1
|
Peña B SJ, Salazar J JS, Pardo JF, Roa ML, Corredor-Matus JR, Ochoa-Amaya JE. Effects of Saccharomyces cerevisiae on Pancreatic Alpha and Beta Cells and Metabolic Profile in Broilers. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10397-y. [PMID: 39549141 DOI: 10.1007/s12602-024-10397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
To evaluate the impact of Saccharomyces cerevisiae (SC) supplementation on pancreatic islet areas, alpha and beta cell populations, blood glucose levels, and lipid profiles in broilers, broilers were randomly assigned to two groups: a control group (T1) without SC and a treatment group (T2) supplemented with SC. Islet areas, alpha and beta cell counts, serum glucose and insulin levels, and lipid profiles were assessed. SC supplementation significantly decreased blood glucose levels compared to the control group. Additionally, HDL cholesterol levels were elevated in the SC-supplemented group. Although insulin levels remained unchanged, SC supplementation altered the correlation between pancreatic islet areas and alpha and beta cell populations, suggesting a potential influence on pancreatic islet function. Dietary supplementation with Saccharomyces cerevisiae can improve glycemic control and lipid profile in broilers. These findings highlight the potential benefits of using SC as a dietary additive in broiler production.
Collapse
Affiliation(s)
- Silvana J Peña B
- Universidad de los Llanos, Villavicencio, Colombia
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
- Research Group On Pathology of Domestic and Wild Animals, Universidad de los Llanos, Villavicencio, Colombia
| | - Johan S Salazar J
- Universidad de los Llanos, Villavicencio, Colombia
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
- Research Group On Pathology of Domestic and Wild Animals, Universidad de los Llanos, Villavicencio, Colombia
| | - Jhon F Pardo
- Universidad de los Llanos, Villavicencio, Colombia
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
- Research Group On Pathology of Domestic and Wild Animals, Universidad de los Llanos, Villavicencio, Colombia
| | - Maria L Roa
- Universidad de los Llanos, Villavicencio, Colombia
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
- Research Group On Pathology of Domestic and Wild Animals, Universidad de los Llanos, Villavicencio, Colombia
| | - José R Corredor-Matus
- Universidad de los Llanos, Villavicencio, Colombia
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
- Research Group On Pathology of Domestic and Wild Animals, Universidad de los Llanos, Villavicencio, Colombia
| | - Julieta E Ochoa-Amaya
- Universidad de los Llanos, Villavicencio, Colombia.
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia.
- Research Group On Pathology of Domestic and Wild Animals, Universidad de los Llanos, Villavicencio, Colombia.
| |
Collapse
|
2
|
Rezaei N, Dormiani K, Kiani-Esfahani A, Mirdamadian S, Rahmani M, Jafarpour F, Nasr-Esfahani MH. Characterization and functional evaluation of goat PDX1 regulatory modules through comparative analysis of conserved interspecies homologs. Sci Rep 2024; 14:26755. [PMID: 39500950 PMCID: PMC11538457 DOI: 10.1038/s41598-024-77614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
PDX1 is a crucial transcription factor in pancreas development and mature β-cell function. However, the regulation of PDX1 expression in larger animals mirroring human pancreas morphogenesis and endocrine maturation remains poorly understood. Therefore, we conducted a comparative analysis to characterize regulatory regions of goat PDX1 gene and assessed their transcriptional activity by transient transfection of several transgenic EGFP constructs in β- and non-β cell lines. We recognized several highly conserved regions encompassing the promoter and cis-regulatory elements (Area I-IV) at 5' flanking sequence of the genes. Within the promoter, we identified that a key E-box and nearby CAAT element synergistically drive transcription, constituting the basal promoter of goat PDX1 gene. Furthermore, each recognized regulatory area separately enhances this basal promoter activity in β-cells compared to non-β cells; however, cooperatively, they exhibit a bifunctional regulatory effect on transcription. Additionally, the intact ~ 3 kb upstream region (Area I-III) functions as the most efficient reporter transgene in vitro and shows islet-specific expression in native rat pancreas. Together, our findings suggest that the regulation of goat PDX1 gene is governed by conserved regions similar to other mammals, while both structurally and functionally, these regions exhibit a closer resemblance to those found in humans.
