-1 Based Therapies: A New Horizon in Obesity Management. Endocrinol Metab (Seoul) 2024; 39:206-221. [PMID: 38626909 PMCID: PMC11066441 DOI: 10.3803/enm.2024.1940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 05/03/2024] Open
Abstract
Obesity is a significant risk factor for health issues like type 2 diabetes and cardiovascular disease. It often proves resistant to traditional lifestyle interventions, prompting a need for more precise therapeutic strategies. This has led to a focus on signaling pathways and neuroendocrine mechanisms to develop targeted obesity treatments. Recent developments in obesity management have been revolutionized by introducing novel glucagon-like peptide-1 (GLP-1) based drugs, such as semaglutide and tirzepatide. These drugs are part of an emerging class of nutrient-stimulated hormone-based therapeutics, acting as incretin mimetics to target G-protein-coupled receptors like GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and glucagon. These receptors are vital in regulating body fat and energy balance. The development of multiagonists, including GLP-1-glucagon and GIP-GLP-1-glucagon receptor agonists, especially with the potential for glucagon receptor activation, marks a significant advancement in the field. This review covers the development and clinical efficacy of various GLP-1-based therapeutics, exploring the challenges and future directions in obesity management.
Collapse
Affiliation(s)
- Jang Won Son
- Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
3
|
Sohn M, Frias JP, Lim S. Cardiovascular efficacy and safety of antidiabetic agents: A network meta-analysis of randomized controlled trials. Diabetes Obes Metab 2023; 25:3560-3577. [PMID: 37649320 DOI: 10.1111/dom.15251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
AIM An important characteristic of glucose-lowering therapies (GLTs) is their ability to prevent cardiovascular complications. We aimed to investigate the cardiorenal efficacy and general safety of GLTs. MATERIALS AND METHODS Multicentre, randomized, clinical trials that included over 100 participants comparing antidiabetic agents with a placebo or a different antidiabetic agent and reporting major adverse cardiovascular events (MACEs), or primarily reporting heart failure, were searched in the PubMed, Embase and Cochrane databases. Data were extracted independently for random-effects network meta-analyses to calculate the hazard ratio estimates. RESULTS Forty-three trials that compared nine types of GLTs were included in the present analysis. The risk of three-point MACE was reduced in the presence of glucagon-like peptide-1 receptor agonists (GLP-1 RAs), sodium-glucose cotransporter-2 inhibitors (SGLT-2is) and thiazolidinedione therapy compared with the placebo, dipeptidyl peptidase-4 inhibitors, or insulin therapy. GLP-1 RAs were favourable for cardiovascular and renal outcomes. SGLT-2is reduced renal outcomes by ~40%, which was superior to other GLTs. Thiazolidinedione therapy increased the risks of hospitalization for heart failure and had no benefits on mortality. Adverse events leading to drug discontinuation were higher with GLP-1 RAs and thiazolidinediones than placebo. CONCLUSIONS GLP-1 RAs, SGLT-2is and thiazolidinediones reduced three-point MACE compared with other GLTs. Each drug class had unique advantages and disadvantages.
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Juan P Frias
- National Research Institute, Metro Medical Mall, Los Angeles, California, USA
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
4
|
Sohn M, Dietrich JW, Nauck MA, Lim S. Characteristics predicting the efficacy of SGLT-2 inhibitors versus GLP-1 receptor agonists on major adverse cardiovascular events in type 2 diabetes mellitus: a meta-analysis study. Cardiovasc Diabetol 2023; 22:153. [PMID: 37381019 DOI: 10.1186/s12933-023-01877-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Recent large clinical trials have demonstrated cardiovascular benefits of similar overall magnitude for sodium-glucose cotransporter-2 inhibitor (SGLT-2i) and glucagon-like peptide-1 receptor agonist (GLP-1RA) therapy in subjects with type 2 diabetes. We sought to identify subgroups based on baseline characteristics with a differential response to either SGLT-2i or GLP-1RA. METHODS PubMed, Cochrane CENTRAL, and EMBASE were searched from 2008 to 2022 for SGLT-2i or GLP-1RA randomized trials that reported 3-point major adverse cardiovascular events (3P-MACE). Baseline clinical and biochemical characteristics included age, sex, body mass index (BMI), HbA1c, estimated glomerular filtration rate (eGFR), albuminuria, preexisting cardiovascular disease (CVD), and heart failure (HF). Absolute and relative risk reductions (ARR and RRR) regarding incidence rates for 3P-MACE with a 95% confidence interval were calculated. The association of average baseline characteristics in each study with the ARR and RRR for 3P-MACE was investigated by meta-regression analyses (random-effects model, assuming inter-study heterogeneity). Meta-analysis was also conducted to investigate whether the efficacy of SGLT-2i or GLP-1RA on 3P-MACE reduction could differ according to the patient's characteristics (e.g., HbA1c above/below cutoff). RESULTS After a critical assessment of 1,172 articles, 13 cardiovascular outcome trials with a total of 111,565 participants were selected. In meta-regression analysis, the more patients with reduced eGFR in the studies, the greater ARR by SGLT-2i or GLP-1RA therapy. Similarly, in the meta-analysis, SGLT-2i therapy tended to be more effective in reducing 3P-MACE in people with eGFR < 60 ml/min/1.73 m2 than in those with normal renal function (ARR - 0.90 [-1.44 to - 0.37] vs. - 0.17 [-0.34 to - 0.01] events/100 person-years). Furthermore, people with albuminuria tended to respond better to SGLT-2i therapy than those with normoalbuminuria. However, this was not the case for the GLP-1RA treatment. Other factors including age, sex, BMI, HbA1c, and preexisting CVD or HF did not affect the efficacy of either SGLT-2i or GLP-1RA treatment on the ARR or RRR of 3P-MACE. CONCLUSIONS Because decreased eGFR [significant] and albuminuria [trend] were found to predict a better efficacy for SGLT-2i in 3P-MACE reduction, this class of drug should be preferred in such patients. However, GLP-1RA may be considered for patients with normal eGFR because it showed better efficacy than SGLT-2i in this subgroup [trend].
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Johannes W Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Medicine I, St. Josef-Hospital (Ruhr-University Bochum), Gudrunstr. 56, D-44791, Bochum, Germany
| | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Medicine I, St. Josef-Hospital (Ruhr-University Bochum), Gudrunstr. 56, D-44791, Bochum, Germany.
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, 13620, Republic of Korea.
| |
Collapse
|
5
|
Richardson TL, Halvorson AE, Hackstadt AJ, Hung AM, Greevy R, Grijalva CG, Elasy TA, Roumie CL. Primary Occurrence of Cardiovascular Events After Adding Sodium-Glucose Cotransporter-2 Inhibitors or Glucagon-like Peptide-1 Receptor Agonists Compared With Dipeptidyl Peptidase-4 Inhibitors: A Cohort Study in Veterans With Diabetes. Ann Intern Med 2023; 176:751-760. [PMID: 37155984 PMCID: PMC10367222 DOI: 10.7326/m22-2751] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND The effectiveness of glucagon-like peptide-1 receptor agonists (GLP1RA) and sodium-glucose cotransporter-2 inhibitors (SGLT2i) in preventing major adverse cardiac events (MACE) is uncertain for those without preexisting cardiovascular disease. OBJECTIVE To test the hypothesis that MACE incidence was lower with the addition of GLP1RA or SGLT2i compared with dipeptidyl peptidase-4 inhibitors (DPP4i) for primary cardiovascular prevention. DESIGN Retrospective cohort study of U.S. veterans from 2001 to 2019. SETTING Veterans aged 18 years or older receiving care from the Veterans Health Administration, with data linkage to Medicare, Medicaid, and the National Death Index. PATIENTS Veterans adding GLP1RA, SGLT2i, or DPP4i onto metformin, sulfonylurea, or insulin treatment alone or in combination. Episodes were stratified by history of cardiovascular disease. MEASUREMENTS Study outcomes were MACE (acute myocardial infarction, stroke, or cardiovascular death) and heart failure (HF) hospitalization. Cox models compared the outcome between medication groups using pairwise comparisons in a weighted cohort adjusted for covariates. RESULTS The cohort included 28 759 GLP1RA versus 28 628 DPP4i weighted pairs and 21 200 SGLT2i versus 21 170 DPP4i weighted pairs. Median age was 67 years, and diabetes duration was 8.5 years. Glucagon-like peptide-1 receptor agonists were associated with lower MACE and HF versus DPP4i (adjusted hazard ratio [aHR], 0.82 [95% CI, 0.72 to 0.94]), yielding an adjusted risk difference (aRD) of 3.2 events (CI, 1.1 to 5.0) per 1000 person-years. Sodium-glucose cotransporter-2 inhibitors were not associated with MACE and HF (aHR, 0.91 [CI, 0.78 to 1.08]; aRD, 1.28 [-1.12 to 3.32]) compared with DPP4i. LIMITATION Residual confounding; use of DPP4i, GLP1RA, and SGLT2i as first-line therapies were not examined. CONCLUSION The addition of GLP1RA was associated with primary reductions of MACE and HF hospitalization compared with DPP4i use; SGLT2i addition was not associated with primary MACE prevention. PRIMARY FUNDING SOURCE VA Clinical Science Research and Development and supported in part by the Centers for Diabetes Translation Research.
