1
|
Zhang Y, Liu T, Nan T, Hua Z, Zhao Y, Yuan Y. Characteristics and functions of volatile organic compounds in the tripartite symbiotic system of Gastrodia elata-Armillaria gallica-Rahnella aceris HPDA25. PLANT SIGNALING & BEHAVIOR 2024; 19:2399426. [PMID: 39231270 PMCID: PMC11376408 DOI: 10.1080/15592324.2024.2399426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Tripartite interactions among plants, fungi, and bacteria are critical for maintaining plant growth and fitness, and volatile organic compounds (VOCs) play a significant role in these interactions. However, the functions of VOCs within the niche of mycoheterotrophic plants, which represent unique types of interactions, remain poorly understood. Gastrodia elata, a mycoheterotrophic orchid species, forms a symbiotic relationship with specific Armillaria species, serving as a model system to investigate this intriguing issue. Rahnella aceris HPDA25 is a plant growth-promoting bacteria isolated from G. elata, which has been found to facilitate the establishment of G. elata-Armillaria symbiosis. In this study, using the tripartite symbiotic system of G. elata-Armillaria gallica-R. aceris HPDA25, we investigate the role of VOCs in the interaction among mycoheterotrophic plants, fungi, and bacteria. Our results showed that 33 VOCs of HPDA25-inducible symbiotic G. elata elevated compared to non-symbiotic G. elata, indicating that VOCs indeed play a role in the symbiotic process. Among these, 21 VOCs were accessible, and six active VOCs showed complete growth inhibition activities against A. gallica, while R. aceris HPDA25 had no significant effect. In addition, three key genes of G. elata have been identified that may contribute to the increased concentration of six active VOCs. These results revealed for the first time the VOCs profile of G. elata and demonstrated its regulatory role in the tripartite symbiotic system involving G. elata, Armillaria, and bacteria.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianrui Liu
- Jiangxi Province Key Laboratory of Sustainable Utilization of Traditional Chinese Medicine Resources, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, China
| | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyi Hua
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Jiangxi Province Key Laboratory of Sustainable Utilization of Traditional Chinese Medicine Resources, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Experimental Research Center, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Zhang ZH, Chen J, Huang X, Aadil RM, Li B, Gao X. Natural pigments in the food industry: Enhancing stability, nutritional benefits, and gut microbiome health. Food Chem 2024; 460:140514. [PMID: 39047471 DOI: 10.1016/j.foodchem.2024.140514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Natural pigments are increasingly favored in the food industry for their vibrant colors, fewer side effects and potential health benefits compared to synthetic pigments. However, their application in food industry is hindered by their instability under harsh environmental conditions. This review evaluates current strategies aimed at enhancing the stability and bioactivity of natural pigments. Advanced physicochemical methods have shown promise in enhancing the stability of natural pigments, enabling their incorporation into food products to enhance sensory attributes, texture, and bioactive properties. Moreover, recent studies demonstrated that most natural pigments offer health benefits. Importantly, they have been found to positively influence gut microbiota, in particular their regulation of the beneficial and harmful flora of the gut microbiome, the reduction of ecological dysbiosis through changes in the composition of the gut microbiome, and the alleviation of systemic inflammation caused by a high-fat diet in mice, suggesting a beneficial role in dietary interventions.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jialin Chen
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Huang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Khuu MP, Paeslack N, Dremova O, Benakis C, Kiouptsi K, Reinhardt C. The gut microbiota in thrombosis. Nat Rev Cardiol 2024:10.1038/s41569-024-01070-6. [PMID: 39289543 DOI: 10.1038/s41569-024-01070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Abstract
The gut microbiota has emerged as an environmental risk factor that affects thrombotic phenotypes in several cardiovascular diseases. Evidence includes the identification of marker species by sequencing studies of the gut microbiomes of patients with thrombotic disease, the influence of antithrombotic therapies on gut microbial diversity, and preclinical studies in mouse models of thrombosis that have demonstrated the functional effects of the gut microbiota on vascular inflammatory phenotypes and thrombus formation. In addition to impaired gut barrier function promoting low-grade inflammation, gut microbiota-derived metabolites have been shown to act on vascular cell types and promote thrombus formation. Therefore, these meta-organismal pathways that link the metabolic capacities of gut microorganisms with host immune functions have emerged as potential diagnostic markers and novel drug targets. In this Review, we discuss the link between the gut microbiota, its metabolites and thromboembolic diseases.
Collapse
Affiliation(s)
- My Phung Khuu
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadja Paeslack
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Olga Dremova
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Corinne Benakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
4
|
Pu W, Wan S, Zhou Q, Gong Y, Fu X, Mu G, Zhang G, Wang C. Copper-Catalyzed Intramolecular Decarboxylative C(sp2)-Heteroatom Cross-Couplings: Mechanism Insights and Synthetic Applications. J Org Chem 2024; 89:11939-11949. [PMID: 39177441 DOI: 10.1021/acs.joc.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Decarboxylative C(sp2)-heteroatom cross-coupling reactions hold extraordinary potential for the sustainable preparation of biologically active scaffolds. Herein, we report a copper sulfate/1,10-phenathroline catalytic system for the decarboxylative intramolecular C(sp2)-O, C(sp2)-S, and C(sp2)-N coupling reactions leading to the construction of a series of benzo[b]furans, benzo[b]thiophenes, and indole derivatives from the corresponding coumarins, thiocoumarins, or quinolones, respectively. Our mechanistic study based on benzo[b]furan formation suggests a three-step process of the transformations, which consists of (i) base-mediated hydrolytic ring opening of coumarin, (ii) copper-oxygen co-initiated radical decarboxylation, and (iii) copper-catalyzed C-heteroatom cross coupling. Application of this method in the total synthesis of egonol, a bioactive natural product, was demonstrated successfully, with an overall yield of 51.7%.
