1
|
Romani C, Gagni P, Di Pietro ME, Sani M, Sponchioni M, Volonterio A. Fine-Tuned "Click" Functionalization of PAMAM Dendrimers with a Linear Fluorinated Guanidino Linker: Synthesis, Characterization, and Applications. Bioconjug Chem 2024. [PMID: 39537237 DOI: 10.1021/acs.bioconjchem.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study presents the synthesis, characterization, and application of multifunctional PAMAM G2 and G4 dendrimers decorated with a linear fluorinated guanidino linker designed to improve gene delivery efficiency while minimizing cytotoxicity. For the first time, we were able to fine-tune the degree of grafting (DG) during the functionalization process through efficient "click" Michael addition, achieving the synthesis of a collection of six PAMAM conjugates that showed a significant enhancement in transfection efficiency (TE), surpassing the performance of traditional nonviral vectors. The incorporation of fluorinated moieties not only facilitated better deoxyribonucleic acid (DNA) condensation and TE but also introduced potential applications in 19F magnetic resonance imaging thanks to the sharp and intense fluorine nuclear magnetic resonance signals and favorable relaxation parameters. The new dendrimer conjugates demonstrated a promising balance between low cytotoxicity and high TE, with the low-generation PAMAM G2 with lower DG being the best-performing conjugate, making them strong candidates for further development in gene therapy. These findings highlight the potential of these multifunctional PAMAM dendrimers as efficient, nontoxic, and trackable gene delivery vectors.
Collapse
Affiliation(s)
- Carola Romani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| | - Paola Gagni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| | - Maria Enrica Di Pietro
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| | - Monica Sani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| | - Alessandro Volonterio
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Via Mario Bianco 9, 20131 Milan, Italy
| |
Collapse
|
2
|
Othman HO, Anwer ET, Ali DS, Hassan RO, Mahmood EE, Ahmed RA, Muhammad RF, Smaoui S. Recent advances in carbon quantum dots for gene delivery: A comprehensive review. J Cell Physiol 2024; 239:e31236. [PMID: 38454776 DOI: 10.1002/jcp.31236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Gene therapy is a revolutionary technology in healthcare that provides novel therapeutic options and has immense potential in addressing genetic illnesses, malignancies, and viral infections. Nevertheless, other obstacles still need to be addressed regarding safety, ethical implications, and technological enhancement. Nanotechnology and gene therapy fields have shown significant promise in transforming medical treatments by improving accuracy, effectiveness, and personalization. This review assesses the possible uses of gene therapy, its obstacles, and future research areas, specifically emphasizing the creative combination of gene therapy and nanotechnology. Nanotechnology is essential for gene delivery as it allows for the development of nano-scale carriers, such as carbon quantum dots (CQDs), which may effectively transport therapeutic genes into specific cells. CQDs exhibit distinctive physicochemical characteristics such as small size, excellent stability, and minimal toxicity, which render them highly favorable for gene therapy applications. The objective of this study is to review and describe the current advancements in the utilization of CQDs for gene delivery. Additionally, it intends to assess existing research, explore novel applications, and identify future opportunities and obstacles. This study offers a thorough summary of the current state and future possibilities of using CQDs for gene delivery. Combining recent research findings highlights the potential of CQDs to revolutionize gene therapy and its delivery methods.
Collapse
Affiliation(s)
- Hazha Omar Othman
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Esra Tariq Anwer
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Diyar Salahuddin Ali
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, Iraq
| | - Rebwar Omar Hassan
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Radiological Imaging Technology, College of Health Technology, Cihan University-Erbil, Iraq
| | - Elnaz Ehsan Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Rayan Abubakir Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | | | - Slim Smaoui
- Laboratory of Microbial and Enzymatic Biotechnologies and Biomolecules, Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Świerczyńska M, Kudzin MH, Chruściel JJ. Poly(lactide)-Based Materials Modified with Biomolecules: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5184. [PMID: 39517460 PMCID: PMC11546716 DOI: 10.3390/ma17215184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Poly(lactic acid) (PLA) is characterized by unique features, e.g., it is environmentally friendly, biocompatible, has good thermomechanical properties, and is readily available and biodegradable. Due to the increasing pollution of the environment, PLA is a promising alternative that can potentially replace petroleum-derived polymers. Different biodegradable polymers have numerous biomedical applications and are used as packaging materials. Because the pure form of PLA is delicate, brittle, and is characterized by a slow degradation rate and a low thermal resistance and crystallization rate, these disadvantages limit the range of applications of this polymer. However, the properties of PLA can be improved by chemical or physical modification, e.g., with biomolecules. The subject of this review is the modification of PLA properties with three classes of biomolecules: polysaccharides, proteins, and nucleic acids. A quite extensive description of the most promising strategies leading to improvement of the bioactivity of PLA, through modification with these biomolecules, is presented in this review. Thus, this article deals mainly with a presentation of the major developments and research results concerning PLA-based materials modified with different biomolecules (described in the world literature during the last decades), with a focus on such methods as blending, copolymerization, or composites fabrication. The biomedical and unique biological applications of PLA-based materials, especially modified with polysaccharides and proteins, are reviewed, taking into account the growing interest and great practical potential of these new biodegradable biomaterials.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Łódź, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
4
|
Foster T, Lim P, Ionescu CM, Wagle SR, Kovacevic B, Mooranian A, Al-Salami H. Exploring delivery systems for targeted nanotechnology-based gene therapy in the inner ear. Ther Deliv 2024; 15:801-818. [PMID: 39324734 PMCID: PMC11457609 DOI: 10.1080/20415990.2024.2389032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/02/2024] [Indexed: 09/27/2024] Open
Abstract
Hearing loss places a significant burden on our aging population. However, there has only been limited progress in developing therapeutic techniques to effectively mediate this condition. This review will outline several of the most commonly utilized practices for the treatment of sensorineural hearing loss before exploring more novel techniques currently being investigated via both in vitro and in vivo research. This review will place particular emphasis on novel gene-delivery technologies. Primarily, it will focus on techniques used to deliver genes that have been shown to encourage the proliferation and differentiation of sensory cells within the inner ear and how these technologies may be translated into providing clinically useful results for patients.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, 6000, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Medical School, University of Western Australia, Perth, 6000, Western Australia, Australia
| |
Collapse
|
5
|
Alimohammadvand S, Kaveh Zenjanab M, Mashinchian M, Shayegh J, Jahanban-Esfahlan R. Recent advances in biomimetic cell membrane-camouflaged nanoparticles for cancer therapy. Biomed Pharmacother 2024; 177:116951. [PMID: 38901207 DOI: 10.1016/j.biopha.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
The emerging strategy of biomimetic nanoparticles (NPs) via cellular membrane camouflage holds great promise in cancer therapy. This scholarly review explores the utilization of cellular membranes derived from diverse cellular entities; blood cells, immune cells, cancer cells, stem cells, and bacterial cells as examples of NP coatings. The camouflaging strategy endows NPs with nuanced tumor-targeting abilities such as self-recognition, homotypic targeting, and long-lasting circulation, thus also improving tumor therapy efficacy overall. The comprehensive examination encompasses a variety of cell membrane camouflaged NPs (CMCNPs), elucidating their underlying targeted therapy mechanisms and delineating diverse strategies for anti-cancer applications. Furthermore, the review systematically presents the synthesis of source materials and methodologies employed in order to construct and characterize these CMCNPs, with a specific emphasis on their use in cancer treatment.
Collapse
Affiliation(s)
- Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kaveh Zenjanab
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Mashinchian
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Shayegh
- Department of Microbiology, Faculty of Veterinary and Agriculture, Islamic Azad University, Shabestar branch, Shabestar, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
7
|
Chaudhary V, Chowdhury R, Thukral P, Pathania D, Saklani S, Rustagi S, Gautam A, Mishra YK, Singh P, Kaushik A. Biogenic green metal nano systems as efficient anti-cancer agents. ENVIRONMENTAL RESEARCH 2023; 229:115933. [PMID: 37080272 DOI: 10.1016/j.envres.2023.115933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Metal/metal oxide nano systems (M-NSs) of tunable and manipulative properties are emerging suitable for cancer management via immunity development, early-stage diagnosis, nanotherapeutics, and targeted drug delivery systems. However, noticeable toxicity, off-targeted actions, lacking biocompatibility, and being expensive limit their acceptability. Moreover, involving high energy (top-down routes) and hazardous chemicals (bottom-up chemical routes) is altering human cycle. To manage such challenges, biomass (plants, microbes, animals) and green chemistry-based M-NSs due to scalability, affordability, are cellular, tissue, and organ acceptability are emerging as desired biogenic M-NSs for cancer management with enhanced features. The state-of-art and perspective of green metal/metal oxide nano systems (GM-NSs) as an efficient anti-cancer agent including, imaging, immunity building elements, site-specific drug delivery, and therapeutics developments are highlighted in this review critically. It is expected that this report will serve as guideline for design and develop high-performance GM-NSs for establishing them as next-generation anti-cancer agent capable to manage cancer in personalized manner.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell & Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India; SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India.