Collapse
Affiliation(s)
- Tadarro L. Richardson
- Veteran Administration Tennessee Valley VA Health Care System Geriatric Research Education Clinical Center (GRECC), Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alese E. Halvorson
- Veteran Administration Tennessee Valley VA Health Care System Geriatric Research Education Clinical Center (GRECC), Nashville, TN
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN
| | - Amber J. Hackstadt
- Veteran Administration Tennessee Valley VA Health Care System Geriatric Research Education Clinical Center (GRECC), Nashville, TN
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN
| | - Adriana M. Hung
- Veteran Administration Tennessee Valley VA Health Care System Geriatric Research Education Clinical Center (GRECC), Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Robert Greevy
- Veteran Administration Tennessee Valley VA Health Care System Geriatric Research Education Clinical Center (GRECC), Nashville, TN
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN
| | - Carlos G. Grijalva
- Veteran Administration Tennessee Valley VA Health Care System Geriatric Research Education Clinical Center (GRECC), Nashville, TN
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN
| | - Tom A. Elasy
- Veteran Administration Tennessee Valley VA Health Care System Geriatric Research Education Clinical Center (GRECC), Nashville, TN
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN
| | - Christianne L. Roumie
- Veteran Administration Tennessee Valley VA Health Care System Geriatric Research Education Clinical Center (GRECC), Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
6
|
Sharbatdar Y, Mousavian R, Noorbakhsh Varnosfaderani SM, Aziziyan F, Liaghat M, Baziyar P, Yousefi Rad A, Tavakol C, Moeini AM, Nabi-Afjadi M, Zalpoor H, Kazemi-Lomedasht F. Diabetes as one of the long-term COVID-19 complications: from the potential reason of more diabetic patients' susceptibility to COVID-19 to the possible caution of future global diabetes tsunami. Inflammopharmacology 2023; 31:1029-1052. [PMID: 37079169 PMCID: PMC10116486 DOI: 10.1007/s10787-023-01215-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
According to recent researches, people with diabetes mellitus (type 1 and 2) have a higher incidence of coronavirus disease 2019 (COVID-19), which is caused by a SARS-CoV-2 infection. In this regard, COVID-19 may make diabetic patients more sensitive to hyperglycemia by modifying the immunological and inflammatory responses and increasing reactive oxygen species (ROS) predisposing the patients to severe COVID-19 and potentially lethal results. Actually, in addition to COVID-19, diabetic patients have been demonstrated to have abnormally high levels of inflammatory cytokines, increased virus entrance, and decreased immune response. On the other hand, during the severe stage of COVID-19, the SARS-CoV-2-infected patients have lymphopenia and inflammatory cytokine storms that cause damage to several body organs such as β cells of the pancreas which may make them as future diabetic candidates. In this line, the nuclear factor kappa B (NF-κB) pathway, which is activated by a number of mediators, plays a substantial part in cytokine storms through various pathways. In this pathway, some polymorphisms also make the individuals more competent to diabetes via infection with SARS-CoV-2. On the other hand, during hospitalization of SARS-CoV-2-infected patients, the use of some drugs may unintentionally lead to diabetes in the future via increasing inflammation and stress oxidative. Thus, in this review, we will first explain why diabetic patients are more susceptible to COVID-19. Second, we will warn about a future global diabetes tsunami via the SARS-CoV-2 as one of its long-term complications.
Collapse
Affiliation(s)
- Yasamin Sharbatdar
- Department of Anesthesiology, School of Allied Medical Sciences, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Ronak Mousavian
- Department of Clinical Biochemistry, School of Medicine, Cellular and Molecular Research Center, Medical Basic Science Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Chanour Tavakol
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mansour Moeini
- Department of Internal Medicine, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Hu S, Gu S, Qi C, Wang S, Qian F, Shi C, Fan G. Cost-utility analysis of semaglutide for type 2 diabetes after its addition to the National Medical Insurance System in China. Diabetes Obes Metab 2023; 25:387-397. [PMID: 36193880 DOI: 10.1111/dom.14881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The main research purpose is to compare the long-term cost-effectiveness of semaglutide (SEMA) with that of dulaglutide (DULA) for patients with inadequately controlled type 2 diabetes throughout their lifetime. If necessary, the second aim is to investigate a further price cut for SEMA to provide sound advice for government drug price adjustments. METHODS Cost-utility analysis was performed by the United Kingdom Prospective Diabetes Study Outcomes Model 2 (UKPDS OM2) from the perspective of health care providers in China. Baseline characteristics and clinical efficacy of SEMA and DULA were sourced from the high-dose comparison in the SUSTAIN-7 trial. A binary search was used to identify the scope for further reduction in the price of SEMA. The impact of individual parameters was assessed with sensitivity analyses. RESULTS Main analysis (SEMA vs. DULA) revealed a mean difference in quality-adjusted life years (QALYs) of 0.04 QALYs and costs of $1132.29. The incremental cost-utility ratio was $26 957.44/QALY, showing that SEMA was a better option compared with DULA. In sensitivity analyses, the discount rate made the greatest contribution to the incremental cost-utility ratio. In the binary search, there was still scope to reduce the SEMA cost further by approximately 6.83% to be cost-effective, taking DULA as a reference. CONCLUSION After its addition to the National Medical Insurance System in China, SEMA is expected to be a cost-effective choice compared with DULA for patients with type 2 diabetes with inadequately controlled from the cost-utility analysis. However, there is still scope to reduce the annual cost of SEMA further.
Collapse
Affiliation(s)
- Shanshan Hu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengying Gu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chendong Qi
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuowen Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengdan Qian
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Shi
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Dallavalasa S, Tulimilli SV, Prakash J, Ramachandra R, Madhunapantula SV, Veeranna RP. COVID-19: Diabetes Perspective-Pathophysiology and Management. Pathogens 2023; 12:pathogens12020184. [PMID: 36839456 PMCID: PMC9967788 DOI: 10.3390/pathogens12020184] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Recent evidence relating to the impact of COVID-19 on people with diabetes is limited but continues to emerge. COVID-19 pneumonia is a newly identified illness spreading rapidly throughout the world and causes many disabilities and fatal deaths. Over the ensuing 2 years, the indirect effects of the pandemic on healthcare delivery have become prominent, along with the lingering effects of the virus on those directly infected. Diabetes is a commonly identified risk factor that contributes not only to the severity and mortality of COVID-19 patients, but also to the associated complications, including acute respiratory distress syndrome (ARDS) and multi-organ failure. Diabetic patients are highly affected due to increased viral entry into the cells and decreased immunity. Several hypotheses to explain the increased incidence and severity of COVID-19 infection in people with diabetes have been proposed and explained in detail recently. On the other hand, 20-50% of COVID-19 patients reported new-onset hyperglycemia without diabetes and new-onset diabetes, suggesting the two-way interactions between COVID-19 and diabetes. A systematic review is required to confirm diabetes as a complication in those patients diagnosed with COVID-19. Diabetes and diabetes-related complications in COVID-19 patients are primarily due to the acute illness caused during the SARS-CoV-2 infection followed by the release of glucocorticoids, catecholamines, and pro-inflammatory cytokines, which have been shown to drive hyperglycemia positively. This review provides brief insights into the potential mechanisms linking COVID-19 and diabetes, and presents clinical management recommendations for better handling of the disease.
Collapse
Affiliation(s)
- Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - SubbaRao V. Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - Janhavi Prakash
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - Ramya Ramachandra
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Centre), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
- Leader, Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India
| | - Ravindra P. Veeranna
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
- Correspondence:
| |
Collapse
|
9
|
Miao L, Xu J, Targher G, Byrne CD, Zheng MH. Old and new classes of glucose-lowering agents as treatments for non-alcoholic fatty liver disease: A narrative review. Clin Mol Hepatol 2022; 28:725-738. [PMID: 35286799 PMCID: PMC9597221 DOI: 10.3350/cmh.2022.0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/11/2022] [Indexed: 01/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease with a global prevalence of about 55% in people with type 2 diabetes mellitus (T2DM). T2DM, obesity and NAFLD are three closely inter-related pathological conditions. In addition, T2DM is one of the strongest clinical risk factors for the faster progression of NAFLD to non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. Increasing evidence suggests that newer classes of glucose-lowering drugs, such as peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors or sodium-glucose cotransporter-2 inhibitors, could reduce the rates of NAFLD progression. This narrative review aims to briefly summarize the recent results from randomized controlled trials testing the efficacy and safety of old and new glucose-lowering drugs for the treatment of NAFLD or NASH in adults both with and without coexisting T2DM.
Collapse
Affiliation(s)
- Lei Miao
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Xu
- Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China,Corresponding author : Ming-Hua Zheng NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou 325000, China Tel: +86-577-55579611, Fax: +86-577-55578522, E-mail:
| |
Collapse
|
10
|
Madsbad S, Holst JJ. Cardiovascular effects of incretins - focus on GLP-1 receptor agonists. Cardiovasc Res 2022; 119:886-904. [PMID: 35925683 DOI: 10.1093/cvr/cvac112] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
GLP-1 receptor agonists (GLP-1 RAs) have been used to treat patients with type 2 diabetes since 2005 and have become popular because of the efficacy and durability in relation to glycaemic control in combination with weight loss in most patients. Today in 2022, seven GLP-1 RAs, including oral semaglutide are available for treatment of type 2 diabetes. Since the efficacy in relation to reduction of HbA1c and body weight as well as tolerability and dosing frequency vary between agents, the GLP-1 RAs cannot be considered equal. The short acting lixisenatide showed no cardiovascular benefits, while once daily liraglutide and the weekly agonists, subcutaneous semaglutide, dulaglutide, and efpeglenatide, all lowered the incidence of cardiovascular events. Liraglutide, oral semaglutide and exenatide once weekly also reduced mortality. GLP-1 RAs reduce the progression of diabetic kidney disease. In the 2019 consensus report from EASD/ADA, GLP-1 RAs with demonstrated cardio-renal benefits (liraglutide, semaglutide and dulaglutide) are recommended after metformin to patients with established cardiovascular diseases or multiple cardiovascular risk factors. European Society of Cardiology (ESC) suggests starting with a SGLT-2 inhibitor or a GLP-1 RA in drug naïve patients with type 2 diabetes and atherosclerotic CVD or high CV Risk. However, the results from cardiovascular outcome trials (CVOT) are very heterogeneous suggesting that some GLP-1RA are more suitable to prevent CVD than others. The CVOTs provide a basis upon which individual treatment decisions for patients with T2D and CVD can be made.