Collapse
Affiliation(s)
- Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Shunli Wan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanqiu Gong
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Guanmin Mu
- Orient Baolin Technology Development (Beijing) Co., Ltd., Beijing 100000, China
| | - Guolin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
5
|
Hosseiniyan Khatibi SM, Dimaano NG, Veliz E, Sundaresan V, Ali J. Exploring and exploiting the rice phytobiome to tackle climate change challenges. PLANT COMMUNICATIONS 2024:101078. [PMID: 39233440 DOI: 10.1016/j.xplc.2024.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of the world's food supply. A new area that focuses on characterizing the phytobiome is emerging. The phytobiome comprises plants and their immediate surroundings, involving numerous interdependent microscopic and macroscopic organisms that affect the health and productivity of plants. Phytobiome studies primarily focus on the microbial communities associated with plants, which are referred to as the plant microbiome. The development of high-throughput sequencing technologies over the past 10 years has dramatically advanced our understanding of the structure, functionality, and dynamics of the phytobiome; however, comprehensive methods for using this knowledge are lacking, particularly for major crops such as rice. Considering the impact of rice production on world food security, gaining fresh perspectives on the interdependent and interrelated components of the rice phytobiome could enhance rice production and crop health, sustain rice ecosystem function, and combat the effects of climate change. Our review re-conceptualizes the complex dynamics of the microscopic and macroscopic components in the rice phytobiome as influenced by human interventions and changing environmental conditions driven by climate change. We also discuss interdisciplinary and systematic approaches to decipher and reprogram the sophisticated interactions in the rice phytobiome using novel strategies and cutting-edge technology. Merging the gigantic datasets and complex information on the rice phytobiome and their application in the context of regenerative agriculture could lead to sustainable rice farming practices that are resilient to the impacts of climate change.
Collapse
Affiliation(s)
| | - Niña Gracel Dimaano
- International Rice Research Institute, Los Baños, Laguna, Philippines; College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Esteban Veliz
- College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Venkatesan Sundaresan
- College of Biological Sciences, University of California, Davis, Davis, CA, USA; College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Jauhar Ali
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
6
|
Ranhotra HS. Discrete interplay of gut microbiota L-tryptophan metabolites in host biology and disease. Mol Cell Biochem 2024; 479:2273-2290. [PMID: 37861881 DOI: 10.1007/s11010-023-04867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
The gut microbiota and the host maintain a conjoint relationship and together achieve optimal physiology via a multitude of interactive signalling cues. Dietary-derived L-tryptophan (L-trp) is enzymatically metabolized by the resident symbiotic gut microbiota to indole and various indole derivatives. Indole and indole metabolites secreted by the gut bacteria act locally in the intestinal cells as well as distally and modulate tissue-specific functions which are beneficial to the host. Functions attributed to these microbial indole metabolites in the host include regulation of intestinal permeability, immunity and mucosal roles, inflammation, and insulin sensitivity. On the other hand, dysregulation of gut microbiota L-trp metabolism compromises the optimal availability of indole and indole metabolites and can induce the onset of metabolic disorders, inflammation, liver steatosis, and decrease gut barrier integrity. Gut dysbiosis is regarded as one of the prime reasons for this deregulated microbial-derived indole metabolites. A number of indole metabolites from the gut bacteria have been identified recently displaying variable affinity towards xenobiotic nuclear receptors. Microbial metabolite mimicry concept can be used to design and develop novel indole-moiety-containing compounds with higher affinity towards the receptors and efficacy in preclinical studies. Such compounds may serve as therapeutic drugs in clinical trials in the future. In this article, I review L-trp metabolism in the host and gut microbiota and the various physiological functions, patho-physiologies associated with the microbial-released indole metabolites in the host, including the metabolite mimicry-based concept to develop tailored indole-containing novel experimental drugs.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
7
|
Yang J, Cassaday J, Wyche TP, Squadroni B, Newhard W, Trinh H, Cabral D, Hett E, Sana TR, Lee K, Kasper S. A perfusion host-microbe bioreactor (HMB) system that captures dynamic interactions of secreted metabolites between epithelial cells cocultured with a human gut anaerobe. Biotechnol Bioeng 2024; 121:2691-2705. [PMID: 38715197 DOI: 10.1002/bit.28730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 04/18/2024] [Indexed: 08/15/2024]
Abstract
The human microbiota impacts a variety of diseases and responses to therapeutics. Due to a lack of robust in vitro models, detailed mechanistic explanations of host-microbiota interactions cannot often be recapitulated. We describe the design and development of a novel, versatile and modular in vitro system that enables indirect coculture of human epithelial cells with anaerobic bacteria for the characterization of host-microbe secreted metabolite interactions. This system was designed to compartmentalize anaerobes and human cells in separate chambers conducive to each organism's requisite cell growth conditions. Using perfusion, fluidic mixing, and automated sample collection, the cells continuously received fresh media, while in contact with their corresponding compartments conditioned supernatant. Supernatants from each chamber were collected in a cell-free time-resolved fashion. The system sustained low oxygen conditions in the anaerobic chamber, while also supporting the growth of a representative anaerobe (Bacteroides thetaiotaomicron) and a human colonic epithelial cell line (Caco-2) in the aerobic chamber. Caco-2 global gene expression changes in response to coculture with B. thetaiotaomicron was characterized using RNA sequencing. Extensive, targeted metabolomics analysis of over 150 central carbon metabolites was performed on the serially collected supernatants. We observed broad metabolite changes in host-microbe coculture, compared to respective mono-culture controls. These effects were dependent both on sampling time and the compartment probed (apical vs. basolateral). Coculturing resulted in the depletion of several important metabolites, including guanine, uridine 5'-monophosphate, asparagine, and thiamine. Additionally, while Caco-2 cells cultured alone predominantly affected the basolateral metabolite milieu, increased abundance of 2,3-dihydroxyisovalerate and thymine on the basolateral side, occurred when the cells were cocultured with B. thetaiotaomicron. Thus, our system can capture the dynamic, competitive and cooperative processes between host cells and gut microbes.
Collapse
Affiliation(s)
- Jingyun Yang
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | | | | | | | | | - Huong Trinh
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | - Erik Hett
- Merck & Co., Inc., Cambridge, Massachusetts, USA
| | | | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | | |
Collapse
|
8
|
Campanale A, Inserra A, Comai S. Therapeutic modulation of the kynurenine pathway in severe mental illness and comorbidities: A potential role for serotonergic psychedelics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111058. [PMID: 38885875 DOI: 10.1016/j.pnpbp.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.