| | - Ruchita Chowdhury
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Chemistry, Netaji Subhas University of Technology, New Delhi, 110078, India
| | - Prachi Thukral
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Shivani Saklani
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, 500046, India.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400, Sønderborg, Denmark
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, 173229, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805, USA; School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India.
| |
Collapse
|
8
|
Qu Y, De Rose R, Kim C, Zhou J, Lin Z, Ju Y, Bhangu SK, Cortez‐Jugo C, Cavalieri F, Caruso F. Supramolecular Polyphenol-DNA Microparticles for In Vivo Adjuvant and Antigen Co-Delivery and Immune Stimulation. Angew Chem Int Ed Engl 2023; 62:e202214935. [PMID: 36700351 PMCID: PMC10946467 DOI: 10.1002/anie.202214935] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
DNA-based materials have attracted interest due to the tunable structure and encoded biological functionality of nucleic acids. A simple and general approach to synthesize DNA-based materials with fine control over morphology and bioactivity is important to expand their applications. Here, we report the synthesis of DNA-based particles via the supramolecular assembly of tannic acid (TA) and DNA. Uniform particles with different morphologies are obtained using a variety of DNA building blocks. The particles enable the co-delivery of cytosine-guanine adjuvant sequences and the antigen ovalbumin in model cells. Intramuscular injection of the particles in mice induces antigen-specific antibody production and T cell responses with no apparent toxicity. Protein expression in cells is shown using capsules assembled from TA and plasmid DNA. This work highlights the potential of TA as a universal material for directing the supramolecular assembly of DNA into gene and vaccine delivery platforms.
Collapse
Affiliation(s)
- Yijiao Qu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Robert De Rose
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Chan‐Jin Kim
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jiajing Zhou
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Zhixing Lin
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Yi Ju
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Sukhvir Kaur Bhangu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Christina Cortez‐Jugo
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Francesca Cavalieri
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
- Dipartimento di Scienze e Tecnologie Chimiche Universita' di Roma “Tor Vergata”Via della Ricerca Scientifica 100133RomeItaly
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
9
|
Lores S, Gámez-Chiachio M, Cascallar M, Ramos-Nebot C, Hurtado P, Alijas S, López López R, Piñeiro R, Moreno-Bueno G, de la Fuente M. Effectiveness of a novel gene nanotherapy based on putrescine for cancer treatment. Biomater Sci 2023. [PMID: 36790445 DOI: 10.1039/d2bm01456d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Gene therapy has long been proposed for cancer treatment. However, the use of therapeutic nucleic acids presents several limitations such as enzymatic degradation, rapid clearance, and poor cellular uptake and efficiency. In this work we propose the use of putrescine, a precursor for higher polyamine biosynthesis for the preparation of cationic nanosystems for cancer gene therapy. We have formulated and characterized putrescine-sphingomyelin nanosystems (PSN) and studied their endocytic pathway and intracellular trafficking in cancer cells. After loading a plasmid DNA (pDNA) encoding the apoptotic Fas Ligand (FasL), we proved their therapeutic activity by measuring the cell death rate after treatment of MDA-MB-231 cells. We have also used xenografted zebrafish embryos as a first in vivo approach to demonstrate the efficacy of the proposed PSN-pDNA formulation in a more complex model. Finally, intratumoral and intraperitoneal administration to mice-bearing MDA-MB-231 xenografts resulted in a significant decrease in tumour cell growth, highlighting the potential of the developed gene therapy nanoformulation for the treatment of triple negative breast cancer.
Collapse
Affiliation(s)
- Saínza Lores
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain
| | - Manuel Gámez-Chiachio
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - María Cascallar
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - Carmen Ramos-Nebot
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - Pablo Hurtado
- Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Rafael López López
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Roberto Piñeiro
- Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Gema Moreno-Bueno
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,MD Anderson International Foundation, Gómez Hemans s/n, 28033 Madrid, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,DIVERSA Technologies SL, Edificio Emprendia, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
10
|
Khalil AT, Ovais M, Iqbal J, Ali A, Ayaz M, Abbas M, Ahmad I, Devkota HP. Microbes-mediated synthesis strategies of metal nanoparticles and their potential role in cancer therapeutics. Semin Cancer Biol 2022; 86:693-705. [PMID: 34118405 DOI: 10.1016/j.semcancer.2021.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/27/2023]
Abstract
Past few years have seen a paradigm shift towards ecofriendly, green and biological fabrication of metal nanoparticles (MNPs) for diverse nanomedicinal applications especially in cancer nanotheranostics. Besides, the well-known green synthesis methods of plant materials, the potential of the microbial world (bacteria, fungi, alga, etc.) in biofabrication is equally realized. Biomolecules and enzymes in the microbial cells are capable of catalyzing the biosynthesis process. These microbial derived inorganic nanoparticles have been frequently evaluated as potential agents in cancer therapies revealing exciting results. Through, cellular and molecular pathways, these microbial derived nanoparticles are capable of killing the cancer cells. Considering the recent developments in the anticancer applications of microbial derived inorganic MNPs, a dire need was felt to bring the available information to a single document. This manuscript reviews not only the mechanistic aspects of the microbial derived MNPs but also include the diverse mechanisms that governs their anticancer potential. Besides, an updated literature review is presented that includes studies of 2019-onwards.
Collapse
Affiliation(s)
- Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, KP, Pakistan.
| | - Muhammad Ovais
- National Center for Nanosciences and Nanotechnology (NCNST), Beijjing, China.
| | - Javed Iqbal
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Arbab Ali
- National Center for Nanosciences and Nanotechnology (NCNST), Beijjing, China.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, KP, Pakistan.
| | | | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Hari Parsad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, HIGO Program, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
11
|
Wu W, Ngo A, Ban W, Zhong Y, Cheng D, Gu Z, Yu C, Song H. Tailoring head-tail mesoporous silica nanoparticles for enhanced gene transfection. J Mater Chem B 2022; 10:7995-8002. [PMID: 36128923 DOI: 10.1039/d2tb01737g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmid DNA (pDNA) delivery has attracted extensive research interest due to its great potential in gene therapy. The design of efficient nano-vectors to promote cellular delivery and transfection of gene molecules is the key to success. Compared to conventional nanocarriers with spherical geometry, asymmetric nanoparticles have been well documented showing enhanced cellular uptake and drug delivery capability. However, the impact of asymmetric nanostructures on pDNA binding and following intracellular delivery performance has been less reported. Herein, asymmetric head-tail mesoporous silica nanoparticles (HTMSNs) with tailored tail lengths were synthesized and employed as nano-vectors for pDNA delivery. The nanostructures of HTMSNs were carefully characterized by electron tomography. The pDNA binding, cellular uptake and gene transfection capabilities of engineered asymmetric nanoparticles were compared with symmetric dendritic mesoporous silica nanoparticles (DMSNs). The results showed that the asymmetric morphology of nanoparticles promoted pDNA binding and cell internalization, where HTMSNs-66 with a specific tail length of 66 nm achieved the highest transfection efficiency. This study reveals the impact of asymmetric nanostructure on DNA interaction, and provides guidance in future designs of non-viral nano-vectors for efficient gene delivery.
Collapse
Affiliation(s)
- Weixi Wu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Anh Ngo
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Wenhuang Ban
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Yuening Zhong
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Dan Cheng
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Zhengying Gu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia. .,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
12
|
Significance of Capping Agents of Colloidal Nanoparticles from the Perspective of Drug and Gene Delivery, Bioimaging, and Biosensing: An Insight. Int J Mol Sci 2022; 23:ijms231810521. [PMID: 36142435 PMCID: PMC9505579 DOI: 10.3390/ijms231810521] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
The over-growth and coagulation of nanoparticles is prevented using capping agents by the production of stearic effect that plays a pivotal role in stabilizing the interface. This strategy of coating the nanoparticles’ surface with capping agents is an emerging trend in assembling multipurpose nanoparticles that is beneficial for improving their physicochemical and biological behavior. The enhancement of reactivity and negligible toxicity is the outcome. In this review article, an attempt has been made to introduce the significance of different capping agents in the preparation of nanoparticles. Most importantly, we have highlighted the recent progress, existing roadblocks, and upcoming opportunities of using surface modified nanoparticles in nanomedicine from the drug and gene delivery, bioimaging, and biosensing perspectives.