Collapse
Affiliation(s)
- Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Ni Z, Wang Y, Shi C, Zhang X, Gong H, Dong Y. Islet MC4R Regulates PC1/3 to Improve Insulin Secretion in T2DM Mice via the cAMP and β-arrestin-1 Pathways. Appl Biochem Biotechnol 2022; 194:6164-6178. [PMID: 35900711 DOI: 10.1007/s12010-022-04089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
Melanocortin-4 receptor (MC4R) plays an important role in energy balance regulation and insulin secretion. It has been demonstrated that in the pancreas, it is expressed in islet α and β cells, wherein it is significantly correlated with insulin and glucagon-like peptide-1 (GLP-1) secretion. However, the molecular mechanism by which it regulates islet function is still unclear. Therefore, in this study, our aim was to clarify the signaling and target genes involved in the regulation of insulin and GLP-1 secretion by islet MC4R. The results obtained showed that in islet cells, the expression of prohormone convertase 1/3 (PC1/3), which is correlated with islet GLP-1 and insulin secretion, increased significantly under the action of the MC4R agonist, NDP-α-MSH, but decreased under the action of the MC4R antagonist, AgRP. Additionally, we observed that to exert their regulatory functions in the islets, cAMP and β-arrestin-1 acted as important signaling mediators of MC4R, and compared with control islets, the cAMP, PKA, and β-arrestin-1 levels corresponding to NDP-α-MSH-treated islets were significantly elevated; however, in AgRP-treated islets, their levels decreased significantly. Islets treated with the PKA inhibitor, H89, and the ERK1/2 inhibitor, PD98059, also showed significant decreases in PC1/3 expression level, indicating that the cAMP and β-arrestin-1 pathways are significantly correlated with PC1/3 expression. These findings suggest that islet MC4R possibly affects PC1/3 expression via the cAMP and β-arrestin-1 pathways to regulate GLP-1 and insulin secretion. These results provide a new theoretical basis for targeting the molecular mechanism of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Zaizhong Ni
- College of Food and Bioengineering, Xuzhou University of Technology, 221018, Xuzhou, Jiangsu Province, China
| | - Yanan Wang
- College of Food and Bioengineering, Xuzhou University of Technology, 221018, Xuzhou, Jiangsu Province, China
| | - Cong Shi
- College of Food and Bioengineering, Xuzhou University of Technology, 221018, Xuzhou, Jiangsu Province, China
| | - Xinping Zhang
- Clinical Laboratory, Shanxi coal Central Hospital, 030006, Taiyuan, Shanxi Province, China
| | - Hao Gong
- College of Food and Bioengineering, Xuzhou University of Technology, 221018, Xuzhou, Jiangsu Province, China
| | - Yuwei Dong
- College of Food and Bioengineering, Xuzhou University of Technology, 221018, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
12
|
Moon JS, Hong JH, Jung YJ, Ferrannini E, Nauck MA, Lim S. SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab 2022; 33:424-442. [PMID: 35491295 DOI: 10.1016/j.tem.2022.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic condition that affects nearly one billion people globally, characterized by triacylglycerol accumulation in the liver as a consequence of metabolic abnormalities (obesity and impaired glucose regulation). Low-grade inflammation, oxidative stress, mitochondrial dysfunction, and dysbiosis in gut microbiota are involved in the etiology of MAFLD, and both cardiovascular events and hepatic complications are the long-term consequences. In the absence of approved therapies for this condition, sodium-glucose cotransporter 2 inhibitors (SGLT-2 Is) and glucagon-like peptide 1 receptor agonists (GLP-1 RAs) have the specific advantage of lowering body weight and providing cardiovascular benefits. Here, we discuss potential roles for SGLT-2 Is and GLP-1 RAs in the prevention and treatment of intrahepatic triacylglycerol accumulation and associated inflammation and/or fibrosis.
Collapse
Affiliation(s)
- Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jun Hwa Hong
- Department of Internal Medicine, Eulji University Hospital, School of Medicine, Daejeon, Republic of Korea
| | - Yong Jin Jung
- Department of Internal Medicine, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital (Ruhr-University, Bochum), Bochum, Germany.
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
13
|
The Impact of Hypoglycemic Therapy on the Prognosis for Acute Coronary Syndrome in Patients with Type 2 Diabetes. J Pers Med 2022; 12:jpm12050845. [PMID: 35629267 PMCID: PMC9143707 DOI: 10.3390/jpm12050845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
The article discusses particular circumstances of acute coronary syndrome (ACS) in patients with type 2 diabetes (T2D). In addition, the available literature data and clinical guidelines reflecting the role of hypoglycemic therapy as a cardioprotection factor in ACS are analyzed. The article considers possible protective molecular mechanisms of various groups of drugs in ischemic cardiomyocytes.
Collapse
|
14
|
Wilk-Sledziewska K, Sielatycki PJ, Uscinska N, Bujno E, Rosolowski M, Kakareko K, Sledziewski R, Rydzewska-Rosolowska A, Hryszko T, Zbroch E. The Impact of Cardiovascular Risk Factors on the Course of COVID-19. J Clin Med 2022; 11:2250. [PMID: 35456343 PMCID: PMC9026388 DOI: 10.3390/jcm11082250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
AIM OF THE STUDY The aim of our review is to indicate and discuss the impact of cardiovascular risk factors, such as obesity, diabetes, lipid profile, hypertension and smoking on the course and mortality of COVID-19 infection. BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic is spreading around the world and becoming a major public health crisis. All coronaviruses are known to affect the cardiovascular system. There is a strong correlation between cardiovascular risk factors and severe clinical complications, including death in COVID-19 patients. All the above-mentioned risk factors are widespread and constitute a significant worldwide health problem. Some of them are modifiable and the awareness of their connection with the COVID-19 progress may have a crucial impact on the current and possible upcoming infection. DATA COLLECTION We searched for research papers describing the impact of selected cardiovascular risk factors on the course, severity, complications and mortality of COVID-19 infection form PubMed and Google Scholar databases. Using terms, for example: "COVID-19 cardiovascular disease mortality", "COVID-19 hypertension/diabetes mellitus/obesity/dyslipidemia", "cardiovascular risk factors COVID-19 mortality" and other related terms listed in each subtitle. The publications were selected according to the time of their publications between January 2020 and December 2021. From the PubMed database we obtain 1552 results. Further studies were sought by manually searching reference lists of the relevant articles. Relevant articles were selected based on their title, abstract or full text. Articles were excluded if they were clearly related to another subject matter or were not published in English. The types of articles are mainly randomized controlled trial and systematic review. An additional criterion used by researchers was co-morbidities and age of patients in study groups. From a review of the publications, 105 of them were selected for this work with all subheadings included. Findings and Results: The intention of this review was to summarize current knowledge about comorbidities and development of COVID-19 infection. We tried to focus on the course and mortality of the abovementioned virus disease in patients with concomitant CV risk factors. Unfortunately, we were unable to assess the quality of data in screened papers and studies we choose because of the heterogenicity of the groups. The conducted studies had different endpoints and included different groups of patients in terms of nationality, age, race and clinical status. We decide to divide the main subjects of the research into separately described subtitles such as obesity, lipid profile, hypertension, diabetes, smoking. We believe that the studies we included and gathered are very interesting and show modern and present-day clinical data and approaches to COVID-19 infection in specific divisions of patients.
Collapse
Affiliation(s)
- Katarzyna Wilk-Sledziewska
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (K.W.-S.); (P.J.S.); (N.U.); (E.B.); (M.R.)
| | - Piotr Jan Sielatycki
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (K.W.-S.); (P.J.S.); (N.U.); (E.B.); (M.R.)
| | - Natalia Uscinska
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (K.W.-S.); (P.J.S.); (N.U.); (E.B.); (M.R.)
| | - Elżbieta Bujno
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (K.W.-S.); (P.J.S.); (N.U.); (E.B.); (M.R.)
| | - Mariusz Rosolowski
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (K.W.-S.); (P.J.S.); (N.U.); (E.B.); (M.R.)
| | - Katarzyna Kakareko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.K.); (A.R.-R.); (T.H.)
| | - Rafal Sledziewski
- Department of Radiology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Alicja Rydzewska-Rosolowska
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.K.); (A.R.-R.); (T.H.)
| | - Tomasz Hryszko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.K.); (A.R.-R.); (T.H.)
| | - Edyta Zbroch
- Department of Internal Medicine and Hypertension, Medical University of Bialystok, 15-540 Bialystok, Poland; (K.W.-S.); (P.J.S.); (N.U.); (E.B.); (M.R.)
| |
Collapse
|
15
|
Napoli R, Avogaro A, Formoso G, Piro S, Purrello F, Targher G, Consoli A. Beneficial effects of glucagon-like peptide 1 receptor agonists on glucose control, cardiovascular risk profile, and non-alcoholic fatty liver disease. An expert opinion of the Italian diabetes society. Nutr Metab Cardiovasc Dis 2021; 31:3257-3270. [PMID: 34627692 DOI: 10.1016/j.numecd.2021.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
Patients with type 2 diabetes mellitus (T2DM) show an increased risk of cardiovascular diseases (CVD) and mortality. Many factors are implicated in the pathogenesis of CVD in patients with T2DM. Among the factors involved, chronic hyperglycemia and the cluster of CVD risk factors, such as dyslipidemia, hypertension, and obesity, play a major role. For many years, the control of hyperglycemia has been complicated by the fact that the use of many available drugs was associated with an increased risk of hypoglycemia. Paradoxically, hypoglycemia per se represents a risk factor for CVD. Recently, new drugs for the control of hyperglycemia have become available: many of them can determine a good control of hyperglycemia with minor risks of hypoglycemia. Among these new classes of drugs, glucagon-like peptide-1 receptor agonists (GLP-1RAs) offer many advantages. In addition to a strong anti-hyperglycemic action, they possess the ability to act on body weight and other relevant risk factors for CVD. Consistently, some of the GLP-1RAs have demonstrated, in RCT designed to assess their safety, to reduce the risk of major adverse cardiovascular events. Furthermore, GLP-1RAs possess properties useful to treat additional conditions, as the capability of improving liver damage in patients with NAFLD or NASH, highly prevalent conditions in people with T2DM. In this document, written by experts of the Italian diabetes society (SID), we will focus our attention on the therapy with GLP-1RAs in patients with T2DM, particularly on the effects on hyperglycemia, cardiovascular disease risk factors, NAFLD/NASH and CVD prevention.
Collapse
Affiliation(s)
- Raffaele Napoli
- Department of Translational Medical Sciences, Unit of Internal Medicine and Diabetes, Federico II University School of Medicine, Napoli, Italy.
| | - Angelo Avogaro
- Department of Medicine (DIMED), Chair of Endocrinology and Metabolic Diseases, University of Padua, Italy
| | - Gloria Formoso
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST, Ex CeSI-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, Catania, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, Catania, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Agostino Consoli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST, Ex CeSI-Met), G. D'Annunzio University, Chieti-Pescara, Italy
| |
Collapse
|
16
|
Amyloidogenicity of peptides targeting diabetes and obesity. Colloids Surf B Biointerfaces 2021; 209:112157. [PMID: 34715595 DOI: 10.1016/j.colsurfb.2021.112157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/20/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022]
Abstract
Since the discovery of insulin, a century ago, the repertoire of therapeutic polypeptides targeting diabetes - and now also obesity - have increased substantially. The focus on quality has shifted from impure and unstable preparations of animal insulin to highly pure, homologous recombinant insulin, along with other peptide-based hormones and analogs such as amylin analogs (pramlintide, davalintide, cagrilintide), glucagon and glucagon-like peptide-1 receptor agonists (GLP-1, liraglutide, exenatide, semaglutide). Proper formulation, storage, manipulation and usage by professionals and patients are required in order to avoid agglomeration into high molecular weight products (HMWP), either amorphous or amyloid, which could result in potential loss of biological activity and short- or long-term immune reaction and silent inactivation. In this narrative review, we present perspective of the aggregation of therapeutic polypeptides used in diabetes and other metabolic diseases, covering the nature and mechanisms, analytical techniques, physical and chemical stability, strategies aimed to hamper the formation of HMWP, and perspectives on future biopharmaceutical developments.