Collapse
Affiliation(s)
| | - Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, PD, Italy.; IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
9
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
10
|
Sun S, Zhang G, Lv S, Sun J. Potential mechanisms of traditional Chinese medicine in the treatment of liver cirrhosis: a focus on gut microbiota. Front Microbiol 2024; 15:1407991. [PMID: 39234554 PMCID: PMC11371771 DOI: 10.3389/fmicb.2024.1407991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cirrhosis, a pathological stage that develops from various chronic liver diseases, is characterized by liver fibrosis, pseudolobular formation, and chronic inflammation. When it progresses to the decompensated phase, the mortality rate of cirrhosis can reach 80%. The role of gut microbiota in the progression of liver diseases has received significant attention. Numerous studies have shown that regulating gut microbiota has significant therapeutic effects on preventing and reversing liver cirrhosis. This article reviewed the mechanisms by which gut microbiota influence liver cirrhosis, explaining the effective therapeutic effects of traditional Chinese medicine. Through multi-directional regulation involving signaling pathways, gut microbiota diversity, and restoration of intestinal barrier function, traditional Chinese medicine has been promising in ameliorating liver cirrhosis, providing treatment options and pharmacological guidance for the occurrence and development of liver cirrhosis.
Collapse
Affiliation(s)
- Siyuan Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Coretti L, Buommino E, Lembo F. The aryl hydrocarbon receptor pathway: a linking bridge between the gut microbiome and neurodegenerative diseases. Front Cell Neurosci 2024; 18:1433747. [PMID: 39175504 PMCID: PMC11338779 DOI: 10.3389/fncel.2024.1433747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
The Aryl hydrocarbon receptor (AHR) is a cytosolic receptor and ligand-activated transcription factor widely expressed across various cell types in the body. Its signaling is vital for host responses at barrier sites, regulating epithelial renewal, barrier integrity, and the activities of several types of immune cells. This makes AHR essential for various cellular responses during aging, especially those governing inflammation and immunity. In this review, we provided an overview of the mechanisms by which the AHR mediates inflammatory response at gut and brain level through signals from intestinal microbes. The age-related reduction of gut microbiota functions is perceived as a trigger of aberrant immune responses linking gut and brain inflammation to neurodegeneration. Thus, we explored gut microbiome impact on the nature and availability of AHR ligands and outcomes for several signaling pathways involved in neurodegenerative diseases and age-associated decline of brain functions, with an insight on Parkinson's and Alzheimer's diseases, the most common neurodegenerative diseases in the elderly. Specifically, we focused on microbial tryptophan catabolism responsible for the production of several AHR ligands. Perspectives for the development of microbiota-based interventions targeting AHR activity are presented for a healthy aging.
Collapse
Affiliation(s)
- Lorena Coretti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | | - Francesca Lembo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Wang X, Yang S, Gao Q, Dai Y, Tian L, Wen L, Yan H, Yang L, Hou X, Liu P, Zhang L. Multi-omics reveals the phyllosphere microbial community and material transformations in cigars. Front Microbiol 2024; 15:1436382. [PMID: 39144227 PMCID: PMC11322134 DOI: 10.3389/fmicb.2024.1436382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
The quality of fermented plant leaves is closely related to the interleaf microorganisms and their metabolic activities. In this experiment, a multi-omics analysis was applied to investigate the link between the structural composition of the phyllosphere microbial community and the main metabolites during the fermentation process. It was found that the whole fermentation process of cigar leaves could be divided into three stages, in which the Mid-Stage was the most active period of microbial metabolic activities and occupied an important position. Staphylococcus, Brevundimonas, Acinetobacter, Brevibacterium, Pantoea, Aspergillus, Wallemia, Meyerozyma, Sampaiozyma, Adosporium and Trichomonascus played important roles in this fermentation. Staphylococcus and Aspergillus are the microorganisms that play an important role in the fermentation process. Staphylococcus were strongly correlated with lipids and amino acids, despite its low abundance, Stenotrophomonas is importantly associated with terpene and plays a significant role throughout the process. It is worth noting that Wapper exists more characteristic fungal genera than Filler and is more rapid in fermentation progress, which implies that the details of the fermentation process should be adjusted appropriately to ensure stable quality when faced with plant leaves of different genotypes. This experiment explored the relationship between metabolites and microorganisms, and provided a theoretical basis for further optimizing the fermentation process of plant leaves and developing techniques to improve product quality. Biomarker is mostly present in the pre-fermentation phase, but the mid-fermentation phase is the most important part of the process.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Shuai Yang
- Yuxi Zhongyan Tobacco Seed Co., Ltd., Yu’xi, China
| | - Qiang Gao
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Youqing Dai
- Cigar Operating Centre of China Tobacco Shandong Industrial Co., Ltd., Ji’nan, China
| | - Lei Tian
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Liang Wen
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Honghao Yan
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
13
|
Sobczuk J, Paczkowska K, Andrusiów S, Bolanowski M, Daroszewski J. Are Women with Polycystic Ovary Syndrome at Increased Risk of Alzheimer Disease? Lessons from Insulin Resistance, Tryptophan and Gonadotropin Disturbances and Their Link with Amyloid-Beta Aggregation. Biomolecules 2024; 14:918. [PMID: 39199306 PMCID: PMC11352735 DOI: 10.3390/biom14080918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer disease, the leading cause of dementia, and polycystic ovary syndrome, one of the most prevalent female endocrine disorders, appear to be unrelated conditions. However, studies show that both disease entities have common risk factors, and the amount of certain protein marker of neurodegeneration is increased in PCOS. Reports on the pathomechanism of both diseases point to the possibility of common denominators linking them. Dysregulation of the kynurenine pathway, insulin resistance, and impairment of the hypothalamic-pituitary-gonadal axis, which are correlated with amyloid-beta aggregation are these common areas. This article discusses the relationship between Alzheimer disease and polycystic ovary syndrome, with a particular focus on the role of disorders of tryptophan metabolism in both conditions. Based on a review of the available literature, we concluded that systemic changes occurring in PCOS influence the increased risk of neurodegeneration.