Collapse
|
13
|
β-cyclodextrin based nano gene delivery using pharmaceutical applications to treat Wolfram syndrome. Ther Deliv 2022; 13:449-462. [PMID: 36748654 DOI: 10.4155/tde-2022-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wolfram syndrome is a rare multisystem autosomal recessive neurodegenerative disorder that affects the brain and central nervous system. Currently, there is no cure or treatment for Wolfram syndrome. Therefore, new techniques are needed to target the loss of the WFS1 gene. Gene therapy approach to introduce a functional gene using a viral or a non-viral vector could be a treatment strategy for Wolfram syndrome 1 (WS1). Viral vectors have therapeutic benefits and greater efficiency; however, they pose a high health risk. Recently pharmaceutical therapeutic research has developed cell-penetrating non-viral nano molecules that could be used as vectors for gene delivery. Among nonviral vectors, the unique properties of β-cyclodextrin suggest that it can be a promising safe vector for gene delivery.
Collapse
|
14
|
Ponti F, Bono N, Russo L, Bigini P, Mantovani D, Candiani G. Vibropolyfection: coupling polymer-mediated gene delivery to mechanical stimulation to enhance transfection of adherent cells. J Nanobiotechnology 2022; 20:363. [PMID: 35933375 PMCID: PMC9356458 DOI: 10.1186/s12951-022-01571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND With the success of recent non-viral gene delivery-based COVID-19 vaccines, nanovectors have gained some public acceptance and come to the forefront of advanced therapies. Unfortunately, the relatively low ability of the vectors to overcome cellular barriers adversely affects their effectiveness. Scientists have thus been striving to develop ever more effective gene delivery vectors, but the results are still far from satisfactory. Therefore, developing novel strategies is probably the only way forward to bring about genuine change. Herein, we devise a brand-new gene delivery strategy to boost dramatically the transfection efficiency of two gold standard nucleic acid (NA)/polymer nanoparticles (polyplexes) in vitro. RESULTS We conceived a device to generate milli-to-nanoscale vibrational cues as a function of the frequency set, and deliver vertical uniaxial displacements to adherent cells in culture. A short-lived high-frequency vibrational load (t = 5 min, f = 1,000 Hz) caused abrupt and extensive plasmalemma outgrowths but was safe for cells as neither cell proliferation rate nor viability was affected. Cells took about 1 hr to revert to quasi-naïve morphology through plasma membrane remodeling. In turn, this eventually triggered the mechano-activated clathrin-mediated endocytic pathway and made cells more apt to internalize polyplexes, resulting in transfection efficiencies increased from 10-to-100-fold. Noteworthy, these results were obtained transfecting three cell lines and hard-to-transfect primary cells. CONCLUSIONS In this work, we focus on a new technology to enhance the intracellular delivery of NAs and improve the transfection efficiency of non-viral vectors through priming adherent cells with a short vibrational stimulation. This study paves the way for capitalizing on physical cell stimulation(s) to significantly raise the effectiveness of gene delivery vectors in vitro and ex vivo.
Collapse
Affiliation(s)
- Federica Ponti
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
- Laboratory for Biomaterials and Bioengineering, CRC Tier I, Department of Min-Met-Mat Engineering and CHU de Québec Research Center, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Nina Bono
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Luca Russo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milan, Italy
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milan, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC Tier I, Department of Min-Met-Mat Engineering and CHU de Québec Research Center, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Gabriele Candiani
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
15
|
Emerging concepts in designing next-generation multifunctional nanomedicine for cancer treatment. Biosci Rep 2022; 42:231373. [PMID: 35638450 PMCID: PMC9272595 DOI: 10.1042/bsr20212051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotherapy has emerged as an improved anticancer therapeutic strategy to circumvent the harmful side effects of chemotherapy. It has been proven to be beneficial to offer multiple advantages, including their capacity to carry different therapeutic agents, longer circulation time and increased therapeutic index with reduced toxicity. Over time, nanotherapy evolved in terms of their designing strategies like geometry, size, composition or chemistry to circumvent the biological barriers. Multifunctional nanoscale materials are widely used as molecular transporter for delivering therapeutics and imaging agents. Nanomedicine involving multi-component chemotherapeutic drug-based combination therapy has been found to be an improved promising approach to increase the efficacy of cancer treatment. Next-generation nanomedicine has also utilized and combined immunotherapy to increase its therapeutic efficacy. It helps in targeting tumor immune response sparing the healthy systemic immune function. In this review, we have summarized the progress of nanotechnology in terms of nanoparticle designing and targeting cancer. We have also discussed its further applications in combination therapy and cancer immunotherapy. Integrating patient-specific proteomics and biomarker based information and harnessing clinically safe nanotechnology, the development of precision nanomedicine could revolutionize the effective cancer therapy.
Collapse
|
16
|
Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022; 51:4287-4336. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Advanced treatments based on immune system manipulation, gene transcription and regulation, specific organ and cell targeting, and/or photon energy conversion have emerged as promising therapeutic strategies against a range of challenging diseases. Naturally derived macromolecules (e.g., proteins, lipids, polysaccharides, and polyphenols) have increasingly found use as fundamental building blocks for nanostructured particles as their advantageous properties, including biocompatibility, biodegradability, inherent bioactivity, and diverse chemical properties make them suitable for advanced therapeutic applications. This review provides a timely and comprehensive summary of the use of a broad range of natural building blocks in the rapidly developing field of advanced therapeutics with insights specific to nanostructured particles. We focus on an up-to-date overview of the assembly of nanostructured particles using natural building blocks and summarize their key scientific and preclinical milestones for advanced therapies, including adoptive cell therapy, immunotherapy, gene therapy, active targeted drug delivery, photoacoustic therapy and imaging, photothermal therapy, and combinational therapy. A cross-comparison of the advantages and disadvantages of different natural building blocks are highlighted to elucidate the key design principles for such bio-derived nanoparticles toward improving their performance and adoption. Current challenges and future research directions are also discussed, which will accelerate our understanding of designing, engineering, and applying nanostructured particles for advanced therapies.
Collapse
Affiliation(s)
- Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia. .,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China. .,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
17
|
Dhas N, García MC, Kudarha R, Pandey A, Nikam AN, Gopalan D, Fernandes G, Soman S, Kulkarni S, Seetharam RN, Tiwari R, Wairkar S, Pardeshi C, Mutalik S. Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. J Control Release 2022; 346:71-97. [PMID: 35439581 DOI: 10.1016/j.jconrel.2022.04.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
The idea of employing natural cell membranes as a coating medium for nanoparticles (NPs) endows man-made vectors with natural capabilities and benefits. In addition to retaining the physicochemical characteristics of the NPs, the biomimetic NPs also have the functionality of source cell membranes. It has emerged as a promising approach to enhancing the properties of NPs for drug delivery, immune evasion, imaging, cancer-targeting, and phototherapy sensitivity. Several studies have been reported with a multitude of approaches to reengineering the surface of NPs using biological membranes. Owing to their low immunogenicity and intriguing biomimetic properties, cell-membrane-based biohybrid delivery systems have recently gained a lot of interest as therapeutic delivery systems. This review summarises different kinds of biomimetic NPs reported so far, their fabrication aspects, and their application in the biomedical field. Finally, it briefs on the latest advances available in this biohybrid concept.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Mónica C García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchi Tiwari
- Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, 400056, India
| | - Chandrakantsing Pardeshi
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
18
|
Chrysostomou V, Forys A, Trzebicka B, Demetzos C, Pispas S. Structure of micelleplexes formed between QPDMAEMA-b-PLMA amphiphilic cationic copolymer micelles and DNA of different lengths. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev 2021; 178:113974. [PMID: 34530015 DOI: 10.1016/j.addr.2021.113974] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
The translational success of liposomes in chemotherapeutics has already demonstrated the great potential of biomembrane-based nanostructure in effective drug delivery. Meanwhile, increasing efforts are being dedicated to the application of naturally derived lipid membranes, including cellular membranes and extracellular vesicles in anti-cancer therapies. While synthetic liposomes support superior multifunctional flexibility, natural biomembrane materials possess interesting biomimetic properties and can also be further engineered for intelligent design. Despite being remarkably different from each other in production and composition, the phospholipid bilayer structure in common allows liposomes, cell membrane-derived nanomaterials, and extracellular vesicles to be modified, functionalized, and exploited in many similar manners against challenges posed by tumor-targeted drug delivery. This review will summarize the recent advancements in engineering the membrane-derived nanostructures with "intelligent" modules to respond, regulate, and target tumor cells and the microenvironment to fight against malignancy. We will also discuss perspectives of combining engineered functionalities with naturally occurring activity for enhanced cancer therapy.
Collapse
|
20
|
Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021; 26:5976. [PMID: 34641519 PMCID: PMC8512881 DOI: 10.3390/molecules26195976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Gene-directed enzyme prodrug therapy (GDEPT) has been intensively studied as a promising new strategy of prodrug delivery, with its main advantages being represented by an enhanced efficacy and a reduced off-target toxicity of the active drug. In recent years, numerous therapeutic systems based on GDEPT strategy have entered clinical trials. In order to deliver the desired gene at a specific site of action, this therapeutic approach uses vectors divided in two major categories, viral vectors and non-viral vectors, with the latter being represented by chemical delivery agents. There is considerable interest in the development of non-viral vectors due to their decreased immunogenicity, higher specificity, ease of synthesis and greater flexibility for subsequent modulations. Dendrimers used as delivery vehicles offer many advantages, such as: nanoscale size, precise molecular weight, increased solubility, high load capacity, high bioavailability and low immunogenicity. The aim of the present work was to provide a comprehensive overview of the recent advances regarding the use of dendrimers as non-viral carriers in the GDEPT therapy.