Collapse
Affiliation(s)
- Naeimeh Rezaei
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Abbas Kiani-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayeh Mirdamadian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahmani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
3
|
Sadasivam N, Park WR, Choi B, Seok Jung Y, Choi HS, Kim DK. Exploring the impact of estrogen-related receptor gamma on metabolism and disease. Steroids 2024; 211:109500. [PMID: 39159854 DOI: 10.1016/j.steroids.2024.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Estrogen-related receptor gamma (ERRγ) is a member of the ERR orphan nuclear receptor family which possesses three subtypes, α, β, and γ. ERRγ is reportedly predominantly expressed in metabolically active tissues and cells, which promotes positive and negative effects in different tissues. ERRγ overexpression in the liver, pancreas, and thyroid cells is related to liver cancer, oxidative stress, reactive oxygen species (ROS) regulation, and carcinoma. Reduced ERRγ expression in the brain, immune cells, tumor cells, and energy metabolism causes neurological dysfunction, gastric cancer, and obesity. ERRγ is a constitutive receptor; however, its transcriptional activity also depends on co-regulators, agonists, and antagonists, which, when after forming a complex, can play a role in targeting and treating diseases. Moreover, ERRγ has proven crucial in regulating cellular and metabolic activity. However, many functions mediated via ERRγ remain unknown and require further exploration. Hence, considering the importance of ERRγ, this review focuses on the critical findings and interactions between ERRγ and co-regulators, agonists, and antagonists alongside its relationship with downstream and upstream signaling pathways and diseases. This review highlights new findings and provides a path to understanding the current ideas and future studies on ERRγ-mediated cellular activity.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Woo-Ram Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Byungyoon Choi
- Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yoon Seok Jung
- Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Hueng-Sik Choi
- Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
4
|
Grenko CM, Taylor HJ, Bonnycastle LL, Xue D, Lee BN, Weiss Z, Yan T, Swift AJ, Mansell EC, Lee A, Robertson CC, Narisu N, Erdos MR, Chen S, Collins FS, Taylor DL. Single-cell transcriptomic profiling of human pancreatic islets reveals genes responsive to glucose exposure over 24 h. Diabetologia 2024; 67:2246-2259. [PMID: 38967666 PMCID: PMC11447040 DOI: 10.1007/s00125-024-06214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/08/2024] [Indexed: 07/06/2024]
Abstract
AIMS/HYPOTHESIS Disruption of pancreatic islet function and glucose homeostasis can lead to the development of sustained hyperglycaemia, beta cell glucotoxicity and subsequently type 2 diabetes. In this study, we explored the effects of in vitro hyperglycaemic conditions on human pancreatic islet gene expression across 24 h in six pancreatic cell types: alpha; beta; gamma; delta; ductal; and acinar. We hypothesised that genes associated with hyperglycaemic conditions may be relevant to the onset and progression of diabetes. METHODS We exposed human pancreatic islets from two donors to low (2.8 mmol/l) and high (15.0 mmol/l) glucose concentrations over 24 h in vitro. To assess the transcriptome, we performed single-cell RNA-seq (scRNA-seq) at seven time points. We modelled time as both a discrete and continuous variable to determine momentary and longitudinal changes in transcription associated with islet time in culture or glucose exposure. Additionally, we integrated genomic features and genetic summary statistics to nominate candidate effector genes. For three of these genes, we functionally characterised the effect on insulin production and secretion using CRISPR interference to knock down gene expression in EndoC-βH1 cells, followed by a glucose-stimulated insulin secretion assay. RESULTS In the discrete time models, we identified 1344 genes associated with time and 668 genes associated with glucose exposure across all cell types and time points. In the continuous time models, we identified 1311 genes associated with time, 345 genes associated with glucose exposure and 418 genes associated with interaction effects between time and glucose across all cell types. By integrating these expression profiles with summary statistics from genetic association studies, we identified 2449 candidate effector genes for type 2 diabetes, HbA1c, random blood glucose and fasting blood glucose. Of these candidate effector genes, we showed that three (ERO1B, HNRNPA2B1 and RHOBTB3) exhibited an effect on glucose-stimulated insulin production and secretion in EndoC-βH1 cells. CONCLUSIONS/INTERPRETATION The findings of our study provide an in-depth characterisation of the 24 h transcriptomic response of human pancreatic islets to glucose exposure at a single-cell resolution. By integrating differentially expressed genes with genetic signals for type 2 diabetes and glucose-related traits, we provide insights into the molecular mechanisms underlying glucose homeostasis. Finally, we provide functional evidence to support the role of three candidate effector genes in insulin secretion and production. DATA AVAILABILITY The scRNA-seq data from the 24 h glucose exposure experiment performed in this study are available in the database of Genotypes and Phenotypes (dbGap; https://www.ncbi.nlm.nih.gov/gap/ ) with accession no. phs001188.v3.p1. Study metadata and summary statistics for the differential expression, gene set enrichment and candidate effector gene prediction analyses are available in the Zenodo data repository ( https://zenodo.org/ ) under accession number 11123248. The code used in this study is publicly available at https://github.com/CollinsLabBioComp/publication-islet_glucose_timecourse .
Collapse
Affiliation(s)
- Caleb M Grenko
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Henry J Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| | - Lori L Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Brian N Lee
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zoe Weiss
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tingfen Yan
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy J Swift
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erin C Mansell
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angela Lee
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Catherine C Robertson
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael R Erdos
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - D Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Samario-Román J, Velasco M, Larqué C, Cárdenas-Vázquez R, Ortiz-Huidobro RI, Hiriart M. NGF effects promote the maturation of rat pancreatic beta cells by regulating GLUT2 levels and distribution, and glucokinase activity. PLoS One 2024; 19:e0303934. [PMID: 38875221 PMCID: PMC11178159 DOI: 10.1371/journal.pone.0303934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
The nerve growth factor (NGF) participates in cell survival and glucose-stimulated insulin secretion (GSIS) processes in rat adult beta cells. GSIS is a complex process in which metabolic events and ionic channel activity are finely coupled. GLUT2 and glucokinase (GK) play central roles in GSIS by regulating the rate of the glycolytic pathway. The biphasic release of insulin upon glucose stimulation characterizes mature adult beta cells. On the other hand, beta cells obtained from neonatal, suckling, and weaning rats are considered immature because they secrete low levels of insulin and do not increase insulin secretion in response to high glucose. The weaning of rats (at postnatal day 20 in laboratory conditions) involves a dietary transition from maternal milk to standard chow. It is characterized by increased basal plasma glucose levels and insulin levels, which we consider physiological insulin resistance. On the other hand, we have observed that incubating rat beta cells with NGF increases GSIS by increasing calcium currents in neonatal cells. In this work, we studied the effects of NGF on the regulation of cellular distribution and activity of GLUT2 and GK to explore its potential role in the maturation of GSIS in beta cells from P20 rats. Pancreatic islet cells from both adult and P20 rats were isolated and incubated with 5.6 mM or 15.6 mM glucose with and without NGF for 4 hours. Specific immunofluorescence assays were conducted following the incubation period to detect insulin and GLUT2. Additionally, we measured glucose uptake, glucokinase activity, and insulin secretion assays at 5.6 mM or 15.6 mM glucose concentrations. We observed an age-dependent variation in the distribution of GLUT2 in pancreatic beta cells and found that glucose plays a regulatory role in GLUT2 distribution independently of age. Moreover, NGF increases GLUT2 abundance, glucose uptake, and GSIS in P20 beta cells and GK activity in adult beta cells. Our results suggest that besides increasing calcium currents, NGF regulates metabolic components of the GSIS, thereby contributing to the maturation process of pancreatic beta cells.