Collapse
Affiliation(s)
- Joachim Sobczuk
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
| | | | - Szymon Andrusiów
- Department of Neurology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jacek Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
14
|
Wu Z, Zhang F, Su Q, Ji Q, Zhu K, Zhang Y, Hou S, Gui L. Integrating 16S rRNA Sequencing and LC-MS-Based Metabolomics to Evaluate the Effects of Dietary Crude Protein on Ruminal Morphology, Fermentation Parameter and Digestive Enzyme Activity in Tibetan Sheep. Animals (Basel) 2024; 14:2149. [PMID: 39123675 PMCID: PMC11310993 DOI: 10.3390/ani14152149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
The dietary crude protein level could affect ruminal fermentation parameters and the microflora of ruminants. The present study's aim was to investigate the effects of different protein level diets on ruminal morphology, fermentation parameters, digestive enzyme activity, microflora and metabolites of Tibetan sheep. Ninety weaned lambs (initial weight of 15.40 ± 0.81 kg, 2 months old) were selected and randomly divided into three groups (six pens/treatment, five rams/pen). Dietary treatments were formulated with 13.03% (high protein, HP), 11.58% (moderate protein, MP) and 10.20% (low protein, LP), respectively. Compared with LP, both papillae length and papillae width were significantly promoted in HP and MP (p < 0.05). The concentrations of ammonia nitrogen, total VFAs, propionic acids and butyric acids in HP were significantly increased compared to those in MP and LP (p < 0.05). The activities of protease and α-amylase in HP were significantly greater than those of LP (p < 0.05). For the ruminal microbial community, higher proportions of phylum Prevotella 1 and Succiniclasticum and genus Rikenellaceae RC9 gut group and Ruminococcus 1 were observed in HP (p < 0.05). A total of 60 differential metabolites (DMs) (28 up, 32 down) between HP and MP; 73 DMs (55 up, 18 down) between HP and LP; and 65 DMs (49 up, 16 down) between MP and LP were identified. Furthermore, four pathways of the biosynthesis of unsaturated fatty acids, tryptophan metabolism, bile secretion and ABC transporters were significantly different (p < 0.05). The abundance of phylum Prevotella 1 was negatively associated with stearic acid and palmitic acid but positively associated with the taurine. The abundance of genus Ruminococcus 1 was negatively associated with stearic acid, oleic acid, erucic acid, Indole-3-acetamide and palmitic acid but positively associated with 6-hydroxymelatonin. In conclusion, a 13.03% CP level improved ruminal morphology, fermentation parameters and digestive enzyme activities through modulating the microbial community and regulating metabolism in Tibetan sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Z.W.); (F.Z.); (Q.S.); (Q.J.); (K.Z.); (Y.Z.); (S.H.)
| |
Collapse
|
15
|
Pham C, Stogios PJ, Savchenko A, Mahadevan R. Design and Characterization of a Generalist Biosensor for Indole Derivatives. ACS Synth Biol 2024; 13:2246-2252. [PMID: 38875315 DOI: 10.1021/acssynbio.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Transcription factor (TF)-based biosensors are useful synthetic biology tools for applications in a variety of areas of biotechnology. A major challenge of biosensor circuits is the limited repertoire of identified and well-characterized TFs for applications of interest, in addition to the challenge of optimizing selected biosensors. In this work, we implement the IclR family repressor TF TtgV from Pseudomonas putida DOT-T1E as an indole-derivative biosensor in Escherichia coli. We optimize the genetic circuit utilizing different components, providing insights into biosensor design and expanding on previous studies investigating this TF. We discover novel physiologically relevant ligands of TtgV, such as skatole. The broad specificity of TtgV makes it a useful target for directed evolution and protein engineering toward desired specificity. TtgV, as an indole-derivative biosensor, is a promising genetic component for the detection of compounds with biological activities relevant to health and the gut microbiome.
Collapse
Affiliation(s)
- Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
- The Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| |
Collapse
|
16
|
Boutroux M, Favre-Rochex S, Gorgette O, Touak G, Mühle E, Bouchier C, Chesneau O, Veyrier FJ, Clermont D, Rahi P. Neisseria leonii sp. nov., isolated from the nose, lung, and liver of rabbits. Int J Syst Evol Microbiol 2024; 74:006460. [PMID: 39023135 PMCID: PMC11316581 DOI: 10.1099/ijsem.0.006460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
A taxogenomic study of three strains (3986T, 51.81, and JF 2415) isolated from rabbits between 1972 and 2000 led to the description of a new Neisseria species. The highest sequence similarity of the 16S rRNA gene was found to Neisseria animalis NCTC 10212T (96.7 %). The 16S rRNA gene similarity above 99 % and average nucleotide identity (ANI) values above 96 % among the strains, indicated that they belong to the same species. At the same time, the strains shared ANI values below 81 % and dDDH values below 24 % with all described Neisseria species. In the bac120 gene phylogenetic tree, the three strains clustered near Neisseria elongata and Neisseria bacilliformis in the Neisseria clade. However, the Neisseria clade is not monophyletic, and includes the type strains of Morococcus cerebrosus, Bergeriella denitrificans, Kingella potus, Uruburuella suis, and Uruburuella testudinis. Neisseria shayeganii clustered outside the clade with members of the genus Eikenella. Amino acid identity (AAI) values were calculated, and a threshold of 71 % was used to circumscribe the genus Neisseria. According to this proposed AAI threshold, strains 3986T, 51.81, and JF 2415 were placed within the genus Neisseria. The cells of the three strains were Gram-stain-negative diplococcobacilli and non-motile. Optimal growth on trypticase soy agar occurred at 37 °C and pH 8.5 in aerobic conditions. Notably, all strains exhibited indole production in the API-NH test, which is atypical for Neisseria and the family Neisseriaceae. The strains exhibited a common set of 68 peaks in their MALDI-TOF MS profiles, facilitating the swift and accurate identification of this species. Based on genotypic and phenotypic data, it is proposed that strains 3986T, 51.81, and JF 2415 represent a novel species within the genus Neisseria, for which the name Neisseria leonii sp. nov. is proposed (type strain 3986T=R726T=CIP 109994T=LMG 32907T).
