1
|
Liu S, Kong Z, Guo H, Zhang Y, Han X, Gao Y, Daigger GT, Zhang G, Li R, Liu Y, Zhang P, Song G. Performance, mechanism regulation and resource recycling of bacteria-algae symbiosis system for wastewater treatment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125019. [PMID: 39326826 DOI: 10.1016/j.envpol.2024.125019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
The bacteria-algae synergistic wastewater treatment process not only efficiently eliminates nutrients and absorbs heavy metals, but also utilizes photosynthesis to convert light energy into chemical energy, generating valuable bioresource. The study systematically explores the formation, algal species, and regulatory strategies of the bacterial-algal symbiosis system. It provides a detailed analysis of various interaction mechanisms, with a particular focus on nutrient exchange, signal transduction, and gene transfer. Additionally, the efficacy of the system in removing nitrogen, phosphorus, and heavy metals, as well as its role in CO2 reduction and bioresource recycling, is thoroughly elaborated. Potential future research of bacteria-algae cell factory producing bioenergy production, feed or fertilizers are summarized. This paper clearly presents effective strategies for efficiently removing pollutants, reducing carbon emissions, and promoting resource recycling in the field of wastewater treatment. It also provides recommendations for further research on utilizing microbial-algal symbiotic systems to remove novel pollutants from wastewater and extract value-added products from the resulting biomass.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Milano F, Giotta L, Lambreva MD. Perspectives on nanomaterial-empowered bioremediation of heavy metals by photosynthetic microorganisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109090. [PMID: 39243581 DOI: 10.1016/j.plaphy.2024.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Environmental remediation of heavy metals (HMs) is a crucial aspect of sustainable development, safeguarding natural resources, biodiversity, and the delicate balance of ecosystems, all of which are critical for sustaining life on our planet. The bioremediation of HMs by unicellular phototrophs harnesses their intrinsic detoxification mechanisms, including biosorption, bioaccumulation, and biotransformation. These processes can be remarkably effective in mitigating HMs, particularly at lower contaminant concentrations, surpassing the efficacy of conventional physicochemical methods and offering greater sustainability and cost-effectiveness. Here, we explore the potential of various engineered nanomaterials to further enhance the capacity and efficiency of HM bioremediation based on photosynthetic microorganisms. The critical assessment of the interactions between nanomaterials and unicellular phototrophs emphasised the ability of tailored nanomaterials to sustain photosynthetic metabolism and the defence system of microorganisms, thereby enhancing their growth, biomass accumulation, and overall bioremediation capacity. Key factors that could shape future research efforts toward sustainable nanobioremediation of HM are discussed, and knowledge gaps in the field have been identified. This study sheds light on the potential of nanobioremediation by unicellular phototrophs as an efficient, scalable, and cost-effective solution for HM removal.
Collapse
Affiliation(s)
- Francesco Milano
- Institute of Sciences of Food Production, National Research Council (CNR), Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Maya D Lambreva
- Institute for Biological Systems, National Research Council (CNR), Strada Provinciale 35d, N. 9, 00010, Montelibretti, Rome, Italy.
| |
Collapse
|
3
|
Malla MA, Ansari FA, Bux F, Kumari S. Re-vitalizing wastewater: Nutrient recovery and carbon capture through microbe-algae synergy using omics-biology. ENVIRONMENTAL RESEARCH 2024; 259:119439. [PMID: 38901811 DOI: 10.1016/j.envres.2024.119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Increasing amounts of wastewater is the most pervasive and challenging environmental problem globally. Conventional treatment methods are costly and entail huge energy, carbon consumption and greenhouse gas emissions. Owing to their unique ability of carbon capturing and resource recovery, microalgae-microbiome based treatment is a potential approach and is widely used for carbon-neutral wastewater treatment. Microalgae-bacteria synergy (i.e., the functionally beneficial microbial synthetic communities) performs better and enhances carbon-sequestration and nutrient recovery from wastewater treatment plants. This review presents a comprehensive information regarding the potential of microalgae-microbiome as a sustainable agent for wastewater and discusses synergistic approaches for effective nutrient removal. Moreover, this review discusses, the role of omics-biology and Insilco approaches in unravelling and understanding the algae-microbe synergism and their response toward wastewater treatment. Finally, it discusses various microbiome engineering approaches for developing the effective microalgae-bacteria partners for carbon sequestration and nutrient recovery from wastewater, and summarizes future research perspectives on microalgae-microbiome based bioremediation.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
4
|
Lin HC, Liu YJ, Yao DJ. Preparation of magnetic microalgae composites for heavy metal ions removal from water. Heliyon 2024; 10:e37445. [PMID: 39309958 PMCID: PMC11416482 DOI: 10.1016/j.heliyon.2024.e37445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Hexavalent chromium Cr(VI) and divalent Copper Cu(II) ions were heavy metals that were severely toxic to organisms and aquatic ecosystems. Algae is considered as an eco-friendly and cost-effective method for heavy metal ions treatment, but there are still some disadvantages to be improved. Therefore, In this paper, we combine microalgae biomass with ferric oxide magnetic nanoparticles (MNPs) to prepare a more widely applicable adsorbent. Box-Behnken design (BBD) was evaluated for exploring the significant parameters for maximum adsorption in a binary Cr(VI) and Cu(II) solution using our synthesized MNPs@Algae (M@A) adsorbent and constructed a predictability of 88.84 and 95.6 % quadratic regression model, through ANOVA, Pareto Chart of the standardized effects, Three-dimensional surface plot, desirability function to analysis and discussion each factor further. The combined results from UV-Vis, FTIR, TGA, and SQUID measurements confirmed the successful synthesis and accurate properties of the MNPs@Algae composites. The experiment results indicated that when initial pH 6, 5 mg/L Cr(VI), 20 mg/L Cu(II), M@A(3 : 3), dose (1 g/L), and contact time 6 h can achieve the maximum 58 % Cr(VI) and 73.4 % Cu(II) removal efficiency. M@A can eliminate Cr(VI) and Cu(II) from binary solution and separate them from the solution within a few seconds by a permanent magnet as a feasible and efficient absorbent.
Collapse
Affiliation(s)
- Huan-Cheng Lin
- Department of Power Mechanical Engineering, National Tsing Huiversity, Hsinchu, Taiwan
| | - Yi-Ju Liu
- Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Da-Jeng Yao
- Department of Power Mechanical Engineering, National Tsing Huiversity, Hsinchu, Taiwan
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Taiwan
| |
Collapse
|
5
|
Zhang T, Liu D, Zhang Y, Chen L, Zhang W, Sun T. Biomedical engineering utilizing living photosynthetic cyanobacteria and microalgae: Current status and future prospects. Mater Today Bio 2024; 27:101154. [PMID: 39113912 PMCID: PMC11304071 DOI: 10.1016/j.mtbio.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis on Earth. Besides their traditional roles serving as primary producers, cyanobacteria also synthesize abundant secondary metabolites including carotenoids, alkaloids, peptides, which have been reported to possess medicinal potentials. More importantly, the advancement of synthetic biology technology has further expanded their potential biomedical applications especially using living/engineered cyanobacteria, providing promising and attractive strategies for future disease treatments. To improve the understanding and to facilitate future applications, this review aims to discuss the current status and future prospects of cyanobacterial-based biomedical engineering. Firstly, specific properties of cyanobacteria related with biomedical applications like their natural products of bioactive compounds and heavy metal adsorption were concluded. Subsequently, based on these properties of cyanobacteria, we discussed the progress of their applications in various disease models like hypoxia microenvironment alleviation, wound healing, drug delivery, and so on. Finally, the future prospects including further exploration of cyanobacteria secondary metabolites, the integration of bioactive compounds synthesized by cyanobacteria in situ with medical diagnosis and treatment, and the optimization of in vivo application were critically presented. The review will promote the studies related with cyanobacteria-based biomedical engineering and its practical application in clinical trials in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Dailin Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
6
|
Azizi-Dargahlou S, Pouresmaeil M. Agrobacterium tumefaciens-Mediated Plant Transformation: A Review. Mol Biotechnol 2024; 66:1563-1580. [PMID: 37340198 DOI: 10.1007/s12033-023-00788-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Agrobacterium tumefaciens-mediated plant transformation is the most dominant technique for the transformation of plants. It is used to transform monocotyledonous and dicotyledonous plants. A. tumefaciens apply for stable and transient transformation, random and targeted integration of foreign genes, as well as genome editing of plants. The Advantages of this method include cheapness, uncomplicated operation, high reproducibility, a low copy number of integrated transgenes, and the possibility of transferring larger DNA fragments. Engineered endonucleases such as CRISPR/Cas9 systems, TALENs, and ZFNs can be delivered with this method. Nowadays, Agrobacterium-mediated transformation is used for the Knock in, Knock down, and Knock out of genes. The transformation effectiveness of this method is not always desirable. Researchers applied various strategies to improve the effectiveness of this method. Here, a general overview of the characteristics and mechanism of gene transfer with Agrobacterium is presented. Advantages, updated data on the factors involved in optimizing this method, and other useful materials that lead to maximum exploitation as well as overcoming obstacles of this method are discussed. Moreover, the application of this method in the generation of genetically edited plants is stated. This review can help researchers to establish a rapid and highly effective Agrobacterium-mediated transformation protocol for any plant species.
Collapse
Affiliation(s)
| | - Mahin Pouresmaeil
- Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
7
|
Vítová M, Mezricky D. Microbial recovery of rare earth elements from various waste sources: a mini review with emphasis on microalgae. World J Microbiol Biotechnol 2024; 40:189. [PMID: 38702568 PMCID: PMC11068686 DOI: 10.1007/s11274-024-03974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/01/2024] [Indexed: 05/06/2024]
Abstract
Rare Earth Elements (REEs) are indispensable in contemporary technologies, influencing various aspects of our daily lives and environmental solutions. The escalating demand for REEs has led to increased exploitation, resulting in the generation of diverse REE-bearing solid and liquid wastes. Recognizing the potential of these wastes as secondary sources of REEs, researchers are exploring microbial solutions for their recovery. This mini review provides insights into the utilization of microorganisms, with a particular focus on microalgae, for recovering REEs from sources such as ores, electronic waste, and industrial effluents. The review outlines the principles and distinctions of bioleaching, biosorption, and bioaccumulation, offering a comparative analysis of their potential and limitations. Specific examples of microorganisms demonstrating efficacy in REE recovery are highlighted, accompanied by successful methods, including advanced techniques for enhancing microbial strains to achieve higher REE recovery. Moreover, the review explores the environmental implications of bio-recovery, discussing the potential of these methods to mitigate REE pollution. By emphasizing microalgae as promising biotechnological candidates for REE recovery, this mini review not only presents current advances but also illuminates prospects in sustainable REE resource management and environmental remediation.