Collapse
Affiliation(s)
- Jazmín Samario-Román
- Neuroscience Division, Cognitive Neuroscience Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Neuroscience Division, Cognitive Neuroscience Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Larqué
- Department of Embryology and Genetics, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - René Cárdenas-Vázquez
- Laboratory of Experimental Animal Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa Isela Ortiz-Huidobro
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Ciudad de México, Mexico
| | - Marcia Hiriart
- Neuroscience Division, Cognitive Neuroscience Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Smandri A, Al-Masawa ME, Hwei NM, Fauzi MB. ECM-derived biomaterials for regulating tissue multicellularity and maturation. iScience 2024; 27:109141. [PMID: 38405613 PMCID: PMC10884934 DOI: 10.1016/j.isci.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Recent breakthroughs in developing human-relevant organotypic models led to the building of highly resemblant tissue constructs that hold immense potential for transplantation, drug screening, and disease modeling. Despite the progress in fine-tuning stem cell multilineage differentiation in highly controlled spatiotemporal conditions and hosting microenvironments, 3D models still experience naive and incomplete morphogenesis. In particular, existing systems and induction protocols fail to maintain stem cell long-term potency, induce high tissue-level multicellularity, or drive the maturity of stem cell-derived 3D models to levels seen in their in vivo counterparts. In this review, we highlight the use of extracellular matrix (ECM)-derived biomaterials in providing stem cell niche-mimicking microenvironment capable of preserving stem cell long-term potency and inducing spatial and region-specific differentiation. We also examine the maturation of different 3D models, including organoids, encapsulated in ECM biomaterials and provide looking-forward perspectives on employing ECM biomaterials in building more innovative, transplantable, and functional organs.
Collapse
Affiliation(s)
- Ali Smandri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Pratt HG, Ma L, Dziadowicz SA, Ott S, Whalley T, Szomolay B, Eubank TD, Hu G, Boone BA. Analysis of single nuclear chromatin accessibility reveals unique myeloid populations in human pancreatic ductal adenocarcinoma. Clin Transl Med 2024; 14:e1595. [PMID: 38426634 PMCID: PMC10905544 DOI: 10.1002/ctm2.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND A better understanding of the pancreatic ductal adenocarcinoma (PDAC) immune microenvironment is critical to developing new treatments and improving outcomes. Myeloid cells are of particular importance for PDAC progression; however, the presence of heterogenous subsets with different ontogeny and impact, along with some fluidity between them, (infiltrating monocytes vs. tissue-resident macrophages; M1 vs. M2) makes characterisation of myeloid populations challenging. Recent advances in single cell sequencing technology provide tools for characterisation of immune cell infiltrates, and open chromatin provides source and function data for myeloid cells to assist in more comprehensive characterisation. Thus, we explore single nuclear assay for transposase accessible chromatin (ATAC) sequencing (snATAC-Seq), a method to analyse open gene promoters and transcription factor binding, as an important means for discerning the myeloid composition in human PDAC tumours. METHODS Frozen pancreatic tissues (benign or PDAC) were prepared for snATAC-Seq using 10× Chromium technology. Signac was used for preliminary analysis, clustering and differentially accessible chromatin region identification. The genes annotated in promoter regions were used for Gene Ontology (GO) enrichment and cell type annotation. Gene signatures were used for survival analysis with The Cancer Genome Atlas (TCGA)-pancreatic adenocarcinoma (PAAD) dataset. RESULTS Myeloid cell transcription factor activities were higher in tumour than benign pancreatic samples, enabling us to further stratify tumour myeloid populations. Subcluster analysis revealed eight distinct myeloid populations. GO enrichment demonstrated unique functions for myeloid populations, including interleukin-1b signalling (recruited monocytes) and intracellular protein transport (dendritic cells). The identified gene signature for dendritic cells influenced survival (hazard ratio = .63, p = .03) in the TCGA-PAAD dataset, which was unique to PDAC. CONCLUSIONS These data suggest snATAC-Seq as a method for analysis of frozen human pancreatic tissues to distinguish myeloid populations. An improved understanding of myeloid cell heterogeneity and function is important for developing new treatment targets in PDAC.
Collapse
Affiliation(s)
- Hillary G. Pratt
- Cancer Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Li Ma
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Sebastian A. Dziadowicz
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Sascha Ott
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | | | - Barbara Szomolay
- Division of Infection and Immunity & Systems Immunity Research InstituteCardiff UniversityCardiffUK
| | - Timothy D. Eubank
- Cancer Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- In Vivo Multifunctional Magnetic Resonance CenterWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Gangqing Hu
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Brian A. Boone
- Cancer Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- WVU Cancer InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of MicrobiologyImmunology and Cell BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of SurgeryWest Virginia UniversityMorgantownWest VirginiaUSA
| |
Collapse
|
8
|
Barvaux S, Okawa S, Del Sol A. SinCMat: A single-cell-based method for predicting functional maturation transcription factors. Stem Cell Reports 2024; 19:270-284. [PMID: 38215756 PMCID: PMC10874865 DOI: 10.1016/j.stemcr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024] Open
Abstract
A major goal of regenerative medicine is to generate tissue-specific mature and functional cells. However, current cell engineering protocols are still unable to systematically produce fully mature functional cells. While existing computational approaches aim at predicting transcription factors (TFs) for cell differentiation/reprogramming, no method currently exists that specifically considers functional cell maturation processes. To address this challenge, here, we develop SinCMat, a single-cell RNA sequencing (RNA-seq)-based computational method for predicting cell maturation TFs. Based on a model of cell maturation, SinCMat identifies pairs of identity TFs and signal-dependent TFs that co-target genes driving functional maturation. A large-scale application of SinCMat to the Mouse Cell Atlas and Tabula Sapiens accurately recapitulates known maturation TFs and predicts novel candidates. We expect SinCMat to be an important resource, complementary to preexisting computational methods, for studies aiming at producing functionally mature cells.