Collapse
Affiliation(s)
- Martin Boutroux
- Institut Pasteur, Université Paris Cité, Center of Biological Resources of Institut Pasteur (CRBIP), 75015 Paris, France
| | - Sandrine Favre-Rochex
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Olivier Gorgette
- Institut Pasteur, Université Paris Cité, Ultrastructural BioImaging Unit, 75015 Paris, France
| | - Gérald Touak
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Estelle Mühle
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Christiane Bouchier
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Olivier Chesneau
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Frédéric J. Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| | - Praveen Rahi
- Institut Pasteur, Université Paris Cité, Collection of Institut Pasteur (CIP), 75015 Paris, France
| |
Collapse
|
17
|
Zhang X, Gao Y, Mai Z, Li Y, Wang J, Zhao X, Zhang Y. Untargeted Metabolomic Analysis Reveals Plasma Differences between Mares with Endometritis and Healthy Ones. Animals (Basel) 2024; 14:1933. [PMID: 38998045 PMCID: PMC11240781 DOI: 10.3390/ani14131933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to explore alterations in plasma metabolites among mares afflicted with endometritis. Mares were divided into two groups, namely, the equine endometritis group (n = 8) and the healthy control group (n = 8), which included four pregnant and four non-pregnant mares, using a combination of clinical assessment and laboratory confirmation. Plasma samples from both groups of mares were analyzed through untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics. A total of 28 differentially abundant metabolites were identified by screening and identifying differentially abundant metabolites and analyzing the pathway enrichment of differentially. Ten metabolites were identified as potential biomarkers for the diagnosis of endometritis in mares. Among them, seven exhibited a decrease in the endometritis groups, including hexadecanedioic acid, oleoyl ethanolamide (OEA), [fahydroxy(18:0)]12_13-dihydroxy-9z-octa (12,13-diHOME), deoxycholic acid 3-glucuronide (DCA-3G), 2-oxindole, and (+/-)9-HPODE, and 13(S)-HOTRE. On the other hand, three metabolites, adenosine 5'-monophosphate (AMP), 5-hydroxy-dl-tryptophan (5-HTP), and l-formylkynurenine, demonstrated an increase. These substances primarily participate in the metabolism of tryptophan and linolenic acid, as well as fat and energy. In conclusion, metabolomics revealed differentially abundant metabolite changes in patients with mare endometritis. These specific metabolites can be used as potential biomarkers for the non-invasive diagnosis of mare endometritis.
Collapse
Affiliation(s)
- Xijun Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yujin Gao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
| | - Zhanhai Mai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
| | - Yina Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
| | - Jiamian Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (Y.G.); (Z.M.); (Y.L.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
18
|
Wang Y, Jiang S, Fu Q, Wang X, Zhang Z, Lyu X, Yao X, Qu Z, Zhao Y, Huang JA, Li Y. Unmasking Bacterial Identities: Exploiting Silver Nanoparticle 'Masks' for Enhanced Raman Scattering in the Rapid Discrimination of Diverse Bacterial Species and Antibiotic-Resistant Strains. Anal Chem 2024; 96:8566-8575. [PMID: 38748451 DOI: 10.1021/acs.analchem.4c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Unraveling bacterial identity through Raman scattering techniques has been persistently challenging due to homogeneously amplified Raman signals across a wide variety of bacterial molecules, predominantly protein- or nucleic acid-mediated. In this study, we present an approach involving the use of silver nanoparticles to completely and uniformly "mask" adsorption on the surface of bacterial molecules through sodium borohydride and sodium chloride. This approach enables the acquisition of enhanced surface-enhanced Raman scattering (SERS) signals from all components on the bacterial surface, facilitating rapid, specific, and label-free bacterial identification. For the first time, we have characterized the identity of a bacterium, including its DNA, metabolites, and cell walls, enabling the accurate differentiation of various bacterial strains, even within the same species. In addition, we embarked on an exploration of the origin and variability patterns of the main characteristic peaks of Gram-positive and Gram-negative bacteria. Significantly, the SERS peak ratio was found to determine the inflection point of accelerated bacterial death upon treatment with antimicrobials. We further applied this platform to identify 15 unique clinical antibiotic-resistant bacterial strains, including five Escherichia coli strains in human urine, a first for Raman technology. This work has profound implications for prompt and accurate identification of bacteria, particularly antibiotic-resistant strains, thereby significantly enhancing clinical diagnostics and antimicrobial treatment strategies.
Collapse
Affiliation(s)
- Yunpeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Shen Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin City, Heilongjiang Province 150081, China
| | - Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Zhe Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Xiaoming Lyu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Xinyu Yao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Zhangyi Qu
- School of Public Health, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Yingqi Zhao
- Faculty of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90014, Finland
| | - Jian-An Huang
- Faculty of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90014, Finland
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Oulu 90014, Finland
| |
Collapse
|
19
|
Casaro S, Prim JG, Gonzalez TD, Cunha F, Bisinotto RS, Chebel RC, Santos JEP, Nelson CD, Jeon SJ, Bicalho RC, Driver JP, Galvão KN. Integrating uterine microbiome and metabolome to advance the understanding of the uterine environment in dairy cows with metritis. Anim Microbiome 2024; 6:30. [PMID: 38802977 PMCID: PMC11131188 DOI: 10.1186/s42523-024-00314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Metritis is a prevalent uterine disease that affects the welfare, fertility, and survival of dairy cows. The uterine microbiome from cows that develop metritis and those that remain healthy do not differ from calving until 2 days postpartum, after which there is a dysbiosis of the uterine microbiome characterized by a shift towards opportunistic pathogens such as Fusobacteriota and Bacteroidota. Whether these opportunistic pathogens proliferate and overtake the uterine commensals could be determined by the type of substrates present in the uterus. The objective of this study was to integrate uterine microbiome and metabolome data to advance the understanding of the uterine environment in dairy cows that develop metritis. Holstein cows (n = 104) had uterine fluid collected at calving and at the day of metritis diagnosis. Cows with metritis (n = 52) were paired with cows without metritis (n = 52) based on days after calving. First, the uterine microbiome and metabolome were evaluated individually, and then integrated using network analyses. RESULTS The uterine microbiome did not differ at calving but differed on the day of metritis diagnosis between cows with and without metritis. The uterine metabolome differed both at calving and on the day of metritis diagnosis between cows that did and did not develop metritis. Omics integration was performed between 6 significant bacteria genera and 153 significant metabolites on the day of metritis diagnosis. Integration was not performed at calving because there were no significant differences in the uterine microbiome. A total of 3 bacteria genera (i.e. Fusobacterium, Porphyromonas, and Bacteroides) were strongly correlated with 49 metabolites on the day of metritis diagnosis. Seven of the significant metabolites at calving were among the 49 metabolites strongly correlated with opportunistic pathogenic bacteria on the day of metritis diagnosis. The main metabolites have been associated with attenuation of biofilm formation by commensal bacteria, opportunistic pathogenic bacteria overgrowth, tissue damage and inflammation, immune evasion, and immune dysregulation. CONCLUSIONS The data integration presented herein helps advance the understanding of the uterine environment in dairy cows with metritis. The identified metabolites may provide a competitive advantage to the main uterine pathogens Fusobacterium, Porphyromonas and Bacteroides, and may be promising targets for future interventions aiming to reduce opportunistic pathogenic bacteria growth in the uterus.