Collapse
Affiliation(s)
- Milada Vítová
- Department of Phycology, Institute of Botany of the Czech Academy of Sciences, Třeboň, Czechia.
| | - Dana Mezricky
- Institute of Medical and Pharmaceutical Biotechnology, IMC Krems, Krems, Austria
| |
Collapse
|
8
|
Amjadi T, Razeghi J, Motafakkerazad R, Zareipour R. Interaction between Haematococcus pluvialis microalgae and lead nitrate: lead adsorption from water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1168-1179. [PMID: 38165083 DOI: 10.1080/15226514.2023.2298773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Our study aims to investigate the response of the unicellular alga, Haematococcus pluvialis, to the toxicity of lead and propose a low-cost, highly efficient biological adsorbent for the purification of wastewater and lead-contaminated water. The first part examines the effects of lead toxicity on certain physiological indicators of this alga. In the second part, the potential of this alga in lead removal and its adsorption capacity was assessed. The alga was cultivated in a BG11 medium and treated with lead nitrate concentrations of 10, 50, and 200 mg/L during its exponential growth. The results showed that with an increase in lead concentration up to 200 mg/L, the growth rate, chlorophyll a, chlorophyll b, carotenoid and total protein content decreased, while malondialdehyde (MDA) content increased. The astaxanthin content slightly increased at the 10 mg/L but decreased at the 200 mg/L treatment. Maximum lead adsorption was observed at 98.69% under optimal conditions, including a pH of 6, an adsorbent dose of 1 g/L, a lead concentration of 25 mg/L, a temperature of 25 °C, and an exposure time of 120 min. The results of this study demonstrate that Haematococcus pluvialis has the potential for effective lead removal from aquatic environments.
Collapse
Affiliation(s)
- Tayebeh Amjadi
- Department of Plant, Cell and Molecular biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jafar Razeghi
- Department of Plant, Cell and Molecular biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Rouhollah Motafakkerazad
- Department of Plant, Cell and Molecular biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Zareipour
- Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
9
|
Arslan Topal EI, Öbek E, Topal M. Is Cladophora fracta an efficient tool of accumulating critical raw materials from wastewater and there a potential health risk of use of algae as organic fertilizer? INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1977-1994. [PMID: 37097044 DOI: 10.1080/09603123.2023.2203905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
In this study investigation of accumulations of critical raw materials (cobalt (Co), antimony (Sb), vanadium (V), lanthanum (La) and tungsten (W)) from wastewater by using C. fracta were aimed. Besides, assessment of the potential health risks in terms of the use of organic fertilizer obtained from the macroalga to be harvested from the treatment were also aimed. Highest Co, Sb, V, La and W accumulations by algae in reactor were 125±6.2%, 201.25±10%, 318.18±15%, 357.97±18%, and 500±25%, respectively. When compared with control, Co, Sb, V, La and W in algae increased 2.25, 3.01, 4.18, 4.58, and 6 times, respectively. The algae was very high bioaccumulative for Co and La. Highest MPI was calculated as 3.94. Non-carcinogenic risk of CRMs according to different exposure types (ingestion, inhalation, and dermal) were calculated for man, woman and child. There is not any non-carcinogenic risk from the investigated exposure ways of algae as organic fertilizer.
Collapse
Affiliation(s)
- E Işıl Arslan Topal
- Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| | - Erdal Öbek
- Department of Bioengineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| | - Murat Topal
- Department of Chemistry Processing Technologies, Tunceli Vocation School, Munzur University, Tunceli, Turkey
| |
Collapse
|
10
|
Li Y, Wu X, Liu Y, Taidi B. Immobilized microalgae: principles, processes and its applications in wastewater treatment. World J Microbiol Biotechnol 2024; 40:150. [PMID: 38548998 DOI: 10.1007/s11274-024-03930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/16/2024] [Indexed: 04/02/2024]
Abstract
Microalgae have emerged as potential candidates for biomass production and pollutant removal. However, expensive biomass harvesting, insufficient biomass productivity, and low energy intensity limit the large-scale production of microalgae. To break through these bottlenecks, a novel technology of immobilized microalgae culture coupled with wastewater treatment has received increasing attention in recent years. In this review, the characteristics of two immobilized microalgae culture technologies are first presented and then their mechanisms are discussed in terms of biofilm formation theories, including thermodynamic theory, Derjaguin-Landau-Verwei-Overbeek theory (DLVO) and its extended theory (xDLVO), as well as ionic cross-linking mechanisms in the process of microalgae encapsulated in alginate. The main factors (algal strains, carriers, and culture conditions) affecting the growth of microalgae are also discussed. It is also summarized that immobilized microalgae show considerable potential for nitrogen and phosphorus removal, heavy metal removal, pesticide and antibiotic removal in wastewater treatment. The role of bacteria in the cultivation of microalgae by immobilization techniques and their application in wastewater treatment are clarified. This is economically feasible and technically superior. The problems and challenges faced by immobilized microalgae are finally presented.
Collapse
Affiliation(s)
- Yanpeng Li
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang`an University, Xi`an, 710054, People's Republic of China.
| | - Xuexue Wu
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China
| | - Yi Liu
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China
| | - Behnam Taidi
- LGPM, CentraleSupélec, Université Paris Saclay, 3 rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Gao M, Ling N, Tian H, Guo C, Wang Q. Toxicity, physiological response, and biosorption mechanism of Dunaliella salina to copper, lead, and cadmium. Front Microbiol 2024; 15:1374275. [PMID: 38605709 PMCID: PMC11007151 DOI: 10.3389/fmicb.2024.1374275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background Heavy metal pollution has become a global problem, which urgently needed to be solved owing to its severe threat to water ecosystems and human health. Thus, the exploration and development of a simple, cost-effective and environmental-friendly technique to remove metal elements from contaminated water is of great importance. Algae are a kind of photosynthetic autotroph and exhibit excellent bioadsorption capacities, making them suitable for wastewater treatment. Methods The effects of heavy metals (copper, lead and cadmium) on the growth, biomolecules accumulation, metabolic responses and antioxidant response of Dunaliella salina were investigated. Moreover, the Box-Behnken design (BBD) in response surface methodology (RSM) was used to optimize the biosorption capacity, and FT-IR was performed to explore the biosorption mechanism of D. salina on multiple heavy metals. Results The growth of D. salina cells was significantly inhibited and the contents of intracellular photosynthetic pigments, polysaccharides and proteins were obviously reduced under different concentrations of Cu2+, Pb2+ and Cd2+, and the EC50 values were 18.14 mg/L, 160.37 mg/L and 3.32 mg/L at 72 h, respectively. Besides, the activities of antioxidant enzyme SOD and CAT in D. salina first increased, and then descended with increasing concentration of three metal ions, while MDA contents elevated continuously. Moreover, D. salina exhibited an excellent removal efficacy on three heavy metals. BBD assay revealed that the maximal removal rates for Cu2+, Pb2+, and Cd2+ were 88.9%, 87.2% and 72.9%, respectively under optimal adsorption conditions of pH 5-6, temperature 20-30°C, and adsorption time 6 h. Both surface biosorption and intracellular bioaccumulation mechanisms are involved in metal ions removal of D. salina. FT-IR spectrum exhibited the main functional groups including carboxyl (-COOH), hydroxyl (-OH), amino (-NH2), phosphate (-P=O) and sulfate (-S=O) are closely associated with the biosorption or removal of heavy metalsions. Discussion Attributing to the brilliant biosorption capacity, Dunaliella salina may be developed to be an excellent adsorbent for heavy metals.
Collapse
Affiliation(s)
- Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Chunqiu Guo
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Qiyao Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
12
|
Mosleminejad N, Ghasemi Z, Johari SA. Ionic and nanoparticulate silver alleviate the toxicity of inorganic mercury in marine microalga Chaetoceros muelleri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19206-19225. [PMID: 38355858 DOI: 10.1007/s11356-024-32120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Toxicological effects of silver nanoparticles (SNPs) in different organisms have been studied; however, interactions of SNPs with other environmental pollutants such as mercury are poorly understood. Herein, bioassay tests were performed according to ΟECD 201 guideline to assess the toxic effects induced by mercury ions (mercury chloride, MCl) on the marine microalga Chaetoceros muelleri in the presence of SNPs or silver ions (silver nitrate, SN). Acute toxicity tests displayed that the presence of SNPs or SN (0.01 mg L-1) significantly reduced the toxicity of MCl (0.001, 0.01, 0.1, 1, 10, and 100 mg L-1) and increased the IC50 of MCl from 0.072 ± 0.014 to 0.381 ± 0.029 and 0.676 ± 0.034 mg L-1, respectively. In the presence of SN or SNPs, the mercury-reducing effect on algal population growth significantly decreased. Considering the increase of IC50, the mercury toxicity decreased approximately 5.44 and 9.66 times in the presence of SNPs or SN, respectively. The chlorophyll a and c contents decreased at all exposures; however, the decrease by MCl-SNPs and MCl-SN was significantly less than MCl except at 1 mg L-1. The lowering effect of MCl-SN on chlorophyll contents was less than MCl and MCl-SNPs. MCl exposure induced significant raises in total protein content (TPC) at concentrations < 0.01mg L-1, with a maximum of ~ 70.83% attained at 100 mg L-1. The effects of MCl-SNPs and MCl-SN on TPC were significantly less than MCl. Total lipid content (TLC) at all MCl concentrations was higher than the control, while at coexposure to MCl-SN, TLC did not change until 0.01 mg L-1 compared with the control. The effects of MCl-SN and MCL-SNPs on TPC and TLC were in line with toxicity results, and were significantly less than those of MCl individually, confirming their antagonistic effects on MCl. The morphological changes of algal cells and mercury content of the cell wall at MCl-SN and MCl-SNPs were mitigated compared with MCl exposure. These findings highlight the mitigatory impacts of silver species on mercury toxicity, emphasizing the need for better realizing the mixture toxicity effects of pollutants in the water ecosystem.
Collapse
Affiliation(s)
- Nasim Mosleminejad
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Zahra Ghasemi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
- Nanoscience, Nanotechnology, and Advanced Materials Research Centre, University of Hormozgan, Bandar Abbas, Iran.
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| |
Collapse
|
13
|
Bennacer L, Benmammar D, Ahfir ND, Alem A, Mignot M, Pantet A, El Maana S. Potential of using Alfa grass fibers (Stipa Tenacissima L.) to remove Pb 2+, Cu 2+, and Zn 2+ from an aqueous solution. ENVIRONMENTAL TECHNOLOGY 2024; 45:1651-1667. [PMID: 36378021 DOI: 10.1080/09593330.2022.2148572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
This study used alfa grass fibres as a natural low-cost adsorbent to remove lead, copper, and zinc ions from aqueous solutions. The adsorbent was characterized by FTIR, SEM, BET surface area, ATG, and XRD techniques. The effects of pH, contact time, initial metal concentration, and adsorbent dosage on the adsorption efficiency were evaluated in batch experiments. The results showed that the adsorption of all metals was fast, and optimal removal efficiency was achieved within 25 min of contact time using 5000 mg/L of Alfa fibres at pH 6.3. The adsorption selectivity order was Pb2+ > Cu2+ > Zn2+ with Pb2+ removal efficiencies up to 97.6%. The adsorption kinetics were best explained by a pseudo-second-order kinetic model. The experimental adsorption data fitted very well with the Langmuir isotherm model, and less well with the Freundlich and Temkin isotherm models. The maximum adsorption capacities were respectively 14.492, 11.904, and 8.695 mg/g for Pb2+, Cu2+, and Zn2+. The results of this study indicated that Alfa fibres could be used as effective adsorbent for the removal of Pb2+, Cu2+, and Zn2+ from aqueous solutions.