Collapse
|
17
|
Orsini Federici M, Gentilella R, Corcos A, Torre E, Genovese S. Changing the approach to type 2 diabetes treatment: A comparison of glucagon-like peptide-1 receptor agonists and sulphonylureas across the continuum of care. Diabetes Metab Res Rev 2021; 37:e3434. [PMID: 33900667 PMCID: PMC8519155 DOI: 10.1002/dmrr.3434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/11/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
Despite the importance of individualised strategies for patients with type 2 diabetes mellitus (T2DM) and the availability of alternative treatments, including glucagon-like peptide-1 receptor agonists (GLP-1 RAs), sulphonylureas are still widely used in practice. Clinical evidence shows that GLP-1 RAs may provide better and more durable glycaemic control than sulphonylureas, with lower risk of hypoglycaemia. Other reported benefits of GLP-1 RAs include weight loss rather than weight gain (as observed with sulphonylureas), blood pressure reduction and improvement in lipid profiles. In general, the main adverse events with GLP-1 RAs are gastrointestinal in nature. The respective modes of action of GLP-1 RAs and sulphonylureas contribute to differences in the durability of glycaemic control (related to effects on beta-cells) and effects on body weight. Moreover, the glucose-dependent mode of action of GLP-1 RAs, which favours a low incidence of hypoglycaemia, contrasts with the glucose-independent mode of action of sulphonylureas. Evidence from cardiovascular outcomes trials indicates a consistent finding of cardiovascular safety across the GLP-1 RAs and suggests a class benefit for the long-acting GLP-1 RAs in reducing three-point major adverse cardiovascular events, cardiovascular mortality and all-cause mortality. In contrast, potential concerns relating to an increased incidence of adverse cardiovascular events with sulphonylureas have yet to be fully resolved. Recent updates to management guidelines recommend that treatment selection for patients with T2DM should consider clinical trial evidence of cardiovascular safety. Available evidence suggests that this selection should give preference to GLP-1 RAs over sulphonylureas, especially for patients at high cardiovascular risk.
Collapse
Affiliation(s)
| | | | | | - Enrico Torre
- Asl3 GenoveseHead of EndocrinologyDiabetology and Metabolic Diseases SSDGenovaItaly
| | - Stefano Genovese
- Centro Cardiologico Monzino IRCCSHead of DiabetologyEndocrinology and Metabolic Diseases UnitMilanoItaly
| |
Collapse
|
18
|
Abstract
Reduction of glucose is the hallmark of diabetes therapy proven to reduce micro- and macro-vascular risk in patients with type 1 diabetes. However glucose-lowering efficacy trials in type 2 diabetes didn't show major cardiovascular benefit. Then, a paradigm change in the treatment of patients with type 2 diabetes has emerged due to the introduction of new blood glucose-lowering agents. Cardiovascular endpoint studies have proven HbA1c-independent cardioprotective effects for GLP-1 receptor agonists and SGLT-2 inhibitors. Furthermore, SGLT-2 inhibitors reduce the risk for heart failure and chronic kidney disease. Mechanisms for these blood glucose independent drug target-related effects are still an enigma. Recent research has shown that GLP-1 receptor agonists might have anti-inflammatory and plaque stabilising effects whereas SGLT-2 inhibitors primarily reduce pre- and after-load of the heart and increase work load efficiency of the heart. In addition, reduction of intraglomerular pressure, improved energy supply chains and water regulation appear to be major mechanisms for renoprotection by SGLT-2 inhibitors. These studies and observations have led to recent changes in clinical recommendations and treatment guidelines for type 2 diabetes. In patients with high or very high cardio-renal risk, SGLT-2 inhibitors or GLP-1 receptor agonists have a preferred recommendation independent of baseline HbA1c levels due to cardioprotection. In patients with chronic heart failure, chronic kidney disease or at respective risks SGLT-2 inhibitors are the preferred choice. Therefore, the treatment paradigm of glucose control in diabetes has changed towards using diabetes drugs with evidence-based organ protection improving clinical prognosis.
Collapse
|
19
|
Pranata R, Henrina J, Raffaello WM, Lawrensia S, Huang I. Diabetes and COVID-19: The past, the present, and the future. Metabolism 2021; 121:154814. [PMID: 34119537 PMCID: PMC8192264 DOI: 10.1016/j.metabol.2021.154814] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Diabetes, one of the most prevalent chronic diseases in the world, is strongly associated with a poor prognosis in COVID-19. Scrupulous blood sugar management is crucial, since the worse outcomes are closely associated with higher blood sugar levels in COVID-19 infection. Although recent observational studies showed that insulin was associated with mortality, it should not deter insulin use in hospitalized patients requiring tight glucose control. Back and forth dilemma in the past with regards to continue/discontinue certain medications used in diabetes have been mostly resolved. The initial fears of consequences related to continuing certain medications have been largely dispelled. COVID-19 also necessitates the transformation in diabetes care through the integration of technologies. Recent advances in health-related technologies, notably telemedicine and remote continuous glucose monitoring, have become essential in the management of diabetes during the pandemic. Today, these technologies have changed the landscape of medicine and become more important than ever. Being a high-risk population, patients with type 1 or type 2 diabetes, should be prioritized for vaccination. In the future, as the pandemic fades, the prevalence of non-communicable diseases is expected to rise due to lifestyle changes and medical issues/dilemma encountered during the pandemic.
Collapse
Affiliation(s)
- Raymond Pranata
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia.
| | | | | | | | - Ian Huang
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia; Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
20
|
Bielka W, Przezak A, Pawlik A. Therapy of Type 2 Diabetes in Patients with SARS-CoV-2 Infection. Int J Mol Sci 2021; 22:ijms22147605. [PMID: 34299225 PMCID: PMC8306903 DOI: 10.3390/ijms22147605] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 infection poses an important clinical therapeutic problem, especially in patients with coexistent diseases such as type 2 diabetes. Potential pathogenetic links between COVID-19 and diabetes include inflammation, effects on glucose homeostasis, haemoglobin deoxygenation, altered immune status and activation of the renin-angiotensin-aldosterone system (RAAS). Moreover, drugs often used in the clinical care of diabetes (dipeptidyl peptidase 4 inhibitors, glucagon-like peptide 1 receptor agonists, sodium-glucose cotransporter 2 inhibitors, metformin and insulin) may influence the course of SARS-CoV-2 infection, so it is very important to verify their effectiveness and safety. This review summarises the new advances in diabetes therapy and COVID-19 and provides clinical recommendations that are essential for medical doctors and for patients suffering from type 2 diabetes.
Collapse
|
21
|
Landgraf R, Aberle J. Hundert Jahre – Insulin bleibt aktuell und notwendig. DIABETOL STOFFWECHS 2021. [DOI: 10.1055/a-1386-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ZusammenfassungIn der Behandlung des Typ-1-Diabetes ist die Therapie mit Insulin auch 100 Jahre nach seiner Entdeckung weiterhin eine lebensnotwendige Therapie. Der pharmakologische Fortschritt hat die Behandlung erheblich erleichtert und nähert sich der physiologischen Insulin-Sekretion zunehmend an. In der Behandlung des Typ-2-Diabetes hingegen ist die Insulin-Therapie bei den meisten Patienten zunächst nicht notwendig. Lebensstil-Interventionen und moderne Nicht-Insulin Antidiabetika können häufig zu einer lang andauernden Kontrolle der Erkrankung führen. Die Heterogenität des Typ-2-Diabetes führt jedoch dazu, dass einige Patienten früh von einer Insulin-Therapie profitieren. Auch beim Typ-2-Diabetes können moderne Insulin Präparate die Insulin-Behandlung deutlich erleichtern, auch in Kombination mit anderen Antidiabetika. Einleitung und Begleitung einer Insulin-Therapie gehören somit weiterhin zu den Kernaufgaben der Diabetologie.
Collapse
Affiliation(s)
| | - Jens Aberle
- Endokrinologie und Diabetologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Kim JH, Lee GY, Maeng HJ, Kim H, Bae JH, Kim KM, Lim S. Effects of Glucagon-Like Peptide-1 Analogue and Fibroblast Growth Factor 21 Combination on the Atherosclerosis-Related Process in a Type 2 Diabetes Mouse Model. Endocrinol Metab (Seoul) 2021; 36:157-170. [PMID: 33677937 PMCID: PMC7937856 DOI: 10.3803/enm.2020.781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) analogues regulate glucose homeostasis and have anti-inflammatory properties, but cause gastrointestinal side effects. The fibroblast growth factor 21 (FGF21) is a hormonal regulator of lipid and glucose metabolism that has poor pharmacokinetic properties, including a short half-life. To overcome these limitations, we investigated the effect of a low-dose combination of a GLP-1 analogue and FGF21 on atherosclerosis-related molecular pathways. METHODS C57BL/6J mice were fed a high-fat diet for 30 weeks followed by an atherogenic diet for 10 weeks and were divided into four groups: control (saline), liraglutide (0.3 mg/kg/day), FGF21 (5 mg/kg/day), and low-dose combination treatment with liraglutide (0.1 mg/kg/day) and FGF21 (2.5 mg/kg/day) (n=6/group) for 6 weeks. The effects of each treatment on various atherogenesisrelated pathways were assessed. RESULTS Liraglutide, FGF21, and their low-dose combination significantly reduced atheromatous plaque in aorta, decreased weight, glucose, and leptin levels, and increased adiponectin levels. The combination treatment upregulated the hepatic uncoupling protein-1 (UCP1) and Akt1 mRNAs compared with controls. Matric mentalloproteinase-9 (MMP-9), monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) were downregulated and phosphorylated Akt (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) were upregulated in liver of the liraglutide-alone and combination-treatment groups. The combination therapy also significantly decreased the proliferation of vascular smooth muscle cells. Caspase-3 was increased, whereas MMP-9, ICAM-1, p-Akt, and p-ERK1/2 were downregulated in the liraglutide-alone and combination-treatment groups. CONCLUSION Administration of a low-dose GLP-1 analogue and FGF21 combination exerts beneficial effects on critical pathways related to atherosclerosis, suggesting the synergism of the two compounds.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Gha Young Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyo Jin Maeng
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hoyoun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Kyoung Min Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
23
|
Effectiveness of liraglutide 3 mg for the treatment of obesity in a real-world setting without intensive lifestyle intervention. Int J Obes (Lond) 2021; 45:776-786. [PMID: 33473176 DOI: 10.1038/s41366-021-00739-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/15/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE We investigated the efficacy and safety of liraglutide 3 mg daily in combination with diet and exercise 2, 4, and 6 months after initiation in real-world settings in Korea. METHODS People first using liraglutide starting in 2018 were recruited from ten sites in Korea. Body weight and body mass index (BMI) were measured after 2, 4, and 6 months and compared with baseline values. RESULTS The full cohort comprised 769 participants: 672 in the 2-month group, 427 in the 4-month group, and 219 in the 6-month group. The baseline mean ± standard deviation of BMI and body weight were 32.2 ± 5.1 kg/m2, and 87.5 ± 18.8 kg, respectively. Body weight and BMI decreased after initiation of liraglutide treatment: -2.94 kg and -1.08 kg/m2 at 2 months; -4.23 kg and -1.55 kg/m2 at 4 months, and -5.14 kg and -1.89 kg/m2 at 6 months (all P < 0.001). In the 6-month cohort, 52.5% and 18.3% of subjects lost ≥5% and ≥10% of body weight, respectively. After 6 months, systolic and diastolic blood pressure decreased significantly by 3.90 and 1.93 mmHg, respectively. In those with diabetes mellitus, HbA1c and fasting glucose levels decreased significantly by 1.14% and 27.8 mg/dl, respectively. Among all participants, 27.6% experienced adverse effects, including nausea (20.8%), vomiting (5.2%), diarrhoea (2.5%), and skin rash (3.6%). Documented reasons for discontinuation of treatment were lack of effect (4.4%), adverse events (4.3%), and high cost (3.1%). CONCLUSIONS In real-world settings in Korea, daily treatment with liraglutide 3 mg was associated with clinically meaningful weight loss without serious adverse events.