Collapse
Affiliation(s)
- Sybille Barvaux
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval Esch-sur-Alzette, Luxembourg
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval Esch-sur-Alzette, Luxembourg; University of Pittsburgh School of Medicine, Vascular Medicine Institute, Department of Computational and Systems Biology, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval Esch-sur-Alzette, Luxembourg; CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
9
|
Weidemann BJ, Marcheva B, Kobayashi M, Omura C, Newman MV, Kobayashi Y, Waldeck NJ, Perelis M, Lantier L, McGuinness OP, Ramsey KM, Stein RW, Bass J. Repression of latent NF-κB enhancers by PDX1 regulates β cell functional heterogeneity. Cell Metab 2024; 36:90-102.e7. [PMID: 38171340 PMCID: PMC10793877 DOI: 10.1016/j.cmet.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 07/17/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Interactions between lineage-determining and activity-dependent transcription factors determine single-cell identity and function within multicellular tissues through incompletely known mechanisms. By assembling a single-cell atlas of chromatin state within human islets, we identified β cell subtypes governed by either high or low activity of the lineage-determining factor pancreatic duodenal homeobox-1 (PDX1). β cells with reduced PDX1 activity displayed increased chromatin accessibility at latent nuclear factor κB (NF-κB) enhancers. Pdx1 hypomorphic mice exhibited de-repression of NF-κB and impaired glucose tolerance at night. Three-dimensional analyses in tandem with chromatin immunoprecipitation (ChIP) sequencing revealed that PDX1 silences NF-κB at circadian and inflammatory enhancers through long-range chromatin contacts involving SIN3A. Conversely, Bmal1 ablation in β cells disrupted genome-wide PDX1 and NF-κB DNA binding. Finally, antagonizing the interleukin (IL)-1β receptor, an NF-κB target, improved insulin secretion in Pdx1 hypomorphic islets. Our studies reveal functional subtypes of single β cells defined by a gradient in PDX1 activity and identify NF-κB as a target for insulinotropic therapy.
Collapse
Affiliation(s)
- Benjamin J Weidemann
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mikoto Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marsha V Newman
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan J Waldeck
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Louise Lantier
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Owen P McGuinness
- Vanderbilt-NIH Mouse Metabolic Phenotyping Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Pollock SD, Galicia-Silva IM, Liu M, Gruskin ZL, Alvarez-Dominguez JR. Scalable Generation of 3D Pancreatic Islet Organoids from Human Pluripotent Stem Cells in Suspension Bioreactors. Methods Mol Biol 2024; 2805:51-87. [PMID: 39008174 DOI: 10.1007/978-1-0716-3854-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
We describe a scalable method for the robust generation of 3D pancreatic islet-like organoids from human pluripotent stem cells using suspension bioreactors. Our protocol involves a 6-stage, 20-day directed differentiation process, resulting in the production of 104-105 organoids. These organoids comprise α- and β-like cells that exhibit glucose-responsive insulin and glucagon secretion. We detail methods for culturing, passaging, and cryopreserving stem cells as suspended clusters and for differentiating them through specific growth media and exogenous factors added in a stepwise manner. Additionally, we address quality control measures, troubleshooting strategies, and functional assays for research applications.
Collapse
Affiliation(s)
- Samuel D Pollock
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Israeli M Galicia-Silva
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mai Liu
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zoe L Gruskin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Juan R Alvarez-Dominguez
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Pierre TH, Toren E, Kepple J, Hunter CS. Epigenetic Regulation of Pancreas Development and Function. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:1-30. [PMID: 39283480 DOI: 10.1007/978-3-031-62232-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The field of epigenetics broadly seeks to define heritable phenotypic modifications that occur within cells without changes to the underlying DNA sequence. These modifications allow for precise control and specificity of function between cell types-ultimately creating complex organ systems that all contain the same DNA but only have access to the genes and sequences necessary for their cell-type-specific functions. The pancreas is an organ that contains varied cellular compartments with functions ranging from highly regulated glucose-stimulated insulin secretion in the β-cell to the pancreatic ductal cells that form a tight epithelial lining for the delivery of digestive enzymes. With diabetes cases on the rise worldwide, understanding the epigenetic mechanisms driving β-cell identity, function, and even disease is particularly valuable. In this chapter, we will discuss the known epigenetic modifications in pancreatic islet cells, how they are deposited, and the environmental and metabolic contributions to epigenetic mechanisms. We will also explore how a deeper understanding of epigenetic effectors can be used as a tool for diabetes therapeutic strategies.
