1
|
Ling J, Lundkvist Å, Guerrini M, Ferro V, Li JP, Li J. A Heparan Sulfate Mimetic RAFT Copolymer Inhibits SARS-CoV-2 Infection and Ameliorates Viral-Induced Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411737. [PMID: 39679877 DOI: 10.1002/advs.202411737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/29/2024] [Indexed: 12/17/2024]
Abstract
The high transmissibility and mutation ability of coronaviruses enable them to easily escape existing immune protection and also pose a challenge to existing antiviral drugs. Moreover, drugs only targeting viruses cannot always attenuate the "cytokine storm". Herein, a synthetic heparan sulfate (HS) mimetic, HMSA-06 is reported, that exhibited antiviral activities against both the SARS-CoV-2 prototype and Omicron strains by targeting viral entry and replication. Of particular note, HMSA-06 demonstrated more potent anti-SARS-CoV-2 effects than PG545 and Roneparstat. SARS-CoV-2 is reported to hijack autophagy to facilitate its replication, therefore boosting autophagy can attenuate SARS-CoV-2 infection. It is revealed that HMSA-06, but not a similar HS mimetic that failed to inhibit SARS-CoV-2, can upregulate cellular autophagy flux. In addition, HMSA-06 was found to robustly block the NLRP3-mediated inflammatory reaction in SARS-CoV-2 infected THP-1 derived macrophages as evidenced by a reduction in inflammasome formation and the subsequent decreased secretion of mature caspase-1 and IL-1β. The HMSA-06's inflammation inhibitory function is further confirmed using a LPS/ATP-stimulated THP-1 macrophage model. Altogether, this study has identified a promising HS mimetic to combat SARS-CoV-2-associated diseases by inhibiting viral infection and attenuating viral-induced inflammatory reaction, providing insights into the development of novel anti-coronavirus drugs in the future.
Collapse
Affiliation(s)
- Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, 75123, Sweden
- Zoonosis Science Center, Uppsala University, Uppsala, 75123, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, 75123, Sweden
- Zoonosis Science Center, Uppsala University, Uppsala, 75123, Sweden
| | - Marco Guerrini
- Istituto Di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, 20133, Italy
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, 75123, Sweden
- SciLifeLab Uppsala, Uppsala University, Uppsala, 75123, Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, 75123, Sweden
- Zoonosis Science Center, Uppsala University, Uppsala, 75123, Sweden
| |
Collapse
|
2
|
Danielsson A, Samsonov SA, Sieradzan AK. Implementation of the UNRES/SUGRES-1P Coarse-Grained Model of Heparin for Simulating Protein/Heparin Interactions. J Chem Theory Comput 2024; 20:10703-10715. [PMID: 39569935 DOI: 10.1021/acs.jctc.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Heparin is a natural highly sulfated unbranched periodic polysaccharide that plays a critical role in regulating various cellular events through interactions with its protein targets such as growth factors and cytokines. Although all-atom simulations of heparin-containing systems provide valuable insights into their structural and dynamical properties, long chains of heparin participate in many biologically relevant processes at much bigger scales and longer times than the ones which all-atom MD is able to effectively deal with. Among these processes is the establishment of chemokine gradients, amyloidogenesis, or collagen network organization. To address this limitation, coarse-grained models simplify these systems by reducing the number of degrees of freedom, allowing for the efficient exploration of structural changes within protein/heparin complexes. We introduce and validate the accuracy of a new coarse-grained physics-based model designed for studying protein/heparin interactions, which has been incorporated into the UNRES software package. The effective energy functions from UNRES and SUGRES-1P have been employed for the protein and heparin components, respectively. A good agreement between the obtained coarse-grained simulation results and experimental data confirms the suitability of the combined coarse-grained UNRES and SUGRES-1P model for in silico analysis of complex biological phenomena involving heparin, spanning time scales and molecular system sizes not attainable by conventional atomistic molecular dynamics simulations.
Collapse
Affiliation(s)
- Annemarie Danielsson
- Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Adam K Sieradzan
- Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
3
|
Arachchillage DJ, Kitchen S. Pleiotropic Effects of Heparin and its Monitoring in the Clinical Practice. Semin Thromb Hemost 2024; 50:1153-1162. [PMID: 38810964 PMCID: PMC11469917 DOI: 10.1055/s-0044-1786990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Unfractionated heparin (UFH) was uncovered in 1916, has been used as an anticoagulant since 1935, and has been listed in the World Health Organization's Model List of Essential Medicines. Despite the availability of many other anticoagulants, the use of heparin (either low molecular weight heparin [LMWH] or UFH) is still substantial. Heparin has pleotropic effects including anticoagulant and several nonanticoagulant properties such as antiproliferative, anti-inflammatory activity, and anticomplement effects. Although UFH has been widely replaced by LMWH, UFH is still the preferred anticoagulant of choice for patients undergoing cardiopulmonary bypass surgery, extracorporeal membrane oxygenation, and patients with high-risk mechanical cardiac valves requiring temporary bridging with a parenteral anticoagulant. UFH is a highly negatively charged molecule and binds many positively charged molecules, hence has unpredictable pharmacokinetics, and variable anticoagulant effect on an individual patient basis. Therefore, anticoagulant effects of UFH may not be proportional to the dose of UFH given to any individual patient. In this review, we discuss the anticoagulant and nonanticoagulant activities of UFH, differences between UFH and LMWH, when to use UFH, different methods of monitoring the anticoagulant effects of UFH (including activated partial thromboplastin time, heparin anti-Xa activity level, and activated clotting time), while discussing pros and cons related to each method and comparison of clinical outcomes in patients treated with UFH monitored with different methods based on available evidence.
Collapse
Affiliation(s)
- Deepa J. Arachchillage
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
- Department of Haematology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Steve Kitchen
- Department of Coagulation, Royal Hallamshire Hospital, Sheffield, United Kingdom
| |
Collapse
|
4
|
Jannati S, Patnaik R, Banerjee Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. Int J Mol Sci 2024; 25:8727. [PMID: 39201414 PMCID: PMC11355043 DOI: 10.3390/ijms25168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Non-vitamin K oral anticoagulants (NOACs) have revolutionized anticoagulant therapy, offering improved safety and efficacy over traditional agents like warfarin. This review comprehensively examines the dual roles of NOACs-apixaban, rivaroxaban, edoxaban, and dabigatran-not only as anticoagulants, but also as modulators of inflammation via protease-activated receptor (PAR) signaling. We highlight the unique pharmacotherapeutic properties of each NOAC, supported by key clinical trials demonstrating their effectiveness in preventing thromboembolic events. Beyond their established anticoagulant roles, emerging research suggests that NOACs influence inflammation through PAR signaling pathways, implicating factors such as factor Xa (FXa) and thrombin in the modulation of inflammatory responses. This review synthesizes current evidence on the anti-inflammatory potential of NOACs, exploring their impact on inflammatory markers and conditions like atherosclerosis and diabetes. By delineating the mechanisms by which NOACs mediate anti-inflammatory effects, this work aims to expand their therapeutic utility, offering new perspectives for managing inflammatory diseases. Our findings underscore the broader clinical implications of NOACs, advocating for their consideration in therapeutic strategies aimed at addressing inflammation-related pathologies. This comprehensive synthesis not only enhances understanding of NOACs' multifaceted roles, but also paves the way for future research and clinical applications in inflammation and cardiovascular health.
Collapse
Affiliation(s)
- Shirin Jannati
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Rajashree Patnaik
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Yajnavalka Banerjee
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
5
|
Hessheimer AJ, Flores E, Vengohechea J, Fondevila C. Better liver transplant outcomes by donor interventions? Curr Opin Organ Transplant 2024; 29:219-227. [PMID: 38785132 DOI: 10.1097/mot.0000000000001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
PURPOSE OF REVIEW Donor risk factors and events surrounding donation impact the quantity and quality of grafts generated to meet liver transplant waitlist demands. Donor interventions represent an opportunity to mitigate injury and risk factors within donors themselves. The purpose of this review is to describe issues to address among donation after brain death, donation after circulatory determination of death, and living donors directly, for the sake of optimizing relevant outcomes among donors and recipients. RECENT FINDINGS Studies on donor management practices and high-level evidence supporting specific interventions are scarce. Nonetheless, for donation after brain death (DBD), critical care principles are employed to correct cardiocirculatory compromise, impaired tissue oxygenation and perfusion, and neurohormonal deficits. As well, certain treatments as well as marginally prolonging duration of brain death among otherwise stable donors may help improve posttransplant outcomes. In donation after circulatory determination of death (DCD), interventions are performed to limit warm ischemia and reverse its adverse effects. Finally, dietary and exercise programs have improved donation outcomes for both standard as well as overweight living donor (LD) candidates, while minimally invasive surgical techniques may offer improved outcomes among LD themselves. SUMMARY Donor interventions represent means to improve liver transplant yield and outcomes of liver donors and grafts.
Collapse
Affiliation(s)
- Amelia J Hessheimer
- General & Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd
| | - Eva Flores
- Transplant Coordination Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Jordi Vengohechea
- General & Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd
| | - Constantino Fondevila
- General & Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd
| |
Collapse
|
6
|
Sen S, Sharma P, Pal VK, Roy S. Designing Cardin-Motif Peptide and Heparin-Based Multicomponent Advanced Bioactive Hydrogel Scaffolds to Control Cellular Behavior. Biomacromolecules 2023; 24:4923-4938. [PMID: 37909341 DOI: 10.1021/acs.biomac.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Recently, peptide and sugar-based multicomponent systems have gained much interest in attaining the sophisticated structure and biofunctional complexity of the extracellular matrix (ECM). To this direction, we have designed for the first time a biologically relevant minimalist Cardin-motif peptide capable of binding ECM-derived glycosaminoglycans. Herein, we explored Cardin-motif peptide and heparin-based biomolecular matrix by employing simple noncovalent interactions at the molecular level. Interestingly, this peptide was inadequate to induce hydrogelation at ambient pH due to the presence of basic amino acids. However, addition of heparin successfully triggered its gelation at physiological pH following favorable electrostatic interactions with heparin. Importantly, the newly developed scaffolds displayed tunable nanofibrous morphology and superior mechanical properties as controlled simply by the differential mixing ratio of both biomolecular entities. Additionally, these composite scaffolds could closely mimic the complexity of ECM as they demonstrated superior biocompatibility and enhanced growth and proliferation of neural cells as compared to the peptide scaffold.
Collapse
Affiliation(s)
- Sourav Sen
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, 140306 Mohali, Punjab India
| | - Pooja Sharma
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, 140306 Mohali, Punjab India
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, 140306 Mohali, Punjab India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, 140306 Mohali, Punjab India
| |
Collapse
|
7
|
Barco S, Virdone S, Götschi A, Ageno W, Arcelus JI, Bingisser R, Colucci G, Cools F, Duerschmied D, Gibbs H, Fumagalli RM, Gerber B, Haas S, Himmelreich JCL, Hobbs R, Hobohm L, Jacobson B, Kayani G, Lopes RD, MacCallum P, Micieli E, Righini M, Robert-Ebadi H, Rocha AT, Rosemann T, Sawhney J, Schellong S, Sebastian T, Spirk D, Stortecky S, Turpie AGG, Voci D, Kucher N, Pieper K, Held U, Kakkar AK. Enoxaparin for symptomatic COVID-19 managed in the ambulatory setting: An individual patient level analysis of the OVID and ETHIC trials. Thromb Res 2023; 230:27-32. [PMID: 37625200 DOI: 10.1016/j.thromres.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Antithrombotic treatment may improve the disease course in non-critically ill, symptomatic COVID-19 outpatients. METHODS We performed an individual patient-level analysis of the OVID and ETHIC randomized controlled trials, which compared enoxaparin thromboprophylaxis for either 14 (OVID) or 21 days (ETHIC) vs. no thromboprophylaxis for outpatients with symptomatic COVID-19 and at least one additional risk factor. The primary efficacy outcome included all-cause hospitalization and all-cause death within 30 days from randomization. Both studies were prematurely stopped for futility. Secondary efficacy outcomes were major symptomatic venous thromboembolic events, arterial cardiovascular events, or their composite occurring within 30 days from randomization. The same outcomes were assessed over a 90-day follow-up. The primary safety outcome was major bleeding (ISTH criteria). RESULTS A total of 691 patients were randomized: 339 to receive enoxaparin and 352 to the control group. Over 30-day follow-up, the primary efficacy outcome occurred in 6.0 % of patients in the enoxaparin group vs. 5.8 % of controls for a risk ratio (RR) of 1.05 (95%CI 0.57-1.92). The incidence of major symptomatic venous thromboembolic events and arterial cardiovascular events was 0.9 % vs. 1.8 %, respectively (RR 0.52; 95%CI 0.13-2.06). Most cardiovascular thromboembolic events were represented by symptomatic venous thromboembolic events, occurring in 0.6 % vs. 1.5 % of patients, respectively. A similar distribution of outcomes between the treatment groups was observed over 90 days. No major bleeding occurred in the enoxaparin group vs. one (0.3 %) in the control group. CONCLUSIONS We found no evidence for the clinical benefit of early administration of enoxaparin thromboprophylaxis in outpatients with symptomatic COVID-19. These results should be interpreted taking into consideration the relatively low occurrence of events.