Collapse
|
24
|
Abstract
Initial studies found increased severity of coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in patients with diabetes mellitus. Furthermore, COVID-19 might also predispose infected individuals to hyperglycaemia. Interacting with other risk factors, hyperglycaemia might modulate immune and inflammatory responses, thus predisposing patients to severe COVID-19 and possible lethal outcomes. Angiotensin-converting enzyme 2 (ACE2), which is part of the renin-angiotensin-aldosterone system (RAAS), is the main entry receptor for SARS-CoV-2; although dipeptidyl peptidase 4 (DPP4) might also act as a binding target. Preliminary data, however, do not suggest a notable effect of glucose-lowering DPP4 inhibitors on SARS-CoV-2 susceptibility. Owing to their pharmacological characteristics, sodium-glucose cotransporter 2 (SGLT2) inhibitors might cause adverse effects in patients with COVID-19 and so cannot be recommended. Currently, insulin should be the main approach to the control of acute glycaemia. Most available evidence does not distinguish between the major types of diabetes mellitus and is related to type 2 diabetes mellitus owing to its high prevalence. However, some limited evidence is now available on type 1 diabetes mellitus and COVID-19. Most of these conclusions are preliminary, and further investigation of the optimal management in patients with diabetes mellitus is warranted.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.
| | - Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hyuk-Sang Kwon
- Department of Internal Medicine, Yeouido St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef-Hospital (Ruhr-Universität Bochum), Bochum, Germany.
| |
Collapse
|
25
|
Kim JH. Glucagon-like peptide-1 receptor agonist reduces di(2-ethylhexyl) phthalate-induced atherosclerotic processes in vascular smooth muscle cells. Physiol Res 2020; 69:1095-1102. [PMID: 33129247 DOI: 10.33549/physiolres.934480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide-1 receptor (GLP1R) agonist is an incretin hormone and regulates glucose metabolism. However, phthalates, known as endocrine disruptors, can interfere with hormone homeostasis. In the present study, we aimed to estimate the impact of GLP1R agonist on di(2 ethylhexyl) phthalate (DEHP)-induced atherosclerosis. For this purpose, the effects of GLP1R agonist on various atherogenesis-related cellular processes and pathways were assessed in vascular smooth muscle cells (VSMCs). DEHP-induced cell proliferation and migration were significantly decreased by GLP1R agonist in VSMCs. Protein levels of matrix metalloproteinase (MMP)-2 and MMP-9 were significantly decreased in cells exposed to GLP1R agonist, compared with DEHP-treated cells. Expression levels of intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were also reduced in GLP1R agonist-treated cells. Similarly, DEHP-associated phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2 was decreased in GLP1R agonist-treated cells, compared with DEHP-treated cells. Our findings suggest that treatment with GLP1R agonist counteracts the activation of pathways related to atherosclerosis.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.
| |
Collapse
|
26
|
Acquah C, Dzuvor CKO, Tosh S, Agyei D. Anti-diabetic effects of bioactive peptides: recent advances and clinical implications. Crit Rev Food Sci Nutr 2020; 62:2158-2171. [PMID: 33317324 DOI: 10.1080/10408398.2020.1851168] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus, particularly type 2 diabetes, is a major global health issue, the prevalence of which seems to be on the rise worldwide. Interventions such as healthy diet, physical activity, maintaining a healthy weight, and medication (for those with a diagnosis of diabetes) are among the most effective strategies to prevent and control diabetes. Three-quarters of patients diagnosed with diabetes are in countries with poor financial infrastructure, nutritional awareness and health care systems. Concomitantly, the cost involved in managing diabetes through the intake of antidiabetic drugs makes it prohibitive for majority of patients. Food protein-derived bioactive peptides have the potential of being formulated as nutraceuticals and drugs in combating the pathogenesis and pathophysiology of metabolic disorders with little or "no known" complications in humans. Coupled with lifestyle modifications, the potential of bioactive peptides to maintain normoglycemic range is actualized by influencing the activities of incretins, DPP-IV, α-amylase, and α-glucosidase enzymes. This article discusses the biofunctionality and clinical implications of anti-diabetic bioactive peptides in controlling the global burden of diabetes.
Collapse
Affiliation(s)
- Caleb Acquah
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Christian K O Dzuvor
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Susan Tosh
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
27
|
Total cardiovascular or fatal events in people with type 2 diabetes and cardiovascular risk factors treated with dulaglutide in the REWIND trail: a post hoc analysis. Cardiovasc Diabetol 2020; 19:199. [PMID: 33239067 PMCID: PMC7690176 DOI: 10.1186/s12933-020-01179-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/15/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The Researching cardiovascular Events with a Weekly INcretin in Diabetes (REWIND) double blind randomized trial demonstrated that weekly subcutaneous dulaglutide 1.5 mg, a glucagon like peptide-1 receptor agonist, versus matched placebo reduced the first outcome of major adverse cardiovascular event (MACE), cardiovascular death, nonfatal myocardial infarction or nonfatal stroke (594 versus 663 events) in 9901 persons with type 2 diabetes and either chronic cardiovascular disease or risk factors, and followed during 5.4 years. These findings were based on a time-to-first-event analysis and preclude relevant information on the burden of total major events occurring during the trial. This analysis reports on the total cardiovascular or fatal events in the REWIND participants METHODS: We compared the total incidence of MACE or non-cardiovascular deaths, and the total incidence of expanded MACE (MACE, unstable angina, heart failure or revascularization) or non-cardiovascular deaths between participants randomized to dulaglutide and those randomized to placebo. Incidences were expressed as number per 1000 person-years. Hazard ratios (HR) were calculated using the conditional time gap and proportional means models. RESULTS Participants had a mean age of 66.2 years, 46.3% were women and 31% had previous cardiovascular disease. During the trial there were 1972 MACE or non-cardiovascular deaths and 3673 expanded MACE or non-cardiovascular deaths. The incidence of total MACE or non-cardiovascular deaths in the dulaglutide and placebo groups was 35.8 and 40.3 per 1000 person-years, respectively [absolute reduction = 4.5 per 1000 person-years; conditional time gap HR 0.90 (95% CI, 0.82-0.98) p = 0.020, and proportional means HR 0.89 (95% CI, 0.80-0.98) p = 0.022]. The incidence of total expanded MACE or non-cardiovascular deaths in the dulaglutide and placebo groups was 67.1 and 74.7 per 1000 person-years, respectively [absolute reduction = 7.6 per 1000 person-years; conditional time gap HR 0.93 (95% CI, 0.87-0.99) p = 0.023, and proportional means HR 0.90 (95% CI, 0.82-0.99) p = 0.028]. CONCLUSIONS These findings suggest that weekly subcutaneous dulaglutide reduced total cardiovascular or fatal event burden in people with type 2 diabetes at moderate cardiovascular risk. CLINICAL TRIAL REGISTRATION https://www.clinicaltrials.gouv . Unique Identifier NCT01394952).
Collapse
|
28
|
Siasos G, Bletsa E, Stampouloglou PK, Paschou SA, Oikonomou E, Tsigkou V, Antonopoulos AS, Vavuranakis M, Tousoulis D. Novel Antidiabetic Agents: Cardiovascular and Safety Outcomes. Curr Pharm Des 2020; 26:5911-5932. [PMID: 33167826 DOI: 10.2174/1381612826666201109110107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Concerns of elevated cardiovascular risk with some anti-diabetic medications warranted trials on the cardiovascular outcome to demonstrate cardiovascular safety of newly marketed anti-diabetic drugs. Although these trials were initially designed to evaluate safety, some of these demonstrated significant cardiovascular benefits. PURPOSE OF REVIEW We reviewed the cardiovascular and safety outcomes of novel antidiabetic agents in patients with type 2 diabetes and established cardiovascular disease or at high risk of it. We included the outcomes of safety trials, randomized controlled trials, meta-analysis, large cohort studies, and real-world data, which highlighted the cardiovascular profile of DPP-4is, GLP-1RAs and SGLT-2is. CONCLUSION Although DPP-4is demonstrated non-inferiority to placebo, gaining cardiovascular safety, as well market authorization, SGLT-2is and most of the GLP-1RAs have shown impressive cardiovascular benefits in patients with T2D and established CVD or at high risk of it. These favorable effects of novel antidiabetic agents on cardiovascular parameters provide novel therapeutic approaches in medical management, risk stratification and prevention.