Collapse
Affiliation(s)
- Tanya Hans Pierre
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Kepple
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Tanday N, Tarasov AI, Moffett RC, Flatt PR, Irwin N. Pancreatic islet cell plasticity: Pathogenic or therapeutically exploitable? Diabetes Obes Metab 2024; 26:16-31. [PMID: 37845573 DOI: 10.1111/dom.15300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting β-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of β-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing β-cell dedifferentiation or promoting the transdifferentiation of non-β-cells towards an insulin-positive β-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing β-cell loss or generating new β-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent β-cell decline in diabetes.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrei I Tarasov
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Nigel Irwin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| |
Collapse
|
13
|
Dallali H, Boukhalfa W, Kheriji N, Fassatoui M, Jmel H, Hechmi M, Gouiza I, Gharbi M, Kammoun W, Mrad M, Taoueb M, Krir A, Trabelsi H, Bahlous A, Jamoussi H, Messaoud O, Abid A, Kefi R. The first exome wide association study in Tunisia: identification of candidate loci and pathways with biological relevance for type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1293124. [PMID: 38192426 PMCID: PMC10773763 DOI: 10.3389/fendo.2023.1293124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Type 2 diabetes (T2D) is a multifactorial disease involving genetic and environmental components. Several genome-wide association studies (GWAS) have been conducted to decipher potential genetic aberrations promoting the onset of this metabolic disorder. These GWAS have identified over 400 associated variants, mostly in the intronic or intergenic regions. Recently, a growing number of exome genotyping or exome sequencing experiments have identified coding variants associated with T2D. Such studies were mainly conducted in European populations, and the few candidate-gene replication studies in North African populations revealed inconsistent results. In the present study, we aimed to discover the coding genetic etiology of T2D in the Tunisian population. Methods We carried out a pilot Exome Wide Association Study (EWAS) on 50 Tunisian individuals. Single variant analysis was performed as implemented in PLINK on potentially deleterious coding variants. Subsequently, we applied gene-based and gene-set analyses using MAGMA software to identify genes and pathways associated with T2D. Potential signals were further replicated in an existing large in-silico dataset, involving up to 177116 European individuals. Results Our analysis revealed, for the first time, promising associations between T2D and variations in MYORG gene, implicated in the skeletal muscle fiber development. Gene-set analysis identified two candidate pathways having nominal associations with T2D in our study samples, namely the positive regulation of neuron apoptotic process and the regulation of mucus secretion. These two pathways are implicated in the neurogenerative alterations and in the inflammatory mechanisms of metabolic diseases. In addition, replication analysis revealed nominal associations of the regulation of beta-cell development and the regulation of peptidase activity pathways with T2D, both in the Tunisian subjects and in the European in-silico dataset. Conclusions The present study is the first EWAS to investigate the impact of single genetic variants and their aggregate effects on T2D risk in Africa. The promising disease markers, revealed by our pilot EWAS, will promote the understanding of the T2D pathophysiology in North Africa as well as the discovery of potential treatments.
Collapse
Affiliation(s)
- Hamza Dallali
- Genetic typing service, Institut Pasteur of Tunis, Tunis, Tunisia
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Wided Boukhalfa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Meriem Fassatoui
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Haifa Jmel
- Genetic typing service, Institut Pasteur of Tunis, Tunis, Tunisia
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Meriem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Ismail Gouiza
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- MitoLab Team, Unité MitoVasc, UMR CNRS 6015, INSERM U1083, SFR ICAT, University of Angers, Angers, France
| | - Mariem Gharbi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wafa Kammoun
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Mehdi Mrad
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Marouen Taoueb
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Asma Krir
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Hajer Trabelsi
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Afef Bahlous
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Henda Jamoussi
- Research Unit on Obesity, Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| | - Abdelmajid Abid
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
| | - Rym Kefi
- Genetic typing service, Institut Pasteur of Tunis, Tunis, Tunisia
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
14
|
Pollock SD, Galicia-Silva IM, Liu M, Gruskin ZL, Alvarez-Dominguez JR. Scalable generation of 3D pancreatic islet organoids from human pluripotent stem cells in suspension bioreactors. STAR Protoc 2023; 4:102580. [PMID: 37738117 PMCID: PMC10519857 DOI: 10.1016/j.xpro.2023.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023] Open
Abstract
Here, we present a protocol for producing 3D pancreatic-like organoids from human pluripotent stem cells in suspension bioreactors. We describe scalable techniques for generating 10,000-100,000 organoids that further mature in 4-5 weeks into α- and β-like cells with glucose-responsive insulin and glucagon release. We detail procedures for culturing, passaging, and cryopreserving stem cells as suspended clusters and specify growth media and differentiation factors for differentiation. Finally, we discuss functional assays for research applications. For complete details on the use and execution of this protocol, please refer to Alvarez-Dominguez et al.1.
Collapse
Affiliation(s)
- Samuel D Pollock
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Israeli M Galicia-Silva
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mai Liu
- Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zoe L Gruskin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Juan R Alvarez-Dominguez
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Blanchi B, Taurand M, Colace C, Thomaidou S, Audeoud C, Fantuzzi F, Sawatani T, Gheibi S, Sabadell-Basallote J, Boot FWJ, Chantier T, Piet A, Cavanihac C, Pilette M, Balguerie A, Olleik H, Carlotti F, Ejarque M, Fex M, Mulder H, Cnop M, Eizirik DL, Jouannot O, Gaffuri AL, Czernichow P, Zaldumbide A, Scharfmann R, Ravassard P. EndoC-βH5 cells are storable and ready-to-use human pancreatic beta cells with physiological insulin secretion. Mol Metab 2023; 76:101772. [PMID: 37442376 PMCID: PMC10407753 DOI: 10.1016/j.molmet.2023.101772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVES Readily accessible human pancreatic beta cells that are functionally close to primary adult beta cells are a crucial model to better understand human beta cell physiology and develop new treatments for diabetes. We here report the characterization of EndoC-βH5 cells, the latest in the EndoC-βH cell family. METHODS EndoC-βH5 cells were generated by integrative gene transfer of immortalizing transgenes hTERT and SV40 large T along with Herpes Simplex Virus-1 thymidine kinase into human fetal pancreas. Immortalizing transgenes were removed after amplification using CRE activation and remaining non-excized cells eliminated using ganciclovir. Resulting cells were distributed as ready to use EndoC-βH5 cells. We performed transcriptome, immunological and extensive functional assays. RESULTS Ready to use EndoC-βH5 cells display highly efficient glucose dependent insulin secretion. A robust 10-fold insulin secretion index was observed and reproduced in four independent laboratories across Europe. EndoC-βH5 cells secrete insulin in a dynamic manner in response to glucose and secretion is further potentiated by GIP and GLP-1 analogs. RNA-seq confirmed abundant expression of beta cell transcription factors and functional markers, including incretin receptors. Cytokines induce a gene expression signature of inflammatory pathways and antigen processing and presentation. Finally, modified HLA-A2 expressing EndoC-βH5 cells elicit specific A2-alloreactive CD8 T cell activation. CONCLUSIONS EndoC-βH5 cells represent a unique storable and ready to use human pancreatic beta cell model with highly robust and reproducible features. Such cells are thus relevant for the study of beta cell function, screening and validation of new drugs, and development of disease models.