Collapse
Affiliation(s)
| | | | | | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (A.A.C.); (C.M.D.); (L.-L.R.); (A.B.); (M.T.); (A.M.J.); (F.G.G.); (A.M.A.)
| | | | | | | | | | | |
Collapse
|
21
|
Piperno A, Sciortino MT, Giusto E, Montesi M, Panseri S, Scala A. Recent Advances and Challenges in Gene Delivery Mediated by Polyester-Based Nanoparticles. Int J Nanomedicine 2021; 16:5981-6002. [PMID: 34511901 PMCID: PMC8418317 DOI: 10.2147/ijn.s321329] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapy is a promising approach for the treatment of several diseases, such as chronic or viral infections, inherited disorders, and cancer. The cellular internalization of exogenous nucleic acids (NA) requires efficient delivery vehicles to overcome their inherent pharmacokinetic drawbacks, e.g. electrostatic repulsions, enzymatic degradation, limited cellular uptake, fast clearance, etc. Nanotechnological advancements have enabled the use of polymer-based nanostructured biomaterials as safe and effective gene delivery systems, in addition to viral vector delivery methods. Among the plethora of polymeric nanoparticles (NPs), this review will provide a comprehensive and in-depth summary of the polyester-based nanovehicles, including poly(lactic-co-glycolic acid) (PLGA) and polylactic acid (PLA) NPs, used to deliver a variety of foreign NA, e.g. short interfering RNA (siRNA), messenger RNA (mRNA), and plasmid DNA (pDNA). The article will review the versatility of polyester-based nanocarriers including their recent application in the delivery of the clustered, regularly-interspaced, short palindromic repeats/Cas (CRISPR/Cas) genome editing system for treating gene-related diseases. The remaining challenges and future trend of the targeted delivery of this revolutionary genome-editing system will be discussed. Special attention will be given to the pivotal role of nanotechnology in tackling emerging infections such as coronavirus disease 2019 (COVID-19): ground-breaking mRNA vaccines delivered by NPs are currently used worldwide to fight the pandemic, pushing the boundaries of gene therapy.
Collapse
Affiliation(s)
- Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Elena Giusto
- CNR-ISTEC, Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, RA, Italy
| | - Monica Montesi
- CNR-ISTEC, Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, RA, Italy
| | - Silvia Panseri
- CNR-ISTEC, Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, RA, Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
22
|
Liu Y, Wu W, Wang Y, Han S, Yuan Y, Huang J, Shuai X, Peng Z. Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater Sci 2021; 9:6673-6690. [PMID: 34378568 DOI: 10.1039/d1bm00748c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer (PC), characterized by its dense desmoplastic stroma and hypovascularity, is one of the most lethal cancers with a poor prognosis in the world. Traditional treatments such as chemotherapy, radiotherapy, and targeted therapy show little benefit in the survival rate in patients with advanced PC due to the poor penetration and resistance of drugs, low radiosensitivity, or severe side effects. Gene therapy can modify the morbific and drug-resistant genes as well as insert the tumor-suppressing genes, which has been shown to have great potential in PC treatment. The development of safe non-viral vectors for the highly efficient delivery of nucleic acids is essential for effective gene therapy, and has been attracting much attention. In this review, we first summarized the PC-promoting genes and gene therapies using plasmid DNA, mRNA, miRNA/siRNA-based RNA interference technology, and genome editing technology. Second, the commonly used non-viral nanovector and theranostic gene delivery nanosystem, especially the tumor microenvironment-sensitive delivery nanosystem and the cell/tumor-penetrating delivery nanosystem, were introduced. Third, a combination of non-viral nanovector-based gene therapy and other therapies, such as immunotherapy, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT), for PDAC treatment was discussed. Finally, a number of clinical trials have demonstrated the proof-of-principle that gene therapy or the combination of gene therapy and chemotherapy using non-viral vectors can inhibit the progression of PC. Although most of the non-viral vector-based gene therapies and their combination therapy are still under preclinical research, the development of genetics, molecular biology, and novel vectors would promote the clinical transformation of gene therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wei Wu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhao Peng
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
23
|
Chaudhary S, Singh A, Kumar P, Kaushik M. Strategic targeting of non-small-cell lung cancer utilizing genetic material-based delivery platforms of nanotechnology. J Biochem Mol Toxicol 2021; 35:e22784. [PMID: 33826765 DOI: 10.1002/jbt.22784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Several limitations of conventional cancer treatment such as non-specific targeting, solubility problems, and ineffective entry of chemotherapeutics into cancer cells can be overcome by using nanotechnology targeted drug delivery systems. Some combinations of biomolecules and nanoparticles have proven to be excellent therapeutics for Non-small cell lung cancer (NSCLC) in the last decades. Targeted gene delivery has shown in vivo as well as in vitro promising results with therapeutic efficacy. Gene therapy has shown enhanced transfection efficiency and better targeting potential on several NSCLC cell lines. Still, there are several challenges in nanoparticle-mediated gene therapy, which include stability of biomolecules and nanoparticles during delivery, managing their biodistribution, and reducing the possible cytotoxic effects of the nanoparticles, which need to be solved before clinical trials. Evaluation of therapeutic efficacy of biomolecules and nanoparticle combination in gene therapy must be established to expand the application of nano-gene therapy in cancer treatment.
Collapse
Affiliation(s)
- Swati Chaudhary
- Department of Applied Sciences, Maharaja Surajmal Institute of Technology, GGSIP University, New Delhi, India
| | - Amit Singh
- Department of Chemistry, University of Delhi, Delhi, India.,Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| | - Pankaj Kumar
- Department of Chemistry, University of Delhi, Delhi, India.,Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| |
Collapse
|
24
|
Jha A, Nikam AN, Kulkarni S, Mutalik SP, Pandey A, Hegde M, Rao BSS, Mutalik S. Biomimetic nanoarchitecturing: A disguised attack on cancer cells. J Control Release 2020; 329:413-433. [PMID: 33301837 DOI: 10.1016/j.jconrel.2020.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
With the changing face of healthcare, there is a demand for drug delivery systems that have increased efficacy and biocompatibility. Nanotechnology derived drug carrier systems were found to be ideal candidates to meet these demands. Among the vast number of nanosized delivery systems, biomimetic nanoparticles have been researched at length. These nanoparticles mimic cellular functions and are highly biocompatible. They are also able to avoid clearance by the reticuloendothelial system which increases the time spent by them in the systemic circulation. Additionally, their low immunogenicity and targeting ability increase their significance as drug carriers. Based on their core material we have summarized them as biomimetic inorganic nanoparticles, biomimetic polymeric nanoparticles, and biomimetic lipid nanoparticles. The core then may be coated using membranes derived from erythrocytes, cancer cells, leukocytes, stem cells, and other membranes to endow them with biomimetic properties. They can be used for personalized therapy and diagnosis of a large number of diseases, primarily cancer. This review summarizes the various therapeutic approaches using biomimetic nanoparticles along with their applications in the field of cancer imaging, nucleic acid therapy and theranostic properties. A brief overview about toxicity concerns related to these nanoconstructs has been added to provide knowledge about biocompatibility of such nanoparticles.
Collapse
Affiliation(s)
- Adrija Jha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Sadhana P Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | - Manasa Hegde
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India
| | | | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576106, Karnataka, India.
| |
Collapse
|
25
|
Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int J Nanomedicine 2020; 15:9469-9496. [PMID: 33281443 PMCID: PMC7710865 DOI: 10.2147/ijn.s265876] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/12/2020] [Indexed: 01/19/2023] Open
Abstract
Graphene, a wonder material, has made far-reaching developments in many different fields such as materials science, electronics, condensed physics, quantum physics, energy systems, etc. Since its discovery in 2004, extensive studies have been done for understanding its physical and chemical properties. Owing to its unique characteristics, it has rapidly became a potential candidate for nano-bio researchers to explore its usage in biomedical applications. In the last decade, remarkable efforts have been devoted to investigating the biomedical utilization of graphene and graphene-based materials, especially in smart drug and gene delivery as well as cancer therapy. Inspired by a great number of successful graphene-based materials integrations into the biomedical area, here we summarize the most recent developments made about graphene applications in biomedicine. In this paper, we review the up-to-date advances of graphene-based materials in drug delivery applications, specifically targeted drug/ gene delivery, delivery of antitumor drugs, controlled and stimuli-responsive drug release, photodynamic therapy applications and optical imaging and theranostics, as well as investigating the future trends and succeeding challenges in this topic to provide an outlook for future researches.