Collapse
Affiliation(s)
- Stefano Barco
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | | - Andrea Götschi
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Juan I Arcelus
- Department of Surgery, University of Granada, Granada, Spain
| | - Roland Bingisser
- Emergency Department, University Hospital Basel, Basel, Switzerland
| | - Giuseppe Colucci
- Service of Hematology, Clinica Luganese Moncucco, Lugano, Switzerland; Department of Hematology, University of Basel, Basel, Switzerland; Clinica Sant'Anna, Sorengo, Switzerland
| | - Frank Cools
- Department of Cardiology, General Hospital Klina, Brasschaat, Belgium
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Mannheim, Germany; Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Harry Gibbs
- Department of General Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | | | - Bernhard Gerber
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; University of Zurich, Zurich, Switzerland
| | - Sylvia Haas
- Formerly Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jelle C L Himmelreich
- Department of General Practice, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Richard Hobbs
- Oxford Primary Care, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK; Cardiology Division, Geneva University Hospitals, Geneva, Switzerland
| | - Lukas Hobohm
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Barry Jacobson
- Department of Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Renato D Lopes
- Duke University Medical Center, Durham, USA; Brazilian Clinical Research Institute (BCRI), Sao Paulo, Brazil
| | - Peter MacCallum
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Evy Micieli
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland
| | - Marc Righini
- Division of Angiology and Hemostasis, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Switzerland
| | - Helia Robert-Ebadi
- Division of Angiology and Hemostasis, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Switzerland
| | - Ana Thereza Rocha
- Department of Family Health, Federal University of Bahia, Salvador, Brazil; D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Thomas Rosemann
- Institute of Primary Care, University Hospital Zurich, Zurich, Switzerland
| | - Jitendra Sawhney
- Department of Cardiology, Sir Ganga Ram Hospital, New Delhi, India
| | - Sebastian Schellong
- Department of Internal Medicine, Municipal Hospital Dresden, Dresden, Germany
| | - Tim Sebastian
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland
| | - David Spirk
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stefan Stortecky
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Davide Voci
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland
| | - Nils Kucher
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Ulrike Held
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland
| | | |
Collapse
|
8
|
Szwed-Georgiou A, Płociński P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, Piszko P, Krupa A, Biernat M, Gazińska M, Kasprzak M, Nawrotek K, Mira NP, Rudnicka K. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng 2023; 9:5222-5254. [PMID: 37585562 PMCID: PMC10498424 DOI: 10.1021/acsbiomaterials.3c00609] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Novel tissue regeneration strategies are constantly being developed worldwide. Research on bone regeneration is noteworthy, as many promising new approaches have been documented with novel strategies currently under investigation. Innovative biomaterials that allow the coordinated and well-controlled repair of bone fractures and bone loss are being designed to reduce the need for autologous or allogeneic bone grafts eventually. The current engineering technologies permit the construction of synthetic, complex, biomimetic biomaterials with properties nearly as good as those of natural bone with good biocompatibility. To ensure that all these requirements meet, bioactive molecules are coupled to structural scaffolding constituents to form a final product with the desired physical, chemical, and biological properties. Bioactive molecules that have been used to promote bone regeneration include protein growth factors, peptides, amino acids, hormones, lipids, and flavonoids. Various strategies have been adapted to investigate the coupling of bioactive molecules with scaffolding materials to sustain activity and allow controlled release. The current manuscript is a thorough survey of the strategies that have been exploited for the delivery of biomolecules for bone regeneration purposes, from choosing the bioactive molecule to selecting the optimal strategy to synthesize the scaffold and assessing the advantages and disadvantages of various delivery strategies.
Collapse
Affiliation(s)
- Aleksandra Szwed-Georgiou
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Przemysław Płociński
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Barbara Kupikowska-Stobba
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Mateusz M. Urbaniak
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Paulina Rusek-Wala
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
- The
Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes
of the Polish Academy of Sciences, University
of Lodz, Lodz 90-237, Poland
| | - Konrad Szustakiewicz
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Paweł Piszko
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Agnieszka Krupa
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| | - Monika Biernat
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Małgorzata Gazińska
- Department
of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw 50-370, Poland
| | - Mirosław Kasprzak
- Biomaterials
Research Group, Lukasiewicz Research Network
- Institute of Ceramics and Building Materials, Krakow 31-983, Poland
| | - Katarzyna Nawrotek
- Faculty
of Process and Environmental Engineering, Lodz University of Technology, Lodz 90-924, Poland
| | - Nuno Pereira Mira
- iBB-Institute
for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior
Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
- Instituto
Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Karolina Rudnicka
- Department
of Immunology and Infectious Biology, Faculty of Biology and Environmental
Protection, University of Lodz, Lodz 90-136, Poland
| |
Collapse
|
9
|
Ying J, Zhang C, Wang Y, Liu T, Yu Z, Wang K, Chen W, Zhou Y, Lu G. Sulodexide improves vascular permeability via glycocalyx remodelling in endothelial cells during sepsis. Front Immunol 2023; 14:1172892. [PMID: 37614234 PMCID: PMC10444196 DOI: 10.3389/fimmu.2023.1172892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Background Degradation of the endothelial glycocalyx is critical for sepsis-associated lung injury and pulmonary vascular permeability. We investigated whether sulodexide, a precursor for the synthesis of glycosaminoglycans, plays a biological role in glycocalyx remodeling and improves endothelial barrier dysfunction in sepsis. Methods The number of children with septic shock that were admitted to the PICU at Children's Hospital of Fudan University who enrolled in the study was 28. On days one and three after enrollment, venous blood samples were collected, and heparan sulfate, and syndecan-1 (SDC1) were assayed in the plasma. We established a cell model of glycocalyx shedding by heparinase III and induced sepsis in a mouse model via lipopolysaccharide (LPS) injection and cecal ligation and puncture (CLP). Sulodexide was administrated to prevent endothelial glycocalyx damage. Endothelial barrier function and expression of endothelial-related proteins were determined using permeability, western blot and immunofluorescent staining. The survival rate, histopathology evaluation of lungs and wet-to-dry lung weight ratio were also evaluated. Results We found that circulating SDC1 levels were persistently upregulated in the non-alive group on days 1 and 3 and were positively correlated with IL-6 levels. Receiver operating characteristic curve analysis showed that SDC1 could distinguish patients with mortality. We showed that SDC1-shedding caused endothelial permeability in the presence of heparinase III and sepsis conditions. Mechanistically, sulodexide (30 LSU/mL) administration markedly inhibited SDC1 shedding and prevented endothelial permeability with zonula occludens-1 (ZO-1) upregulation via NF-κB/ZO-1 pathway. In mice with LPS and CLP-induced sepsis, sulodexide (40 mg/kg) administration decreased the plasma levels of SDC1 and increased survival rate. Additionally, sulodexide alleviated lung injury and restored endothelial glycocalyx damage. Conlusions In conclusion, our data suggest that SDC1 predicts prognosis in children with septic shock and sulodexide may have therapeutic potential for the treatment of sepsis-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Jiayun Ying
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Caiyan Zhang
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yaodong Wang
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Tingyan Liu
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Zhenhao Yu
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Kexin Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Weiming Chen
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yufeng Zhou
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
- State-level Reginal Children’s Medical Center, Children’s Hospital Of Fudan University at Xiamen (Xiamen Children’s Hospital), Fujian Provincial Key Laboratory of Neonatal Diseases, Fujian, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
10
|
Smilowitz NR, Hade EM, Kornblith LZ, Castellucci LA, Cushman M, Farkouh M, Gong MN, Heath A, Hunt BJ, Kim KS, Kindzelski A, Lawler P, Leaf DE, Goligher E, Leifer ES, McVerry BJ, Reynolds HR, Zarychanski R, Hochman JS, Neal MD, Berger JS. Effect of therapeutic-dose heparin on severe acute kidney injury and death in noncritically ill patients hospitalized for COVID-19: a prespecified secondary analysis of the ACTIV4a and ATTACC randomized trial. Res Pract Thromb Haemost 2023; 7:102167. [PMID: 37727846 PMCID: PMC10506136 DOI: 10.1016/j.rpth.2023.102167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 09/21/2023] Open
Abstract
Background Acute kidney injury (AKI) in patients with COVID-19 is partly mediated by thromboinflammation. In noncritically ill patients with COVID-19, therapeutic-dose anticoagulation with heparin increased the probability of survival to hospital discharge with reduced use of cardiovascular or respiratory organ support. Objectives We investigated whether therapeutic-dose heparin reduces the incidence of AKI or death in noncritically ill patients hospitalized for COVID-19. Methods We report a prespecified secondary analysis of the ACTIV4a and ATTACC open-label, multiplatform randomized trial of therapeutic-dose heparin vs usual-care pharmacologic thromboprophylaxis on the incidence of severe AKI (≥2-fold increase in serum creatinine or initiation of kidney replacement therapy (KDIGO stage 2 or 3) or all-cause mortality in noncritically ill patients hospitalized for COVID-19. Bayesian statistical models were adjusted for age, sex, D-dimer, enrollment period, country, site, and platform. Results Among 1922 enrolled, 23 were excluded due to pre-existing end stage kidney disease and 205 were missing baseline or follow-up creatinine measurements. Severe AKI or death occurred in 4.4% participants assigned to therapeutic-dose heparin and 5.5% assigned to thromboprophylaxis (adjusted relative risk [aRR]: 0.72; 95% credible interval (CrI): 0.47, 1.10); the posterior probability of superiority for therapeutic-dose heparin (relative risk < 1.0) was 93.6%. Therapeutic-dose heparin was associated with a 97.7% probability of superiority to reduce the composite of stage 3 AKI or death (3.1% vs 4.6%; aRR: 0.64; 95% CrI: 0.40, 0.99) compared to thromboprophylaxis. Conclusion Therapeutic-dose heparin was associated with a high probability of superiority to reduce the incidence of in-hospital severe AKI or death in patients hospitalized for COVID-19.
Collapse
Affiliation(s)
| | - Erinn M. Hade
- NYU Grossman School of Medicine, New York, New York, USA
| | - Lucy Z. Kornblith
- Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, USA
| | - Lana A. Castellucci
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Mary Cushman
- Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | - Michael Farkouh
- Peter Munk Cardiac Centre at University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Michelle N. Gong
- Montefiore Medical Center, Bronx, New York, USA
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anna Heath
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Keri S. Kim
- University of Illinois, Chicago, Illinois, USA
| | | | - Patrick Lawler
- Peter Munk Cardiac Centre at University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - David E. Leaf
- Brigham and Women’s Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Ewan Goligher
- University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| | - Eric S. Leifer
- National Heart Lung & Blood Institute, NIH, Bethesda, Maryland, USA
| | - Bryan J. McVerry
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC, Pittsburgh, Pennsylvania, USA
| | | | - Ryan Zarychanski
- University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | | | - Matthew D. Neal
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
11
|
Gupta B, Ahluwalia P, Gupta N, Gupta A. Role of Nebulized Heparin in Clinical Outcome of COVID-19 Patients with Respiratory Symptoms: A Systematic Review. Indian J Crit Care Med 2023; 27:572-579. [PMID: 37636853 PMCID: PMC10452767 DOI: 10.5005/jp-journals-10071-24511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19) is an extremely contagious illness caused by the SARS-CoV-2 virus and has been declared a pandemic by the World Health Organization (WHO). There are currently no particular treatments, however, nebulized heparin has been offered as a viable therapy. The purpose of this systematic review is to assess the efficacy of nebulized heparin in COVID-19 patients with respiratory symptoms. Methods Relevant studies were identified through a systematic search of the PubMed, Medline, Embase, Cochrane Library and Web of Science, and Scopus databases. The search terms included "nebulized heparin," "COVID-19," and "SARS-CoV-2." Studies that evaluated the use of nebulized heparin in COVID-19 patients with respiratory symptoms were included. The rest of the studies along with those that were not published in English were excluded. The systematic review was registered under PROSPERO-CRD42023413927. Observations Five studies have been included in this systematic review. Case reports, case series, observational studies, and randomized controlled trial (RCT) comprised the studies. The patient sample sizes ranged from 2 to 98. The studies assessed the efficacy of nebulized heparin in COVID-19 patients with variable disease severity. The evaluated outcomes included mortality, hospital stay duration, oxygen requirements, and laboratory parameters. Conclusion Based on the clinical studies included in this systematic review, nebulized heparin may be useful in the management of COVID-19. Oxygen saturation was greater, inflammatory indicators were lower, and hospital stays were shorter in these patients. However, the studies had limitations, including inconsistent sample sizes, varying dosages of nebulized heparin, and no control groups. Nebulized heparin in patients with COVID-19 needs to be studied further to determine its safety and effectiveness. How to cite this article Gupta B, Ahluwalia P, Gupta N, Gupta A. Role of Nebulized Heparin in Clinical Outcome of COVID-19 Patients with Respiratory Symptoms: A Systematic Review. Indian J Crit Care Med 2023;27(8):572-579.