Collapse
Affiliation(s)
| | | | - Claire Colace
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Federica Fantuzzi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Sevda Gheibi
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Joan Sabadell-Basallote
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain; Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Fransje W J Boot
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | | | - Aline Piet
- Human Cell Design, Canceropole, Toulouse, France
| | | | | | | | - Hamza Olleik
- Human Cell Design, Canceropole, Toulouse, France
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Miriam Ejarque
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Malin Fex
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Hindrik Mulder
- Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Raphaël Scharfmann
- Université Paris Cité, Institut Cochin, CNRS, INSERM U1016, Paris, 75014, France
| | - Philippe Ravassard
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France.
| |
Collapse
|
16
|
Toren E, Kepple JD, Coutinho KV, Poole SO, Deeba IM, Pierre TH, Liu Y, Bethea MM, Hunter CS. The SSBP3 co-regulator is required for glucose homeostasis, pancreatic islet architecture, and beta-cell identity. Mol Metab 2023; 76:101785. [PMID: 37536498 PMCID: PMC10448474 DOI: 10.1016/j.molmet.2023.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE Transcriptional complex activity drives the development and function of pancreatic islet cells to allow for proper glucose regulation. Prior studies from our lab and others highlighted that the LIM-homeodomain transcription factor (TF), Islet-1 (Isl1), and its interacting co-regulator, Ldb1, are vital effectors of developing and adult β-cells. We further found that a member of the Single Stranded DNA-Binding Protein (SSBP) co-regulator family, SSBP3, interacts with Isl1 and Ldb1 in β-cells and primary islets (mouse and human) to impact β-cell target genes MafA and Glp1R in vitro. Members of the SSBP family stabilize TF complexes by binding directly to Ldb1 and protecting the complex from ubiquitin-mediated turnover. In this study, we hypothesized that SSBP3 has critical roles in pancreatic islet cell function in vivo, similar to the Isl1::Ldb1 complex. METHODS We first developed a novel SSBP3 LoxP allele mouse line, where Cre-mediated recombination imparts a predicted early protein termination. We bred this mouse with constitutive Cre lines (Pdx1- and Pax6-driven) to recombine SSBP3 in the developing pancreas and islet (SSBP3ΔPanc and SSBP3ΔIslet), respectively. We assessed glucose tolerance and used immunofluorescence to detect changes in islet cell abundance and markers of β-cell identity and function. Using an inducible Cre system, we also deleted SSBP3 in the adult β-cell, a model termed SSBP3Δβ-cell. We measured glucose tolerance as well as glucose-stimulated insulin secretion (GSIS), both in vivo and in isolated islets in vitro. Using islets from control and SSBP3Δβ-cell we conducted RNA-Seq and compared our results to published datasets for similar β-cell specific Ldb1 and Isl1 knockouts to identify commonly regulated target genes. RESULTS SSBP3ΔPanc and SSBP3ΔIslet neonates present with hyperglycemia. SSBP3ΔIslet mice are glucose intolerant by P21 and exhibit a reduction of β-cell maturity markers MafA, Pdx1, and UCN3. We observe disruptions in islet cell architecture with an increase in glucagon+ α-cells and ghrelin+ ε-cells at P10. Inducible loss of β-cell SSBP3 in SSBP3Δβ-cell causes hyperglycemia, glucose intolerance, and reduced GSIS. Transcriptomic analysis of 14-week-old SSBP3Δβ-cell islets revealed a decrease in β-cell function gene expression (Ins, MafA, Ucn3), increased stress and dedifferentiation markers (Neurogenin-3, Aldh1a3, Gastrin), and shared differentially expressed genes between SSBP3, Ldb1, and Isl1 in adult β-cells. CONCLUSIONS SSBP3 drives proper islet identity and function, where its loss causes altered islet-cell abundance and glucose homeostasis. β-Cell SSBP3 is required for GSIS and glucose homeostasis, at least partially through shared regulation of Ldb1 and Isl1 target genes.
Collapse
Affiliation(s)
- Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessica D Kepple
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristen V Coutinho
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samuel O Poole
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Iztiba M Deeba
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tanya H Pierre
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yanping Liu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maigen M Bethea
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
17
|
Zhu H, Wang G, Nguyen-Ngoc KV, Kim D, Miller M, Goss G, Kovsky J, Harrington AR, Saunders DC, Hopkirk AL, Melton R, Powers AC, Preissl S, Spagnoli FM, Gaulton KJ, Sander M. Understanding cell fate acquisition in stem-cell-derived pancreatic islets using single-cell multiome-inferred regulomes. Dev Cell 2023; 58:727-743.e11. [PMID: 37040771 PMCID: PMC10175223 DOI: 10.1016/j.devcel.2023.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/06/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem-cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and pancreas from childhood and adult donors for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal gene regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a transient, previously unrecognized, serotonin-producing pre-β cell population in fetal pancreas, arguing against a proposed non-pancreatic origin. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β cell maturation and identify sex hormones as drivers of β cell proliferation in childhood. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem-cell-derived islets and a framework for manipulating cell identities and maturity.