Collapse
Affiliation(s)
- Gerasimos Siasos
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evanthia Bletsa
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota K Stampouloglou
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Division of Endocrinology and Diabetes, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Evangelos Oikonomou
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Tsigkou
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios S Antonopoulos
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Manolis Vavuranakis
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, "Hippokration" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Ferrannini G, Norhammar A, Gyberg V, Mellbin L, Rydén L. Is Coronary Artery Disease Inevitable in Type 2 Diabetes? From a Glucocentric to a Holistic View on Patient Management. Diabetes Care 2020; 43:2001-2009. [PMID: 32661109 DOI: 10.2337/dci20-0002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 02/03/2023]
Affiliation(s)
| | - Anna Norhammar
- Department of Medicine K2, Karolinska Institutet, Stockholm, Sweden
| | - Viveca Gyberg
- Department of Medicine K2, Karolinska Institutet, Stockholm, Sweden
| | - Linda Mellbin
- Department of Medicine K2, Karolinska Institutet, Stockholm, Sweden
| | - Lars Rydén
- Department of Medicine K2, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Cataldi M, Cignarelli A, Giallauria F, Muscogiuri G, Barrea L, Savastano S, Colao A. Cardiovascular effects of antiobesity drugs: are the new medicines all the same? INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2020; 10:14-26. [PMID: 32714509 DOI: 10.1038/s41367-020-0015-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Waiting for a definite answer from well-designed randomized prospective clinical trials, the impact of the new antiobesity drugs -liraglutide, bupropion/naltrexone, phentermine/topiramate and lorcaserin- on cardiovascular outcomes remains uncertain. What has been learned from previous experience with older medicines is that antiobesity drugs may influence cardiovascular health not only causing weight reduction but also through direct actions on the cardiovascular system. Therefore, in the present review, we examine what is known, mainly from preclinical investigations, about the cardiovascular pharmacology of the new antiobesity medicines with the aim of highlighting potential mechanistic differences. We will show that the two active substances of the bupropion/naltrexone combination both exert beneficial and unwanted cardiovascular effects. Indeed, bupropion exerts anti-inflammatory effects but at the same time it does increase heart rate and blood pressure by potentiating catecholaminergic neurotransmission, whereas naltrexone reduces TLR4-dependent inflammation and has potential protective effects in stroke but also impairs cardiac adaption to ischemia and the beneficial opioid protective effects mediated in the endothelium. On the contrary, with the only exception of a small increase in heat rate, liraglutide only exerts favorable cardiovascular effects by protecting myocardium and brain from ischemic damage, improving heart contractility, lowering blood pressure and reducing atherogenesis. As far as the phentermine/topiramate combination is concerned, no direct cardiovascular beneficial effect is expected for phentermine (as this drug is an amphetamine derivative), whereas topiramate may exert cardioprotective and neuroprotective effects in ischemia and anti-inflammatory and antiatherogenic actions. Finally, lorcaserin, a selective 5HT2C receptor agonist, does not seem to exert significant direct effects on the cardiovascular system though at very high concentrations this drug may also interact with other serotonin receptor subtypes and exert unwanted cardiovascular effects. In conclusion, the final effect of the new antiobesity drugs on cardiovascular outcomes will be a balance between possible (but still unproved) beneficial effects of weight loss and "mixed" weight-independent drug-specific effects. Therefore comparative studies will be required to establish which one of the new medicines is more appropriate in patients with specific cardiovascular diseases.
Collapse
Affiliation(s)
- Mauro Cataldi
- Department of Neuroscience, Reproductive Sciences and Dentistry, Division of Pharmacology, Federico II University of Naples, Naples, Italy
| | - Angelo Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Internal Medicine (Metabolic and Cardiac Rehabilitation Unit), Federico II University of Naples, Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Barrea
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | | |
Collapse
|
31
|
Müller-Wieland D, Schütt K, Brandts J, Marx N. [New oral antidiabetic drugs]. Herz 2020; 45:493-503. [PMID: 32601754 DOI: 10.1007/s00059-020-04946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A paradigm change in the treatment of type 2 diabetes has recently emerged due to the introduction of new oral antidiabetic agents. Cardiovascular endpoint studies confirmed the safety of dipeptidyl peptidase 4 (DPP-4) inhibitors and a cardiovascular protective effect for glucagon-like peptide 1 (GLP-1) receptor agonists and sodium-glucose linked transporter 2 (SGLT-2) inhibitors. Furthermore, SGLT‑2 inhibitors reduce the risk for heart failure and have a renoprotective effect. These studies led to changes in clinical recommendations and guidelines. In patients with high or very high cardiorenal risk, SGLT‑2 inhibitors or GLP‑1 receptor agonists are recommended for risk protection independent of HbA1c values, with existing or high risk for chronic heart failure SGLT‑2 inhibitors are the preferred choice. Therefore, the choice of antidiabetic treatment strategy is no longer determined by the level of glycosylated hemoglobin (HbA1c) alone but particularly by the cardiorenal risk of the individual patient.
Collapse
Affiliation(s)
- Dirk Müller-Wieland
- Medizinische Klinik I, Universitätsklinikum RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland.
| | - Katharina Schütt
- Medizinische Klinik I, Universitätsklinikum RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland
| | - Julia Brandts
- Medizinische Klinik I, Universitätsklinikum RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland
| | - Nikolaus Marx
- Medizinische Klinik I, Universitätsklinikum RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland
| |
Collapse
|
32
|
Lim S, Shin SM, Nam GE, Jung CH, Koo BK. Proper Management of People with Obesity during the COVID-19 Pandemic. J Obes Metab Syndr 2020; 29:84-98. [PMID: 32544885 PMCID: PMC7338495 DOI: 10.7570/jomes20056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Since December 2019, countries around the world have been struggling with a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Case series have reported that people with obesity experience more severe coronavirus disease 2019 (COVID-19). During the COVID-19 pandemic, people have tended to gain weight because of environmental factors imposed by quarantine policies, such as decreased physical activity and increased consumption of unhealthy food. Mechanisms have been postulated to explain the association between COVID-19 and obesity. COVID-19 aggravates inflammation and hypoxia in people with obesity, which can lead to severe illness and the need for intensive care. The immune system is compromised in people with obesity and COVID-19 affects the immune system, which can lead to complications. Interleukin-6 and other cytokines play an important role in the progression of COVID-19. The inflammatory response, critical illness, and underlying risk factors may all predispose to complications of obesity such as diabetes mellitus and cardiovascular diseases. The common medications used to treat people with obesity, such as glucagon-like peptide-1 analogues, statins, and antiplatelets agents, should be continued because these agents have anti-inflammatory properties and play protective roles against cardiovascular and all-cause mortality. It is also recommended that renin–angiotensin system blockers are not stopped during the COVID-19 pandemic because no definitive data about the harm or benefits of these agents have been reported. During the COVID-19 pandemic, social activities have been discouraged and exercise facilities have been closed. Under these restrictions, tailored lifestyle modifications such as home exercise training and cooking of healthy food are encouraged.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Myoung Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ga Eun Nam
- Department of Family Medicine, Korea University College of Medicine, Seoul, Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bo Kyung Koo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| |
Collapse
|
33
|
Lim S, Oh TJ, Dawson J, Sattar N. Diabetes drugs and stroke risk: Intensive versus conventional glucose-lowering strategies, and implications of recent cardiovascular outcome trials. Diabetes Obes Metab 2020; 22:6-15. [PMID: 31379119 DOI: 10.1111/dom.13850] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
People with diabetes mellitus are at higher risk of ischaemic stroke and worse outcomes thereafter. However, whether it is better to prescribe intensive glucose-lowering treatment compared with conventional treatment in people with diabetes to prevent recurrent stroke is debated. It is also crucial to consider whether specific antidiabetic agents are more efficacious and safer than others for prevention of stroke. In this review, we provide an overview of the efficacy of intensive and conventional glucose-lowering treatment in post-stroke management. Our conclusion is that the overall evidence for a beneficial effect of intensive glycaemic control on risk of stroke is limited. We also discuss evidence from recent large clinical trials of thiazolidinediones and new antidiabetic medications, including dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs), and sodium-glucose co-transporter-2 inhibitors. On the basis of the findings of these trials, our conclusion is that pioglitazone and the GLP-1RA class (other than short-acting lixisenatide) are likely to lessen the occurrence of cerebrovascular disease (by mechanisms not dependent on glucose-lowering per se), whereas there is no consistent evidence for other drug classes.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, Glasgow, UK
| |
Collapse
|
34
|
Icart LP, Souza FGD, Lima LMTR. Sustained release and pharmacologic evaluation of human glucagon-like peptide-1 and liraglutide from polymeric microparticles. J Microencapsul 2019; 36:747-758. [PMID: 31594428 DOI: 10.1080/02652048.2019.1677795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The GLP1-receptor agonists exert regulatory key roles in diabetes, obesity and related complications. Here we aimed to develop polymeric microparticles loaded with homologous human GLP1 (7-37) or the analogue liraglutide. Peptide-loaded microparticles were prepared by a double emulsion and solvent evaporation process with a set of eight polymers based on lactide (PLA) or lactide-glycolide (PLGA), and evaluated for particle-size distribution, morphology, in vitro release and pharmacologic activity in mice. The resulting microparticles showed size distribution of about 30-50 μm. The in vitro kinetic release assays showed a sustained release of the peptides extending up to 30-40 days. In vivo evaluation in Swiss male mice revealed a similar extension of glycemic and body weight gain modulation for up to 25 days after a single subcutaneous administration of either hGLP1-microparticles or liraglutide-microparticles. Microparticles-loaded hGLP1 shows equivalent in vivo pharmacologic activity to the microparticles-loaded liraglutide.
Collapse
Affiliation(s)
- Luis Peña Icart
- Laboratory of Pharmaceutical Biotechnology (pbiotech), Faculty of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Rio de Janeiro, Brazil.,Laboratory of Biopolymers and Sensors (LaBioS), Institute of Macromolecules, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Fernando Gomes de Souza
- Laboratory of Biopolymers and Sensors (LaBioS), Institute of Macromolecules, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Luís Maurício T R Lima
- Laboratory of Pharmaceutical Biotechnology (pbiotech), Faculty of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Rio de Janeiro, Brazil.,Laboratory of Macromolecules (LAMAC/DIMAV), National Institute for Metrology, Quality and Technology (INMETRO), Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Mata-Cases M, Franch-Nadal J, Ortega E, Real J, Gratacòs M, Vlacho B, Mauricio D. Glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes:real-world evidence from a Mediterranean area. Curr Med Res Opin 2019; 35:1735-1744. [PMID: 31081693 DOI: 10.1080/03007995.2019.1618806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aims: To assess clinical characteristics and factors associated with glycated hemoglobin (HbA1c) reduction in type 2 diabetes (T2DM) patients initiating glucagon-like peptide-1 receptor agonists (GLP-1RAs). Methods: Retrospective cohort study in patients with T2DM who initiated GLP-1RAs between 2007 and 2014 in primary health care centers in Catalonia (Spain). We evaluated changes in HbA1c and body weight at 6-12 months, and factors independently associated with achieving ≥1% HbA1c target reduction. Results: Overall, 4242 patients (47.9% male; mean BMI 37.5 kg/m2) initiated a GLP-1RA. At 6-12 months, the mean HbA1c level decreased from the baseline 8.8% to 7.7% (-1.0%; SD = 1.6). A 1% reduction in HbA1c was observed in 47.2% of patients. Patients lost a mean of 3.6 kg (SD = 6.2). Sixty percent of patients reduced both HbA1c and body weight, and 17% achieved only one of these targets. Independent determinants of a 1% HbA1c reduction were baseline HbA1c, age, diabetes duration and being on insulin treatment. Reduction in weight or HbA1c and the proportion of patients achieving a HbA1c reduction of ≥1% was significantly larger among subjects prescribed liraglutide than exenatide and lixisenatide. Conclusions: In this real-world, retrospective study, the magnitude of HbA1c and body weight reductions after addition of a GLP-1RA were similar to those observed in randomized controlled trials. Approximately 60% of patients attained reductions in both HbA1c and body weight, and there were significant differences among different drugs from this therapeutic group.