Collapse
Affiliation(s)
- Bhavna Gupta
- Department of Anaesthesia, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Pallavi Ahluwalia
- Department of Anaesthesia, Teerthanker Mahaveer Medical College, Moradabad, Uttar Pradesh, India
| | - Nidhi Gupta
- Department of Anesthesia and Critical Care, Doon Medical College, Dehradun, Uttarakhand, India
| | - Anish Gupta
- Department of CTVS, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
12
|
Buijsers B, Maciej-Hulme M, Jacobs M, Bebber MBV, de Graaf M, Salmenov R, Parr N, Rabelink TJ, Nijenhuis T, van der Vlag J. Glycosaminoglycans and fucoidan have a protective effect on experimental glomerulonephritis. Front Mol Biosci 2023; 10:1223972. [PMID: 37475889 PMCID: PMC10354240 DOI: 10.3389/fmolb.2023.1223972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Background: The glomerular endothelial glycocalyx is degraded during inflammation. The glycocalyx plays a pivotal role in endothelial function and is involved in many processes including binding of chemokines and cytokines, leukocyte trafficking, and preventing proteinuria. HS-based therapeutics are a promising novel class of anti-inflammatory drugs to restore a compromised endothelial glycocalyx under inflammatory conditions. Recently, we demonstrated that treatment with HS extracted from unstimulated glomerular endothelial glycocalyx (unstimulated HSglx) reduced albuminuria during anti-GBM induced glomerulonephritis. Since endothelial HS domains are distinct in unstimulated versus inflammatory conditions, we hypothesized that 1) unstimulated HSglx, 2) LPS-stimulated HSglx, 3) the HS-mimetic fucoidan and 4) the glycosaminoglycan preparation sulodexide, which is a mixture of low molecular weight heparin and dermatan sulfate, might have different beneficial effects in experimental glomerulonephritis. Methods: The effect of unstimulated HSglx, LPS HSglx, Laminaria japonica fucoidan, or sulodexide on experimental glomerulonephritis was tested in LPS-induced glomerulonephritis in mice. Analyses included urinary albumin creatinine measurement, cytokine expression in plasma and renal cortex, and renal influx of immune cells determined by flow cytometry and immunofluorescence staining. Furthermore, the observed in vivo effects were evaluated in cultured glomerular endothelial cells and peripheral blood mononuclear cells by measuring cytokine and ICAM-1 expression levels. The ability of the compounds to inhibit heparanase activity was assessed in a heparanase activity assay. Results: Treatment of mice with LPS HSglx or sulodexide near-significantly attenuated LPS-induced proteinuria. All treatments reduced plasma MCP-1 levels, whereas only fucoidan reduced IL-6 and IL-10 plasma levels. Moreover, all treatments reversed cortical ICAM-1 mRNA expression and both fucoidan and sulodexide reversed cortical IL-6 and nephrin mRNA expression. Sulodexide decreased renal influx of CD45+ immune cells whereas renal influx of macrophages and granulocytes remained unaltered for all treatments. Although all compounds inhibited HPSE activity, fucoidan and sulodexide were the most potent inhibitors. Notably, fucoidan and sulodexide decreased LPS-induced mRNA expression of ICAM-1 and IL-6 by cultured glomerular endothelial cells. Conclusion: Our data show a potentially protective effect of glycosaminoglycans and fucoidan in experimental glomerulonephritis. Future research should be aimed at the further identification of defined HS structures that have therapeutic potential in the treatment of glomerular diseases.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marissa Maciej-Hulme
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maaike Jacobs
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marinka Bakker-van Bebber
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark de Graaf
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rustem Salmenov
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Naomi Parr
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ton J. Rabelink
- Division of Nephrology, Department of Internal Medicine, The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
13
|
Alhawiti NM, Alhawiti JM, Alshalan SD, Alotaibi BA, Khobrani AY. Clinical Outcomes of Anticoagulant Therapy in COVID-19 Patients with Pre-Existing Cardiovascular Diseases: A Systematic Review. Infect Drug Resist 2023; 16:3767-3775. [PMID: 37337574 PMCID: PMC10277005 DOI: 10.2147/idr.s410374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023] Open
Abstract
The COVID-19 infection caused by SARS-CoV-2 is a healthcare crisis that has led to unparalleled disruption and has impacted healthcare services, leading to significant morbidity and mortality in the worldwide population. Insufficient data on the management of COVID-19 complications such as hypercoagulability and the controversy about the benefits of anticoagulant therapy are major challenges encountered by clinicians, especially for patients with pre-existing cardiovascular diseases (CVD), and are still debatable. Therefore, we endeavored to conduct a systematic review to assess the clinical outcomes of prior anticoagulant therapy in patients with COVID-19 having pre-existing CVD. Electronic searches of the PubMed database and EBSCO Information Services were carried out, and all relevant articles were employed. Seven articles with data from 21,989 subjects were included. Despite the promised clinical outcomes of anticoagulant therapy, the results of the current systematic review indicated insignificant improvements in the reduction of mortality rate or ICU admission among patients with COVID-19 having pre-existing CVD. Furthermore, direct oral anticoagulant (DOAC) were favored over vitamin K antagonists (VKAs) due to better action and less side effects. In conclusion, the findings are controversial as we did not statistically analyze the results. The data showed inconsistent information with no clear effect of anticoagulant use before patient hospitalization or decreasing COVID-19 severity, particularly in those with CVD. Further studies including randomized controlled trials are required to describe the best course as well as optimal dose of anticoagulant use in the treatment of patients with COVID-19, particularly those with comorbidities such as CVD.
Collapse
Affiliation(s)
- Naif M Alhawiti
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Jamal M Alhawiti
- College of Medicine, Al Jouf University, Riyadh, Kingdom of Saudi Arabia
| | - Saif D Alshalan
- College of Medicine, Al Jouf University, Riyadh, Kingdom of Saudi Arabia
| | - Badi A Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Ahmad Y Khobrani
- Emergency Department, King Abdullah Bin Abdulaziz University Hospital, Princess Norah University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Govindaraju DT, Chen CH, Shalumon KT, Kao HH, Chen JP. Bioactive Nanostructured Scaffold-Based Approach for Tendon and Ligament Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1847. [PMID: 37368277 DOI: 10.3390/nano13121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
An effective therapeutic strategy to treat tendon or ligament injury continues to be a clinical challenge due to the limited natural healing capacity of these tissues. Furthermore, the repaired tendons or ligaments usually possess inferior mechanical properties and impaired functions. Tissue engineering can restore the physiological functions of tissues using biomaterials, cells, and suitable biochemical signals. It has produced encouraging clinical outcomes, forming tendon or ligament-like tissues with similar compositional, structural, and functional attributes to the native tissues. This paper starts by reviewing tendon/ligament structure and healing mechanisms, followed by describing the bioactive nanostructured scaffolds used in tendon and ligament tissue engineering, with emphasis on electrospun fibrous scaffolds. The natural and synthetic polymers for scaffold preparation, as well as the biological and physical cues offered by incorporating growth factors in the scaffolds or by dynamic cyclic stretching of the scaffolds, are also covered. It is expected to present a comprehensive clinical, biological, and biomaterial insight into advanced tissue engineering-based therapeutics for tendon and ligament repair.
Collapse
Affiliation(s)
- Darshan Tagadur Govindaraju
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan City 33302, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Anle, Keelung 20401, Taiwan
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan City 33305, Taiwan
| | - K T Shalumon
- Department of Chemistry, Sacred Heart College, Mahatma Gandhi University, Kochi 682013, India
| | - Hao-Hsi Kao
- Division of Nephrology, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Anle, Keelung 20401, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan City 33302, Taiwan
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan City 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan City 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan City 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
15
|
Yousefi P, Soltani S, Siri G, Rezayat SA, Gholami A, Zafarani A, Razizadeh MH, Alborzi E, Mokhtary‐Irani G, Abedi B, Karampoor S, Tabibzadeh A, Farahani A. Coagulopathy and thromboembolic events a pathogenic mechanism of COVID-19 associated with mortality: An updated review. J Clin Lab Anal 2023; 37:e24941. [PMID: 37431777 PMCID: PMC10431412 DOI: 10.1002/jcla.24941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
During 2019, the SARS-CoV-2 emerged from China, and during months, COVID-19 spread in many countries around the world. The expanding data about pathogenesis of this virus could elucidate the exact mechanism by which COVID-19 caused death in humans. One of the pathogenic mechanisms of this disease is coagulation. Coagulation disorders that affect both venous and arterial systems occur in patients with COVID-19. The possible mechanism involved in the coagulation could be excessive inflammation induced by SARS-CoV-2. However, it is not yet clear well how SARS-CoV-2 promotes coagulopathy. However, some factors, such as pulmonary endothelial cell damage and some anticoagulant system disorders, are assumed to have an important role. In this study, we assessed conducted studies about COVID-19-induced coagulopathy to obtain clearer vision of the wide range of manifestations and possible pathogenesis mechanisms.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Saber Soltani
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Goli Siri
- Department of Internal Medicine, Amir Alam HospitalTehran University of Medical SciencesTehranIran
| | - Sara Akhavan Rezayat
- Department of Health Care Management and Economics, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Ali Gholami
- School of MedicineArak University of Medical SciencesArakIran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| | | | - Ehsan Alborzi
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Golnaz Mokhtary‐Irani
- Department of Virology, Faculty of MedicineAhvaz Jondishapur University of Medical SciencesAhvazIran
| | - Behnam Abedi
- Department of Medical Laboratory SciencesKhomein University of Medical SciencesKhomeinIran
| | - Sajad Karampoor
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| | - Alireza Tabibzadeh
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Abbas Farahani
- Department of Medical Laboratory SciencesKhomein University of Medical SciencesKhomeinIran
- Molecular and Medicine Research CenterKhomein University of Medical SciencesKhomeinIran
| |
Collapse
|
16
|
Fan W, Fu D, Zhang L, Xiao Z, Shen X, Chen J, Qi X. Enoxaparin sodium bone cement plays an anti-inflammatory immunomodulatory role by inducing the polarization of M2 macrophages. J Orthop Surg Res 2023; 18:380. [PMID: 37221568 DOI: 10.1186/s13018-023-03865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
OBJECTIVE The implantation of PMMA bone cement results in an immune response and the release of PMMA bone cement particles causes an inflammatory cascade. Our study discovered that ES-PMMA bone cement can induce M2 polarization of macrophages, which has an anti-inflammatory immunomodulatory effect. We also delved into the molecular mechanisms that underlie this process. METHODS In this study, we designed and prepared samples of bone cement. These included PMMA bone cement samples and ES-PMMA bone cement samples, which were implanted into the back muscles of rats. At 3, 7, and 14 days after the operation, we removed the bone cement and a small amount of surrounding tissue. We then performed immunohistochemistry and immunofluorescence to observe the polarization of macrophages and the expression of related inflammatory factors in the surrounding tissues. The RAW264.7 cells were exposed to lipopolysaccharide (LPS) for 24 h to establish the macrophage inflammation model. Then, each group was treated with enoxaparin sodium medium, PMMA bone cement extract medium, and ES-PMMA bone cement extract medium, respectively, and cultured for another 24 h. We collected cells from each group and used flow cytometry to detect the expressions of CD86 and CD206 in macrophages. Additionally, we performed RT-qPCR to determine the mRNA levels of three markers of M1 macrophages (TNF-α, IL-6, iNOS) and two M2 macrophage markers (Arg-1, IL-10). Furthermore, we analyzed the expression of TLR4, p-NF-κB p65, and NF-κB p65 through Western blotting. RESULTS The immunofluorescence results indicate that the ES-PMMA group exhibited an upregulation of CD206, an M2 marker, and a downregulation of CD86, an M1 marker, in comparison to the PMMA group. Additionally, the immunohistochemistry results revealed that the levels of IL-6 and TNF-α expression were lower in the ES-PMMA group than in the PMMA group, while the expression level of IL-10 was higher in the ES-PMMA group. Flow cytometry and RT-qPCR analyses revealed that the expression of M1-type macrophage marker CD86 was significantly elevated in the LPS group compared to the NC group. Additionally, M1-type macrophage-related cytokines TNF-α, IL-6, and iNOS were also found to be increased. However, in the LPS + ES group, the expression levels of CD86, TNF-α, IL-6, and iNOS were decreased, while the expression of M2-type macrophage markers CD206 and M2-type macrophage-related cytokines (IL-10, Arg-1) were increased compared to the LPS group. In comparison to the LPS + PMMA group, the LPS + ES-PMMA group demonstrated a down-regulation of CD86, TNF-α, IL-6, and iNOS expression levels, while increasing the expression levels of CD206, IL-10, and Arg-1. Western blotting results revealed a significant decrease in TLR4/GAPDH and p-NF-κB p65/NF-κB p65 in the LPS + ES group when compared to the LPS group. Additionally, the LPS + ES-PMMA group exhibited a decrease in TLR4/GAPDH and p-NF-κB p65/NF-κB p65 levels when compared to the LPS + PMMA group. CONCLUSION ES-PMMA bone cement is more effective than PMMA bone cement in down-regulating the expression of the TLR4/NF-κB signaling pathway. Additionally, it induces macrophages to polarize towards the M2 phenotype, making it a crucial player in anti-inflammatory immune regulation.
Collapse
Affiliation(s)
- Weiye Fan
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Li Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Zhihang Xiao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Xiaoyu Shen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Jianchao Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Xiangbei Qi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China.
| |
Collapse
|
17
|
Cagan M, Donmez HG, Dikmen ZG, Beksac MS. Association of lupus anticoagulants with risk factors for obstetric complications and adverse gestational outcome. Hum Antibodies 2023:HAB230003. [PMID: 37248894 DOI: 10.3233/hab-230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Lupus anticoagulant (LA) may be a cause of poor obstetric outcome. OBJECTIVE To search the association of LA with risk factors for obstetric complications and adverse gestational outcome. METHODS This retrospective cohort was consisted of 2 groups of pregnancies with poor obstetric history; 1) LA (+) gestations (Study Group, n= 20) and 2) LA (-) gestations (Control Group, 78). All patients were admitted to a special antenatal care program and were examined in terms of risk factors for thrombotic events, placenta-related obstetric complications, and poor gestational outcomes. Patients were administered low-dose low-molecular-weight heparin (LMWH), low-dose salicylic acid and low-dose corticosteroid (if necessary) within the framework of a prophylaxis protocol in addition to their already existing medications. RESULTS We have shown that adverse gestational outcome was 1.7-fold more frequent in LA (+) pregnancies with poor obstetric history (p= 0.039, 70% vs. 41%). Higher rates of autoimmune diseases and hereditary thrombophilia were observed among LA (+) patients compared to LA (-) gestations (35% vs. 10.3%, p< 0.012 and 55% vs. 19.2%, p< 0.003, respectively). To identify the effectiveness of low-dose LMWH prophylaxis protocol, we compared gestational outcomes and demonstrated that the miscarriage rate was significantly decreased to half in current pregnancies compared to the previous gestations (73.6% vs. 35%, p= 0.003). CONCLUSIONS Autoimmune diseases and hereditary thrombophilia are more frequent in LA (+) pregnancies, and these women are prone to obstetric problems. Low-dose LMWH and salicylic acid prophylaxis are critical in the management of LA (+) pregnant women.