Collapse
Affiliation(s)
- Mojtaba Hoseini-Ghahfarokhi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Naeimeh Mozaffari
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra2601, Australia
| | | | - Amir Ghasemi
- Department of Engineering, Durham University, Durham DH1 3LE, United Kingdom
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Abbaspour
- Department of Engineering, Durham University, Durham DH1 3LE, United Kingdom
| | - Mohsen Akbarian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Karimi
- Iran Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
|
27
|
Ye Y, Zhang L, Dai Y, Wang Z, Li C, Peng Y, Ma D, He P. PSMA-Targeting Reduction-Cleavable Hyperbranched Polyamide-Amine Gene Delivery System to Treat the Bone Metastases of Prostate Cancer. Int J Nanomedicine 2020; 15:7173-7184. [PMID: 33061374 PMCID: PMC7533908 DOI: 10.2147/ijn.s268398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Objective This study aimed to develop aptamer-anchored hyperbranched poly(amido amine) (HPAA) for the systemic delivery of miRNA-133a-3p and to evaluate its therapeutic potential against bone metastasis of prostate cancer in vivo and in vitro. Methods A glutathione (GSH)-responsive cationic HPAA was prepared by the Michael addition reaction. Furthermore, HPAA-PEG was produced by PEGylation, and then the aptamer targeted to prostate-specific membrane antigen (PSMA) was conjugated to the HPAA-PEG. The obtained HPAA-PEG-APT could form nanocomplexes with miRNA-133a-3p through electrostatic adsorption. Results The results of immunocytochemistry indicated that the complexes could target PSMA-expressing LNCaP cells. The ability of HPAA-PEG-APT to facilitate the delivery of miRNA-133a-3p into LNCaP cells was proven, and HPAA-PEG-APT/miRNA-133a-3p demonstrated enhanced antitumor activity, lower cytotoxicity and better biocompatibility in vitro. Moreover, in a mouse tibial injection tumor model, the intravenous injection of the HPAA-PEG-APT/miRNA-133a-3p complex significantly inhibited cancer growth and extended the survival time. Conclusion This study provided an aptamer-anchored HPAA-loaded gene system to deliver miRNA-133a-3p for better therapeutic efficacy of bone metastasis of prostate cancer.
Collapse
Affiliation(s)
- Yongheng Ye
- Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangzhou, Guangdong Province 510080, People's Republic of China
| | - Lingli Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yuhu Dai
- Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangzhou, Guangdong Province 510080, People's Republic of China
| | - Zhi Wang
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong Province 510530, People's Republic of China
| | - Cuie Li
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong Province 510530, People's Republic of China
| | - Yue Peng
- Department of Otorhinolaryngology Head and Neck Surgery, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong Province 519000, People's Republic of China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Peiheng He
- Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangzhou, Guangdong Province 510080, People's Republic of China
| |
Collapse
|
28
|
Sandoval-Mojica AF, Altman S, Hunter WB, Pelz-Stelinski KS. Peptide conjugated morpholinos for management of the huanglongbing pathosystem. PEST MANAGEMENT SCIENCE 2020; 76:3217-3224. [PMID: 32358830 DOI: 10.1002/ps.5877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 'Candidatus Liberibacter asiaticus' (CLas) is the causal agent of the devastating citrus disease Huanglongbing (HLB) and is transmitted by the insect vector Diaphorina citri (Hemiptera: Liviidae). A potential approach for treating CLas infection is the use of synthetic nucleic acid-like oligomers to silence bacterial gene expression. Peptide conjugated morpholinos (PPMOs) targeting essential genes in CLas and the psyllid vector's endosymbiotic bacteria, Wolbachia (-Diaphorina, wDi), were evaluated using in vitro and in vivo assays. RESULTS Expression of the wDi gyrA gene was significantly reduced following incubation of wDi cells with PPMOs. In addition, the viability of isolated wDi cells was greatly reduced when treated with PPMOs as compared to untreated cells. Feeding D. citri adults with a complementary PPMO (CLgyrA-14) showed significantly reduced (70% lower) expression of the CLas gyrA gene. CLas relative density was significantly lower in the psyllids fed with CLgyrA-14, when compared to untreated insects. Psyllids that were treated with CLgyrA-14 were less successful in transmitting the pathogen into uninfected plants, compared to untreated insects. CONCLUSION The expression of essential genes in the D. citri symbiont, wDi and the HLB pathogen were suppressed in response to PPMO treatments. This study demonstrates the potential of PPMOs as a novel strategy for management of bacterial pathogens of fruit trees, such as HLB. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrés F Sandoval-Mojica
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT,, USA
| | - Wayne B Hunter
- U.S Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, USA
| | - Kirsten S Pelz-Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
29
|
Wang S, Liu R, Fu Y, Kao WJ. Release mechanisms and applications of drug delivery systems for extended-release. Expert Opin Drug Deliv 2020; 17:1289-1304. [PMID: 32619149 DOI: 10.1080/17425247.2020.1788541] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Drug delivery systems with extended-release profiles are ideal in improving patient compliance with enhanced efficacy. To develop devices capable of a prolonged delivery kinetics, it is crucial to understand the various underlying mechanisms contributing to extended drug release and the impact thereof on modulating the long-term performance of such systems in a practical application environment. AREAS COVERED This review article intends to provide a comprehensive summary of release mechanisms in extended-release drug delivery systems, particularly polymer-based systems; however, other material types will also be mentioned. Selected current research in the delivery of small molecule drugs and macromolecules is highlighted. Emphasis is placed on the combined impact of different release mechanisms and drug properties on the long-term release kinetics in vitro and in vivo. EXPERT OPINION The development of drug delivery systems over an extended duration is promising but also challenging when considering the numerous interrelated delivery-related parameters. Achieving a well-controlled extended drug release requires advanced techniques to minimize burst release and lag phase, a better understanding of the dynamic interrelationship between drug properties and release profiles over time, and a thorough elucidation of the impact of multiple in vivo conditions to methodically evaluate the eventual clinical efficacy.
Collapse
Affiliation(s)
- Shuying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University , Chengdu, China
| | - Renhe Liu
- Global Health Drug Discovery Institute , Beijing, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University , Chengdu, China
| | - W John Kao
- Department of Industrial and Manufacturing Systems Engineering, Biomedical Engineering Programme, Chemical Biology Centre, and Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, China
| |
Collapse
|
30
|
Niu G, Jin Z, Zhang C, He D, Gao X, Zou C, Zhang W, Ding J, Das BC, Severinov K, Hitzeroth II, Debata PR, Ma X, Tian X, Gao Q, Wu J, You Z, Tian R, Cui Z, Fan W, Xie W, Huang Z, Cao C, Xu W, Xie H, Xu H, Tang X, Wang Y, Yu Z, Han H, Tan S, Chen S, Hu Z. An effective vaginal gel to deliver CRISPR/Cas9 system encapsulated in poly (β-amino ester) nanoparticles for vaginal gene therapy. EBioMedicine 2020; 58:102897. [PMID: 32711250 PMCID: PMC7387785 DOI: 10.1016/j.ebiom.2020.102897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gene therapy has held promises for treating specific genetic diseases. However, the key to clinical application depends on effective gene delivery. METHODS Using a large animal model, we developed two pharmaceutical formulations for gene delivery in the pigs' vagina, which were made up of poly (β-amino ester) (PBAE)-plasmid polyplex nanoparticles (NPs) based two gel materials, modified montmorillonite (mMMT) and hectorite (HTT). FINDINGS By conducting flow cytometry of the cervical cells, we found that PBAE-GFP-NPs-mMMT gel was more efficient than PBAE-GFP-NPs-HTT gel in delivering exogenous DNA intravaginally. Next, we designed specific CRISPR/SpCas9 sgRNAs targeting porcine endogenous retroviruses (PERVs) and evaluated the genome editing efficacy in vivo. We discovered that PERV copy number in vaginal epithelium could be significantly reduced by the local delivery of the PBAE-SpCas9/sgRNA NPs-mMMT gel. Comparable genome editing results were also obtained by high-fidelity version of SpCas9, SpCas9-HF1 and eSpCas9, in the mMMT gel. Further, we confirmed that the expression of topically delivered SpCas9 was limited to the vagina/cervix and did not diffuse to nearby organs, which was relatively safe with low toxicity. INTERPRETATION Our data suggested that the PBAE-NPs mMMT vaginal gel is an effective preparation for local gene therapy, yielding insights into novel therapeutic approaches to sexually transmitted disease in the genital tract. FUNDING This work was supported by the National Science and Technology Major Project of the Ministry of science and technology of China (No. 2018ZX10301402); the National Natural Science Foundation of China (81761148025, 81871473 and 81402158); Guangzhou Science and Technology Programme (No. 201704020093); National Ten Thousand Plan-Young Top Talents of China, Fundamental Research Funds for the Central Universities (17ykzd15 and 19ykyjs07); Three Big Constructions-Supercomputing Application Cultivation Projects sponsored by National Supercomputer Center In Guangzhou; the National Research FFoundation (NRF) South Africa under BRICS Multilateral Joint Call for Proposals; grant 17-54-80078 from the Russian Foundation for Basic Research.