Collapse
Affiliation(s)
- S Casaro
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - J G Prim
- Department of Clinical Sciences, Auburn University, Auburn, AL, USA
| | - T D Gonzalez
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - F Cunha
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - R S Bisinotto
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - R C Chebel
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - J E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - C D Nelson
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - S J Jeon
- Department of Veterinary Biomedical Sciences, Long Island University, Brookville, NY, USA
| | - R C Bicalho
- FERA Diagnostics and Biologicals, College Station, TX, USA
| | - J P Driver
- Division of Animals Sciences, University of Missouri, Columbia, MO, USA
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA.
- D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Barbey C, Latour X. Molecular Mechanisms of Bacterial Communication and Their Biocontrol. Int J Mol Sci 2024; 25:5443. [PMID: 38791481 PMCID: PMC11121524 DOI: 10.3390/ijms25105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
A bacterium's ability to colonize and adapt to an ecological niche is highly dependent on its capacity to perceive and analyze its environment and its ability to interact with its hosts and congeners [...].
Collapse
Affiliation(s)
- Corinne Barbey
- Laboratory of Bacterial Communication and Anti-Infectious Strategies (CBSA UR4312, Formerly LMSM EA4312), University Rouen Normandie, Université Caen Normandie, Normandie University, F-76000 Rouen, France;
- Research Federation NORVEGE Fed4277, Normandie University, F-76000 Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Xavier Latour
- Laboratory of Bacterial Communication and Anti-Infectious Strategies (CBSA UR4312, Formerly LMSM EA4312), University Rouen Normandie, Université Caen Normandie, Normandie University, F-76000 Rouen, France;
- Research Federation NORVEGE Fed4277, Normandie University, F-76000 Rouen, France
- International Research Federation NOR-SEVE, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Biocontrol and Biostimulation for Agroecology Association (ABBA), F-75000 Paris, France
| |
Collapse
|
21
|
Zhang M, Qiao H, Yang S, Kwok LY, Zhang H, Zhang W. Human Breast Milk: The Role of Its Microbiota and Metabolites in Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10665-10678. [PMID: 38691667 DOI: 10.1021/acs.jafc.3c07690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
This review explores the role of microorganisms and metabolites in human breast milk and their impact on neonatal health. Breast milk serves as both a primary source of nutrition for newborns and contributes to the development and maturation of the digestive, immunological, and neurological systems. It has the potential to reduce the risks of infections, allergies, and asthma. As our understanding of the properties of human milk advances, there is growing interest in incorporating its benefits into personalized infant nutrition strategies, particularly in situations in which breastfeeding is not an option. Future infant formula products are expected to emulate the composition and advantages of human milk, aligning with an evolving understanding of infant nutrition. The long-term health implications of human milk are still under investigation.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hui Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuwei Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
22
|
Wang J, Zhang S, Kong J, Chang J. Pecan secondary metabolites influenced the population of Zeuzera coffeae by affecting the structure and function of the larval gut microbiota. Front Microbiol 2024; 15:1379488. [PMID: 38680914 PMCID: PMC11045946 DOI: 10.3389/fmicb.2024.1379488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Background The plant secondary metabolites (PSMs), as important plant resistance indicators, are important targets for screening plant insect resistance breeding. In this study, we aimed to investigate whether the population of Zeuzera coffeae (ZC) is affected by different varieties of Carya illinoinensis PSMs content. At the same time, the structure and function of the gut microbiome of ZC were also analyzed in relation to different pecan varieties. Methods We counted the populations of ZC larvae in four pecan varieties and determined the content of four types of PSMs. The structure and function of the larval gut microbiota were studied in connection to the number of larvae and the content of PSMs. The relationships were investigated between larval number, larval gut microbiota, and PSM content. Results We found that the tannins, total phenolics, and total saponins of 4 various pecans PSMs stifled the development of the ZC larval population. The PSMs can significantly affect the diversity and abundance of the larval gut microbiota. Enrichment of ASV46 (Pararhizobium sp.), ASV994 (Olivibacter sp.), ASV743 (Rhizobium sp.), ASV709 (Rhizobium sp.), ASV671 (Luteolibacter sp.), ASV599 (Agrobacterium sp.), ASV575 (Microbacterium sp.), and ASV27 (Rhizobium sp.) in the gut of larvae fed on high-resistance cultivars was positively associated with their tannin, total saponin, and total phenolic content. The results of the gut microbiome functional prediction for larvae fed highly resistant pecan varieties showed that the enriched pathways in the gut were related to the breakdown of hazardous chemicals. Conclusion Our findings provide further evidence that pecan PSMs influence the structure and function of the gut microbiota, which in turn affects the population stability of ZC. The study's findings can serve as a theoretical foundation for further work on selecting ZC-resistant cultivars and developing green management technology for ZC.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Junqia Kong
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou, China
| | - Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
23
|
Cicchinelli S, Gemma S, Pignataro G, Piccioni A, Ojetti V, Gasbarrini A, Franceschi F, Candelli M. Intestinal Fibrogenesis in Inflammatory Bowel Diseases: Exploring the Potential Role of Gut Microbiota Metabolites as Modulators. Pharmaceuticals (Basel) 2024; 17:490. [PMID: 38675450 PMCID: PMC11053610 DOI: 10.3390/ph17040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Fibrosis, sustained by the transformation of intestinal epithelial cells into fibroblasts (epithelial-to-mesenchymal transition, EMT), has been extensively studied in recent decades, with the molecular basis well-documented in various diseases, including inflammatory bowel diseases (IBDs). However, the factors influencing these pathways remain unclear. In recent years, the role of the gut microbiota in health and disease has garnered significant attention. Evidence suggests that an imbalanced or dysregulated microbiota, along with environmental and genetic factors, may contribute to the development of IBDs. Notably, microbes produce various metabolites that interact with host receptors and associated signaling pathways, influencing physiological and pathological changes. This review aims to present recent evidence highlighting the emerging role of the most studied metabolites as potential modulators of molecular pathways implicated in intestinal fibrosis and EMT in IBDs. These studies provide a deeper understanding of intestinal inflammation and fibrosis, elucidating the molecular basis of the microbiota role in IBDs, paving the way for future treatments.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