Collapse
Affiliation(s)
- Murat Cagan
- Division of Perinatology, Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hanife Guler Donmez
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Zeliha Gunnur Dikmen
- Department of Medical Biochemistry, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Mehmet Sinan Beksac
- Division of Perinatology, Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Tartara F, Montalbetti A, Crobeddu E, Armocida D, Tavazzi E, Cardia A, Cenzato M, Boeris D, Garbossa D, Cofano F. Compartmental Cerebrospinal Fluid Events Occurring after Subarachnoid Hemorrhage: An "Heparin Oriented" Systematic Review. Int J Mol Sci 2023; 24:7832. [PMID: 37175544 PMCID: PMC10178276 DOI: 10.3390/ijms24097832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a severe acute event with high morbidity and mortality due to the development of early brain injury (EBI), secondary delayed cerebral ischemia (DCI), and shunt-related hydrocephalus. Secondary events (SSE) such as neuroinflammation, vasospasm, excitotoxicity, blood-brain barrier disruption, oxidative cascade, and neuronal apoptosis are related to DCI. Despite improvement in management strategies and therapeutic protocols, surviving patients frequently present neurological deficits with neurocognitive impairment. The aim of this paper is to offer to clinicians a practical review of the actually documented pathophysiological events following subarachnoid hemorrhage. To reach our goal we performed a literature review analyzing reported studies regarding the mediators involved in the pathophysiological events following SAH occurring in the cerebrospinal fluid (CSF) (hemoglobin degradation products, platelets, complement, cytokines, chemokines, leucocytes, endothelin-1, NO-synthase, osteopontin, matricellular proteins, blood-brain barrier disruption, microglia polarization). The cascade of pathophysiological events secondary to SAH is very complex and involves several interconnected, but also distinct pathways. The identification of single therapeutical targets or specific pharmacological agents may be a limited strategy able to block only selective pathophysiological paths, but not the global evolution of SAH-related events. We report furthermore on the role of heparin in SAH management and discuss the rationale for use of intrathecal heparin as a pleiotropic therapeutical agent. The combination of the anticoagulant effect and the ability to interfere with SSE theoretically make heparin a very interesting molecule for SAH management.
Collapse
Affiliation(s)
- Fulvio Tartara
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Montalbetti
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Emanuela Crobeddu
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Daniele Armocida
- A.U.O. Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eleonora Tavazzi
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Marco Cenzato
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Davide Boeris
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| |
Collapse
|
19
|
Boer W, van Tornout M, Brusseleers M, Strauven M, de Vooght P, Vander Laenen M, Hoste E, Jorens PG. The effects of differing anticoagulant regimes on blood quality after cell salvage in coronary artery bypass grafting (CABG): a pilot study. J Cardiothorac Surg 2023; 18:116. [PMID: 37031168 PMCID: PMC10082980 DOI: 10.1186/s13019-023-02246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/02/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Cell salvage reduces allogenic blood transfusion requirements in surgery. We present a pilot study exploring the impact of anticoagulant choice, citrate or heparin, on the quality of cell salvaged blood in adults undergoing coronary artery bypass grafting (CABG). MATERIALS AND METHODS Elective on pump CABG patients were randomly allocated to citrate or heparin anticoagulation. We measured red blood cell characteristics and inflammation in both the blood collection reservoir and the washed red blood cell concentrate. Postoperatively, the level of biomarkers and the coagulation profile in the peripheral blood as well as the transfusion requirements of allogenic blood products were studied. RESULTS Thirty eight patients were included, 19 in the citrate group and 19 in the heparin group. Baseline characteristics were similar. In the washed red blood cell concentrate, Mean Hb (g/dl) and Ht (%) were lower in the citrate group [Hb: 18.1 g/dL (SD 1.3) vs. 21.1 (1.6), p < 0.001; Ht: 59.9% (54.7-60.9) vs. 63.7% (62.3-64.8); p < 0.001]; Mean corpuscular volume (MCV, μm 3) was higher [99.1fL (9.4) vs. 88 (4.2), p < 0.001] and mean corpuscular hemoglobin concentration (MCHC, g/dl) lower in the citrate group [31.9 g/dl (29.6-32.4) vs. 33.6 (33.1-34.0) p < 0.001]. Thrombocyte count (1000/μl) was higher in the citrate group [31.0 (26.0-77.0) vs. 13.0 (10.0-39.0); p = 0.006]. There were no differences in the requirement for allogenic blood products' transfusion (intraoperatively and postoperatively) or in the coagulation parameters after washed red blood cell concentrate infusion. Higher IL-10 was found in the citrate group in the blood collection reservoir, higher neutrophil-derived myeloperoxidase (MPO) in the heparin group after washed red blood cell concentrate infusion. CONCLUSION Though red blood cells in washed red blood cell concentrate were more swollen and diluted in the citrate group with more residual thrombocytes, published quality guidelines were met in both groups. Our pilot study suggests that differences in inflammatory markers in the blood collection reservoir and after infusion of washed red blood cell concentrate indicate a possible pro-inflammatory effect of heparin compared to citrate. A larger study is warranted to confirm these results and their possible clinical consequences. Trial registration ClinicalTrials.gov : NCT02674906. Registered 5 February 2016.
Collapse
Affiliation(s)
- Willem Boer
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Medicine, Ziekenhuis Oost Limburg ZOL, Genk, Belgium.
| | - Mathias van Tornout
- Department of Anesthesiology and Intensive Care Medicine, AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium
| | - Maarten Brusseleers
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Medicine, Ziekenhuis Oost Limburg ZOL, Genk, Belgium
| | - Maarten Strauven
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Medicine, Ziekenhuis Oost Limburg ZOL, Genk, Belgium
| | - Pieter de Vooght
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Medicine, Ziekenhuis Oost Limburg ZOL, Genk, Belgium
| | - Margot Vander Laenen
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Medicine, Ziekenhuis Oost Limburg ZOL, Genk, Belgium
| | - Eric Hoste
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
- Research Foundation Flanders (FWO), Brussels, Belgium
| | - Philippe G Jorens
- Department of Critical Care Medicine, Antwerp University Hospital, University of Antwerp, LEMP, Edegem, Belgium
| |
Collapse
|
20
|
Low Molecular Weight Heparin, Anti-inflammatory/Immunoregulatory and Antiviral Effects, a Short Update. Cardiovasc Drugs Ther 2023; 37:277-281. [PMID: 34460031 PMCID: PMC8403694 DOI: 10.1007/s10557-021-07251-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 01/19/2023]
Abstract
Low molecular weight heparin (LMWH) is a glycosaminoglycan long known for its anticoagulant properties. In recent times, recent evidence has associated this drug with extra pleiotropic anticoagulant effects that have also proven useful in the management of the treatment of COVID-19 infection indicating that heparin may play other roles in the management of the disease in addition to the prevention of thrombosis. Clinical observations and in vitro studies support that heparin has a potential multi-target effect. To date, the molecular mechanisms of these pleiotropic effects are not fully understood. This brief review presents some of the evidence from clinical and animal studies and describes the potential molecular mechanisms by which heparin may exert its anti-inflammatory/immunoregulatory and antiviral effects.
Collapse
|
21
|
Zhu C, Liang Y, Liu Y, Shu W, Luan Z, Ma X. Unfractionated Heparin Protects Microcirculation in Endotoxemic Rats by Antagonizing Histones. J Surg Res 2023; 282:84-92. [PMID: 36257167 DOI: 10.1016/j.jss.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/11/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Levels of extracellular histones are highly increased in sepsis and may facilitate microcirculatory dysfunction. Unfractionated heparin (UFH) binds histones and neutralizes their cytotoxicity. We investigated the effect of UFH on microcirculatory dysfunction by interacting with extracellular histones in endotoxemic rats. METHODS Twenty-four Wistar rats were randomly divided into three groups: control, lipopolysaccharide (LPS) group, and LPS + UFH group. In the LPS and LPS + UFH groups, 10 mg/kg LPS was injected to induce endotoxemia, and 100 IU/kg/h UFH was administered intravenously in the LPS + UFH group. The rats underwent midline laparotomy, and then intestinal microcirculation was evaluated using an incident dark field microscope. Circulating histones and microstructures of the rat intestinal microvascular endothelium were also detected. Additionally, the antagonistic effect of UFH on histone-induced cytotoxicity was investigated in human intestinal microvascular endothelial cells. RESULTS UFH protected the microcirculation of the intestinal serosa and mucosa in endotoxemic rats, as evidenced by increased total vessel density, perfused vessel density, and proportion of perfused vessels of both the serosa and mucosa, and increased microcirculatory flow index of the mucosa in the LPS + UFH group. UFH treatment decreased the levels of circulating histones and alleviated intestinal microvascular endothelial injuries in endotoxemic rats. Furthermore, UFH inhibited histone cytotoxicity in vitro. CONCLUSIONS UFH attenuated microcirculatory dysfunction in endotoxemic rats by antagonizing extracellular histones, thereby providing a potential therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Chengrui Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Yingjian Liang
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Yina Liu
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Wenqi Shu
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Zhenggang Luan
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
22
|
Lippi G, Henry BM, Favaloro EJ. The Benefits of Heparin Use in COVID-19: Pleiotropic Antiviral Activity beyond Anticoagulant and Anti-Inflammatory Properties. Semin Thromb Hemost 2023; 49:73-75. [PMID: 35158389 DOI: 10.1055/s-0042-1742740] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Brandon M Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas
| | - Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia.,Sydney Centres for Thrombosis and Haemostasis, Westmead, NSW Australia.,Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
23
|
Fang Y, Lin S, Dou Q, Gui J, Li W, Tan H, Wang Y, Zeng J, Khan A, Wei DQ. Network pharmacology- and molecular simulation-based exploration of therapeutic targets and mechanisms of heparin for the treatment of sepsis/COVID-19. J Biomol Struct Dyn 2023; 41:12586-12598. [PMID: 36661370 DOI: 10.1080/07391102.2023.2167114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Critically infected patients with COVID-19 (coronavirus disease 2019) are prone to develop sepsis-related coagulopathy as a result of a robust immune response. The mechanism underlying the relationship between sepsis and COVID-19 is largely unknown. LMWH (low molecular weight heparin) exhibits both anti-inflammatory and anti-coagulating properties that result in a better prognosis of severely ill patients with COVID-19 co-associated with sepsis-induced coagulopathy or with a higher D-dimer value. Heparin-associated molecular targets and their mechanism of action in sepsis/COVID-19 are not well understood. In this work, we characterize the pharmacological targets, biological functions and therapeutic actions of heparin in sepsis/COVID-19 from the perspective of network pharmacology. A total of 38 potential targets for heparin action against sepsis/COVID-19 and 8 core pharmacological targets were identified, including IL6, KNG1, CXCL8, ALB, VEGFA, F2, IL10 and TNF. Moreover, enrichment analysis showed that heparin could help in treating sepsis/COVID-19 through immunomodulation, inhibition of the inflammatory response, regulation of angiogenesis and antiviral activity. The pharmacological effects of heparin against these targets were further confirmed by molecular docking and simulation analysis, suggesting that heparin exerts effective binding capacity by targeting the essential residues in sepsis/COVID-19. Prospective clinical practice evaluations may consider the use of these key prognostic indicators for the treatment of sepsis/COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yitian Fang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Shenggeng Lin
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingli Dou
- Department of Emergency Medicine, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong, China
| | - Jianjun Gui
- Department of Emergency Medicine, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong, China
| | - Weimin Li
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjing Wang
- Engineering Research Center of Cell and Therapeutics Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Abbas Khan
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Myllylahti L, Ropponen J, Lax M, Lassila R, Nykänen AI. Upregulation of Coagulation Factor VIII and Fibrinogen After Pulmonary Endarterectomy in Patients with Chronic Thromboembolic Pulmonary Hypertension. Clin Appl Thromb Hemost 2023; 29:10760296231158369. [PMID: 36890726 PMCID: PMC9998419 DOI: 10.1177/10760296231158369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
OBJECTIVES Chronic thromboembolic pulmonary hypertension (CTEPH) is associated with thrombotic states including elevated coagulation factor VIII (FVIII). Pulmonary endarterectomy (PEA) is the main treatment for CTEPH, and efficient anticoagulation is essential to prevent thromboembolism recurrence after surgery. We aimed to characterize longitudinal changes in FVIII and other coagulation biomarkers after PEA. METHODS Coagulation biomarker levels were measured at baseline and up to 12 months after operation in 17 consecutive patients with PEA. Temporal patterns of coagulation biomarkers, and correlation of FVIII with other coagulation biomarkers, were analyzed. RESULTS Baseline FVIII levels were elevated in 71% of the patients (mean 216 ± 67 IU/dl). FVIII doubled 7 days after PEA, peaking at 471 ± 87 IU/dl, and gradually returned to respective baseline levels within 3 months. Postoperative fibrinogen levels were also elevated. Antithrombin decreased at 1 to 3 days, D-dimer increased at 1 to 4 weeks, and thrombocytosis was observed at 2 weeks. CONCLUSIONS FVIII is elevated in most patients with CTEPH. After PEA, early but transient elevation of FVIII and fibrinogen, and delayed reactive thrombocytosis, occurs, and warrants careful postoperative anticoagulation to prevent thromboembolism recurrence.