Collapse
Affiliation(s)
- Lyacine Bennacer
- University of Ahmed Draia - Adrar, Laboratory of Energy, Environment and Information System, LEESI, Adrar, Algeria
| | - Djilali Benmammar
- University of Ahmed Draia - Adrar, Laboratory of Energy, Environment and Information System, LEESI, Adrar, Algeria
| | | | | | - Mélanie Mignot
- Normandie Université, INSA de Rouen, Avenue de l'Université, Saint-Etienne-du-Rouvray, France
| | | | | |
Collapse
|
14
|
Ran Y, Sun D, Liu X, Zhang L, Niu Z, Chai T, Hu Z, Qiao K. Chlorella pyrenoidosa as a potential bioremediator: Its tolerance and molecular responses to cadmium and lead. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168712. [PMID: 38016561 DOI: 10.1016/j.scitotenv.2023.168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Heavy metal contamination negatively affects plants and animals in water as well as soils. Some microalgae can remove heavy metal contaminants from wastewater. The aim of this study was to screen green microalgae (GM) to identify those that tolerate high concentrations of toxic heavy metals in water as possible candidates for phytoremediation. Analyses of the tolerance, physiological parameters, ultrastructure, and transcriptomes of GM under Cd/Pb treatments were conducted. Compared with the other GM, Chlorella pyrenoidosa showed stronger tolerance to high concentrations of Cd/Pb. The reduced glutathione content and peroxidase activity were higher in C. pyrenoidosa than those in the other GM. Ultrastructural observations showed that, compared with other GM, C. pyrenoidosa had less damage to the cell surface and interior under Cd/Pb toxicity. Transcriptome analyses indicated that the "peroxisome" and "sulfur metabolism" pathways were enriched with differentially expressed genes under Cd/Pb treatments, and that CpSAT, CpSBP, CpKAT2, Cp2HPCL, CpACOX, CpACOX2, and CpACOX4, all of which encode antioxidant enzymes, were up-regulated under Cd/Pb treatments. These results show that C. pyrenoidosa has potential applications in the remediation of polluted water, and indicate that antioxidant enzymes contribute to Cd/Pb detoxification. These findings will be useful for producing algal strains for the purpose of bioremediation in water contamination.
Collapse
Affiliation(s)
- Ye Ran
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Dexiang Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Ling Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyong Niu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Tuanyao Chai
- College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhangli Hu
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
15
|
Lu T, Li D, Feng J, Zhang W, Kang Y. Efficient extraction performance and mechanisms of Cd 2+ and Pb 2+ in water by novel dicationic ionic liquids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119767. [PMID: 38109826 DOI: 10.1016/j.jenvman.2023.119767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/12/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
Ten novel hydrophobic dicationic ionic liquids (DILs) were synthesized and applied for the extraction of heavy metals in aqueous solutions. Their physicochemical properties were measured at ambient temperature, and the leaching behaviors of the as-prepared DILs in water were assessed by TOC analysis. Metal extraction experiments were carried out to evaluate the extraction performances of the DILs. It was found that the extraction rates of up to 0.45 and 0.53 mg·(g·min)-1 were achieved with 100 mg DILs for 5 mL of 5 mg/L Cd2+ and Pb2+ solutions. Besides, the extraction efficiencies of Cd2+ and Pb2+ were respectively up to 95.48% and 98.46%, when the volumes of the simulated wastewater were expanded by a factor of 20 at a constant extraction phase ratio (1000 mg DILs for 50 mL of 5 mg/L Cd2+ or Pb2+ solutions). The reusability of the novel DILs was successfully proved by the back-extraction experiments with 0.5 M HNO3. Finally, taking Cd2+ extraction as an example, the extraction mechanism based on FTIR analysis and quantum chemical calculations showed that both S and O atoms in the anions of DILs had physical and quasi-chemical interactions with Cd2+, which were stronger than the electrostatic attraction.
Collapse
Affiliation(s)
- Tangzheng Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Dan Li
- Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiayi Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenlong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yong Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
16
|
Ng ZY, Ajeng AA, Cheah WY, Ng EP, Abdullah R, Ling TC. Towards circular economy: Potential of microalgae - bacterial-based biofertilizer on plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119445. [PMID: 37890301 DOI: 10.1016/j.jenvman.2023.119445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Biofertilizers encompass microorganisms that can be applied to plants, subsequently establishing themselves within the plant's rhizosphere or internal structures. This colonization stimulates plant development by enhancing nutrient absorption from the host. While there is growing literature documenting the applications of microalgae-based and bacterial-based biofertilizers, the research focusing on the effectiveness of consortia formed by these microorganisms as short-term plant biofertilizers is notably insufficient. This study seeks to assess the effectiveness of microalgae-bacterial biofertilizers in promoting plant growth and their potential contribution to the circular economy. The review sheds light on the impact of microalgae-bacterial biofertilizers on plant growth parameters, delving into factors influencing their efficiency, microalgae-bacteria interactions, and effects on soil health. The insights from this review are poised to offer valuable guidance to stakeholders in agriculture, including farmers, environmental technologists, and businesses. These insights will aid in the development and investment in more efficient and sustainable methods for enhancing crop yields, aligning with the Sustainable Development Goals and principles of the circular economy.
Collapse
Affiliation(s)
- Zheng Yang Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aaronn Avit Ajeng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wai Yan Cheah
- Centre for Research in Development, Social and Environment (SEEDS) Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Mahmoud MA, Alsehli BR, Alotaibi MT, Hosni M, Shahat A. A comprehensive review on the application of semiconducting materials in the degradation of effluents and water splitting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3466-3494. [PMID: 38141122 PMCID: PMC10794432 DOI: 10.1007/s11356-023-31353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
In this comprehensive review article, we delve into the critical intersection of environmental science and materials science. The introduction sets the stage by emphasizing the global water shortage crisis and the dire consequences of untreated effluents on ecosystems and human health. As we progress into the second section, we embark on an intricate exploration of piezoelectric and photocatalytic principles, illuminating their significance in wastewater treatment and sustainable energy production. The heart of our review is dedicated to a detailed analysis of the detrimental impacts of effluents on human health, underscoring the urgency of effective treatment methods. We dissected three key materials in the realm of piezo-photocatalysis: ZnO-based materials, BaTiO3-based materials, and bismuth-doped materials. Each material is scrutinized for its unique properties and applications in the removal of pollutants from wastewater, offering a comprehensive understanding of their potential to address this critical issue. Furthermore, our exploration extends to the realm of hydrogen production, where we discuss various types of hydrogen and the role of piezo-photocatalysis in generating clean and sustainable hydrogen. By illuminating the synergistic potential of these advanced materials and technologies, we pave the way for innovative solutions to the pressing challenges of water pollution and renewable energy production. This review article not only serves as a valuable resource for researchers and scholars in the fields of material science and environmental engineering but also underscores the pivotal role of interdisciplinary approaches in addressing complex global issues.
Collapse
Affiliation(s)
- Muhammed A Mahmoud
- Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Bandar R Alsehli
- Department of Chemistry, Faculty of Science, Taibah University, 30002, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Mohammed T Alotaibi
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Mohamed Hosni
- Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt
| | - Ahmed Shahat
- Chemistry Department, Faculty of Science, Suez University, Suez, 43518, Egypt.
| |
Collapse
|
18
|
Kumar A, Ponmani S, Sharma GK, Sangavi P, Chaturvedi AK, Singh A, Malyan SK, Kumar A, Khan SA, Shabnam AA, Jigyasu DK, Gull A. Plummeting toxic contaminates from water through phycoremediation: Mechanism, influencing factors and future outlook to enhance the capacity of living and non-living algae. ENVIRONMENTAL RESEARCH 2023; 239:117381. [PMID: 37832769 DOI: 10.1016/j.envres.2023.117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Freshwater habitats hold a unique role in the survival of all living organisms and supply water for drinking, irrigation, and life support activities. In recent decades, due to anthropogenic activities, deterioration in the water quality has been a long-lasting problem and challenge to the scientific fraternity. Although, these freshwater bodies have a bearable intrinsic capacity for pollution load however alarming increase in pollution limits the intrinsic capacities and requires additional technological interventions. The release of secondary pollutants from conventional interventions further needs revisiting the existing methodologies and asking for green interventions. Green interventions such as phycoremediation are natural, eco-friendly, economic, and energy-efficient alternatives and provide additional benefits such as nutrient recovery, biofuel production, and valuable secondary metabolites from polluted freshwater bodies. This systemic review in a nut-shell comprises the recent research insights on phycoremediation, technological implications, and influencing factors, and further discusses the associated mechanisms of metal ions biosorption by living and non-living algae, its advantages, and limitations. Besides, the article explores the possibility of future research prospects for applicability at a field scale that will help in the efficient utilization of resources, and improved ecological and health risks.
Collapse
Affiliation(s)
- A Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - S Ponmani
- Mother Terasa College of Agriculture, Tamil Nadu Agricultural University, Pudukkottai, 622 201, TN, India; Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, TN, India.
| | - G K Sharma
- ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Dadwara Kota, 324002, Rajasthan, India.
| | - P Sangavi
- Mother Terasa College of Agriculture, Tamil Nadu Agricultural University, Pudukkottai, 622 201, TN, India; Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, TN, India.
| | - A K Chaturvedi
- Land and Water Management Research Group, Centre for Water Resources Development and Management, Kozhikode, Kerala, India.
| | - A Singh
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - S K Malyan
- Department of Environmental Studies, Dyal Singh Evening College, University of Delhi, New Delhi, 110003, India.
| | - A Kumar
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, 785000, India; Central Sericultural Research and Training Institute, Central Silk Board, Mysore, Karnataka, 570008, India.
| | - S A Khan
- Division of Environmental Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Aftab A Shabnam
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, 785000, India.
| | - D K Jigyasu
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, 785000, India.
| | - A Gull
- Central Sericultural Research and Training Institute, Central Silk Board, Mysore, Karnataka, 570008, India.
| |
Collapse
|
19
|
Ociński D, Jacukowicz-Sobala I, Augustynowicz J, Wołowski K, Cantero DA, García-Serna J, Pińkowska H, Przejczowski R. Algae from Cr-containing infiltrate bioremediation for valorised chemical production - Seasonal availability, composition, and screening studies on hydrothermal conversion. BIORESOURCE TECHNOLOGY 2023; 389:129798. [PMID: 37793554 DOI: 10.1016/j.biortech.2023.129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Integrating bioremediation of toxic wastewater with value-added production is increasing interest, but - due to some essential problems - it is hardly applied in industrial practice. The aim of the study was an annual observation of the taxonomic and biochemical composition of various Cr-resistant algal communities grown in the existing Cr-containing infiltrate treatment system, selection of the most suitable algal biomass for infiltrates bioremediation and chromium-loaded algae conversion under mild subcritical conditions. Considering continuous availability and relatively constant chemical composition, Cladophora sp. was selected for utilisation in the chromium bioremediation system, simultaneously as a waste biomass source suitable for hydrothermal conversion. Screening studies conducted in a continuous pilot plant confirmed the possibility of selective extraction of saccharides and their separation from the metals remaining in the solid residual. The negligible concentration of metals in the obtained sugar-rich aqueous phase is essential for its further use in biotechnological processes.