Collapse
Affiliation(s)
- Gang Niu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuang Jin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chong Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan He
- Department of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xueqin Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenming Zou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bhudev C Das
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Uttar Pradesh, Noida 201313, India
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143025, Russian Federation
| | - Inga Isabel Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7701, South Africa
| | - Priya Ranjan Debata
- Department of Zoology, North Orissa University, Takatpur, Baripada, Odisha 757003, India
| | - Xin Ma
- Department of Urology, General Hospital of People's Liberation Army, Beijing 100039, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician expert workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Zeshan You
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Tian
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zifeng Cui
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiwen Fan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiling Xie
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyue Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Cao
- Department of Obstetrics and Gynecology, Academician expert workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Wei Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongxian Xie
- Generulor Company Bio-X Lab, Guangzhou 510006, Guangdong, China
| | - Hongyan Xu
- Department of Obstetrics and Gynecology, Yuebei People's Hospital, Medical College of Shantou University, Shaoguan 512026, Guangdong, China
| | - Xiongzhi Tang
- Department of Obstetrics and Gynecology, Guilin People's Hospital, Guilin, The Guangxi Zhuang Autonomous Region, 541002, China
| | - Yan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhiying Yu
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Hui Han
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine & Department of Urology, Yat-sen University Cancer Center, Guangzhou 510080, Guangdong Province, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shuqin Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Zheng Hu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
31
|
Paris JL, Coelho F, Teixeira A, Diéguez L, Silva BFB, Abalde-Cela S. In Vitro Evaluation of Lipopolyplexes for Gene Transfection: Comparing 2D, 3D and Microdroplet-Enabled Cell Culture. Molecules 2020; 25:molecules25143277. [PMID: 32708478 PMCID: PMC7397275 DOI: 10.3390/molecules25143277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Complexes combining nucleic acids with lipids and polymers (lipopolyplexes) show great promise for gene therapy since they enable compositional, physical and functional versatility to be optimized for therapeutic efficiency. When developing lipopolyplexes for gene delivery, one of the first evaluations performed is an in vitro transfection efficiency experiment. Many different in vitro models can be used, and the effect of the model on the experiment outcome has not been thoroughly studied. The objective of this work was to compare the insights obtained from three different in vitro models, as well as the potential limitations associated with each of them. We have prepared a series of lipopolyplex formulations with three different cationic polymers (poly-l-lysine, bioreducible poly-l-lysine and polyethyleneimine), and assessed their in vitro biological performance in 2D monolayer cell culture, 3D spheroid culture and microdroplet-based single-cell culture. Lipopolyplexes from different polymers presented varying degrees of transfection efficiency in all models. The best-performing formulation in 2D culture was the polyethyleneimine lipopolyplex, while lipoplexes prepared with bioreducible poly-l-lysine were the only ones achieving any transfection in microdroplet-enabled cell culture. None of the prepared formulations achieved significant gene transfection in 3D culture. All of the prepared formulations were well tolerated by cells in 2D culture, while at least one formulation (poly-l-lysine polyplex) delayed 3D spheroid growth. These results highlight the need for selecting the appropriate in vitro model depending on the intended application.
Collapse
|
32
|
Gharbavi M, Sharafi A, Ghanbarzadeh S. Mesenchymal Stem Cells: A New Generation of Therapeutic Agents as Vehicles in Gene Therapy. Curr Gene Ther 2020; 20:269-284. [PMID: 32515309 DOI: 10.2174/1566523220666200607190339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
In recent years, mesenchymal stem cells (MSCs) as a new tool for therapeutic gene delivery in clinics have attracted much attention. Their advantages cover longer lifespan, better isolation, and higher transfection efficiency and proliferation rate. MSCs are the preferred approach for cell-based therapies because of their in vitro self-renewal capacity, migrating especially to tumor tissues, as well as anti-inflammatory and immunomodulatory properties. Therefore, they have considerable efficiency in genetic engineering for future clinical applications in cancer gene therapy and other diseases. For improving therapeutic efficiency, targeted therapy of cancers can be achieved through the sustained release of therapeutic agents and functional gene expression induction to the intended tissues. The development of a new vector in gene therapy can improve the durability of a transgene expression. Also, the safety of the vector, if administered systemically, may resolve several problems, such as durability of expression and the host immune response. Currently, MSCs are prominent candidates as cell vehicles for both preclinical and clinical trials due to the secretion of therapeutic agents in several cancers. In the present study, we discuss the status of gene therapy in both viral and non-viral vectors along with their limitations. Throughout this study, the use of several nano-carriers for gene therapy is also investigated. Finally, we critically discuss the promising advantages of MSCs in targeted gene delivery, tumor inhibition and their utilization as the gene carriers in clinical situations.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Ghanbarzadeh
- Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan,
Iran,Zanjan Pharmaceutical Nanotechnology Research Center and Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
33
|
Paris JL, Vallet-Regí M. Mesoporous Silica Nanoparticles for Co-Delivery of Drugs and Nucleic Acids in Oncology: A Review. Pharmaceutics 2020; 12:E526. [PMID: 32521800 PMCID: PMC7356816 DOI: 10.3390/pharmaceutics12060526] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Mesoporous silica nanoparticles have attracted much attention in recent years as drug and gene delivery systems for biomedical applications. Among their most beneficial features for biomedicine, we can highlight their biocompatibility and their outstanding textural properties, which provide a great loading capacity for many types of cargos. In the context of cancer nanomedicine, combination therapy and gene transfection/silencing have recently been highlighted as two of its most promising fields. In this review, we aim to provide an overview of the different small molecule drug-nucleic acid co-delivery combinations that have been developed using mesoporous silica nanoparticles as carriers. By carefully selecting the chemotherapeutic drug and nucleic acid cargos to be co-delivered by mesoporous silica nanoparticles, different therapeutic goals can be achieved by overcoming resistance mechanisms, combining different cytotoxic mechanisms, or providing an additional antiangiogenic effect. The examples here presented highlight the great promise of this type of strategies for the development of future therapeutics.
Collapse
Affiliation(s)
- Juan L Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Civil, 29009 Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas (Unidad Docente de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
- Centro de Investigación Biomédicaen Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
34
|
Uğurlu Ö, Barlas FB, Evran S, Timur S. The cell-penetrating YopM protein-functionalized quantum dot-plasmid DNA conjugate as a novel gene delivery vector. Plasmid 2020; 110:102513. [PMID: 32502501 DOI: 10.1016/j.plasmid.2020.102513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Non-viral gene delivery systems have great potential for safe and efficient gene therapy, while inefficient cellular and nuclear uptake remain as the major hurdles. Novel approaches are needed to enhance the transfection efficiency of non-viral vectors. In accordance with this need, the objective of this study was to construct a non-viral vector that could achieve gene delivery without using additional lipid-based transfection agent. We aimed to impart self-delivery property to a non-viral vector by using the cell and nucleus penetrating properties of YopM proteins from the three Yersinia spp. (Y. pestis, Y. enterocolotica and Y. pseudotuberculosis). Plasmid DNA (pDNA) encoding green fluorescent protein (GFP) was labeled with quantum dots (QDs) via peptide-nucleic acid (PNA) recognition site. Recombinant YopM protein was then attached to the conjugate via a second PNA recognition site. The YopM ̶ QDs ̶ pDNA conjugate was transfected into HeLa cells without using additional transfection reagent. All three conjugates produced GFP fluorescence, indicating that the plasmid was successfully delivered to the nucleus. As control, naked pDNA was transfected into the cells by using a commercial transfection reagent. The Y. pseudotuberculosis YopM-functionalized conjugate achieved the highest GFP expression, compared to other two YopM proteins and the transfection reagent. To the best of our knowledge, YopM protein was used for the first time in a non-viral gene delivery vector.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey
| | - Fırat Barış Barlas
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey.
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornov, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
35
|
Roma-Rodrigues C, Rivas-García L, Baptista PV, Fernandes AR. Gene Therapy in Cancer Treatment: Why Go Nano? Pharmaceutics 2020; 12:E233. [PMID: 32151052 PMCID: PMC7150812 DOI: 10.3390/pharmaceutics12030233] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023] Open
Abstract
The proposal of gene therapy to tackle cancer development has been instrumental for the development of novel approaches and strategies to fight this disease, but the efficacy of the proposed strategies has still fallen short of delivering the full potential of gene therapy in the clinic. Despite the plethora of gene modulation approaches, e.g., gene silencing, antisense therapy, RNA interference, gene and genome editing, finding a way to efficiently deliver these effectors to the desired cell and tissue has been a challenge. Nanomedicine has put forward several innovative platforms to overcome this obstacle. Most of these platforms rely on the application of nanoscale structures, with particular focus on nanoparticles. Herein, we review the current trends on the use of nanoparticles designed for cancer gene therapy, including inorganic, organic, or biological (e.g., exosomes) variants, in clinical development and their progress towards clinical applications.