Collapse
Affiliation(s)
- Lasse Myllylahti
- Division of Internal Medicine, Department of Internal Medicine and Rehabilitation, Helsinki University Hospital, Helsinki, Finland
| | - Jussi Ropponen
- Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mikko Lax
- Division of Anesthesiology, Department of Anesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Riitta Lassila
- Unit of Coagulation Disorders, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, and Research Program Unit in Systems Oncology, 3835University of Helsinki, Helsinki, Finland
| | - Antti I Nykänen
- Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Mohiuddin MM, Singh AK, Goerlich CE. Preclinical rationale and current pathways to support the first human clinical trials in cardiac xenotransplantation. Hum Immunol 2023; 84:34-42. [PMID: 35851182 PMCID: PMC10154071 DOI: 10.1016/j.humimm.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 01/05/2023]
Abstract
Recent initiation of the first FDA-approved cardiac xenotransplantation suggests xenotransplantation could soon become a therapeutic option for patients unable to undergo allotransplantation. Until xenotransplantation is widely applied in clinical practice, consideration of benefit versus risk and approaches to management of clinical xenografts will based at least in part on observations made in experimental xenotransplantation in non-human primates. Indeed, the decision to proceed with clinical trials reflects significant progress in last few years in experimental solid organ and cellular xenotransplantation. Our laboratory at the NIH and now at University of Maryland contributed to this progress, with heterotopic cardiac xenografts surviving more than two years and life-supporting cardiac xenografts survival up to 9 months. Here we describe our contributions to the understanding of the mechanism of cardiac xenograft rejection and development of methods to overcome past hurdles, and finally we share our opinion on the remaining barriers to clinical translation. We also discuss how the first in human xenotransplants might be performed, recipients managed, and graft function monitored.
Collapse
|
26
|
Ultrasound-induced destruction of heparin-loaded microbubbles attenuates L-arginine-induced acute pancreatitis. Eur J Pharm Sci 2023; 180:106318. [PMID: 36332825 DOI: 10.1016/j.ejps.2022.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Acute pancreatitis (AP) involves sudden inflammation caused by abnormal activation of pancreatic enzymes. The mechanisms underlying AP include oxidative stress, high levels of inflammatory mediators and inflammatory cell infiltration. Heparin, a key therapeutic drug, exerts anti-inflammatory, antioxidative, and anticoagulative effects. However, safe and effective drug delivery remains an obstacle. This study is the first to investigate the therapeutic effects of heparin-loaded microbubbles (HPMB) combined with ultrasound (UHPMB) and the role of heparin in acoustic cavitation. METHODS The characteristics of the microbubbles, including particle size, concentration, release, stability, and development, were studied. Heparin concentration in the HPMB was measured, and heparin-induced anticoagulation was evaluated. Drug safety was explored using hemolysis and cell viability assessments. The ability of HPMB to alleviate oxidative stress and inflammation were investigated in vitro. L-arginine induces AP in vivo. UHPMB was used for AP treatment. Serum amylase levels were measured and pancreatic architecture and pathological features were evaluated to determine AP severity. In vivo efficacy was evaluated, and the underlying mechanism of heparin action during acoustic cavitation was explored. RESULTS HPMB was spherical and presented as an emulsion-like solution without aggregation. HPMB was visible and stable and effectively released the drug under ultrasound (US). HPMB and UHPMB led to lower AP severity than in the untreated group. US-targeted microbubble destruction (UTMD) enhanced the therapeutic effect by decreasing oxidative stress and inflammation in AP models without injuring vital organs. UHPMB regulated VEGF/Flt-1 and SOD-1 expression. HPMB can also mitigate oxidative stress and inflammation in H2O2-pretreated cells. CONCLUSION UHPMB exhibits a strong ability not only to selectively target pancreatic lesions and release heparin but also to provide efficient protection by inhibiting oxidative stress and inflammation.
Collapse
|
27
|
Naidu SAG, Clemens RA, Naidu AS. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. J Diet Suppl 2023; 20:312-371. [PMID: 35603834 DOI: 10.1080/19390211.2022.2075072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Severe imbalance in iron metabolism among SARS-CoV-2 infected patients is prominent in every symptomatic (mild, moderate to severe) clinical phase of COVID-19. Phase-I - Hypoxia correlates with reduced O2 transport by erythrocytes, overexpression of HIF-1α, altered mitochondrial bioenergetics with host metabolic reprogramming (HMR). Phase-II - Hyperferritinemia results from an increased iron overload, which triggers a fulminant proinflammatory response - the acute cytokine release syndrome (CRS). Elevated cytokine levels (i.e. IL6, TNFα and CRP) strongly correlates with altered ferritin/TF ratios in COVID-19 patients. Phase-III - Thromboembolism is consequential to erythrocyte dysfunction with heme release, increased prothrombin time and elevated D-dimers, cumulatively linked to severe coagulopathies with life-threatening outcomes such as ARDS, and multi-organ failure. Taken together, Fe-R-H dysregulation is implicated in every symptomatic phase of COVID-19. Fe-R-H regulators such as lactoferrin (LF), hemoxygenase-1 (HO-1), erythropoietin (EPO) and hepcidin modulators are innate bio-replenishments that sequester iron, neutralize iron-mediated free radicals, reduce oxidative stress, and improve host defense by optimizing iron metabolism. Due to its pivotal role in 'cytokine storm', ferroptosis is a potential intervention target. Ferroptosis inhibitors such as ferrostatin-1, liproxstatin-1, quercetin, and melatonin could prevent mitochondrial lipid peroxidation, up-regulate antioxidant/GSH levels and abrogate iron overload-induced apoptosis through activation of Nrf2 and HO-1 signaling pathways. Iron chelators such as heparin, deferoxamine, caffeic acid, curcumin, α-lipoic acid, and phytic acid could protect against ferroptosis and restore mitochondrial function, iron-redox potential, and rebalance Fe-R-H status. Therefore, Fe-R-H restoration is a host biomarker-driven potential combat strategy for an effective clinical and post-recovery management of COVID-19.
Collapse
Affiliation(s)
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
28
|
Mohammad-Akbari A, Mohazzab A, Tavakoli M, Karimi A, Zafardoust S, Zolghadri Z, Shahali S, Tokhmechi R, Ansaripour S. The effect of low-molecular-weight heparin on live birth rate of patients with unexplained early recurrent pregnancy loss: A two-arm randomized clinical trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:78. [PMID: 36438075 PMCID: PMC9693726 DOI: 10.4103/jrms.jrms_81_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2022] [Accepted: 05/30/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND The effect of anticoagulant medication in unexplained early recurrent pregnancy loss (RPL) patients is controversial. This clinical trial evaluated the effect of low-molecular-weight heparin (LMWH) on pregnancy outcomes in these patients. MATERIALS AND METHODS The study was performed as a single-blind randomized clinical trial between 2016 and 2018. Samples were selected from patients who were referred to Avicenna RPL clinic with a history of at least two previously happened early unexplained miscarriages. The eligibility was defined strictly to select unexplained RPL patients homogenously. One hundred and seventy-three patients who got pregnant recently were allocated randomly into two groups LMWH plus low-dose aspirin treatment (Group A = 85) and low-dose aspirin treatment only (Group B = 88)) and were followed up till their pregnancy termination (delivery/abortion). A per-protocol analysis was carried out and all statistical tests were two-sided with a P < 0.05 significance level. RESULTS The live birth rates (LBRs) in Groups A and B were 78% and 77.1%, respectively, which did not show any statistically significant difference between the two groups, neither in rates nor in time of abortion. In subgroup analysis for polycystic ovary syndrome (PCOS) patients, the odds ratio for study outcome (intervention/control) was 2.25 (95% confidence interval: 0.65-7.73). There was no major adverse event whereas minor bleeding was observed in 18% of patients in Group A. CONCLUSION LMWH does not improve the LBR in unexplained RPL patients, however, it is recommended to evaluate its effect separately in PCOS patients.
Collapse
Affiliation(s)
- Azam Mohammad-Akbari
- Reproductive Biotechnology Research Center, ACECR, Avicenna Research Institute, Tehran, Iran,Avicenna Fertility Center, Tehran, Iran
| | - Arash Mohazzab
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Tavakoli
- Reproductive Biotechnology Research Center, ACECR, Avicenna Research Institute, Tehran, Iran
| | - Atousa Karimi
- Reproductive Biotechnology Research Center, ACECR, Avicenna Research Institute, Tehran, Iran,Avicenna Fertility Center, Tehran, Iran
| | - Simin Zafardoust
- Reproductive Biotechnology Research Center, ACECR, Avicenna Research Institute, Tehran, Iran,Avicenna Fertility Center, Tehran, Iran
| | - Zhaleh Zolghadri
- Reproductive Biotechnology Research Center, ACECR, Avicenna Research Institute, Tehran, Iran,Avicenna Fertility Center, Tehran, Iran
| | - Shadab Shahali
- Department of Reproductive Health and Midwifery, Tarbiat Modares University, Tehran, Iran
| | | | - Soheila Ansaripour
- Reproductive Biotechnology Research Center, ACECR, Avicenna Research Institute, Tehran, Iran,Avicenna Fertility Center, Tehran, Iran,Address for correspondence: Prof. Soheila Ansaripour, Avicenna Research Institute, Evin, Daneshjoo Blvd, Chamran Exp.Way, Tehran 1936773493, Iran. E-mail:
| |
Collapse
|
29
|
Meng L, Liao X, Wang Y, Chen L, Gao W, Wang M, Dai H, Yan N, Gao Y, Wu X, Wang K, Liu Q. Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Front Pharmacol 2022; 13:930593. [PMID: 36386221 PMCID: PMC9651133 DOI: 10.3389/fphar.2022.930593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.
Collapse
Affiliation(s)
- Linlin Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Ximing Liao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Yuanyuan Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Muyun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Huiling Dai
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Na Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| | - Qinghua Liu
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| |
Collapse
|
30
|
Zang L, Zhu H, Wang K, Liu Y, Yu F, Zhao W. Not Just Anticoagulation-New and Old Applications of Heparin. Molecules 2022; 27:6968. [PMID: 36296562 PMCID: PMC9609994 DOI: 10.3390/molecules27206968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 12/07/2024] Open
Abstract
In recent decades, heparin, as the most important anticoagulant drug, has been widely used in clinical settings to prevent and treat thrombosis in a variety of diseases. However, with in-depth research, the therapeutic potential of heparin is being explored beyond anticoagulation. To date, heparin and its derivatives have been tested in the protection against and repair of inflammatory, antitumor, and cardiovascular diseases. It has also been explored as an antiangiogenic, preventive, and antiviral agent for atherosclerosis. This review focused on the new and old applications of heparin and discussed the potential mechanisms explaining the biological diversity of heparin.
Collapse
Affiliation(s)
- Lixuan Zang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Haomiao Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Department of Pharmacy, Qilu Hospital, Shandong University, 107 Cultural West Road, Jinan 250012, China
| | - Kun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yonghui Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Fan Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
31
|
Todosenko N, Yurova K, Khaziakhmatova O, Malashchenko V, Khlusov I, Litvinova L. Heparin and Heparin-Based Drug Delivery Systems: Pleiotropic Molecular Effects at Multiple Drug Resistance of Osteosarcoma and Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102181. [PMID: 36297616 PMCID: PMC9612132 DOI: 10.3390/pharmaceutics14102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
One of the main problems of modern health care is the growing number of oncological diseases both in the elderly and young population. Inadequately effective chemotherapy, which remains the main method of cancer control, is largely associated with the emergence of multidrug resistance in tumor cells. The search for new solutions to overcome the resistance of malignant cells to pharmacological agents is being actively pursued. Another serious problem is immunosuppression caused both by the tumor cells themselves and by antitumor drugs. Of great interest in this context is heparin, a biomolecule belonging to the class of glycosaminoglycans and possessing a broad spectrum of biological activity, including immunomodulatory and antitumor properties. In the context of the rapid development of the new field of “osteoimmunology,” which focuses on the collaboration of bone and immune cells, heparin and delivery systems based on it may be of intriguing importance for the oncotherapy of malignant bone tumors. Osteosarcoma is a rare but highly aggressive, chemoresistant malignant tumor that affects young adults and is characterized by constant recurrence and metastasis. This review describes the direct and immune-mediated regulatory effects of heparin and drug delivery systems based on it on the molecular mechanisms of (multiple) drug resistance in (onco) pathological conditions of bone tissue, especially osteosarcoma.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Correspondence:
| |
Collapse
|
32
|
Heparanase: A Novel Therapeutic Target for the Treatment of Atherosclerosis. Cells 2022; 11:cells11203198. [PMID: 36291066 PMCID: PMC9599978 DOI: 10.3390/cells11203198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and its management places a huge burden on healthcare systems through hospitalisation and treatment. Atherosclerosis is a chronic inflammatory disease of the arterial wall resulting in the formation of lipid-rich, fibrotic plaques under the subendothelium and is a key contributor to the development of CVD. As such, a detailed understanding of the mechanisms involved in the development of atherosclerosis is urgently required for more effective disease treatment and prevention strategies. Heparanase is the only mammalian enzyme known to cleave heparan sulfate of heparan sulfate proteoglycans, which is a key component of the extracellular matrix and basement membrane. By cleaving heparan sulfate, heparanase contributes to the regulation of numerous physiological and pathological processes such as wound healing, inflammation, tumour angiogenesis, and cell migration. Recent evidence suggests a multifactorial role for heparanase in atherosclerosis by promoting underlying inflammatory processes giving rise to plaque formation, as well as regulating lesion stability. This review provides an up-to-date overview of the role of heparanase in physiological and pathological processes with a focus on the emerging role of the enzyme in atherosclerosis.