Collapse
Affiliation(s)
- Daniel Ociński
- Department of Chemical Technology, Wroclaw University of Economics and Business, 118/120 Komandorska Street, 53-345 Wrocław, Poland.
| | - Irena Jacukowicz-Sobala
- Department of Chemical Technology, Wroclaw University of Economics and Business, 118/120 Komandorska Street, 53-345 Wrocław, Poland
| | - Joanna Augustynowicz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland
| | - Konrad Wołowski
- W. Szafer Institute of Botany, Polish Academy of Sciences, ul. Lubicz 46, 31-512 Kraków, Poland
| | - Danilo A Cantero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Escuela de Ingenierías Industriales, 47011 Valladolid, Spain
| | - Juan García-Serna
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Escuela de Ingenierías Industriales, 47011 Valladolid, Spain
| | - Hanna Pińkowska
- Department of Chemical Technology, Wroclaw University of Economics and Business, 118/120 Komandorska Street, 53-345 Wrocław, Poland
| | | |
Collapse
|
20
|
Hazaimeh M. Phycoremediation of heavy metals and production of biofuel from generated algal biomass: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109955-109972. [PMID: 37801245 DOI: 10.1007/s11356-023-30190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Due to human activity and natural processes, heavy metal contamination frequently affects the earth's water resources. The pollution can be categorized as resistant and persistent since it poses a significant risk to terrestrial and marine biological systems and human health. Because of this, several appeals and demands have been made worldwide to try and clean up these contaminants. Through bioremediation, algal cells are frequently employed to adsorb and eliminate heavy metals from the environment. Bioremediation is seen as a desirable strategy with few adverse effects and low cost. Activities and procedures for bioremediation involving algal cells depend on various environmental factors, including salinity, pH, temperature, the concentration of heavy metals, the amount of alga biomass, and food availability. Additionally, the effectiveness of removing heavy metals from the environment by assessing how environmental circumstances affect algal activities. The main issues discussed are (1) heavy metal pollution of water bodies, the role of algal cells in heavy metal removal, the methods by which algae cells take up and store heavy metals, and the process of turning the algae biomass produced into biofuel. (2) To overcome the environmental factors and improve heavy metals bioremediation, many strategies are applied, such as immobilizing the cells, consortium culture, and using dry mass rather than living cells. (3) The processes for converting produced algal biomass into biofuels like biodiesel and biomethanol. The present study discusses the life cycle assessment and the limitations of biofuel products from algae biomass.
Collapse
Affiliation(s)
- Mohammad Hazaimeh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, ah-11952, Saudi Arabia.
| |
Collapse
|
21
|
Wu G, Tham PE, Chew KW, Munawaroh HSH, Tan IS, Wan-Mohtar WAAQI, Sriariyanun M, Show PL. Net zero emission in circular bioeconomy from microalgae biochar production: A renewed possibility. BIORESOURCE TECHNOLOGY 2023; 388:129748. [PMID: 37714493 DOI: 10.1016/j.biortech.2023.129748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
The rapid expansion of industrialization and continuous population growth have caused a steady increase in energy consumption. Despite using renewable energy, such as bioethanol, to replace fossil fuels had been strongly promoted, however the outcomes were underwhelming, resulting in excessive greenhouse gases (GHG) emissions. Microalgal biochar, as a carbon-rich material produced from the pyrolysis of biomass, provides a promising solution for achieving net zero emission. By utilizing microalgal biochar, these GHG emissions can be captured and stored efficiently. It also enhances soil fertility, improves water retention, and conduct bioremediation in agriculture and environmental remediation field. Moreover, incorporating microalgal biochar into a zero-waste biorefinery could boost the employ of biomass feedstocks effectively to produce valuable bioproducts while minimizing waste. This contributes to sustainability and aligns with the concepts of a circular bioeconomy. In addition, some challenges like commercialization and standardization will be addressed in the future.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia
| | - Pei En Tham
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung 40154, Indonesia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, Sarawak 98009, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Malinee Sriariyanun
- Biorefinery and Process Automation Engineering Center, Department of Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
22
|
Zhang Y, Li J, Pang Y, Shu Y, Liu S, Sang P, Sun X, Liu J, Yang Y, Chen M, Hong P. Systematic investigation of simultaneous copper biosorption and nitrogen removal from wastewater by an aerobic denitrifying bacterium of auto-aggregation. ENVIRONMENTAL RESEARCH 2023; 235:116602. [PMID: 37429397 DOI: 10.1016/j.envres.2023.116602] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Finding effective methods for simultaneous removal of eutrophic nutrients and heavy metals has attracted increasing concerns for the environmental remediation. Herein, a novel auto-aggregating aerobic denitrifying strain (Aeromonas veronii YL-41) was isolated with capacities for copper tolerance and biosorption. The denitrification efficiency and nitrogen removal pathway of the strain were investigated by nitrogen balance analysis and amplification of key denitrification functional genes. Moreover, the changes in the auto-aggregation properties of the strain caused by extracellular polymeric substances (EPS) production were focused on. The biosorption capacity and mechanisms of copper tolerance during denitrification were further explored by measuring changes in copper tolerance and adsorption indices, as well as by variations in extracellular functional groups. The strain showed extremely strong total nitrogen removal ability, with 67.5%, 82.08% and 78.48% of total nitrogen removal when NH4+-N, NO2--N, and NO3--N were used as the only initial nitrogen source, respectively. The successful amplification of napA, nirK, norR, and nosZ genes further demonstrated that the strain accomplished nitrate removal through a complete aerobic denitrification pathway. The production of protein-rich EPS of up to 23.31 mg/g and an auto-aggregation index of up to 76.42% may confer a strong biofilm-forming potential to the strain. Under the stress of 20 mg/L copper ions, the removal of nitrate-nitrogen was still as high as 71.4%. In addition, the strain could achieve an efficient removal of 96.9% of copper ions at an initial concentration of 80 mg/L. Scanning electron microscopy and deconvolution analysis of characteristic peaks confirmed that the strains encapsulate heavy metals by secreting EPS and, meanwhile, form strong hydrogen bonding structures to enhance intermolecular forces to resist copper ion stress. This study provides an innovative and effective biological approach for the synergistic bioaugmentation removal of eutrophic substances and heavy metals from aquatic environments.
Collapse
Affiliation(s)
- Yancheng Zhang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Jing Li
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Yu Pang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Yilin Shu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Shu Liu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Pengcheng Sang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Xiaohui Sun
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Jiexiu Liu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Yanfang Yang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Minglin Chen
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China.
| | - Pei Hong
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
23
|
Akl FMA, Ahmed SI, El-Sheekh MM, Makhlof MEM. Bioremediation of n-alkanes, polycyclic aromatic hydrocarbons, and heavy metals from wastewater using seaweeds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104814-104832. [PMID: 37713082 PMCID: PMC10567841 DOI: 10.1007/s11356-023-29549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The removal of n-alkanes, polycyclic aromatic hydrocarbons, and heavy metals from wastewater using three dried seaweeds Ulva intestinalis Linnaeus (green alga), Sargassum latifolium (Turner) C.Agardh (brown alga), and Corallina officinalis Kützing (red alga) has been shown to evaluate their potential usage as inexpensive adsorbents. Under natural environmental conditions, numerous analytical methods, including zeta potential, energy dispersive X-ray spectroscopy (EDX), SEM, and FT-IR, are used in this study. The results showed that n-alkanes and polycyclic aromatic hydrocarbons adsorption increased with increasing contact time for all three selected algae, with a large removal observed after 15 days, while the optimal contact time for heavy metal removal was 3 h. S. latifolium dry biomass had more potential as bioadsorbent, followed by C. officinalis and then U. intestinalis. S. latifolium attained removal percentages of 65.14%, 72.50%, and 78.92% for light n-alkanes, heavy n-alkanes, and polycyclic aromatic hydrocarbons (PAHs), respectively, after 15 days. Furthermore, it achieved removal percentages of 94.14, 92.62, 89.54, 87.54, 82.76, 80.95, 77.78, 73.02, and 71.62% for Mg, Zn, Cu, Fe, Cr, Pb, Cd, Mn, and Ni, respectively, after 3 h. Carboxyl and hydroxyl from FTIR analysis took part in wastewater treatment. The zeta potentials revealed that algal cells have a negatively charged surface, and the cell surface of S. latifolium has a more negative surface charge than U. intestinalis and C. officinalis. Our study suggests that seaweeds could play an important role in wastewater treatment and thus help as an economical, effective, and ecofriendly bioremediation system for ecological health and life protection.
Collapse
Affiliation(s)
- Faiza M A Akl
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Suzan I Ahmed
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mofida E M Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
24
|
Ulatowska J, Stala Ł, Trzęsowska N, Polowczyk I. Application of amino-hypophosphite polyampholyte for purification of wastewater containing Ni(ii) ions. RSC Adv 2023; 13:27135-27146. [PMID: 37701283 PMCID: PMC10493852 DOI: 10.1039/d3ra04543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
This study investigated the sorption of Ni(ii) ions from an aqueous solution using novel, synthetic amino-hypophosphite polyampholyte resin (AHP) in a batch adsorption system. The removal of Ni(ii) ions was determined as a function of pH (2.0-8.0), initial concentration of Ni(ii) ions (2.0-20.0 mM), resin dosage (1.0-10.0 g dm-3), contact time (0.04-24 h), and temperature (298-318 K). Moreover, continuous fixed-bed column sorption was also studied using model solutions and actual wastewater from the galvanising plant. The batch sorption experimental data showed that the maximum pH for efficient Ni(ii) ion removal was about 5.0. An equilibrium was reached after about 24 hours. The kinetics results were fitted using pseudo-first-order (PFO), pseudo-second-order (PSO), liquid film (LFD), and intraparticle diffusion (IPD) models. Freundlich and Langmuir isotherm models were applied for sorption equilibrium data. The maximum sorption capacity was obtained from the Langmuir equation to be 2.39, 2.52, and 2.62 mmol g-1 at 298, 308, and 318 K, respectively. The thermodynamic parameters for the sorption of Ni(ii) ions on AHP imply the endothermic and spontaneous character of the process. The experimental results demonstrated that amino-hypophosphite polyampholyte resin could be used to effectively remove Ni(ii) ions from model solutions and real wastewater.
Collapse
Affiliation(s)
- Justyna Ulatowska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology Norwida 4/6 Wroclaw 50-373 Poland +48-713-203-206
| | - Łukasz Stala
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology Norwida 4/6 Wroclaw 50-373 Poland +48-713-203-206
| | - Natasza Trzęsowska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology Norwida 4/6 Wroclaw 50-373 Poland +48-713-203-206
| | - Izabela Polowczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology Norwida 4/6 Wroclaw 50-373 Poland +48-713-203-206
| |
Collapse
|
25
|
Yang Z, Zhou S, Feng X, Wang N, Ola O, Zhu Y. Recent Progress in Multifunctional Graphene-Based Nanocomposites for Photocatalysis and Electrocatalysis Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2028. [PMID: 37446544 DOI: 10.3390/nano13132028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The global energy shortage and environmental degradation are two major issues of concern in today's society. The production of renewable energy and the treatment of pollutants are currently the mainstream research directions in the field of photocatalysis. In addition, over the last decade or so, graphene (GR) has been widely used in photocatalysis due to its unique physical and chemical properties, such as its large light-absorption range, high adsorption capacity, large specific surface area, and excellent electronic conductivity. Here, we first introduce the unique properties of graphene, such as its high specific surface area, chemical stability, etc. Then, the basic principles of photocatalytic hydrolysis, pollutant degradation, and the photocatalytic reduction of CO2 are summarized. We then give an overview of the optimization strategies for graphene-based photocatalysis and the latest advances in its application. Finally, we present challenges and perspectives for graphene-based applications in this field in light of recent developments.