Collapse
Affiliation(s)
- Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
- Biomedical Research Centre, Institute of Nutrition and Food Technology, Department of Physiology, Faculty of Pharmacy, University of Granada, Avda. del Conocimiento s/n. 18071 Armilla, Granada, Spain
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
| |
Collapse
|
36
|
Wang G, Rayner S, Chung R, Shi B, Liang X. Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Mater Today Bio 2020; 6:100055. [PMID: 32529183 PMCID: PMC7280770 DOI: 10.1016/j.mtbio.2020.100055] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurodegenerative disease that affects both upper and lower motor neurons, which results in loss of muscle control and eventual paralysis [1]. Currently, there are as yet unresolved challenges regarding efficient drug delivery into the central nervous system (CNS). These challenges can be attributed to multiple factors including the presence of the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), as well as the inherent characteristics of the drugs themselves (e.g. low solubility, insufficient bioavailability/bio-stability, 'off-target' effects) etc. As a result, conventional drug delivery systems may not facilitate adequate dosage of the required drugs for functional recovery in ALS patients. Nanotechnology-based strategies, however, employ engineered nanostructures that show great potential in delivering single or combined therapeutic agents to overcome the biological barriers, enhance interaction with targeted sites, improve drug bioavailability/bio-stability and achieve real-time tracking while minimizing the systemic side-effects. This review provides a concise discussion of recent advances in nanotechnology-based strategies in relation to combating specific pathophysiology relevant to ALS disease progression and investigates the future scope of using nanotechnology to develop innovative treatments for ALS patients.
Collapse
Affiliation(s)
- G.Y. Wang
- Huaihe Hospital, Henan University, Kaifeng, Henan, 475004, China
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - S.L. Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - R. Chung
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - B.Y. Shi
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - X.J. Liang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
37
|
Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar! Pharmaceutics 2020; 12:pharmaceutics12020183. [PMID: 32098191 PMCID: PMC7076396 DOI: 10.3390/pharmaceutics12020183] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/31/2023] Open
Abstract
Transfection by means of non-viral gene delivery vectors is the cornerstone of modern gene delivery. Despite the resources poured into the development of ever more effective transfectants, improvement is still slow and limited. Of note, the performance of any gene delivery vector in vitro is strictly dependent on several experimental conditions specific to each laboratory. The lack of standard tests has thus largely contributed to the flood of inconsistent data underpinning the reproducibility crisis. A way researchers seek to address this issue is by gauging the effectiveness of newly synthesized gene delivery vectors with respect to benchmarks of seemingly well-known behavior. However, the performance of such reference molecules is also affected by the testing conditions. This survey points to non-standardized transfection settings and limited information on variables deemed relevant in this context as the major cause of such misalignments. This review provides a catalog of conditions optimized for the gold standard and internal reference, 25 kDa polyethyleneimine, that can be profitably replicated across studies for the sake of comparison. Overall, we wish to pave the way for the implementation of standardized protocols in order to make the evaluation of the effectiveness of transfectants as unbiased as possible.
Collapse
|
38
|
Mozafari M, Tariverdian T, Beynaghi A. Trends in Biotechnology at the Turn of the Millennium. Recent Pat Biotechnol 2020; 14:78-82. [PMID: 31549958 DOI: 10.2174/1872208313666190924162831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/06/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The concept of biotechnology has gained wide popularity by the time. There is, of course, some anecdotal evidence as to what topics are currently considered the most prominent and how they can be compared to the common perception of which research topics were considered "trendy" years ago. OBJECTIVE A thorough search of exact time frames can help us quantitatively determine the evolution of prominent biotechnology research topics since the turn of the century. METHODS A text data mining approach has been followed to better identify the emerging trends and perspectives in biotechnology, taking a look back at how the focus of research and innovation in biotechnology has shifted, evolved and impacted the human race over the past three decades. RESULTS The extent of biotechnology today is vast, however, the most important newly developed research themes and patents largely influence human healthcare, affecting hundreds of millions of people who use grafts, devices, diagnostics, treatment and delivery systems. Even if biotechnology is very much focused on healthcare, there is also focus on other specialized concepts, such as biofuel, biocatalyst, food, agriculture and water purification, which have a strong influence on the research topics studied today. CONCLUSION We are in the process of developing the practice of medicine through pioneering advances in biotechnology research and innovation. As companies continue to develop emerging treatment strategies (involving gene therapy, stem cells, nanomedicine and new drug delivery systems) that address significant unmet needs, future innovations in biotechnology research will bring exciting new advancements to help millions of more people worldwide.
Collapse
Affiliation(s)
- Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Tara Tariverdian
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Beynaghi
- Futures Studies Research Institute and Office of Sustainability, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
39
|
GSDMD membrane pore is critical for IL-1β release and antagonizing IL-1β by hepatocyte-specific nanobiologics is a promising therapeutics for murine alcoholic steatohepatitis. Biomaterials 2020; 227:119570. [DOI: 10.1016/j.biomaterials.2019.119570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022]
|
40
|
Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. PROGRESS IN MATERIALS SCIENCE 2019; 106:100589. [PMID: 32189815 PMCID: PMC7079701 DOI: 10.1016/j.pmatsci.2019.100589] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the goals of biomaterials science is to reverse engineer aspects of human and nonhuman physiology. Similar to the body's regulatory mechanisms, such devices must transduce changes in the physiological environment or the presence of an external stimulus into a detectable or therapeutic response. This review is a comprehensive evaluation and critical analysis of the design and fabrication of environmentally responsive cell-material constructs for bioinspired machinery and biomimetic devices. In a bottom-up analysis, we begin by reviewing fundamental principles that explain materials' responses to chemical gradients, biomarkers, electromagnetic fields, light, and temperature. Strategies for fabricating highly ordered assemblies of material components at the nano to macro-scales via directed assembly, lithography, 3D printing and 4D printing are also presented. We conclude with an account of contemporary material-tissue interfaces within bioinspired and biomimetic devices for peptide delivery, cancer theranostics, biomonitoring, neuroprosthetics, soft robotics, and biological machines.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Angela M Wagner
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Nicholas A Peppas
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, the University of Texas at Austin, Austin, Texas, USA
- Department of Surgery and Perioperative Care, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Department of Pediatrics, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
41
|
Mirza Z, Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin Cancer Biol 2019; 69:226-237. [PMID: 31704145 DOI: 10.1016/j.semcancer.2019.10.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is amongst the most lethal cancer among females and conventional treatment methods like surgery, radiotherapy and chemotherapy are not effective enough as expected and suffer concerns of low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. Gene therapy using free nucleic acids has potential to deal with key candidate genes of BC, but their effect is retarded due to poor cell uptake and instability in circulation. The rapidly evolving field of nanomedicine aiming targeted drug/gene delivery curtailing BC promises to overcome the limitations of conventional therapies. Nanoparticles can be game changer for BC gene therapy as they can be effective carrier of specific drug/gene by improving the circulation time, enhancing bioavailability, reducing the immune system based recognition chances, and delivering the gene regulator accurately. Herein, we discuss the mechanism of nanoparticles targeted drug delivery, recent advancement of therapeutic strategies of nanoparticles based carriers for small interfering RNA, and microRNA, and gene augmentation therapies in BC. We also discuss the future prospect and challenges of nanoparticle-based therapies for BC.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sajjad Karim
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
42
|
Aghamiri S, Mehrjardi KF, Shabani S, Keshavarz-Fathi M, Kargar S, Rezaei N. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine (Lond) 2019; 14:2083-2100. [PMID: 31368405 DOI: 10.2217/nnm-2018-0379] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is one of the most common causes of mortality throughout the world. Unfortunately, chemotherapy has failed to cure advanced cancers developing multidrug resistance (MDR). Moreover, it has critical side effects because of nonspecific toxicity. Thanks to specific silencing of oncogenes and MDR-associated genes, nano-siRNA drugs can be a great help address the limitations of chemotherapy. Here, we review the current advances in nanoparticle-mediated siRNA delivery strategies such as polymeric- and lipid-based systems, rigid nanoparticles and nanoparticles coupled to specific ligand systems. Nanoparticle-based codelivery of anticancer drugs and siRNA targeting various mechanisms of MDR is a cutting-edge strategy for ovarian cancer therapy, which is completely discussed in this review.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19839-63113, Iran
| | - Keyvan Fallah Mehrjardi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran
| | - Sasan Shabani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran.,Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Saeed Kargar
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1417466191, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 1419733151, Iran
| |
Collapse
|
43
|
Durán V, Yasar H, Becker J, Thiyagarajan D, Loretz B, Kalinke U, Lehr CM. Preferential uptake of chitosan-coated PLGA nanoparticles by primary human antigen presenting cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102073. [PMID: 31376570 DOI: 10.1016/j.nano.2019.102073] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
Biodegradable polymeric nanoparticles (NP) made from poly (lactid-co-glycolide) acid (PLGA) and chitosan (CS) hold promise as innovative formulations for targeted delivery. Since interactions of such NP with primary human immune cells have not been characterized, yet, here we assessed the effect of PLGA or CS-PLGA NP treatment on human peripheral blood mononuclear cells (PBMC), as well as on monocyte-derived DC (moDC). Amongst PBMC, antigen presenting cells (APC) showed higher uptake of both NP preparations than lymphocytes. Furthermore, moDC internalized CS-PLGA NP more efficiently than PLGA NP, presumably because of receptor-mediated endocytosis. Consequently, CS-PLGA NP were delivered mostly to endosomal compartments, whereas PLGA NP primarily ended up in lysosomes. Thus, CS-PLGA NP confer enhanced delivery to endosomal compartments of APC, offering new therapeutic options to either induce or modulate APC function and to inhibit pathogens that preferentially infect APC.