Collapse
|
33
|
Nawaz A, Zaman Safi S, Sikandar S, Zeeshan R, Zulfiqar S, Mehmood N, Alobaid HM, Rehman F, Imran M, Tariq M, Ali A, Emran TB, Yar M. Heparin-Loaded Alginate Hydrogels: Characterization and Molecular Mechanisms of Their Angiogenic and Anti-Microbial Potential. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196683. [PMID: 36234025 PMCID: PMC9573464 DOI: 10.3390/ma15196683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 05/06/2023]
Abstract
Background: Chronic wounds continue to be a global concern that demands substantial resources from the healthcare system. The process of cutaneous wound healing is complex, involving inflammation, blood clotting, angiogenesis, migration and remodeling. In the present study, commercially available alginate wound dressings were loaded with heparin. The purpose of the study was to enhance the angiogenic potential of alginate wound dressings and analyze the antibacterial activity, biocompatibility and other relevant properties. We also aimed to conduct some molecular and gene expression studies to elaborate on the mechanisms through which heparin induces angiogenesis. Methods: The physical properties of the hydrogels were evaluated by Fourier transform infrared spectroscopy (FTIR). Swelling ability was measured by soaking hydrogels in the Phosphate buffer at 37 °C, and cell studies were conducted to evaluate the cytotoxicity and biocompatibility of hydrogels in NIH3T3 (fibroblasts). Real-time PCR was conducted to check the molecular mechanisms of heparin/alginate-induced angiogenesis. The physical properties of the hydrogels were evaluated by Fourier transform infrared spectroscopy (FTIR). Results: FTIR confirmed the formation of heparin-loaded alginate wound dressing and the compatibility of both heparin and alginate. Among all, 10 µg/mL concentration of heparin showed the best antibacterial activity against E. coli. The swelling was considerably increased up to 1500% within 1 h. Alamar Blue assay revealed no cytotoxic effect on NIH3T3. Heparin showed good anti-microbial properties and inhibited the growth of E. coli in zones with a diameter of 18 mm. The expression analysis suggested that heparin probably exerts its pro-angiogenetic effect through VEGF and cPGE. Conclusions: We report that heparin-loaded alginate dressings are not cytotoxic and offer increased angiogenic and anti-bacterial potential. The angiogenesis is apparently taken through the VEGF pathway.
Collapse
Affiliation(s)
- Ayesha Nawaz
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
- Department of Biology, Lahore Garrison University, Lahore 54810, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
- Correspondence:
| | - Shomaila Sikandar
- Department of Biology, Lahore Garrison University, Lahore 54810, Pakistan
| | - Rabia Zeeshan
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Saima Zulfiqar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Nadia Mehmood
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Hussah M. Alobaid
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Muhammad Imran
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Tariq
- Department of Medical Laboratory Technology, University College of Duba, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
34
|
T G D, Chen CH, Kuo CY, Shalumon KT, Chien YM, Kao HH, Chen JP. Development of high resilience spiral wound suture-embedded gelatin/PCL/heparin nanofiber membrane scaffolds for tendon tissue engineering. Int J Biol Macromol 2022; 221:314-333. [PMID: 36075304 DOI: 10.1016/j.ijbiomac.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
This study develops a spiral wound scaffold based on gelatin/PCL/heparin (GPH) nanofiber membranes for tendon tissue engineering. By embedding sutures in dual layers of aligned GPH nanofiber membranes, prepared from mixed electrospinning of gelatin and PCL/heparin solutions, we fabricate a high resilience scaffold intended for the high loading environment experienced by tendons. The basic fibroblast growth factor (bFGF) was anchored to GPH scaffold through bioaffinity between heparin and bFGF, aim to provide biological cues for maintenance of tenogenic phenotype. In addition, the aligned nanofiber morphology is expected to provide physical cues toward seeded tenocytes. With sustained release of bFGF, GPH-bFGF can enhance proliferation, up-regulate tenogenic gene expression, and increase synthesis of tendon-specific proteins by tenocytes in vitro. Furthermore, by properly maintaining tendon phenotypes, GPH-bFGF/tenocytes constructs showed improved mechanical properties over GPH-bFGF. From in vivo study using GPH-bFGF/tenocytes constructs to repair rabbit Achilles tendon defects, neotendon tissue formation was confirmed from histological staining and biomechanical analysis. These findings collectively demonstrate that the newly designed GPH-bFGF scaffold could provide a niche for inducing tendon tissue regeneration by effectively restoring the tendon tissue structure and function.
Collapse
Affiliation(s)
- Darshan T G
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - K T Shalumon
- Department of Chemistry, Sacred Heart College, MG University, Kochi 682013, India
| | - Yen-Miao Chien
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Hao-Hsi Kao
- Division of Nephrology, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Keelung 20401, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Kwei-San, Taoyuan 33305, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
35
|
Komorowicz E, Kolev K. Fibrin structure, viscoelasticity and lysis face the interplay of biorelevant polyions. Curr Opin Hematol 2022; 29:244-250. [PMID: 35916559 DOI: 10.1097/moh.0000000000000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW In the past 5 decades, heparins have been widely used as anticoagulants in the prevention and treatment of thrombosis. Subsequent development of heparin variants of various size and charge facilitated the discovery of their multiple biological actions and nonanticoagulant benefits. Platelet-derived or microbial polyphosphates, as well as DNA released in the course of neutrophil extracellular trap-formation are additional polyanions, which can modulate the development and stability of thrombi associated with cancer or inflammation. In this review, we focus on the size-dependent and electric charge-dependent modulatory effects of the three polyanions of different chemical structure. RECENT FINDINGS The polycationic histones have been recognized as potential biomarkers and therapeutic targets in several diseases related to inflammation and thrombosis. Since combating histones with activated protein C or heparin could cause unwanted bleeding, the quest for nonanticoagulant histone-neutralizing agents is ongoing. Polyanions may neutralize or exaggerate certain histone-mediated effects depending on their electric charge, size and histone effects under investigation. Several prothrombotic effects of polyphosphates and DNA are also size-dependent. SUMMARY The efficiency of future therapeutics targeting prothrombotic polyanions or histones is not a simple matter of electric charge, but may rely on a delicate combination of size, charge and chemical composition.
Collapse
Affiliation(s)
- Erzsébet Komorowicz
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
36
|
Therapeutic anticoagulation using heparin in early phase severe coronavirus disease 2019: A retrospective study. Am J Emerg Med 2022; 58:84-88. [PMID: 35640454 PMCID: PMC9135498 DOI: 10.1016/j.ajem.2022.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Background Although several reports recommend the use of systemic anticoagulation therapy in patients with severe coronavirus disease 2019 (COVID-19) pneumonia, appropriate target population and timing of administration are unknown. We assessed association between therapeutic anticoagulation administration with unfractionated heparin and outcomes in patients with severe COVID-19 pneumonia, assuming that anticoagulant administration effects are influenced by therapy timing. Methods This retrospective observational study included severe COVID-19 patients requiring mechanical ventilation in a tertiary emergency critical care hospital intensive care unit (ICU) in Japan from May 1, 2020 to September 30, 2021. All included patients were divided into early and late-phase administration groups based on therapeutic anticoagulant administration timing (≤5 and >5 days, respectively, after commencing oxygen therapy). Primary outcomes (in-hospital mortality and adverse events related to anticoagulation therapy) and secondary outcomes [veno-venous extracorporeal membrane oxygenation (ECMO), ventilator-free days (VFD), and ICU-free days] were compared between groups using univariate and multivariate models. Results Of 198 included patients 104 (52.5%) and 94 (47.5%) were in early-phase and late-phase administration groups, respectively. Although background characteristics were similar between the groups, the early-phase administration group had a significantly lower in-hospital mortality rate (3.8% vs. 27.7%; p < 0.001), lower adverse event rates (1.9% vs. 12.8%; p < 0.001), significantly longer VFD and ICU-free days, and lower ECMO rates, than the late-phase administration group, in the multivariate model. Conclusions Late administration of therapeutic-dose anticoagulation in patients with severe COVID-19 pneumonia was significantly associated with worse outcomes than early administration.
Collapse
|
37
|
Barco S, Voci D, Held U, Sebastian T, Bingisser R, Colucci G, Duerschmied D, Frenk A, Gerber B, Götschi A, Konstantinides SV, Mach F, Robert-Ebadi H, Rosemann T, Simon NR, Spechbach H, Spirk D, Stortecky S, Vaisnora L, Righini M, Kucher N. Enoxaparin for primary thromboprophylaxis in symptomatic outpatients with COVID-19 (OVID): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet Haematol 2022; 9:e585-e593. [PMID: 35779558 PMCID: PMC9243568 DOI: 10.1016/s2352-3026(22)00175-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
Background COVID-19 is a viral prothrombotic respiratory infection. Heparins exert antithrombotic and anti-inflammatory effects, and might have antiviral properties. We aimed to investigate whether thromboprophylaxis with enoxaparin would prevent untoward hospitalisation and death in symptomatic, but clinically stable outpatients with COVID-19. Methods OVID was a randomised, open-label, parallel-group, investigator-initiated, phase 3 trial and was done at eight centres in Switzerland and Germany. Outpatients aged 50 years or older with acute COVID-19 were eligible if they presented with respiratory symptoms or body temperature higher than 37·5°C. Eligible participants underwent block-stratified randomisation (by age group 50–70 vs >70 years and by study centre) in a 1:1 ratio to receive either subcutaneous enoxaparin 40 mg once daily for 14 days versus standard of care (no thromboprophylaxis). The primary outcome was a composite of any untoward hospitalisation and all-cause death within 30 days of randomisation. Analysis of the efficacy outcomes was done in the intention-to-treat population. The primary safety outcome was major bleeding. The study was registered in ClinicalTrials.gov (NCT04400799) and has been completed. Findings At the predefined formal interim analysis for efficacy (50% of total study population), the independent Data Safety Monitoring Board recommended early termination of the trial on the basis of predefined statistical criteria having considered the very low probability of showing superiority of thromboprophylaxis with enoxaparin for the primary outcome under the initial study design assumptions. Between Aug 15, 2020, and Jan 14, 2022, from 3319 participants prescreened, 472 were included in the intention-to-treat population and randomly assigned to receive enoxaparin (n=234) or standard of care (n=238). The median age was 57 years (IQR 53–62) and 217 (46%) were women. The 30-day risk of the primary outcome was similar in participants allocated to receive enoxaparin and in controls (8 [3%] of 234 vs 8 [3%] of 238; adjusted relative risk 0·98; 95% CI 0·37–2·56; p=0·96). All hospitalisations were related to COVID-19. No deaths were reported during the study. No major bleeding events were recorded. Eight serious adverse events were recorded in the enoxaparin group versus nine in the control group. Interpretation These findings suggest thromboprophylaxis with enoxaparin does not reduce early hospitalisations and deaths among outpatients with symptomatic COVID-19. Futility of the treatment under the initial study design assumptions could not be conclusively assessed owing to under-representation of older patients and consequent low event rates. Funding SNSF (National Research Programme COVID-19 NRP78: 198352), University Hospital Zurich, University of Zurich, Dr-Ing Georg Pollert (Berlin), Johanna Dürmüller-Bol Foundation.
Collapse
Affiliation(s)
- Stefano Barco
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Davide Voci
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland
| | - Ulrike Held
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Tim Sebastian
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland
| | - Roland Bingisser
- Emergency Department, University Hospital Basel, Basel, Switzerland
| | - Giuseppe Colucci
- Service of Hematology, Clinica Luganese Moncucco, Lugano, Switzerland; Department of Hematology, University of Basel, Basel, Switzerland; Clinica Sant'Anna, Sorengo, Switzerland
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) partner site Heidelberg-Mannheim, Mannheim, Germany; Department of Cardiology and Angiology I, Heart CenterFreiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - André Frenk
- Department of Cardiology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Bernhard Gerber
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; University of Zurich, Zurich, Switzerland
| | - Andrea Götschi
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Stavros V Konstantinides
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Department of Cardiology, Democritus University of Thrace, Komotini, Greece
| | - François Mach
- Cardiology Division, Geneva University Hospitals, Geneva, Switzerland
| | - Helia Robert-Ebadi
- Division of Angiology and Hemostasis, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Switzerland
| | | | - Noemi R Simon
- Emergency Department, University Hospital Basel, Basel, Switzerland
| | - Hervé Spechbach
- Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - David Spirk
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stefan Stortecky
- Department of Cardiology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Lukas Vaisnora
- Department of Cardiology, University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Marc Righini
- Division of Angiology and Hemostasis, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, University of Geneva, Switzerland
| | - Nils Kucher
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Jiang Y, Yan Q, Liu CX, Peng CW, Zheng WJ, Zhuang HF, Huang HT, Liu Q, Liao HL, Zhan SF, Liu XH, Huang XF. Insights into potential mechanisms of asthma patients with COVID-19: A study based on the gene expression profiling of bronchoalveolar lavage fluid. Comput Biol Med 2022; 146:105601. [PMID: 35751199 PMCID: PMC9117163 DOI: 10.1016/j.compbiomed.2022.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Background The 2019 novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a major challenge threatening the global healthcare system. Respiratory virus infection is the most common cause of asthma attacks, and thus COVID-19 may contribute to an increase in asthma exacerbations. However, the mechanisms of COVID-19/asthma comorbidity remain unclear. Methods The “Limma” package or “DESeq2” package was used to screen differentially expressed genes (DEGs). Alveolar lavage fluid datasets of COVID-19 and asthma were obtained from the GEO and GSV database. A series of analyses of common host factors for COVID-19 and asthma were conducted, including PPI network construction, module analysis, enrichment analysis, inference of the upstream pathway activity of host factors, tissue-specific analysis and drug candidate prediction. Finally, the key host factors were verified in the GSE152418 and GSE164805 datasets. Results 192 overlapping host factors were obtained by analyzing the intersection of asthma and COVID-19. FN1, UBA52, EEF1A1, ITGB1, XPO1, NPM1, EGR1, EIF4E, SRSF1, CCR5, PXN, IRF8 and DDX5 as host factors were tightly connected in the PPI network. Module analysis identified five modules with different biological functions and pathways. According to the degree values ranking in the PPI network, EEF1A1, EGR1, UBA52, DDX5 and IRF8 were considered as the key cohost factors for COVID-19 and asthma. The H2O2, VEGF, IL-1 and Wnt signaling pathways had the strongest activities in the upstream pathways. Tissue-specific enrichment analysis revealed the different expression levels of the five critical host factors. LY294002, wortmannin, PD98059 and heparin might have great potential to evolve into therapeutic drugs for COVID-19 and asthma comorbidity. Finally, the validation dataset confirmed that the expression of five key host factors were statistically significant among COVID-19 groups with different severity and healthy control subjects. Conclusions This study constructed a network of common host factors between asthma and COVID-19 and predicted several drugs with therapeutic potential. Therefore, this study is likely to provide a reference for the management and treatment for COVID-19/asthma comorbidity.