Collapse
Affiliation(s)
- Zanhe Yang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Siqi Zhou
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiangyu Feng
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Oluwafunmilola Ola
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
26
|
Ramesh B, Saravanan A, Senthil Kumar P, Yaashikaa PR, Thamarai P, Shaji A, Rangasamy G. A review on algae biosorption for the removal of hazardous pollutants from wastewater: Limiting factors, prospects and recommendations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121572. [PMID: 37028793 DOI: 10.1016/j.envpol.2023.121572] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Heavy metals, dyes and pharmaceutical pollutants in water environment are considered as serious threat to the human and animal health globally. Rapid development of industrialization and agricultural activities are the major source for eliminating the toxic pollutants into the aquatic environment. Several conventional treatment methods have been suggested for the removal of emerging contaminants from wastewater. Algal biosorption, among other strategies and techniques, is demonstrating to be a limited technical remedy that is more focused and inherently more efficient and helps remove dangerous contaminants from water sources. The different environmental effects of harmful contaminants, including heavy metals, dyes, and pharmaceutical chemicals, as well as their sources, were briefly compiled in the current review. This paper provides a comprehensive definition of the future possibilities in heavy compound decomposition by using algal technology, from aggregation to numerous biosorption procedures. Functionalized materials produced from algal sources were clearly proposed. This review further highlights the limiting factors of algal biosorption to eliminate the hazardous material. Finally, this study showed how the existence of algae indicates a potential, effective, affordable, and sustainable sorbent biomaterial for minimizing environmental pollution.
Collapse
Affiliation(s)
- B Ramesh
- Department of Civil Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
27
|
Hama Aziz KH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, Rahman KO. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Adv 2023; 13:17595-17610. [PMID: 37312989 PMCID: PMC10258679 DOI: 10.1039/d3ra00723e] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Medical Laboratory Analysis Department, College of health sciences, Cihan University-Sulaimaniya Sulaimaniya 46001 Kurdistan region Iraq
| | - Fryad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Sarkawt Hama
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Rebaz Fayaq Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Kaiwan Othman Rahman
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Razga Company Sulaimani City 46001 Kurdistan Region Iraq
| |
Collapse
|
28
|
Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Umer Aslam HM, Nadeem S, Javed M, Othman MHD, Goh HH, Chew KW. Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: A critical review and way forward. CHEMOSPHERE 2023; 325:138367. [PMID: 36907482 DOI: 10.1016/j.chemosphere.2023.138367] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The generation of microplastics (MPs) has increased recently and become an emerging issue globally. Due to their long-term durability and capability of traveling between different habitats in air, water, and soil, MPs presence in freshwater ecosystem threatens the environment with respect to its quality, biotic life, and sustainability. Although many previous works have been undertaken on the MPs pollution in the marine system recently, none of the study has covered the scope of MPs pollution in the freshwater. To consolidate scattered knowledge in the literature body into one place, this work identifies the sources, fate, occurrence, transport pathways, and distribution of MPs pollution in the aquatic system with respect to their impacts on biotic life, degradation, and detection techniques. This article also discusses the environmental implications of MPs pollution in the freshwater ecosystems. Certain techniques for identifying MPs and their limitations in applications are presented. Through a literature survey of over 276 published articles (2000-2023), this study presents an overview of solutions to the MP pollution, while identifying research gaps in the body of knowledge for further work. It is conclusive from this review that the MPs exist in the freshwater due to an improper littering of plastic waste and its degradation into smaller particles. Approximately 15-51 trillion MP particles have accumulated in the oceans with their weight ranging between 93,000 and 236,000 metric ton (Mt), while about 19-23 Mt of plastic waste was released into rivers in 2016, which was projected to increase up to 53 Mt by 2030. A subsequent degradation of MPs in the aquatic environment results in the generation of NPs with size ranging from 1 to 1000 nm. It is expected that this work facilitates stakeholders to understand the multi-aspects of MPs pollution in the freshwater and recommends policy actions to implement sustainable solutions to this environmental problem.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Hafiz Muhammad Umer Aslam
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
29
|
Khamseh AAG, Ghorbanian SA, Amini Y, Shadman MM. Investigation of kinetic, isotherm and adsorption efficacy of thorium by orange peel immobilized on calcium alginate. Sci Rep 2023; 13:8393. [PMID: 37225836 DOI: 10.1038/s41598-023-35629-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023] Open
Abstract
In this research work the thorium uptake on immobilized protonated orange peel was studied in a batch system. The effects of effective parameters such as biosorbent dosage, initial metal ion concentration, and contact time on the biosorption of thorium were analyzed. The biosorption capacity of the immobilized orange peel for thorium at optimal conditions of initial pH 3.8, biosorbent dosage 8 g/L, and initial thorium concentration 170 mg/L was found to be 18.65 mg/g. According to the results of contact time, the biosorption process reached equilibrium after around 10 h of contact. Investigation of the kinetics showed that the biosorption of thorium onto immobilized orange peel follows the pseudo-second-order model. The Langmuir and Freundlich isotherms were used to model the experimental equilibrium data. The results showed better agreement by the Langmuir isotherm. The maximum absorption capacity of immobilized protonated orange peel for thorium adsorption was predicted by the Langmuir isotherm at 29.58 mg/g.
Collapse
Affiliation(s)
- Ali A Gh Khamseh
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Sohrab Ali Ghorbanian
- Faculty of Chemical Engineering, School of Engineering, University of Tehran, Tehran, Iran
| | - Younes Amini
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Mohammad Mahdi Shadman
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
30
|
Bulgariu D, Nemeş LN, Ahmad I, Bulgariu L. Isotherm and Kinetic Study of Metal Ions Sorption on Mustard Waste Biomass Functionalized with Polymeric Thiocarbamate. Polymers (Basel) 2023; 15:polym15102301. [PMID: 37242876 DOI: 10.3390/polym15102301] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The presence of high concentrations of metal ions in effluents resulting from industrial metal coatings is a well-known fact. Most of the time, such metal ions, once they reach the environment, significantly contribute to its degradation. Therefore, it is essential that the concentration of metal ions is reduced (as much as possible) before such effluents are discharged into the environment to minimize the negative impact on the quality of the ecosystems. Among all methods that can be used to reduce the concentration of metal ions, sorption is one of the most viable options due to its high efficiency and low cost. Moreover, due to the fact that many industrial wastes have sorbent properties, this method is in accordance with the principles of circular economy. Based on these considerations, in this study, mustard waste biomass (resulting from oil extraction) was functionalized with an industrial polymeric thiocarbamate (METALSORB) and used as a sorbent to remove Cu(II), Zn(II) and Co(II) ions from aqueous media. The best conditions for the functionalization of mustard waste biomass were found to be: mixing ratio biomass: METASORB = 1 g: 1.0 mL and a temperature of 30 °C. The experimental sorption capacities of functionalized sorbent (MET-MWB) were 0.42 mmol/g for Cu(II), 0.29 mmol/g for Zn(II) and 0.47 mmol/g for Co(II), which were obtained under the following conditions: pH of 5.0, 5.0 g sorbent/L and a temperature of 21 °C. The modeling of isotherms and kinetic curves as well as the analysis of the results obtained from desorption processes demonstrate the usefulness of this sorbent in the treatment of effluents contaminated with metal ions. In addition, tests on real wastewater samples highlight the potential of MET-MWB for large-scale applications.
Collapse
Affiliation(s)
- Dumitru Bulgariu
- Department of Geology, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iaşi, 700050 Iaşi, Romania
- Romanian Academy, Filial of Iaşi, Branch of Geography, 700050 Iaşi, Romania
| | - Lăcrămioara Negrilă Nemeş
- Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Technical University Gheorghe Asachi of Iasi, 700050 Iaşi, Romania
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Laura Bulgariu
- Department of Environmental Engineering and Management, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Technical University Gheorghe Asachi of Iasi, 700050 Iaşi, Romania
| |
Collapse
|
31
|
Barbera M, Indelicato S, Bongiorno D, Censi V, Saiano F, Piazzese D. Untreated Opuntia ficus indica for the Efficient Adsorption of Ni(II), Pb(II), Cu(II) and Cd(II) Ions from Water. Molecules 2023; 28:molecules28093953. [PMID: 37175363 PMCID: PMC10179860 DOI: 10.3390/molecules28093953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The raw cladode of Opuntia ficus indica (OFI) was evaluated as a sustainable biosorbent for the removal of heavy metals (Ni, Pb, Cu, and Cd) from aqueous solutions. The functional groups of OFI were identified by employing DRIFT-FTIR and CP-MAS-NMR techniques before and after contact with the ions in an aqueous media, showing a rearrangement of the biomass structure due to the complexation between the metal and the functional groups. The adsorption process was studied in both single- and multi-component systems under batch conditions at different pHs (4.0, 5.0, and 6.0), different metal concentrations, and different biomass amounts. The results show that the raw OFI had a removal capacity at room temperature of over 80% for all metals studied after only 30 min of contact time, indicating a rapid adsorption process. Biosorption kinetics were successfully fitted by the pseudo-second-order equation, while Freundlich correctly modelled the biosorption data at equilibrium. The results of this work highlight the potential use of the untreated cladode of OFI as an economical and environmentally friendly biosorbent for the removal of heavy metals from the contaminated aqueous solution.
Collapse
Affiliation(s)
- Marcella Barbera
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Science and Technology, University of Palermo, 90123 Palermo, Italy
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Science and Technology, University of Palermo, 90123 Palermo, Italy
| | - Valentina Censi
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| | - Filippo Saiano
- Department of Agricultural Food and Forestry Sciences, University of Palermo, 90128 Palermo, Italy
| | - Daniela Piazzese
- Department of Earth and Marine Sciences, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
32
|
Zhou K, Zhou Y, Zhou H, Cheng H, Xu G. Kinetic process of the biosorption of Cu(II), Ni(II) and Cr(VI) by waste Pichia pastoris cells. ENVIRONMENTAL TECHNOLOGY 2023; 44:1730-1750. [PMID: 34842065 DOI: 10.1080/09593330.2021.2012266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Waste biomass of Pichia pastoris (P.pastoris) cells from the fermentation industry is an environmentally friendly biosorption material. The present study aimed to explore the biosorption behaviour of waste P.pastoris cells for Cu(II), Ni(II) and Cr(VI) in aqueous solution conditions. The results showed that the adsorption kinetics of three kinds of metals were well-fitted with lineared Elovich, pseudo-second-order kinetics models, non-linear kinetics and adsorption isotherms. The effective biosorption rates for Cu(II), Ni(II) and Cr(VI) removal were 71.3%, 59.7% and 16.25% respectively. The maximum Cu(II) adsorption capacity of waste P.pastoris was 40 mg/g at pH = 4 and 225 mg/L of solute concentration for 0.4 g biomass, better than that of the living yeasts. The pattern of Fourier transform infrared (FTIR) indicated that functional groups such as -NH, -OH, Si-O, P-O-C were involved in Cu(II) adsorption process. The analysis of SEM-EDS, XRD and TEM-EDS can be concluded that Cu(II) occupied Ca(II) binding sites by ion exchange mechanism to remove flocculation, and Cu(II) adsorbed onto the diatomite containing in the industrial waste P.pastoris. Thus the adsorption mechanism of the industrial waste P.pastoris was proposed taking Cu(II) as the example. And consecutive biosorption/desorption cycles were used for the evaluation of the regeneration efficiency, suggesting the good regeneration and reusability of waste P.pastoris.