24
|
Li Y, Liu Y, Mu C, Zhang C, Yu M, Tian Z, Deng D, Ma X. Magnolol-driven microbiota modulation elicits changes in tryptophan metabolism resulting in reduced skatole formation in pigs. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133423. [PMID: 38359760 DOI: 10.1016/j.jhazmat.2024.133423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 02/17/2024]
Abstract
Skatole of gut origin has garnered significant attention as a malodorous pollutant due to its escalating emissions, recalcitrance to biodegradation and harm to animal and human health. Magnolol is a health-promoting polyphenol with potential to considerably mitigate the skatole production in the intestines. To investigate the impact of magnolol and its underlying mechanism on the skatole formation, in vivo and in vitro experiments were conducted in pigs. Our results revealed that skatole concentrations in the cecum, colon, and faeces decreased by 58.24% (P = 0.088), 44.98% (P < 0.05) and 43.52% (P < 0.05), respectively, following magnolol supplementation. Magnolol supplementation significantly decreased the abundance of Lachnospira, Faecalibacterium, Paramuribaculum, Faecalimonas, Desulfovibrio, Bariatricus, and Mogibacterium within the colon (P < 0.05). Moreover, a strong positive correlation (P < 0.05) between skatole concentration and Desulfovibrio abundance was observed. Subsequent in silico studies showed that magnolol could dock well with indolepyruvate decarboxylase (IPDC) within Desulfovibrio. Further in vitro investigation unveiled that magnolol addition led to less indole-3-pyruvate diverted towards the oxidative skatole pathway by the potential docking of magnolol towards IPDC, thereby diminishing the conversion of substrate into skatole. Our findings offer novel targets and strategies for mitigating skatole emission from the source.
Collapse
Affiliation(s)
- Yuanfei Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China; Institute of Biological Technology, Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang 330032, China
| | - Yanchen Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China
| | - Chunlong Mu
- Food Informatics, AgResearch, Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China.
| |
Collapse
|
25
|
Zhu H, Yang X, Zhao Y. Recent Advances in Current Uptake Situation, Metabolic and Nutritional Characteristics, Health, and Safety of Dietary Tryptophan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6787-6802. [PMID: 38512048 DOI: 10.1021/acs.jafc.3c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tryptophan (Trp) is an essential amino acid which is unable to be synthesized in the body. Main sources of Trp are uptake of foods such as oats and bananas. In this review, we describe the status of current dietary consumption, metabolic pathways and nutritional characteristics of Trp, as well as its ingestion and downstream metabolites for maintaining body health and safety. This review also summarizes the recent advances in Trp metabolism, particularly the 5-HT, KYN, and AhR activation pathways, revealing that its endogenous host metabolites are not only differentially affected in the body but also are closely linked to health. More attention should be paid to targeting its specific metabolic pathways and utilizing food molecules and probiotics for manipulating Trp metabolism. However, the complexity of microbiota-host interactions requires further exploration to precisely refine targets for innovating the gut microbiota-targeted diagnostic approaches and informing subsequent studies and targeted treatments of diseases.
Collapse
Affiliation(s)
- Haoyan Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
26
|
Wang C, Defoirdt T, Rajkovic A. The impact of indole and mucin on sporulation, biofilm formation, and enterotoxin production in foodborne Clostridium perfringens. J Appl Microbiol 2024; 135:lxae083. [PMID: 38544331 DOI: 10.1093/jambio/lxae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
AIMS Indole and mucin are compounds found in the host environment as they are produced by the host or by the host-associated microbiota. This study investigated whether indole and mucin impact Clostridium perfringens growth and sporulation, as well as enterotoxin production and biofilm formation. METHODS AND RESULTS There was no impact on growth of Cl. perfringens for up to 400 µM indole and 240 mg/l mucin, and neither indole nor mucin affected sporulation. Reverse-transcriptase qPCR showed that mucin strongly upregulated the expression of Cl. perfringens enterotoxin (up to 121-fold increase), whereas indole had a much more modest effect (2-fold). This was also reflected in increased Cl. perfringens enterotoxin levels in mucin-treated Cl. perfringens (as assessed by a reversed passive latex agglutination assay). Finally, mucin and indole significantly increased biofilm formation of Cl. perfringens, although the effect size was relatively small (less than 1.5 fold). CONCLUSION These results indicate that Cl. perfringens can sense its presence in a host environment by responding to mucin, and thereby markedly increased enterotoxin production.
Collapse
Affiliation(s)
- Chao Wang
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Andreja Rajkovic
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Suntornsaratoon P, Ferraris RP, Ambat J, Antonio JM, Flores J, Jones A, Su X, Gao N, Li WV. Metabolomic and Transcriptomic Correlative Analyses in Germ-Free Mice Link Lacticaseibacillus rhamnosus GG-Associated Metabolites to Host Intestinal Fatty Acid Metabolism and β-Oxidation. J Transl Med 2024; 104:100330. [PMID: 38242234 DOI: 10.1016/j.labinv.2024.100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Intestinal microbiota confers susceptibility to diet-induced obesity, yet many probiotic species that synthesize tryptophan (trp) actually attenuate this effect, although the underlying mechanisms are unclear. We monocolonized germ-free mice with a widely consumed probiotic Lacticaseibacillus rhamnosus GG (LGG) under trp-free or -sufficient dietary conditions. We obtained untargeted metabolomics from the mouse feces and serum using liquid chromatography-mass spectrometry and obtained intestinal transcriptomic profiles via bulk-RNA sequencing. When comparing LGG-monocolonized mice with germ-free mice, we found a synergy between LGG and dietary trp in markedly promoting the transcriptome of fatty acid metabolism and β-oxidation. Upregulation was specific and was not observed in transcriptomes of trp-fed conventional mice and mice monocolonized with Ruminococcus gnavus. Metabolomics showed that fecal and serum metabolites were also modified by LGG-host-trp interaction. We developed an R-Script-based MEtabolome-TRanscriptome Correlation Analysis algorithm and uncovered LGG- and trp-dependent metabolites that were positively or negatively correlated with fatty acid metabolism and β-oxidation gene networks. This high-throughput metabolome-transcriptome correlation strategy can be used in similar investigations to reveal potential interactions between specific metabolites and functional or disease-related transcriptomic networks.