Collapse
Affiliation(s)
- Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Qian Yan
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Cheng-Xin Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Chen-Wen Peng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Wen-Jiang Zheng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, China.
| | - Hong-Fa Zhuang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Qiong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Hui-Li Liao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Xiao-Hong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| |
Collapse
|
39
|
Hong L, Chen G, Cai Z, Liu H, Zhang C, Wang F, Xiao Z, Zhong J, Wang L, Wang Z, Cui W. Balancing Microthrombosis and Inflammation via Injectable Protein Hydrogel for Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200281. [PMID: 35524641 PMCID: PMC9284187 DOI: 10.1002/advs.202200281] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/01/2022] [Indexed: 05/17/2023]
Abstract
Emerging evidence indicates that a vicious cycle between inflammation and microthrombosis catalyzes the pathogenesis of inflammatory bowel disease (IBD). Over-stimulated inflammation triggers a coagulation cascade and leads to microthrombosis, which further complicates the injury through tissue hypoxia and ischemia. Herein, an injectable protein hydrogel with anti-thrombosis and anti-inflammation competency is developed to impede this cycle, cross-linked by silver ion mediated metal-ligand coordination and electronic interaction with sulfhydryl functionalized bovine serum albumin and heparin, respectively. The ex vivo experiments show that the hydrogel, HEP-Ag-BSA, exhibits excellent self-healing ability, injectability, biocompatibility, and sustained drug release. HEP-Ag-BSA also demonstrates anti-coagulation and anti-inflammation abilities via coagulation analysis and lipopolysaccharide stimulation assay. The in vivo imaging confirms the longer retention time of HEP-Ag-BSA at inflammatory sites than in normal mucosa owing to electrostatic interactions. The in vivo study applying a mouse model with colitis also reveals that HEP-Ag-BSA can robustly inhibit inflammatory microthrombosis with reduced bleeding risk. This versatile protein hydrogel platform can definitively hinder the "inflammation and microthrombosis" cycle, providing a novel integrated approach against IBD.
Collapse
Affiliation(s)
- Liwen Hong
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Gaoxian Chen
- Department of Pharmacology and Chemical BiologyInstitute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Hua Liu
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Chen Zhang
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Fei Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical BiologyInstitute of Molecular MedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Jie Zhong
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lei Wang
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
- Department of GeriatricsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengting Wang
- Department of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
40
|
Heparin: An old drug for new clinical applications. Carbohydr Polym 2022; 295:119818. [DOI: 10.1016/j.carbpol.2022.119818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/23/2022]
|
41
|
Pouyan P, Cherri M, Haag R. Polyglycerols as Multi-Functional Platforms: Synthesis and Biomedical Applications. Polymers (Basel) 2022; 14:polym14132684. [PMID: 35808728 PMCID: PMC9269438 DOI: 10.3390/polym14132684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023] Open
Abstract
The remarkable and unique characteristics of polyglycerols (PG) have made them an attractive candidate for many applications in the biomedical and pharmaceutical fields. The presence of multiple hydroxy groups on the flexible polyether backbone not only enables the further modification of the PG structure but also makes the polymer highly water-soluble and results in excellent biocompatibility. In this review, the polymerization routes leading to PG with different architectures are discussed. Moreover, we discuss the role of these polymers in different biomedical applications such as drug delivery systems, protein conjugation, and surface modification.
Collapse
|
42
|
Tritschler T, Le Gal G, Brosnahan S, Carrier M. POINT: Should Therapeutic Heparin Be Administered to Acutely Ill Hospitalized Patients With COVID-19? Yes. Chest 2022; 161:1446-1448. [PMID: 35469670 PMCID: PMC8923527 DOI: 10.1016/j.chest.2022.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Tobias Tritschler
- Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Grégoire Le Gal
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Shari Brosnahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University Langone Health System, New York, NY
| | - Marc Carrier
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
43
|
Barnes GD, Burnett A, Allen A, Ansell J, Blumenstein M, Clark NP, Crowther M, Dager WE, Deitelzweig SB, Ellsworth S, Garcia D, Kaatz S, Raffini L, Rajasekhar A, Beek AV, Minichiello T. Thromboembolic prevention and anticoagulant therapy during the COVID-19 pandemic: updated clinical guidance from the anticoagulation forum. J Thromb Thrombolysis 2022; 54:197-210. [PMID: 35579732 PMCID: PMC9111941 DOI: 10.1007/s11239-022-02643-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 12/11/2022]
Abstract
Thromboembolism is a common and deadly consequence of COVID-19 infection for hospitalized patients. Based on clinical evidence pre-dating the COVID-19 pandemic and early observational reports, expert consensus and guidance documents have strongly encouraged the use of prophylactic anticoagulation for patients hospitalized for COVID-19 infection. More recently, multiple clinical trials and larger observational studies have provided evidence for tailoring the approach to thromboprophylaxis for patients with COVID-19. This document provides updated guidance for the use of anticoagulant therapies in patients with COVID-19 from the Anticoagulation Forum, the leading North American organization of anticoagulation providers. We discuss ambulatory, in-hospital, and post-hospital thromboprophylaxis strategies as well as provide guidance for patients with thrombotic conditions who are considering COVID-19 vaccination.
Collapse
Affiliation(s)
- Geoffrey D Barnes
- University of Michigan, 2800 Plymouth Rd, B14 G214, 48109-2800, Ann Arbor, MI, USA.
| | - Allison Burnett
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Arthur Allen
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Jack Ansell
- Professor of Medicine, Hofstra/Northwell School of Medicine , New York, USA
| | | | - Nathan P Clark
- Kaiser Permanente Colorado, Colorado University Skaggs School of Pharmacy, Aurora, CO, USA
| | | | | | | | | | | | | | - Leslie Raffini
- University of Pennsylvania Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Andrea Van Beek
- Kaweah Health Medical Group/Visalia Medical Clinic, Visalia, CA, USA
| | - Tracy Minichiello
- University of California, San Francisco San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
44
|
Coutureau C, Nguyen P, Hentzien M, Noujaim PJ, Zerbib S, Jolly D, Kanagaratnam L. Association between Heparin Dose and 6-Week Mortality in Patients with COVID-19. Mediterr J Hematol Infect Dis 2022; 14:e2022036. [PMID: 35615330 PMCID: PMC9083941 DOI: 10.4084/mjhid.2022.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
Background Severe forms of SARS-CoV-2 infections are associated with high rates of thromboembolic complications. Professional societies and expert consensus reports have recommended anticoagulants for COVID-19 hospitalized patients. Our study aimed to compare the effect of therapeutic, intermediate and prophylactic doses of heparin on 6-week survival in patients hospitalized for COVID-19. Methods The study sample is a French cohort of COVID-19 patients hospitalized between Feb 25th and Apr 30th 2020. Patients were assigned to one of 3 anticoagulation dose groups based on the maximum dose they received for at least three days (prophylactic, intermediate or therapeutic). The main outcome was survival up to 42 days after hospital admission. Multivariate Cox regression models were performed to adjust analyses for confounding factors. Results A total of 323 patients were included. The mean age of the study sample was 71.6 ± 15 years, and 56.3% were men. Treatment with the intermediate versus prophylactic dose of anticoagulation (HR = 0.50, 95%CI = [0.26; 0.99], p = 0.047) and with therapeutic versus prophylactic dose (HR = 0.58 95%CI = [0.34; 0.98], p = 0.044) was associated with a significant reduction in 6-week mortality, after adjustment for potential confounding factors. Comparison of therapeutic versus intermediate doses showed no significant difference in survival. Conclusions Our results reported a significant positive effect of intermediate and therapeutic doses of heparin on 6-week survival for hospitalized COVID-19 patients compared with a prophylactic dose.
Collapse
Affiliation(s)
- Claire Coutureau
- Department of Research and Public Health, Reims University Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), faculty of medicine, University of Reims Champagne-Ardenne, 51092 Reims, France
| | - Philippe Nguyen
- Department of Hematology Laboratory, Reims University Hospital, 51092 Reims, France
| | - Maxime Hentzien
- UR 3797 Vieillissement, Fragilité (VieFra), faculty of medicine, University of Reims Champagne-Ardenne, 51092 Reims, France
- Department of Internal Medicine, Clinical Immunology and Infectious Diseases, Reims University Hospital, 51092 Reims, France
| | - Peter Joe Noujaim
- Department of Research and Public Health, Reims University Hospital, 51092 Reims, France
| | - Sarah Zerbib
- Department of Research and Public Health, Reims University Hospital, 51092 Reims, France
| | - Damien Jolly
- Department of Research and Public Health, Reims University Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), faculty of medicine, University of Reims Champagne-Ardenne, 51092 Reims, France
| | - Lukshe Kanagaratnam
- Department of Research and Public Health, Reims University Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), faculty of medicine, University of Reims Champagne-Ardenne, 51092 Reims, France
| |
Collapse
|
45
|
Flumignan RL, Civile VT, Tinôco JDDS, Pascoal PI, Areias LL, Matar CF, Tendal B, Trevisani VF, Atallah ÁN, Nakano LC. Anticoagulants for people hospitalised with COVID-19. Cochrane Database Syst Rev 2022; 3:CD013739. [PMID: 35244208 PMCID: PMC8895460 DOI: 10.1002/14651858.cd013739.pub2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The primary manifestation of coronavirus disease 2019 (COVID-19) is respiratory insufficiency that can also be related to diffuse pulmonary microthrombosis and thromboembolic events, such as pulmonary embolism, deep vein thrombosis, or arterial thrombosis. People with COVID-19 who develop thromboembolism have a worse prognosis. Anticoagulants such as heparinoids (heparins or pentasaccharides), vitamin K antagonists and direct anticoagulants are used for the prevention and treatment of venous or arterial thromboembolism. Besides their anticoagulant properties, heparinoids have an additional anti-inflammatory potential. However, the benefit of anticoagulants for people with COVID-19 is still under debate. OBJECTIVES To assess the benefits and harms of anticoagulants versus active comparator, placebo or no intervention in people hospitalised with COVID-19. SEARCH METHODS We searched the CENTRAL, MEDLINE, Embase, LILACS and IBECS databases, the Cochrane COVID-19 Study Register and medRxiv preprint database from their inception to 14 April 2021. We also checked the reference lists of any relevant systematic reviews identified, and contacted specialists in the field for additional references to trials. SELECTION CRITERIA Eligible studies were randomised controlled trials (RCTs), quasi-RCTs, cluster-RCTs and cohort studies that compared prophylactic anticoagulants versus active comparator, placebo or no intervention for the management of people hospitalised with COVID-19. We excluded studies without a comparator group and with a retrospective design (all previously included studies) as we were able to include better study designs. Primary outcomes were all-cause mortality and necessity for additional respiratory support. Secondary outcomes were mortality related to COVID-19, deep vein thrombosis, pulmonary embolism, major bleeding, adverse events, length of hospital stay and quality of life. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures. We used Cochrane RoB 1 to assess the risk of bias for RCTs, ROBINS-I to assess risk of bias for non-randomised studies (NRS) and GRADE to assess the certainty of evidence. We meta-analysed data when appropriate. MAIN RESULTS We included seven studies (16,185 participants) with participants hospitalised with COVID-19, in either intensive care units, hospital wards or emergency departments. Studies were from Brazil (2), Iran (1), Italy (1), and the USA (1), and two involved more than country. The mean age of participants was 55 to 68 years and the follow-up period ranged from 15 to 90 days. The studies assessed the effects of heparinoids, direct anticoagulants or vitamin K antagonists, and reported sparse data or did not report some of our outcomes of interest: necessity for additional respiratory support, mortality related to COVID-19, and quality of life. Higher-dose versus lower-dose anticoagulants (4 RCTs, 4647 participants) Higher-dose anticoagulants result in little or no difference in all-cause mortality (risk ratio (RR) 1.03, 95% CI 0.92 to 1.16, 4489 participants; 4 RCTs) and increase minor bleeding (RR 3.28, 95% CI 1.75 to 6.14, 1196 participants; 3 RCTs) compared to lower-dose anticoagulants up to 30 days (high-certainty evidence). Higher-dose anticoagulants probably reduce pulmonary embolism (RR 0.46, 95% CI 0.31 to 0.70, 4360 participants; 4 RCTs), and slightly increase major bleeding (RR 1.78, 95% CI 1.13 to 2.80, 4400 participants; 4 RCTs) compared to lower-dose anticoagulants up to 30 days (moderate-certainty evidence). Higher-dose anticoagulants may result in little or no difference in deep vein thrombosis (RR 1.08, 95% CI 0.57 to 2.03, 3422 participants; 4 RCTs), stroke (RR 0.91, 95% CI 0.40 to 2.03, 4349 participants; 3 RCTs), major adverse limb events (RR 0.33, 95% CI 0.01 to 7.99, 1176 participants; 2 RCTs), myocardial infarction (RR 0.86, 95% CI 0.48 to 1.55, 4349 participants; 3 RCTs), atrial fibrillation (RR 0.35, 95% CI 0.07 to 1.70, 562 participants; 1 study), or thrombocytopenia (RR 0.94, 95% CI 0.71 to 1.24, 2789 participants; 2 RCTs) compared to lower-dose anticoagulants up to 30 days (low-certainty evidence). It is unclear whether higher-dose anticoagulants have any effect on necessity for additional respiratory support, mortality related to COVID-19, and quality of life (very low-certainty evidence or no data). Anticoagulants versus no treatment (3 prospective NRS, 11,538 participants) Anticoagulants may reduce all-cause mortality but the evidence is very uncertain due to two study results being at critical and serious risk of bias (RR 0.64, 95% CI 0.55 to 0.74, 8395 participants; 3 NRS; very low-certainty evidence). It is uncertain if anticoagulants have any effect on necessity for additional respiratory support, mortality related to COVID-19, deep vein thrombosis, pulmonary embolism, major bleeding, stroke, myocardial infarction and quality of life (very low-certainty evidence or no data). Ongoing studies We found 62 ongoing studies in hospital settings (60 RCTs, 35,470 participants; 2 prospective NRS, 120 participants) in 20 different countries. Thirty-five ongoing studies plan to report mortality and 26 plan to report necessity for additional respiratory support. We expect 58 studies to be completed in December 2021, and four in July 2022. From 60 RCTs, 28 are comparing different doses of anticoagulants, 24 are comparing anticoagulants versus no anticoagulants, seven are comparing different types of anticoagulants, and one did not report detail of the comparator group. AUTHORS' CONCLUSIONS When compared to a lower-dose regimen, higher-dose anticoagulants result in little to no difference in all-cause mortality and increase minor bleeding in people hospitalised with COVID-19 up to 30 days. Higher-dose anticoagulants possibly reduce pulmonary embolism, slightly increase major bleeding, may result in little to no difference in hospitalisation time, and may result in little to no difference in deep vein thrombosis, stroke, major adverse limb events, myocardial infarction, atrial fibrillation, or thrombocytopenia. Compared with no treatment, anticoagulants may reduce all-cause mortality but the evidence comes from non-randomised studies and is very uncertain. It is unclear whether anticoagulants have any effect on the remaining outcomes compared to no anticoagulants (very low-certainty evidence or no data). Although we are very confident that new RCTs will not change the effects of different doses of anticoagulants on mortality and minor bleeding, high-quality RCTs are still needed, mainly for the other primary outcome (necessity for additional respiratory support), the comparison with no anticoagulation, when comparing the types of anticoagulants and giving anticoagulants for a prolonged period of time.