Collapse
Affiliation(s)
- Kaiyan Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, People's Republic of China
| | - Yulu Zhou
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Hongbo Zhou
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Haina Cheng
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Gang Xu
- Hunan Flag Bio-Tech Co., Ltd., Changsha, People's Republic of China
| |
Collapse
|
33
|
Chen D, Wang G, Chen C, Feng Z, Jiang Y, Yu H, Li M, Chao Y, Tang Y, Wang S, Qiu R. The interplay between microalgae and toxic metal(loid)s: mechanisms and implications in AMD phycoremediation coupled with Fe/Mn mineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131498. [PMID: 37146335 DOI: 10.1016/j.jhazmat.2023.131498] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Acid mine drainage (AMD) is low-pH with high concentration of sulfates and toxic metal(loid)s (e.g. As, Cd, Pb, Cu, Zn), thereby posing a global environmental problem. For decades, microalgae have been used to remediate metal(loid)s in AMD, as they have various adaptive mechanisms for tolerating extreme environmental stress. Their main phycoremediation mechanisms are biosorption, bioaccumulation, coupling with sulfate-reducing bacteria, alkalization, biotransformation, and Fe/Mn mineral formation. This review summarizes how microalgae cope with metal(loid) stress and their specific mechanisms of phycoremediation in AMD. Based on the universal physiological characteristics of microalgae and the properties of their secretions, several Fe/Mn mineralization mechanisms induced by photosynthesis, free radicals, microalgal-bacterial reciprocity, and algal organic matter are proposed. Notably, microalgae can also reduce Fe(III) and inhibit mineralization, which is environmentally unfavorable. Therefore, the comprehensive environmental effects of microalgal co-occurring and cyclical opposing processes must be carefully considered. Using chemical and biological perspectives, this review innovatively proposes several specific processes and mechanisms of Fe/Mn mineralization that are mediated by microalgae, providing a theoretical basis for the geochemistry of metal(loid)s and natural attenuation of pollutants in AMD.
Collapse
Affiliation(s)
- Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guobao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chiyu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zekai Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengyao Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
34
|
Zhang B, Tang Y, Yu F, Peng Z, Yao S, Deng X, Long H, Wang X, Huang K. Translatomics and physiological analyses of the detoxification mechanism of green alga Chlamydomonas reinhardtii to cadmium toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130990. [PMID: 36860060 DOI: 10.1016/j.jhazmat.2023.130990] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is one of the most toxic pollutants found in aquatic ecosystems. Although gene expression in algae exposed to Cd has been studied at the transcriptional level, little is known about Cd impacts at the translational level. Ribosome profiling is a novel translatomics method that can directly monitor RNA translation in vivo. Here, we analyzed the translatome of the green alga Chlamydomonas reinhardtii following treatment with Cd to identify the cellular and physiological responses to Cd stress. Interestingly, we found that the cell morphology and cell wall structure were altered, and starch and high-electron-density particles accumulated in the cytoplasm. Several ATP-binding cassette transporters that responded to Cd exposure were identified. Redox homeostasis was adjusted to adapt to Cd toxicity, and GDP-L-galactose phosphorylase (VTC2), glutathione peroxidase (GPX5), and ascorbate were found to play important roles in maintaining reactive oxygen species homeostasis. Moreover, we found that the key enzyme of flavonoid metabolism, i.e., hydroxyisoflavone reductase (IFR1), is also involved in the detoxification of Cd. Thus, in this study, translatome and physiological analyses provided a complete picture of the molecular mechanisms of green algae cell responses to Cd.
Collapse
Affiliation(s)
- Baolong Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Yuxin Tang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Fei Yu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Zhao Peng
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Sheng Yao
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| |
Collapse
|
35
|
Nguyen NH, Nguyen QT, Dang DH, Emery RJN. Phytohormones enhance heavy metal responses in Euglena gracilis: Evidence from uptake of Ni, Pb and Cd and linkages to hormonomic and metabolomic dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121094. [PMID: 36682616 DOI: 10.1016/j.envpol.2023.121094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Over the last decade, significant effort has been made to understand phytohormonal functions (e.g., cytokinins (CKs) and abscisic acid (ABA)) in metal stress responses of higher plants and algae. Despite the potential for these phytohormones to improve industrial remediation by Euglena gracilis (Euglenophyceae), no such roles have been elucidated for this highly adaptive species and its response to heavy metals. This study demonstrates that toxic metals (nickel, lead, cadmium) modify hormonal activity profiles (i.e., CK forms and their concentrations) in E. gracilis. Furthermore, exogenous ABA or CK (tZ) enabled higher metal uptake efficiency (i.e., 9.35% in lead and 9.2% in cadmium uptake with CK) and alleviated metal toxicity through the regulation of endogenous CKs (i.e., total CK, isoprenoid CK) and gibberellin (GAs, GA1 and GA3) levels. These responses suggest that E. gracilis regulates multiple phytohormone signals during metal stress acclimation. A deeper approach, using untargeted metabolomic analyses, gave more detailed insight into phytohormone-controlled pathways and associated modified metabolites, which were frequently related to metal accumulation and the physiological acclimation to metal presence. Significant changes in the levels of cellular metabolites, especially those involved in acclimation to metal stress, were under the influence of phytohormones in algal cells. When grown under metal stress conditions, the presence of exogenous ABA or CKs, caused changes in cellular metabolites which included those from: lipid pathways, riboflavin metabolism, the biosynthesis of cofactors/vitamins, and carbohydrate metabolism. Also, bioactive secondary metabolites (e.g., terpenoids, alkaloids, flavonoids, carotenoids) were modified in algal cells treated with phytohormones. Thus, the study gives a detailed view on the regulatory functions of ABA and CKs in algal metal bioremediation strategies, which are attributed to enhanced metal uptake and in the fine-tuning of plant hormone levels during metal stress response. The results can guide efforts to develop efficient, low-cost and environmentally friendly methods for bioremediation.
Collapse
Affiliation(s)
- Ngoc Hai Nguyen
- Trent University, Department of Biology, Peterborough, Canada.
| | | | - Duc Huy Dang
- Trent University, School of the Environment and Chemistry Department, Peterborough, Canada
| | - R J Neil Emery
- Trent University, Department of Biology, Peterborough, Canada
| |
Collapse
|
36
|
Li M, Liu D, Wang S, Guo H, Losic D, Deng L, Wu S, Yuan P. Efficient removal of Cd 2+ by diatom frustules self-modified in situ with intercellular organic components. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121005. [PMID: 36608731 DOI: 10.1016/j.envpol.2023.121005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The organic modification of three-dimensional porous diatom frustules (biosilica) and their fossils (diatomite) is promising in heavy metal adsorption. However, the preparation of such materials involves complex processes, high costs, and environmental hazards. In this study, organic-biosilica composites based on in situ self-modification of diatoms were prepared by freeze-drying pretreatment. Freeze-drying resulted in the release of the intercellular organic components of diatoms, followed by loading on the surface of their diatom frustules. The bio-adsorbent exhibits outstanding Cd2+ adsorption capacity (up to 220.3 mg/g). The adsorption isotherms fitted the Langmuir model and the maximum adsorption capacity was 4 times greater than that of diatom biosilica (54.1 mg/g). The adsorption kinetics of Cd2+ was adequately described by a pseudo-second-order model and reached equilibrium within 30 min. By combining focused ion beam thinning with transmission electron microscopy-energy dispersive X-ray spectroscopy, the internal structure of the composite and the Cd2+ distribution were investigated. The results showed that the organic matter of the composite adsorbed approximately 10 times more Cd2+ than inorganic biosilica. The adsorption mechanism was dominated by complexation between the abundant organic functional groups (amide, carboxyl, and amino groups) on the surfaces of composite and Cd2+. The bio-adsorbent was demonstrated to have wide applicability in the presence of competitive cations (Na+, K+, Ca2+, and Mg2+) and under a wide range of pH (3-10) conditions. Thus, the self-modification of diatoms offers a promising organic-inorganic composite for heavy metal remediation.
Collapse
Affiliation(s)
- Mengyuan Li
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou, 510640, China; State Key Laboratory of Marine Environmental Science (MEL), Xiamen University, Xiamen, 361012, China.
| | - Shun Wang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou, 510640, China; Neutron Science Platform, Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Haozhe Guo
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Liangliang Deng
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Peng Yuan
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou, 510640, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
37
|
Balakrishnan A, Jacob MM, Senthil Kumar P, Kapoor A, Ponnuchamy M, Sivaraman P, Sillanpää M. Strategies for safe management of hospital wastewater during the COVID-19 pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-16. [PMID: 36817164 PMCID: PMC9925218 DOI: 10.1007/s13762-023-04803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/18/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Management of hospital wastewater is a challenging task, particularly during the situations like coronavirus 2019 (COVID-19) pandemic. The hospital effluent streams are likely to contain many known and unknown contaminants including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) along with a variety of pollutants arising from pharmaceuticals, life-style chemicals, drugs, radioactive species, and human excreta from the patients. The effluents are a mixed bag of contaminants with some of them capable of infecting through contact. Hence, it is essential to identify appropriate treatment strategies for hospital waste streams. In this work, various pollutants emerging in the context of COVID-19 are examined. A methodical review is conducted on the occurrence and disinfection methods of SARS-CoV-2 in wastewater. An emphasis is given to the necessity of addressing the challenges of handling hospital effluents dynamically involved during the pandemic scenario to ensure human and environmental safety. A comparative evaluation of disinfection strategies makes it evident that the non-contact methods like ultraviolet irradiation, hydrogen peroxide vapor, and preventive approaches such as the usage of antimicrobial surface coating offer promise in reducing the chance of disease transmission. These methods are also highly efficient in comparison with other strategies. Chemical disinfection strategies such as chlorination may lead to further disinfection byproducts, complicating the treatment processes. An overall analysis of various disinfection methods is presented here, including developing methods such as membrane technologies, highlighting the merits and demerits of each of these processes. Finally, the wastewater surveillance adopted during the COVID-19 outbreak is discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s13762-023-04803-1.