Collapse
Affiliation(s)
- Manel Mata-Cases
- DAP-Cat Group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) , Barcelona , Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
- Primary Health Care Center La Mina, Gerència d'Àmbit d'Atenció Primària Barcelona Ciutat, Institut Català de la Salut , Sant Adrià de Besòs , Spain
| | - Josep Franch-Nadal
- DAP-Cat Group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) , Barcelona , Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
- Primary Health Care Center Raval Sud, Gerència d'Atenció Primaria, Institut Català de la Salut , Barcelona , Spain
| | - Emilio Ortega
- Department of Endocrinology and Nutrition, Institut d'Investigacions Biomèdiques August Pi i Suñer, Hospital Clínic , Barcelona , Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Jordi Real
- DAP-Cat Group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) , Barcelona , Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Mònica Gratacòs
- DAP-Cat Group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) , Barcelona , Spain
| | - Bogdan Vlacho
- DAP-Cat Group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) , Barcelona , Spain
| | - Dídac Mauricio
- DAP-Cat Group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) , Barcelona , Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de la Santa Creu i Sant Pau, Autonomous Universtity of Barcelona , Barcelona , Spain
| |
Collapse
|
36
|
|
37
|
Caruso I, Cignarelli A, Giorgino F. Heterogeneity and Similarities in GLP-1 Receptor Agonist Cardiovascular Outcomes Trials. Trends Endocrinol Metab 2019; 30:578-589. [PMID: 31401015 DOI: 10.1016/j.tem.2019.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/16/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
The latest recommendations from the American Diabetes Association and the European Association for the Study of Diabetes prioritize the use of drugs with proven cardiovascular (CV) benefit in patients with established CV disease. Especially among the glucagon-like peptide (GLP)-1 receptor agonists (GLP-1RA) class, results of cardiovascular outcomes trials (CVOT) have been heterogeneous. Baseline characteristics of the population, study design, drugs in the control arm, modifications of CV risk factors, including glycemic control, reduction of hypoglycemia, and the GLP-1RA direct effects on CV cells and tissues, were considered. Ultimately, the time of exposure to the GLP-1RA appears to be the factor most prominently explaining trial heterogeneity. Thus, the CV benefit should be regarded as a class effect of GLP-1RA, as largely similar results are seen for drugs sharing a common mechanism of action.
Collapse
Affiliation(s)
- Irene Caruso
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Angelo Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
38
|
Dogruel H, Balci MK. Development of therapeutic options on type 2 diabetes in years: Glucagon-like peptide-1 receptor agonist’s role intreatment; from the past to future. World J Diabetes 2019; 10:446-453. [PMID: 31523380 PMCID: PMC6715574 DOI: 10.4239/wjd.v10.i8.446] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/13/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by hypergly-cemia. Type 2 diabetes (T2DM) accounting for 90% of cases globally. The worldwide prevalence of DM is rising dramatically over the last decades, from 30 million cases in 1985 to 382 million cases in 2013. It’s estimated that 451 million people had diabetes in 2017. As the pathophysiology was understood over the years, treatment options for diabetes increased. Incretin-based therapy is one of them. Glucagon-like peptide-1 receptor agonist (GLP-1 RA) not only significantly lower glucose level with minimal risk of hypoglycemia but also, they have an important advantage in themanagement of cardiovascular risk and obesity. Thus, we will review here GLP-1 RAsrole in the treatment of diabetes.
Collapse
Affiliation(s)
- Hakan Dogruel
- Department of Internal Medicine, Antalya Ataturk State Hospital, Antalya 07040, Turkey
| | - Mustafa Kemal Balci
- Akdeniz University Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Antalya 07070, Turkey
| |
Collapse
|
39
|
Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, Probstfield J, Riesmeyer JS, Riddle MC, Rydén L, Xavier D, Atisso CM, Dyal L, Hall S, Rao-Melacini P, Wong G, Avezum A, Basile J, Chung N, Conget I, Cushman WC, Franek E, Hancu N, Hanefeld M, Holt S, Jansky P, Keltai M, Lanas F, Leiter LA, Lopez-Jaramillo P, Cardona Munoz EG, Pirags V, Pogosova N, Raubenheimer PJ, Shaw JE, Sheu WHH, Temelkova-Kurktschiev T. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 2019; 394:121-130. [PMID: 31189511 DOI: 10.1016/s0140-6736(19)31149-3] [Citation(s) in RCA: 1518] [Impact Index Per Article: 303.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Three different glucagon-like peptide-1 (GLP-1) receptor agonists reduce cardiovascular outcomes in people with type 2 diabetes at high cardiovascular risk with high glycated haemoglobin A1c (HbA1c) concentrations. We assessed the effect of the GLP-1 receptor agonist dulaglutide on major adverse cardiovascular events when added to the existing antihyperglycaemic regimens of individuals with type 2 diabetes with and without previous cardiovascular disease and a wide range of glycaemic control. METHODS This multicentre, randomised, double-blind, placebo-controlled trial was done at 371 sites in 24 countries. Men and women aged at least 50 years with type 2 diabetes who had either a previous cardiovascular event or cardiovascular risk factors were randomly assigned (1:1) to either weekly subcutaneous injection of dulaglutide (1·5 mg) or placebo. Randomisation was done by a computer-generated random code with stratification by site. All investigators and participants were masked to treatment assignment. Participants were followed up at least every 6 months for incident cardiovascular and other serious clinical outcomes. The primary outcome was the first occurrence of the composite endpoint of non-fatal myocardial infarction, non-fatal stroke, or death from cardiovascular causes (including unknown causes), which was assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01394952. FINDINGS Between Aug 18, 2011, and Aug 14, 2013, 9901 participants (mean age 66·2 years [SD 6·5], median HbA1c 7·2% [IQR 6·6-8·1], 4589 [46·3%] women) were enrolled and randomly assigned to receive dulaglutide (n=4949) or placebo (n=4952). During a median follow-up of 5·4 years (IQR 5·1-5·9), the primary composite outcome occurred in 594 (12·0%) participants at an incidence rate of 2·4 per 100 person-years in the dulaglutide group and in 663 (13·4%) participants at an incidence rate of 2·7 per 100 person-years in the placebo group (hazard ratio [HR] 0·88, 95% CI 0·79-0·99; p=0·026). All-cause mortality did not differ between groups (536 [10·8%] in the dulaglutide group vs 592 [12·0%] in the placebo group; HR 0·90, 95% CI 0·80-1·01; p=0·067). 2347 (47·4%) participants assigned to dulaglutide reported a gastrointestinal adverse event during follow-up compared with 1687 (34·1%) participants assigned to placebo (p<0·0001). INTERPRETATION Dulaglutide could be considered for the management of glycaemic control in middle-aged and older people with type 2 diabetes with either previous cardiovascular disease or cardiovascular risk factors. FUNDING Eli Lilly and Company.
Collapse
Affiliation(s)
- Hertzel C Gerstein
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada.
| | | | - Gilles R Dagenais
- Institut Universitaire de Cardiologie et Pneumologie, Université Laval, Québec City, QC, Canada
| | - Rafael Diaz
- ECLA, Estudios Clínicos Latinoamérica, Rosario, Argentina
| | | | - Prem Pais
- St John's Research Institute, Bangalore, India
| | | | | | - Matthew C Riddle
- Department of Medicine, Oregon Health & Science University Portland, OR, USA
| | - Lars Rydén
- Department of Medicine K2, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Leanne Dyal
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Stephanie Hall
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Purnima Rao-Melacini
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Gloria Wong
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Alvaro Avezum
- Instituto Dante Pazzanese de Cardiologia and University Santo Amaro, São Paulo, Brazil
| | - Jan Basile
- Medical University of South Carolina, Charleston, SC, USA
| | - Namsik Chung
- Yonsei University Health System, Seoul, South Korea
| | - Ignacio Conget
- Endocrinology and Nutrition Department, Hospital Clínic i Universitari, Barcelona, Spain
| | | | - Edward Franek
- Mossakowski Medical Research Centre, Polish Academy of Sciences and Central Clinical Hospital MSWiA, Warsaw, Poland
| | - Nicolae Hancu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Markolf Hanefeld
- Department of Internal Medicine, Dresden Technical University, Dresden, Germany
| | - Shaun Holt
- Victoria University of Wellington, Wellington, New Zealand
| | - Petr Jansky
- University Hospital Motol, Prague, Czech Republic
| | - Matyas Keltai
- Semmelweis University, Hungarian Institute of Cardiology, Budapest, Hungary
| | | | - Lawrence A Leiter
- Li Ka Shing Knowledge Institute, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Patricio Lopez-Jaramillo
- Research Institute, FOSCAL and Medical School, Universidad de Santander UDES, Bucaramanga, Colombia
| | | | | | - Nana Pogosova
- National Medical Research Center of Cardiology, Moscow, Russia
| | | | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | | |
Collapse
|
40
|
Ahn CH, Lim S. Effects of Thiazolidinedione and New Antidiabetic Agents on Stroke. J Stroke 2019; 21:139-150. [PMID: 31161759 PMCID: PMC6549069 DOI: 10.5853/jos.2019.00038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with hyperglycemia are at a high risk of cardio- and cerebrovascular diseases. Diabetes patients also have poor outcomes after cerebrovascular disease development. Several classes of drugs are used for diabetes management in clinical practice. Thiazolidinedione (TZD) was introduced in the late 1990s, and new antidiabetic agents have been introduced since 2000. After issues with rosiglitazone in 2007, the U.S. Food and Drug Administration strongly recommended that trials investigating cardiovascular risk associated with new antidiabetic medications should be conducted before drug approval in the United States, to prove the safety of these new drugs and to determine their superiority to previous medications. Currently, results are available from two studies with TZD focusing on cardiovascular diseases, including stroke, and from 12 cardiovascular outcome trials focusing on major adverse cardiovascular events associated with new antidiabetic agents (four with dipeptidyl peptidase-4 inhibitors, three with sodium-glucose cotransporter-2 inhibitors, and five with glucagon-like peptide-1 analogues). These studies showed different results for primary cardiovascular outcomes and stroke prevention. It is important to determine whether prescription of TZD or new antidiabetic medications compared to conventional treatment, such as sulfonylurea or insulin, is better for stroke management. Furthermore, it is unclear whether drugs in the same class show greater safety and efficacy than other drugs for stroke management.