Collapse
Affiliation(s)
- Ronald Lg Flumignan
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
- Cochrane Brazil, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vinicius T Civile
- Cochrane Brazil, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Physiotherapy, Universidade Paulista, São Paulo, Brazil
| | | | - Patricia If Pascoal
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Libnah L Areias
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Charbel F Matar
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Britta Tendal
- Living Guidelines Program, Cochrane Australia, Melbourne, Australia
| | - Virginia Fm Trevisani
- Cochrane Brazil, Universidade Federal de São Paulo, São Paulo, Brazil
- Medicina de Urgência, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Álvaro N Atallah
- Cochrane Brazil, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luis Cu Nakano
- Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
- Cochrane Brazil, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Meyer AA, Mathews EH, Gous AGS, Mathews MJ. Using a Systems Approach to Explore the Mechanisms of Interaction Between Severe Covid-19 and Its Coronary Heart Disease Complications. Front Cardiovasc Med 2022; 9:737592. [PMID: 35252372 PMCID: PMC8888693 DOI: 10.3389/fcvm.2022.737592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/24/2022] [Indexed: 01/08/2023] Open
Abstract
Frontiers requested research on how a systems approach can explore the mechanisms of cardiovascular complications in Covid-19. The focus of this paper will thus be on these detailed mechanisms. It will elucidate the integrated pathogenic pathways based on an extensive review of literature. Many severe Covid-19 cases and deaths occur in patients with chronic cardiovascular comorbidities. To help understand all the mechanisms of this interaction, Covid-19 complications were integrated into a pre-existing systems-based coronary heart disease (CHD) model. Such a complete model could not be found in literature. A fully integrative view could be valuable in identifying new pharmaceutical interventions, help understand how health factors influence Covid-19 severity and give a fully integrated explanation for the Covid-19 death spiral phenomenon seen in some patients. Covid-19 data showed that CHD hallmarks namely, Hypercoagulability, Hypercholesterolemia, Hyperglycemia/Hyperinsulinemia, Inflammation and Hypertension have an important effect on disease severity. The pathogenic pathways that Covid-19 activate in CHD were integrated into the CHD model. This fully integrated model presents a visual explanation of the mechanism of interaction between CHD and Covid-19 complications. This includes a detailed integrated explanation of the death spiral as a result of interactions between Inflammation, endothelial cell injury, Hypercoagulability and hypoxia. Additionally, the model presents the aggravation of this death spiral through the other CHD hallmarks namely, Hyperglycemia/Hyperinsulinemia, Hypercholesterolemia, and/or Hypertension. The resulting model further suggests systematically how the pathogenesis of nine health factors (stress, exercise, smoking, etc.) and seven pharmaceutical interventions (statins, salicylates, thrombin inhibitors, etc.) may either aggravate or suppress Covid-19 severity. A strong association between CHD and Covid-19 for all the investigated health factors and pharmaceutical interventions, except for β-blockers, was found. It is further discussed how the proposed model can be extended in future to do computational analysis to help assess the risk of Covid-19 in cardiovascular disease. With insight gained from this study, recommendations are made for future research in potential new pharmacotherapeutics. These recommendations could also be beneficial for cardiovascular disease, which killed five times more people in the past year than Covid-19.
Collapse
Affiliation(s)
- Albertus A. Meyer
- Centre for Research in Continued Engineering Development (CRCED), North-West University, Potchefstroom, South Africa
| | - Edward H. Mathews
- Centre for Research in Continued Engineering Development (CRCED), North-West University, Potchefstroom, South Africa
- Department of Physiology, Medical School, University of Pretoria, Pretoria, South Africa
- Department of Industrial Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Andries G. S. Gous
- Department of Industrial Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Marc J. Mathews
- Department of Industrial Engineering, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
47
|
Kumar A, Sharma A, Tirpude NV, Sharma S, Padwad YS, Kumar S. Pharmaco-immunomodulatory interventions for averting cytokine storm-linked disease severity in SARS-CoV-2 infection. Inflammopharmacology 2022; 30:23-49. [PMID: 35048262 PMCID: PMC8769772 DOI: 10.1007/s10787-021-00903-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
The year 2020 is characterised by the COVID-19 pandemic that has quelled more than half a million lives in recent months. We are still coping with the negative repercussions of COVID-19 pandemic in 2021, in which the 2nd wave in India resulted in a high fatality rate. Regardless of emergency vaccine approvals and subsequent meteoric global vaccination drives in some countries, hospitalisations for COVID-19 will continue to occur due to the propensity of mutation in SARS-CoV-2 virus. The immune response plays a vital role in the control and resolution of infectious diseases. However, an impaired immune response is responsible for the severity of the respiratory distress in many diseases. The severe COVID-19 infection persuaded cytokine storm that has been linked with acute respiratory distress syndrome (ARDS), culminates into vital organ failures and eventual death. Thus, safe and effective therapeutics to treat hospitalised patients remains a significant unmet clinical need. In that state, any clue of possible treatments, which save patients life, can be treasured for this time point. Many cohorts and clinical trial studies demonstrated that timely administration of immunomodulatory drugs on severe COVID-19 patients may mitigate the disease severity, hospital stay and mortality. This article addresses the severity and risk factors of hypercytokinemia in COVID-19 patients, with special emphasis on prospective immunomodulatory therapies.
Collapse
Affiliation(s)
- Arbind Kumar
- COVID-19 Testing facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh India
| | - Aashish Sharma
- COVID-19 Testing facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh India
| | - Narendra Vijay Tirpude
- Animal Facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh India
| | - Suresh Sharma
- COVID-19 Testing facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh India
| | - Yogendra S. Padwad
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh India
| | - Sanjay Kumar
- CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh India
| |
Collapse
|
48
|
Liang W, Greven J, Fragoulis A, Horst K, Bläsius F, Wruck C, Pufe T, Kobbe P, Hildebrand F, Lichte P. Sulforaphane-Dependent Up-Regulation of NRF2 Activity Alleviates Both Systemic Inflammatory Response and Lung Injury After Hemorrhagic Shock/Resuscitation in Mice. Shock 2022; 57:221-229. [PMID: 34559743 DOI: 10.1097/shk.0000000000001859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Hemorrhagic shock/resuscitation (HS/R) is closely associated with overwhelming oxidative stress and systemic inflammation. As an effective activator of the nuclear factor-erythroid factor 2 related factor 2 (Nrf2) pathway, sulforaphane (SFN) exerts antioxidant and anti-inflammatory effects. We explored SFN's effects on alveolar macrophages (AMs), systemic inflammation, and pulmonary damage in an isolated murine HS/R model. Male C57/BL6 wild type and transgenic antioxidant response element (ARE)-luciferase (luc) mice (both n = 6 per group) were exposed to either pressure-controlled HS/R (mean arterial pressure 35-45 mm Hg for 90 min) or sham procedure (surgery without HS/R) or were sacrificed without intervention (control group). Fluid resuscitation was performed via the reinfusion of withdrawn blood and 0.9% saline. Sulforaphane or 0.9% saline (vehicle) was administrated intraperitoneally. Mice were sacrificed 6, 24, or 72 h after resuscitation. Bioluminescence imaging of ARE-luc mice was conducted to measure pulmonary Nrf2 activity. Plasma was collected to determine systemic cytokine levels. Alveolar macrophages were isolated before measuring cytokines in the supernatant and performing immunofluorescence staining, as well as Western blot for intracellular Nrf2. Histological damage was assessed via the acute lung injury score and wet/dry ratio.Hemorrhagic shock/resuscitation was associated with pulmonary Nrf2 activation. Sulforaphane enhanced pulmonary Nrf2 activity and the Nrf2 activation of AM, while it decreased lung damage. Sulforaphane exerted down-regulatory effects on AM-generated and systemic pro-inflammatory mediators, while it did not have such effects on IL-10.In conclusion, SFN beneficially enhances pulmonary Nrf2 activity and promotes Nrf2 accumulation in AMs' nuclei. This may exert not only local protective effects but also systemic effects via the down-regulation of pro-inflammatory cytokines. The administration of Nrf2 activator post-HS/R may represent an innovative treatment strategy.
Collapse
Affiliation(s)
- Weiqiang Liang
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan City, Shandong Province, PR China
| | - Johannes Greven
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Klemens Horst
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Felix Bläsius
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Wruck
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Philipp Kobbe
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Philipp Lichte
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
49
|
Chen TT, Lv JJ, Chen L, Gao YW, Liu LP. Role of heparinase in the gastrointestinal dysfunction of sepsis (Review). Exp Ther Med 2022; 23:119. [PMID: 34970342 PMCID: PMC8713170 DOI: 10.3892/etm.2021.11042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Heparinase (HPA) is a β-D glucuronidase that belongs to the endoglycosidase enzyme family, and plays an important role in numerous pathological and physiological processes, including inflammation, angiogenesis and tumor metastasis. When the expression of HPA is abnormally high, the side chain of heparin sulfate proteoglycans degrades, destroying the cell barrier and leading to the occurrence and development of inflammation, with systemic inflammation occurring in severe cases. Sepsis is a major cause of mortality in critically ill patients. In sepsis, the gastrointestinal tract is the first and most frequently involved target organ, which often leads to gastrointestinal dysfunction. HPA overexpression has been determined to accelerate sepsis progression and gastrointestinal dysfunction; thus, it was hypothesized that HPA may play an important role and may serve as an index for the diagnosis of gastrointestinal dysfunction in sepsis. HPA inhibitors may therefore become applicable as targeted drugs for the treatment of gastrointestinal dysfunction in patients with sepsis. The present review mainly discussed the role of HPA in gastrointestinal dysfunction of sepsis.
Collapse
Affiliation(s)
- Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jia-Jun Lv
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ling Chen
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yu-Wei Gao
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li-Ping Liu
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
50
|
Yuan W, Xia D, Wu S, Zheng Y, Guan Z, Rau JV. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact Mater 2022; 7:192-216. [PMID: 34466727 PMCID: PMC8379348 DOI: 10.1016/j.bioactmat.2021.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, zinc and its alloys have been proposed as promising candidates for biodegradable metals (BMs), owning to their preferable corrosion behavior and acceptable biocompatibility in cardiovascular, bone and gastrointestinal environments, together with Mg-based and Fe-based BMs. However, there is the desire for surface treatment for Zn-based BMs to better control their biodegradation behavior. Firstly, the implantation of some Zn-based BMs in cardiovascular environment exhibited intimal activation with mild inflammation. Secondly, for orthopedic applications, the biodegradation rates of Zn-based BMs are relatively slow, resulting in a long-term retention after fulfilling their mission. Meanwhile, excessive Zn2+ release during degradation will cause in vitro cytotoxicity and in vivo delayed osseointegration. In this review, we firstly summarized the current surface modification methods of Zn-based alloys for the industrial applications. Then we comprehensively summarized the recent progress of biomedical bulk Zn-based BMs as well as the corresponding surface modification strategies. Last but not least, the future perspectives towards the design of surface bio-functionalized coatings on Zn-based BMs for orthopedic and cardiovascular applications were also briefly proposed.
Collapse
Affiliation(s)
- Wei Yuan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Dandan Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Zhenpeng Guan
- Orthopedics Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Rd, Shijingshan District, Beijing, 100144, China
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133, Rome, Italy
- Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991, Moscow, Russia
| |
Collapse
|