Collapse
Affiliation(s)
- A. Balakrishnan
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - M. M. Jacob
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - P. Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603203 India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai 603203 India
- School of Engineering, Lebanese American University, Byblos, Lebanon
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413 India
| | - A. Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh 208002 India
| | - M. Ponnuchamy
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - P. Sivaraman
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - M. Sillanpää
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan 611731 People’s Republic of China
| |
Collapse
|
38
|
Tang Y, Zhang B, Li Z, Deng P, Deng X, Long H, Wang X, Huang K. Overexpression of the sulfate transporter-encoding SULTR2 increases chromium accumulation in Chlamydomonas reinhardtii. Biotechnol Bioeng 2023; 120:1334-1345. [PMID: 36776103 DOI: 10.1002/bit.28350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Hexavalent chromium [Cr(Ⅵ)] is a highly toxic contaminant in aquatic systems, and microalgae represent promising bioremediators of metal-containing wastewater. However, the metal-binding capacity of algal cells is limited. Therefore, we improved the cellular Cr(Ⅵ) biosorption capacity of Chlamydomonas reinhardtii by overexpressing the sulfate transporter gene SULTR2. SULTR2 was predominantly located in the cytoplasm of the cell, and few proteins mobilized to the cell membrane as a Cr transporter under Cr stress conditions. Intracellular Cr accumulation was almost doubled in SULTR2-overexpressing transgenic strains after exposure to 30 μM K2 Cr2 O7 for 4 d. Alginate-based immobilization increased the rate of Cr removal from 43.81% to 88.15% for SULTR2-overexpressing transgenic strains after exposure to 10 μM K2 Cr2 O7 for 6 d. The immobilized cells also displayed a significant increase in nutrient removal efficiency compared to that of free-swimming cells. Therefore, SULTR2 overexpression in algae has a great potential for the bioremediation of Cr(Ⅵ)-containing wastewater.
Collapse
Affiliation(s)
- Yuxin Tang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Baolong Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhaoyang Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
39
|
Subash A, Naebe M, Wang X, Kandasubramanian B. Biopolymer - A sustainable and efficacious material system for effluent removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130168. [PMID: 36302289 DOI: 10.1016/j.jhazmat.2022.130168] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Undesired discharge of various effluents directly into the aquatic ecosystem can adversely affect water quality, endangering aquatic and terrestrial flora and fauna. Therefore, the conceptual design and fabrication of a sustainable system for alleviating the harmful toxins that are discharged into the atmosphere and water bodies using a green sustainable approach is a fundamental standpoint. Adsorptive removal of toxins (∼99% removal efficacy) is one of the most attractive and facile approaches for cleaner technologies that remediate the environmental impacts and provide a safe operating space. Recently, the introduction of biopolymers for the adsorptive abstraction of toxins from water has received considerable attention due to their eclectic accessibility, biodegradability, biocompatibility, non-toxicity, and enhanced removal efficacy (∼ 80-90% for electrospun fibers). This review summarizes the recent literature on the biosorption of various toxins by biopolymers and the possible interaction between the adsorbent and adsorbate, providing an in-depth perspective of the adsorption mechanism. Most of the observed results are explained in terms of (1) biopolymers classification and application, (2) toxicity of various effluents, (3) biopolymers in wastewater treatment and their removal mechanism, and (4) regeneration, reuse, and biodegradation of the adsorbent biopolymer.
Collapse
Affiliation(s)
- Alsha Subash
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia; Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| |
Collapse
|
40
|
Synthesis and Characterization of Mesoporous Silica Modified with Purpald and Its Application in the Preconcentration of Cu2+ and Cd2+ from Aqueous Samples through Solid-Phase Extraction. SEPARATIONS 2023. [DOI: 10.3390/separations10020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The synthesis of an organofunctionalized mesoporous silica was accomplished by a two-step process involving (1) the co-condensation of a silylant agent at the surface of silica, followed by (2) the immobilization of Purpald (ligand) at the organic termination of the silytant agent. The characterization of the organofunctionalized material indicated the presence of NH2 groups, and the immobilization of the ligand was confirmed by 29Si- and 13C-nuclear magnetic resonance. The material’s surface area was determined as 370 m2 g−1. Batch adsorption experiments enabled the determination of optimum pH conditions for the adsorption of Cu(II) and Cd(II). Under optimal pH, the pseudo-second-order kinetic model and Langmuir model provided the best correlations to describe the materials adsorption behavior, suggesting a chemisorption mechanism. When tested in continuous-flow preconcentration experiments, the flow rate and eluent concentration demonstrated to affect the removal of Cu(II) and Cd(II), while the buffer concentration had an effect only over the adsorption of Cu(II). Under optimized preconcentration conditions, it was possible both to determine the concentrations of Cu(II) and Cd(II) in samples such as mineral water, ground water, tap water and river water. Ions commonly found in drinking and natural waters (Na+, K+, Ca2+, Mg2+, Fe3+, Ba2+, Cl−, SO42−, HCO3−, and H2PO4−) did not affect the preconcentration of any of the studied analytes. Reutilization experiments indicated that the adsorbent material can withstand at least 40 adsorption/desorption preconcentration cycles with no efficiency loss.
Collapse
|
41
|
Hassanien A, Saadaoui I, Schipper K, Al-Marri S, Dalgamouni T, Aouida M, Saeed S, Al-Jabri HM. Genetic engineering to enhance microalgal-based produced water treatment with emphasis on CRISPR/Cas9: A review. Front Bioeng Biotechnol 2023; 10:1104914. [PMID: 36714622 PMCID: PMC9881887 DOI: 10.3389/fbioe.2022.1104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
In recent years, the increased demand for and regional variability of available water resources, along with sustainable water supply planning, have driven interest in the reuse of produced water. Reusing produced water can provide important economic, social, and environmental benefits, particularly in water-scarce regions. Therefore, efficient wastewater treatment is a crucial step prior to reuse to meet the requirements for use within the oil and gas industry or by external users. Bioremediation using microalgae has received increased interest as a method for produced water treatment for removing not only major contaminants such as nitrogen and phosphorus, but also heavy metals and hydrocarbons. Some research publications reported nearly 100% removal of total hydrocarbons, total nitrogen, ammonium nitrogen, and iron when using microalgae to treat produced water. Enhancing microalgal removal efficiency as well as growth rate, in the presence of such relevant contaminants is of great interest to many industries to further optimize the process. One novel approach to further enhancing algal capabilities and phytoremediation of wastewater is genetic modification. A comprehensive description of using genetically engineered microalgae for wastewater bioremediation is discussed in this review. This article also reviews random and targeted mutations as a method to alter microalgal traits to produce strains capable of tolerating various stressors related to wastewater. Other methods of genetic engineering are discussed, with sympathy for CRISPR/Cas9 technology. This is accompanied by the opportunities, as well as the challenges of using genetically engineered microalgae for this purpose.
Collapse
Affiliation(s)
- Alaa Hassanien
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Imen Saadaoui
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,Biological and environmental Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Kira Schipper
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | | | - Tasneem Dalgamouni
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, Qatar Foundation, College of Health and Life Sciences, Education City, Hamad Bin Khalifa University, Doha, Qatar
| | - Suhur Saeed
- ExxonMobil Research Qatar (EMRQ), Doha, Qatar
| | - Hareb M. Al-Jabri
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,Biological and environmental Sciences Department, College of Arts and Sciences, Qatar University, Doha, Qatar,*Correspondence: Hareb M. Al-Jabri,
| |
Collapse
|
42
|
Lavado-Meza C, De la Cruz-Cerrón L, Asencios YJ, Marcos FCF, Dávalos-Prado JZ. Alkaline Modification of Arabica-Coffee and Theobroma-Cocoa Agroindustrial Waste for Effective Removal of Pb(II) from Aqueous Solutions. Molecules 2023; 28:molecules28020683. [PMID: 36677741 PMCID: PMC9862124 DOI: 10.3390/molecules28020683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Arabica-coffee and Theobroma-cocoa agroindustrial wastes were treated with NaOH and characterized to efficiently remove Pb(II) from the aqueous media. The maximum Pb(II) adsorption capacities, qmax, of Arabica-coffee (WCAM) and Theobroma-cocoa (WCTM) biosorbents (qmax = 303.0 and 223.1 mg·g−1, respectively) were almost twice that of the corresponding untreated wastes and were higher than those of other similar agro-industrial biosorbents reported in the literature. Structural, chemical, and morphological characterization were performed by FT-IR, SEM/EDX, and point of zero charge (pHPZC) measurements. Both the WCAM and WCTM biosorbents showed typical uneven and rough cracked surfaces including the OH, C=O, COH, and C-O-C functional adsorbing groups. The optimal Pb(II) adsorption, reaching a high removal efficiency %R (>90%), occurred at a pH between 4 and 5 with a biosorbent dose of 2 g·L−1. The experimental data for Pb(II) adsorption on WACM and WCTM were well fitted with the Langmuir-isotherm and pseudo-second order kinetic models. These indicated that Pb(II) adsorption is a chemisorption process with the presence of a monolayer mechanism. In addition, the deduced thermodynamic parameters showed the endothermic (ΔH0 > 0), feasible, and spontaneous (ΔG0 < 0) nature of the adsorption processes studied.
Collapse
Affiliation(s)
- Carmencita Lavado-Meza
- Escuela Profesional de Ingeniería Ambiental, Universidad Nacional Intercultural de la Selva Central Juan Santos Atahualpa, Chanchamayo 12856, Peru
- Correspondence: authors: (C.L.-M.); (J.Z.D.-P.)
| | | | - Yvan J.O. Asencios
- Institute of Marine Science, Federal University of São Paulo, Santos 11030-100, SP, Brazil
| | - Francielle Candian Firmino Marcos
- Escola Politecnica, Department of Chemical Engineering, Universidade de São Paulo, Av. Prof. Luciano Gualberto, t. 3, 380, São Paulo 05508-010, SP, Brazil
| | - Juan Z. Dávalos-Prado
- Instituto de Química Física “Rocasolano”, CSIC, 28006 Madrid, Spain
- Correspondence: authors: (C.L.-M.); (J.Z.D.-P.)
| |
Collapse
|
43
|
Synergy between microalgae and microbiome in polluted waters. Trends Microbiol 2023; 31:9-21. [PMID: 35985939 DOI: 10.1016/j.tim.2022.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
Abstract
Microalga-microbiome interactions are central to both health and disease of aquatic environments. Despite impressive advances in deciphering how microorganisms participate in and impact aquatic ecosystems, the evolution and ecological involvement of microalgae and the microbiome in polluted waters are typically studied independently. Here, the phycosphere (i.e., the consortia of microalgae and the related microbiome) is regarded as an independent and integrated life form, and we summarize the survival strategies exhibited by this symbiont when exposed to anthropogenic pollution. We highlight the cellular strategies and discuss the modulation at the transcriptional and population levels, which reciprocally alters community structure or genome composition for medium-term acclimation or long-term adaptation. We propose a 'PollutantBiome' concept to help the understanding of microalga-microbiome interactions and development of beneficial microbial synthetic communities for pollutant remediation.