Collapse
Affiliation(s)
- Verónica Durán
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Hanzey Yasar
- Department of Pharmacy, Saarland University, Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Center for Infection Research (HZI) Department of Drug Delivery (DDEL), Saarbrücken, Germany
| | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Durairaj Thiyagarajan
- Department of Pharmacy, Saarland University, Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Center for Infection Research (HZI) Department of Drug Delivery (DDEL), Saarbrücken, Germany
| | - Brigitta Loretz
- Department of Pharmacy, Saarland University, Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Center for Infection Research (HZI) Department of Drug Delivery (DDEL), Saarbrücken, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hannover Medical School, Hannover, Germany.
| | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University, Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Center for Infection Research (HZI) Department of Drug Delivery (DDEL), Saarbrücken, Germany.
| |
Collapse
|
44
|
Trandafir LM, Leon MM, Frasinariu O, Baciu G, Dodi G, Cojocaru E. Current Practices and Potential Nanotechnology Perspectives for Pain Related to Cystic Fibrosis. J Clin Med 2019; 8:jcm8071023. [PMID: 31336857 PMCID: PMC6678759 DOI: 10.3390/jcm8071023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Pain is a complex, multidimensional process that negatively affects physical and mental functioning, clinical outcomes, quality of life, and productivity for cystic fibrosis (CF) patients. CF is an inherited multi-system disease that requires a complete approach in order to evaluate, monitor and treat patients. The landscape in CF care has changed significantly, with currently more adult patients than children worldwide. Despite the great advances in supportive care and in our understanding regarding its pathophysiology, there are still numerous aspects of CF pain that are not fully explained. This review aims to provide a critical overview of CF pain research that focuses on pain assessment, prevalence, characteristics, clinical association and the impact of pain in children and adults, along with innovative nanotechnology perspectives for CF management. Specifically, the paper evaluates the pain symptoms associated with CF and examines the relationship between pain symptoms and disease severity. The particularities of gastrointestinal, abdominal, musculoskeletal, pulmonary and chest pain, as well as pain associated with medical procedures are investigated in patients with CF. Disease-related pain is common for patients with CF, suggesting that pain assessment should be a routine part of their clinical care. A summary of the use of nanotechnology in CF and CF-related pain is also given. Further research is clearly needed to better understand the sources of pain and how to improve patients’ quality of life.
Collapse
Affiliation(s)
- Laura M Trandafir
- Pediatric Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Magdalena M Leon
- Medical I Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Otilia Frasinariu
- Pediatric Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Ginel Baciu
- Pediatric Department, "Dunărea de Jos" University of Galati, 800008 Galati, Romania
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania.
| | - Elena Cojocaru
- Morpho-Functional Sciences Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
45
|
Farzamfar S, Nazeri N, Salehi M, Valizadeh A, Marashi S, Savari Kouzehkonan G, Ghanbari H. Will Nanotechnology Bring New Hope for Stem Cell Therapy? Cells Tissues Organs 2019; 206:229-241. [DOI: 10.1159/000500517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/21/2019] [Indexed: 11/19/2022] Open
Abstract
The potential of stem cell therapy has been shown in preclinical trials for the treatment of damage and replacement of organs and degenerative diseases. After many years of research, its clinical application is limited. Currently there is not a single stem cell therapy product or procedure. Nanotechnology is an emerging field in medicine and has huge potential due to its unique characteristics such as its size, surface effects, tunnel effects, and quantum size effect. The importance of application of nanotechnology in stem cell technology and cell-based therapies has been recognized. In particular, the effects of nanotopography on stem cell differentiation, proliferation, and adhesion have become an area of intense research in tissue engineering and regenerative medicine. Despite the many opportunities that nanotechnology can create to change the fate of stem cell technology and cell therapies, it poses several risks since some nanomaterials are cytotoxic and can affect the differentiation program of stem cells and their viability. Here we review some of the advances and the prospects of nanotechnology in stem cell research and cell-based therapies and discuss the issues, obstacles, applications, and approaches with the aim of opening new avenues for further research.
Collapse
|
46
|
Kim A, Bernt W, Cho NJ. Improved Size Determination by Nanoparticle Tracking Analysis: Influence of Recognition Radius. Anal Chem 2019; 91:9508-9515. [DOI: 10.1021/acs.analchem.9b00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ahram Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - William Bernt
- Particle Characterization Laboratories, Inc., 845 Olive Ave, Suite A, Novato, California 94945, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
47
|
Sahel DK, Mittal A, Chitkara D. CRISPR/Cas System for Genome Editing: Progress and Prospects as a Therapeutic Tool. J Pharmacol Exp Ther 2019; 370:725-735. [DOI: 10.1124/jpet.119.257287] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
|
48
|
Mahmoodi Chalbatani G, Dana H, Gharagouzloo E, Grijalvo S, Eritja R, Logsdon CD, Memari F, Miri SR, Rad MR, Marmari V. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomedicine 2019; 14:3111-3128. [PMID: 31118626 PMCID: PMC6504672 DOI: 10.2147/ijn.s200253] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/23/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer is one of the most complex diseases that has resulted in multiple genetic disorders and cellular abnormalities. Globally, cancer is the most common health concern disease that is affecting human beings. Great efforts have been made over the past decades in biology with the aim of searching novel and more efficient tools in therapy. Thus, small interfering RNAs (siRNAs) have been considered one of the most noteworthy developments which are able to regulate gene expression following a process known as RNA interference (RNAi). RNAi is a post-transcriptional mechanism that involves the inhibition of gene expression through promoting cleavage on a specific area of a target messenger RNA (mRNA). This technology has shown promising therapeutic results for a good number of diseases, especially in cancer. However, siRNA therapeutics have to face important drawbacks in therapy including stability and successful siRNA delivery in vivo. In this regard, the development of effective siRNA delivery systems has helped addressing these issues by opening novel therapeutic windows which have allowed to build up important advances in Nanomedicine. In this review, we discuss the progress of siRNA therapy as well as its medical application via nanoparticle-mediated delivery for cancer treatment.
Collapse
Affiliation(s)
| | - Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Elahe Gharagouzloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
- Department of GI Medical Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Fereidoon Memari
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | | | - Vahid Marmari
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
49
|
Wang S, Huang R. Non-viral nucleic acid delivery to the central nervous system and brain tumors. J Gene Med 2019; 21:e3091. [PMID: 30980444 DOI: 10.1002/jgm.3091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
Gene therapy is a rapidly emerging remedial route for many serious incurable diseases, such as central nervous system (CNS) diseases. Currently, nucleic acid medicines, including DNAs encoding therapeutic or destructive proteins, small interfering RNAs or microRNAs, have been successfully delivered to the CNS with gene delivery vectors using various routes of administration and have subsequently exhibited remarkable therapeutic efficiency. Among these vectors, non-viral vectors are favorable for delivering genes into the CNS as a result of their many special characteristics, such as low toxicity and pre-existing immunogenicity, high gene loading efficiency and easy surface modification. In this review, we highlight the main types of therapeutic genes that have been applied in the therapy of CNS diseases and then outline non-viral gene delivery vectors.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Pharmacy, Zhongshan Hospital, and School of Pharmacy, Fudan University, Shanghai, China
| | - Rongqin Huang
- Department of Pharmacy, Zhongshan Hospital, and School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Jiang C, Chen J, Li Z, Wang Z, Zhang W, Liu J. Recent advances in the development of polyethylenimine-based gene vectors for safe and efficient gene delivery. Expert Opin Drug Deliv 2019; 16:363-376. [DOI: 10.1080/17425247.2019.1604681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cuiping Jiang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| | - Jiatong Chen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| | - Zhuoting Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| | - Zitong Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|