Collapse
Affiliation(s)
- Han Zhu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Kim-Vy Nguyen-Ngoc
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Dongsu Kim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Georgina Goss
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Jenna Kovsky
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Austin R Harrington
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA
| | - Alexander L Hopkirk
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA
| | - Rebecca Melton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA; Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212-2637, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Francesca M Spagnoli
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Maike Sander
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Kozlowski MT, Zook HN, Chigumba DN, Johnstone CP, Caldera LF, Shih HP, Tirrell DA, Ku HT. A matrigel-free method for culture of pancreatic endocrine-like cells in defined protein-based hydrogels. Front Bioeng Biotechnol 2023; 11:1144209. [PMID: 36970620 PMCID: PMC10033864 DOI: 10.3389/fbioe.2023.1144209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The transplantation of pancreatic endocrine islet cells from cadaveric donors is a promising treatment for type 1 diabetes (T1D), which is a chronic autoimmune disease that affects approximately nine million people worldwide. However, the demand for donor islets outstrips supply. This problem could be solved by differentiating stem and progenitor cells to islet cells. However, many current culture methods used to coax stem and progenitor cells to differentiate into pancreatic endocrine islet cells require Matrigel, a matrix composed of many extracellular matrix (ECM) proteins secreted from a mouse sarcoma cell line. The undefined nature of Matrigel makes it difficult to determine which factors drive stem and progenitor cell differentiation and maturation. Additionally, it is difficult to control the mechanical properties of Matrigel without altering its chemical composition. To address these shortcomings of Matrigel, we engineered defined recombinant proteins roughly 41 kDa in size, which contain cell-binding ECM peptides derived from fibronectin (ELYAVTGRGDSPASSAPIA) or laminin alpha 3 (PPFLMLLKGSTR). The engineered proteins form hydrogels through association of terminal leucine zipper domains derived from rat cartilage oligomeric matrix protein. The zipper domains flank elastin-like polypeptides whose lower critical solution temperature (LCST) behavior enables protein purification through thermal cycling. Rheological measurements show that a 2% w/v gel of the engineered proteins display material behavior comparable to a Matrigel/methylcellulose-based culture system previously reported by our group to support the growth of pancreatic ductal progenitor cells. We tested whether our protein hydrogels in 3D culture could derive endocrine and endocrine progenitor cells from dissociated pancreatic cells of young (1-week-old) mice. We found that both protein hydrogels favored growth of endocrine and endocrine progenitor cells, in contrast to Matrigel-based culture. Because the protein hydrogels described here can be further tuned with respect to mechanical and chemical properties, they provide new tools for mechanistic study of endocrine cell differentiation and maturation.
Collapse
Affiliation(s)
- Mark T. Kozlowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Heather N. Zook
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, CA, United States
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
| | - Desnor N. Chigumba
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Christopher P. Johnstone
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Luis F. Caldera
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hung-Ping Shih
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, CA, United States
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute and Beckman Research Institute of City of Hope, Duarte, CA, United States
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, United States
- *Correspondence: Hsun Teresa Ku,
| |
Collapse
|
19
|
Islet microexons: tiny new players in glucose homeostasis. Nat Metab 2023; 5:203-204. [PMID: 36759541 DOI: 10.1038/s42255-023-00739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
20
|
Goode RA, Hum JM, Kalwat MA. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022; 164:6836713. [PMID: 36412119 PMCID: PMC9923807 DOI: 10.1210/endocr/bqac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.
Collapse
Affiliation(s)
- Roy A Goode
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd, Suite 2000, Indianapolis, IN 46202, USA. or
| |
Collapse
|
21
|
Jin W, Jiang W. Stepwise differentiation of functional pancreatic β cells from human pluripotent stem cells. CELL REGENERATION 2022; 11:24. [PMID: 35909206 PMCID: PMC9339430 DOI: 10.1186/s13619-022-00125-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
Pancreatic β cells differentiated from stem cells provide promise for cell replacement therapy of diabetes. Human pluripotent stem cells could be differentiated into definitive endoderm, followed by pancreatic progenitors, and then subjected to endocrinal differentiation and maturation in a stepwise fashion. Many achievements have been made in making pancreatic β cells from human pluripotent stem cells in last two decades, and a couple of phase I/II clinical trials have just been initiated. Here, we overview the major progresses in differentiating pancreatic β cells from human pluripotent stem cells with the focus on recent technical advances in each differentiation stage, and briefly discuss the current limitations as well.
Collapse
|
22
|
Abstract
The ability to maintain normoglycaemia, through glucose-sensitive insulin release, is a key aspect of postnatal beta cell function. However, terminally differentiated beta cell identity does not necessarily imply functional maturity. Beta cell maturation is therefore a continuation of beta cell development, albeit a process that occurs postnatally in mammals. Although many important features have been identified in the study of beta cell maturation, as of yet no unified mechanistic model of beta cell functional maturity exists. Here, we review recent findings about the underlying mechanisms of beta cell functional maturation. These findings include systemic hormonal and nutritional triggers that operate through energy-sensing machinery shifts within beta cells, resulting in primed metabolic states that allow for appropriate glucose trafficking and, ultimately, insulin release. We also draw attention to the expansive synergistic nature of these pathways and emphasise that beta cell maturation is dependent on overlapping regulatory and metabolic networks.