Collapse
|
44
|
Wani KI, Naeem M, Aftab T. Chromium in plant-soil nexus: Speciation, uptake, transport and sustainable remediation techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120350. [PMID: 36209933 DOI: 10.1016/j.envpol.2022.120350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/22/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal (HM) pollution has become a serious global problem due to the non-biodegradable nature of the HMs and their persistence in the environment. Agricultural soil is a non-renewable resource that requires careful management so that it can fulfill the increasing demand for agricultural food production. However, different anthropogenic activities have resulted in a large-scale accumulation of HMs in soil which is detrimental to soil and plant health. Due to their ubiquity, increased bioavailability, toxicity, and non-biodegradable nature, HM contamination has formed a roadblock in the way of achieving food security, safety, and sustainability in the future. Chromium (Cr), specifically Cr(VI) is a highly bioavailable HM with no proven role in the physiology of plants. Chromium has been found to be highly toxic to plants, with its toxicity also influenced by chemical speciation, which is in turn controlled by different factors, such as soil pH, redox potential, organic matter, and microbial population. In this review, the different factors that influence Cr speciation were analyzed and the relationship between biogeochemical transformations of Cr and its bioavailability which may be beneficial for devising different Cr remediation strategies has been discussed. Also, the uptake and transport mechanism of Cr in plants, with particular reference to sulfate and phosphate transporters has been presented. The biological solutions for the remediation of Cr contaminated sites which offer safe and viable alternatives to old-style physical and chemical remediation strategies have been discussed in detail. This review provides theoretical guidance in developing suitable approaches for the better management of these remediation strategies.
Collapse
Affiliation(s)
- Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
45
|
Ajeng AA, Rosli NSM, Abdullah R, Yaacob JS, Qi NC, Loke SP. Resource recovery from hydroponic wastewaters using microalgae-based biorefineries: A circular bioeconomy perspective. J Biotechnol 2022; 360:11-22. [PMID: 36272573 DOI: 10.1016/j.jbiotec.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
As the world's population grows, it is necessary to rethink how countries throughout the world produce food in order to replace the conventional and unsustainable agricultural techniques. Microalgae cultivation using a nutrient-rich solution from hydroponic systems not only presents a novel approach to solving problems pertaining to the impact of the discharges on the natural environment but also provides a plethora of other biotechnological applications particularly in the productions of high value-added products and plants growth stimulants, which can be potentially assimilated into the circular bioeconomy (CBE) in the hydroponic sector. In this review, the potential and practicability of microalgae to be merged into hydroponics CBE are reviewed. Overall, the integration of microalgal biorefineries in hydroponics systems can be realized after considering their Technology Readiness Level and System Readiness Level beforehand. Several suggestions on strains and hydroponics system improvement using existing biotechnological tools, Artificial Intelligence (AI) and nanobiotechnology in support of the CBE will be covered.
Collapse
Affiliation(s)
- Aaronn Avit Ajeng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Noor Sharina Mohd Rosli
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ng Cai Qi
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Show Pau Loke
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
46
|
Chai YD, Pang YL, Lim S, Chong WC, Lai CW, Abdullah AZ. Recent Progress on Tailoring the Biomass-Derived Cellulose Hybrid Composite Photocatalysts. Polymers (Basel) 2022; 14:5244. [PMID: 36501638 PMCID: PMC9736154 DOI: 10.3390/polym14235244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Biomass-derived cellulose hybrid composite materials are promising for application in the field of photocatalysis due to their excellent properties. The excellent properties between biomass-derived cellulose and photocatalyst materials was induced by biocompatibility and high hydrophilicity of the cellulose components. Biomass-derived cellulose exhibited huge amount of electron-rich hydroxyl group which could promote superior interaction with the photocatalyst. Hence, the original sources and types of cellulose, synthesizing methods, and fabrication cellulose composites together with applications are reviewed in this paper. Different types of biomasses such as biochar, activated carbon (AC), cellulose, chitosan, and chitin were discussed. Cellulose is categorized as plant cellulose, bacterial cellulose, algae cellulose, and tunicate cellulose. The extraction and purification steps of cellulose were explained in detail. Next, the common photocatalyst nanomaterials including titanium dioxide (TiO2), zinc oxide (ZnO), graphitic carbon nitride (g-C3N4), and graphene, were introduced based on their distinct structures, advantages, and limitations in water treatment applications. The synthesizing method of TiO2-based photocatalyst includes hydrothermal synthesis, sol-gel synthesis, and chemical vapor deposition synthesis. Different synthesizing methods contribute toward different TiO2 forms in terms of structural phases and surface morphology. The fabrication and performance of cellulose composite catalysts give readers a better understanding of the incorporation of cellulose in the development of sustainable and robust photocatalysts. The modifications including metal doping, non-metal doping, and metal-organic frameworks (MOFs) showed improvements on the degradation performance of cellulose composite catalysts. The information and evidence on the fabrication techniques of biomass-derived cellulose hybrid photocatalyst and its recent application in the field of water treatment were reviewed thoroughly in this review paper.
Collapse
Affiliation(s)
- Yi Ding Chai
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Woon Chan Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
47
|
Jia S, Wang H, Tang R, Ma S, Gong B, Ou J. Fast fabrication of micron-sized Janus particles with controlled morphology via seed-swelling photoinitiated polymerization and their application in Cu (II) ion removal. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Khan AA, Gul J, Naqvi SR, Ali I, Farooq W, Liaqat R, AlMohamadi H, Štěpanec L, Juchelková D. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. CHEMOSPHERE 2022; 306:135565. [PMID: 35793745 DOI: 10.1016/j.chemosphere.2022.135565] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Textile industry utilize a massive amount of dyes for coloring. The dye-containing effluent is released into wastewater along with heavy metals that are part of dye structure. The treatment of textile industry wastewater using conventional techniques (coagulation, membrane technique, electrolysis ion exchange, etc.) is uneconomical and less efficient (for a low concentration of pollutants). Moreover, most of these techniques produce toxic sludge, making them less environmentally friendly. Algae base industry is growing for food, cosmetics and energy needs. Algae biomass in unique compared to lignocellulosic biomass due to presence of various functional group on its surface and presence of various cations. These two characteristics are unique for biochar as a tool for environmental decontamination. Algae biomass contain functional groups and cations that can be effective for removal of organic contaminants (dyes) and heavy metals. Algae can be micro and macro and both have entirely different biomass composition which will lead to a synthesis of different biochar even under same synthesis process. This study reviews the recent progress in the development of an economically viable and eco-friendly approach for textile industry wastewater using algae biomass-derived absorbents. The strategy employed microalgal biochar to remove organic pollutants (dyes) and heavy metals from textile effluents by biosorption. This article discusses different methods for preparing algal biochar (pyrolysis, hydrothermal carbonization and torrefaction), and the adsorption capacity of biochar for dyes and heavy metals. Work on hydrothermal carbonization and torrefaction of microalgal biomass for biochar is limited. Variation in structural and functional groups changes on biochar compared to original microalgal biomass are profound in contract with lignocellulosic biomass. Existing Challenges, future goals, and the development of these technologies at the pilot level are also discussed.
Collapse
Affiliation(s)
- Abdul Ahad Khan
- School of Chemical and Materials Engineering, National University of Science & Technology, H-12, Islamabad, Pakistan.
| | - Jawad Gul
- School of Chemical and Materials Engineering, National University of Science & Technology, H-12, Islamabad, Pakistan
| | - Salman Raza Naqvi
- School of Chemical and Materials Engineering, National University of Science & Technology, H-12, Islamabad, Pakistan.
| | - Imtiaz Ali
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Wasif Farooq
- Department of Chemical Engineering, King Fahd University of Petroleum, and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Rabia Liaqat
- U.S.-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Libor Štěpanec
- Department of Electronics, Faculty of Electrical Engineering and Computer Science, VŠB - Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava-Poruba, 708 00, Czech Republic
| | - Dagmar Juchelková
- Department of Electronics, Faculty of Electrical Engineering and Computer Science, VŠB - Technical University of Ostrava, 17. Listopadu 15/2172, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
49
|
Priya AK, Gnanasekaran L, Dutta K, Rajendran S, Balakrishnan D, Soto-Moscoso M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. CHEMOSPHERE 2022; 307:135957. [PMID: 35985378 DOI: 10.1016/j.chemosphere.2022.135957] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Globally, ecotoxicologists, environmental biologists, biochemists, pathologists, and other experts are concerned about environmental contamination. Numerous pollutants, such as harmful heavy metals and emerging hazardous chemicals, are pervasive sources of water pollution. Water pollution and sustainable development have several eradication strategies proposed and used. Biosorption is a low-cost, easy-to-use, profitable, and efficient method of removing pollutants from water resources. Microorganisms are effective biosorbents, and their biosorption efficacy varies based on several aspects, such as ambient factors, sorbing materials, and metals to be removed. Microbial culture survival is also important. Biofilm agglomerates play an important function in metal uptake by extracellular polymeric molecules from water resources. This study investigates the occurrence of heavy metals, their removal by biosorption techniques, and the influence of variables such as those indicated above on biosorption performance. Ion exchange, complexation, precipitation, and physical adsorption are all components of biosorption. Between 20 and 35 °C is the optimal temperature range for biosorption efficiency from water resources. Utilizing living microorganisms that interact with the active functional groups found in the water contaminants might increase biosorption efficiency. This article discusses the negative impacts of microorganisms on living things and provides an outline of how they affect the elimination of heavy metals.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bengaluru, 562149, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | | |
Collapse
|
50
|
Zhang X, Zhang X, Li X, Liu Y, Yu H, Ma M. Porous geopolymer with controllable interconnected pores-a viable permeable reactive barrier filler for lead pollutant removal. CHEMOSPHERE 2022; 307:136128. [PMID: 35995199 DOI: 10.1016/j.chemosphere.2022.136128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Most of the commonly used traditional permeable reactive barrier (PRB) fillers have many drawbacks, such as poor retention of hydraulic conductivity, high cost, and a complex preparation process. Porous geopolymers (PGPs) with controllable pore structures could circumvent these drawbacks owing to their high adsorption capacity, cost-effective synthesis, and good chemical stability. In this study, based on our previous research, the "foaming-liquid film" balance control method was proposed and used to fabricate three PGPs with gradient pore connectivity. The influence of pore structure on the Pb2+ removal performance and migration mechanism were investigated by conducting both batch and column experiments. Closed, dead-end, capillary, and interconnected pores exist in the PGPs, and results indicated that interconnected pores effectively promote the migration of solute in the main flow channels to the deeper matrix, thereby enhancing the long-term dynamic removal efficiency. At breakthrough, the Pb2+ uptake of PGP-3 reached 146 mg g-1. Further, the proposed "foaming-liquid film" balance control method is effective to prepare PGPs with controllable connectivity, and the PGP-PRBs with a high proportion of interconnected pores exhibit excellent performance for the removal of heavy metals, which is advantageous for their future applications in groundwater decontamination.
Collapse
Affiliation(s)
- Xuhao Zhang
- Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, 250061, China; Institute of Geothermal Development, Shandong University, Weifang, 261200, China
| | - Xiao Zhang
- Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, 250061, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, China; Institute of Geothermal Development, Shandong University, Weifang, 261200, China.
| | - Xianghui Li
- Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, 250061, China; Institute of Geothermal Development, Shandong University, Weifang, 261200, China
| | - Yanshun Liu
- Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, 250061, China; Institute of Geothermal Development, Shandong University, Weifang, 261200, China
| | - Hao Yu
- Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, 250061, China; Institute of Geothermal Development, Shandong University, Weifang, 261200, China
| | - Minghui Ma
- Institute of Geothermal Development, Shandong University, Weifang, 261200, China
| |
Collapse
|