Collapse
Affiliation(s)
- Chang Ho Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
41
|
Clemmensen C, Finan B, Müller TD, DiMarchi RD, Tschöp MH, Hofmann SM. Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nat Rev Endocrinol 2019; 15:90-104. [PMID: 30446744 DOI: 10.1038/s41574-018-0118-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity and its comorbidities, such as type 2 diabetes mellitus and cardiovascular disease, constitute growing challenges for public health and economies globally. The available treatment options for these metabolic disorders cannot reverse the disease in most individuals and have not substantially reduced disease prevalence, which underscores the unmet need for more efficacious interventions. Neurobiological resilience to energy homeostatic perturbations, combined with the heterogeneous pathophysiology of human metabolic disorders, has limited the sustainability and efficacy of current pharmacological options. Emerging insights into the molecular origins of eating behaviour, energy expenditure, dyslipidaemia and insulin resistance suggest that coordinated targeting of multiple signalling pathways is probably necessary for sizeable improvements to reverse the progression of these diseases. Accordingly, a broad set of combinatorial approaches targeting feeding circuits, energy expenditure and glucose metabolism in concert are currently being explored and developed. Notably, several classes of peptide-based multi-agonists and peptide-small molecule conjugates with superior preclinical efficacy have emerged and are currently undergoing clinical evaluation. Here, we summarize advances over the past decade in combination pharmacotherapy for the management of obesity and type 2 diabetes mellitus, exclusively focusing on large-molecule formats (notably enteroendocrine peptides and proteins) and discuss the associated therapeutic opportunities and challenges.
Collapse
Affiliation(s)
- Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Susanna M Hofmann
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
42
|
Almutairi M, Al Batran R, Ussher JR. Glucagon-like peptide-1 receptor action in the vasculature. Peptides 2019; 111:26-32. [PMID: 30227157 DOI: 10.1016/j.peptides.2018.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists augment insulin secretion and are thus used clinically to improve glycemia in subjects with type 2 diabetes (T2D). As recent data reveal marked improvements in cardiovascular outcomes in T2D subjects treated with the GLP-1R agonists liraglutide and semaglutide in the LEADER and SUSTAIN-6 clinical trials respectively, there is growing interest in delineating the mechanism(s) of action for GLP-1R agonist-induced cardioprotection. Of importance, negligible GLP-1R expression in ventricular cardiac myocytes suggests that cardiac-independent actions of GLP-1R agonists may account for the reduced death rates from cardiovascular causes in T2D subjects enrolled in the LEADER trial. Conversely, vascular smooth muscle cells (VSMCs) appear to express the canonical GLP-1R, and GLP-1/GLP-1R agonists exhibit a number of salutary actions on the vascular endothelium that could potentially contribute to GLP-1R agonists directly improving cardiovascular outcomes in subjects with T2D. We review herein the described actions of GLP-1/GLP-1R agonists on the vascular endothelium, which include antiproliferative actions on VSMCs and endothelial cells, reductions in oxidative stress, and increases in nitric oxide generation. GLP-1 also increases microvascular recruitment and microvascular blood flow. Taken together, such actions may explain the antihypertensive and/or antiatherosclerotic actions attributed to GLP-1/GLP-1R agonists in preclinical and clinical studies. Nonetheless, further mechanistic studies are still necessary to determine the relative importance of such actions in accounting for reductions in macrovascular cardiovascular disease in human subjects with T2D treated with GLP-1R agonists.
Collapse
Affiliation(s)
- Malak Almutairi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
43
|
Andrikou E, Tsioufis C, Andrikou I, Leontsinis I, Tousoulis D, Papanas N. GLP-1 receptor agonists and cardiovascular outcome trials: An update. Hellenic J Cardiol 2018; 60:347-351. [PMID: 30528435 DOI: 10.1016/j.hjc.2018.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
Major cardiovascular (CV) outcome trials with glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are currently available. These agonists have proven their CV safety, in harmony with the US Food and Drug Administration (FDA) recommendation for antidiabetic drugs. The potential cardioprotective effect of incretin-based therapies is attributed to their multiple non-glycaemic actions in the CV system, including changes in insulin resistance, weight loss, reduction in blood pressure, improved lipid profile and direct effects on the heart and vascular endothelium. Liraglutide, semaglutide and albiglutide have been demonstrated to reduce the risk of major adverse cardiac events (MACE), whereas lixisenatide and extended-release exenatide had a neutral effect. Thus, it is conceivable that there are different drug-specific properties across the class of GLP-1 RAs. In this review, we discuss the results of the five recently published randomised CV outcome trials with GLP-1 RAs, along with the potential differences and the pleiotropic actions of these agents on the CV system.
Collapse
Affiliation(s)
- Eirini Andrikou
- First Cardiology Department, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Costas Tsioufis
- First Cardiology Department, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece.
| | - Ioannis Andrikou
- First Cardiology Department, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Ioannis Leontsinis
- First Cardiology Department, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Dimitrios Tousoulis
- First Cardiology Department, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Greece
| |
Collapse
|
44
|
Affiliation(s)
- Sudesna Chatterjee
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, Leicestershire, UK
| | - Melanie J Davies
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, Leicestershire, UK.
| |
Collapse
|
45
|
Takahashi H, Nomiyama T, Terawaki Y, Kawanami T, Hamaguchi Y, Tanaka T, Tanabe M, Bruemmer D, Yanase T. GLP-1 Receptor Agonist Exendin-4 Attenuates NR4A Orphan Nuclear Receptor NOR1 Expression in Vascular Smooth Muscle Cells. J Atheroscler Thromb 2018; 26:183-197. [PMID: 29962378 PMCID: PMC6365156 DOI: 10.5551/jat.43414] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS Recently, incretin therapy has attracted increasing attention because of its potential use in tissue-protective therapy. Neuron-derived orphan receptor 1 (NOR1) is a nuclear orphan receptor that regulates vascular smooth muscle cell (VSMC) proliferation. In the present study, we investigated the vascular-protective effect of Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, by inhibiting NOR1 expression in VSMCs. METHODS We classified 7-week-old male 129X1/SvJ mice into control group and Ex-4 low- and high-dose-treated groups fed normal or high-fat diets, respectively. Endothelial denudation injuries were induced in the femoral artery at 8 weeks of age, followed by the evaluation of neointima formation at 12 weeks of age. To evaluate VSMC proliferation, bromodeoxyuridine incorporation assay and cell cycle distribution analysis were performed. NOR1 and cell cycle regulators were detected using immunohistochemistry, western blotting, quantitative reverse-transcription polymerase chain reaction, and luciferase assays. RESULTS Ex-4 treatment reduced vascular injury-induced neointima formation compared with controls. In terms of VSMCs occupying the neointima area, VSMC numbers and NOR1-expressing proliferative cells were significantly decreased by Ex-4 in a dose-dependent manner in both diabetic and non-diabetic mice. In vitro experiments using primary cultured VSMCs revealed that Ex-4 attenuated NOR1 expression by reducing extracellular signal-regulated kinase-mitogen-activated protein kinase and cAMP-responsive element-binding protein phosphorylations. Furthermore, in the cell cycle distribution analysis, serum-induced G1-S phase entry was significantly attenuated by Ex-4 treatment of VSMCs by inhibiting the induction of S-phase kinase-associated protein 2. CONCLUSION Ex-4 attenuates neointima formation after vascular injury and VSMC proliferation possibly by inhibiting NOR1 expression.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University
| | - Takashi Nomiyama
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University
| | - Yuichi Terawaki
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University.,Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, UPMC and University of Pittsburgh School of Medicine
| | - Takako Kawanami
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University
| | - Yuriko Hamaguchi
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University
| | - Tomoko Tanaka
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University
| | - Makito Tanabe
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University
| | - Dennis Bruemmer
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, UPMC and University of Pittsburgh School of Medicine
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University
| |
Collapse
|
46
|
Tanaka A, Node K. Clinical application of glucagon-like peptide-1 receptor agonists in cardiovascular disease: lessons from recent clinical cardiovascular outcomes trials. Cardiovasc Diabetol 2018; 17:85. [PMID: 29895290 PMCID: PMC5996475 DOI: 10.1186/s12933-018-0731-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
Recent clinical trials investigating cardiovascular (CV) safety of newer antidiabetic agents have been rapidly and largely changing the landscape of diabetes care and providing highly important clinical information on decision-making regarding the choice of antidiabetic agents. Similar to the sodium-glucose cotransporter 2 (SGLT2) inhibitors, some glucagon-like peptide-1 receptor agonists (GLP-1RAs) have also demonstrated a marked risk reduction in major adverse CV events (MACE) in patients with type 2 diabetes at high risk of CV events. However, the two classes of agents differ largely in their pharmacological modes of action on glucose-lowering and CV parameters. Furthermore, CV benefits on individual components of MACE and other outcomes, including heart failure (HF), appear to differ partly between the two classes. Specifically, improvement of overall CV outcomes was likely driven by reduction in HF-related events in trials investigating SGLT2 inhibitors, and by reduction in atherosclerotic events in those investigating GLP-1RAs. This difference in CV benefit observed in the trials has important clinical implications regarding how to use the two classes of agents and how to identify suitable patients to obtain the best benefit from each class during routine diabetes care, possibly leading to a treatment plan tailored to an individual patient’s CV risk and clinical condition. At this stage, however, we cardiologists may overlook such differences and may be unfamiliar with GLP-1RAs specifically. Herein, we highlight the potential benefits of GLP-1RAs on CV parameters observed in recent CV outcomes trials and further discuss clinical application of GLP-1RAs in CV medicine.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|