Collapse
Affiliation(s)
- Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
23
|
Yoshihara E. Adapting Physiology in Functional Human Islet Organogenesis. Front Cell Dev Biol 2022; 10:854604. [PMID: 35557947 PMCID: PMC9086403 DOI: 10.3389/fcell.2022.854604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
Generation of three-dimensional (3D)-structured functional human islets is expected to be an alternative cell source for cadaveric human islet transplantation for the treatment of insulin-dependent diabetes. Human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer infinite resources for newly synthesized human islets. Recent advancements in hPSCs technology have enabled direct differentiation to human islet-like clusters, which can sense glucose and secrete insulin, and those islet clusters can ameliorate diabetes when transplanted into rodents or non-human primates (NHPs). However, the generated hPSC-derived human islet-like clusters are functionally immature compared with primary human islets. There remains a challenge to establish a technology to create fully functional human islets in vitro, which are functionally and transcriptionally indistinguishable from cadaveric human islets. Understanding the complex differentiation and maturation pathway is necessary to generate fully functional human islets for a tremendous supply of high-quality human islets with less batch-to-batch difference for millions of patients. In this review, I summarized the current progress in the generation of 3D-structured human islets from pluripotent stem cells and discussed the importance of adapting physiology for in vitro functional human islet organogenesis and possible improvements with environmental cues.
Collapse
Affiliation(s)
- Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
24
|
Wasserman DH. Insulin, Muscle Glucose Uptake, and Hexokinase: Revisiting the Road Not Taken. Physiology (Bethesda) 2022; 37:115-127. [PMID: 34779282 PMCID: PMC8977147 DOI: 10.1152/physiol.00034.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022] Open
Abstract
Research conducted over the last 50 yr has provided insight into the mechanisms by which insulin stimulates glucose transport across the skeletal muscle cell membrane Transport alone, however, does not result in net glucose uptake as free glucose equilibrates across the cell membrane and is not metabolized. Glucose uptake requires that glucose is phosphorylated by hexokinases. Phosphorylated glucose cannot leave the cell and is the substrate for metabolism. It is indisputable that glucose phosphorylation is essential for glucose uptake. Major advances have been made in defining the regulation of the insulin-stimulated glucose transporter (GLUT4) in skeletal muscle. By contrast, the insulin-regulated hexokinase (hexokinase II) parallels Robert Frost's "The Road Not Taken." Here the case is made that an understanding of glucose phosphorylation by hexokinase II is necessary to define the regulation of skeletal muscle glucose uptake in health and insulin resistance. Results of studies from different physiological disciplines that have elegantly described how hexokinase II can be regulated are summarized to provide a framework for potential application to skeletal muscle. Mechanisms by which hexokinase II is regulated in skeletal muscle await rigorous examination.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
25
|
Scoville DW, Jetten AM. GLIS3: A Critical Transcription Factor in Islet β-Cell Generation. Cells 2021; 10:cells10123471. [PMID: 34943978 PMCID: PMC8700524 DOI: 10.3390/cells10123471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Understanding of pancreatic islet biology has greatly increased over the past few decades based in part on an increased understanding of the transcription factors that guide this process. One such transcription factor that has been increasingly tied to both β-cell development and the development of diabetes in humans is GLIS3. Genetic deletion of GLIS3 in mice and humans induces neonatal diabetes, while single nucleotide polymorphisms (SNPs) in GLIS3 have been associated with both Type 1 and Type 2 diabetes. As a significant progress has been made in understanding some of GLIS3’s roles in pancreas development and diabetes, we sought to compare current knowledge on GLIS3 within the pancreas to that of other islet enriched transcription factors. While GLIS3 appears to regulate similar genes and pathways to other transcription factors, its unique roles in β-cell development and maturation make it a key target for future studies and therapy.
Collapse
|
26
|
Kalwat MA, Scheuner D, Rodrigues-dos-Santos K, Eizirik DL, Cobb MH. The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology 2021; 162:bqab173. [PMID: 34407177 PMCID: PMC8459449 DOI: 10.1210/endocr/bqab173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades. To adapt to the constant and fast-changing demands for insulin production, β cells use the unfolded protein response of the endoplasmic reticulum. Failure of these compensatory mechanisms contributes to both type 1 and 2 diabetes. Additionally, studies in which β cells are "rested" by reducing endogenous insulin demand have shown promise as a therapeutic strategy that could be applied more broadly. Here, we review recent findings in β cells pertaining to the metabolic amplifying pathway, the unfolded protein response, and potential advances in therapeutics based on β-cell rest.
Collapse
Affiliation(s)
- Michael A Kalwat
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | | | - Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
27
|
Tahbaz M, Yoshihara E. Immune Protection of Stem Cell-Derived Islet Cell Therapy for Treating Diabetes. Front Endocrinol (Lausanne) 2021; 12:716625. [PMID: 34447354 PMCID: PMC8382875 DOI: 10.3389/fendo.2021.716625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin injection is currently the main therapy for type 1 diabetes (T1D) or late stage of severe type 2 diabetes (T2D). Human pancreatic islet transplantation confers a significant improvement in glycemic control and prevents life-threatening severe hypoglycemia in T1D patients. However, the shortage of cadaveric human islets limits their therapeutic potential. In addition, chronic immunosuppression, which is required to avoid rejection of transplanted islets, is associated with severe complications, such as an increased risk of malignancies and infections. Thus, there is a significant need for novel approaches to the large-scale generation of functional human islets protected from autoimmune rejection in order to ensure durable graft acceptance without immunosuppression. An important step in addressing this need is to strengthen our understanding of transplant immune tolerance mechanisms for both graft rejection and autoimmune rejection. Engineering of functional human pancreatic islets that can avoid attacks from host immune cells would provide an alternative safe resource for transplantation therapy. Human pluripotent stem cells (hPSCs) offer a potentially limitless supply of cells because of their self-renewal ability and pluripotency. Therefore, studying immune tolerance induction in hPSC-derived human pancreatic islets will directly contribute toward the goal of generating a functional cure for insulin-dependent diabetes. In this review, we will discuss the current progress in the immune protection of stem cell-derived islet cell therapy for treating diabetes.
Collapse
Affiliation(s)
- Meghan Tahbaz
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- *Correspondence: Eiji Yoshihara,
| |
Collapse
|