Collapse
Affiliation(s)
- Panan Suntornsaratoon
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Physiology, Mahidol University, Bangkok, Thailand
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey.
| | - Jayanth Ambat
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Jayson M Antonio
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Juan Flores
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, New Jersey
| | - Abigail Jones
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Nan Gao
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Biological Sciences, Life Science Center, Rutgers University, Newark, New Jersey
| | - Wei Vivian Li
- Department of Statistics, University of California, Riverside, California.
| |
Collapse
|
28
|
Zhang J, Ma Q, Wang C, Lu S, Fan S. Biodegradation characteristics and genomic analysis of a newly isolated indole-degrading strain Pseudomonas aeruginosa Jade-X. Int Microbiol 2024; 27:449-457. [PMID: 37490176 DOI: 10.1007/s10123-023-00408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Indole is a typical heterocyclic compound derived from tryptophan widespread in nature. Pseudomonas aeruginosa is one of the most common opportunistic pathogens everywhere in the world. Indole and P. aeruginosa will encounter inevitably; however, the indole transformation process by P. aeruginosa remains unclear. Herein, an indole-degrading strain of P. aeruginosa Jade-X was isolated from activated sludge. Strain Jade-X could degrade 1 mmol/L indole within 48 h with the inoculum size of 1% (v/v). It showed high efficiency in indole degradation under the conditions of 30-42 °C, pH 5.0-9.0, and NaCl concentration less than 2.5%. The complete genome of strain Jade-X was sequenced which was 6508614 bp in length with one chromosome. Bioinformatic analyses showed that strain Jade-X did not contain the indole oxygenase gene. Three cytochrome P450 genes were identified and up-regulated in the indole degradation process by RT-qPCR analysis, while cytochrome P450 inhibitors did not affect the indole degradation process. It suggested that indole oxidation was catalyzed by an unraveled enzyme. An ant gene cluster was identified, among which the anthranilate 1,2-dioxygenase and catechol 1,2-dioxygenase genes were upregulated. An indole-anthranilate-catechol pathway was proposed in indole degradation by strain P. aeruginosa Jade-X. This study enriched our understanding of the indole biodegradation process in P. aeruginosa.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Caihong Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Shuxian Lu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Shengqiang Fan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
29
|
Zhang J, Ma Q, Wang C, Meng N. Unraveling the signaling roles of indole in an opportunistic pathogen Pseudomonas aeruginosa strain Jade-X. CHEMOSPHERE 2024; 352:141482. [PMID: 38387666 DOI: 10.1016/j.chemosphere.2024.141482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/29/2023] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Pseudomonas aeruginosa, which can produce several toxins and form biofilm, is listed among the priority pathogens. Indole is a ubiquitous aromatic pollutant and signaling molecule produced by tryptophanase in bacteria. Herein, the impacts of indole on a newly isolated P. aeruginosa strain Jade-X were systematically investigated. Indole (0.5-2.0 mM) enhanced the biofilm production by 1.33-2.31-fold after 24 h incubation at 30 °C. However, the effects indole on biofilm formation were intricate and closely intertwined with factors such as incubation temperature, bacterial growth stage, and indole concentration. The twitching motility was enhanced by 1.15-1.99-fold by indole, potentially facilitating surface exploration and biofilm development. Indole reduced the production of virulence factors (pyocyanin and pyoverdine) as well as altered the surface properties (zeta potential and hydrophobicity). Transcriptional analysis revealed that indole (1.0 mM) significantly downregulated mexGHI-opmD efflux genes (4.73-6.91-fold) and virulence-related genes (pqs, pch, and pvd clusters, and flagella-related genes), while upregulating pili-related genes in strain Jade-X. The quorum sensing related signal regulators, including RhlR, LasR, and MvfR (PqsR), were not altered by indole, while other six transcriptional regulators (AmrZ, BfmR, PchR, QscR, SoxR, and SphR) were significantly affected, implying that indole effects might be regulated in a complex and delicate manner. This study should provide new insights into our understanding of indole signaling roles.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Caihong Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Nan Meng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
30
|
Liu S, Yang L, Zhang Y, Chen H, Li X, Xu Z, Du R, Li X, Ma J, Liu D. Review of yeast culture concerning the interactions between gut microbiota and young ruminant animals. Front Vet Sci 2024; 11:1335765. [PMID: 38496306 PMCID: PMC10940410 DOI: 10.3389/fvets.2024.1335765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/22/2024] [Indexed: 03/19/2024] Open
Abstract
Microorganisms inhabit the gastrointestinal tract of ruminants and regulate body metabolism by maintaining intestinal health. The state of gastrointestinal health is influenced not only by the macro-level factors of optimal development and the physiological structure integrity but also by the delicate equilibrium between the intestinal flora and immune status at the micro-level. Abrupt weaning in young ruminants causes incomplete development of the intestinal tract resulting in an unstable and unformed microbiota. Abrupt weaning also induced damages to the microecological homeostasis of the intestinal tract, resulting in the intestinal infections and diseases, such as diarrhea. Recently, nutritional and functional yeast culture has been researched to tackle these problems. Herein, we summarized current known interactions between intestinal microorganisms and the body of young ruminants, then we discussed the regulatory effects of using yeast culture as a feed supplement. Yeast culture is a microecological preparation that contains yeast, enriched with yeast metabolites and other nutrient-active components, including β-glucan, mannan, digestive enzymes, amino acids, minerals, vitamins, and some other unknown growth factors. It stimulates the proliferation of intestinal mucosal epithelial cells and the reproduction of intestinal microorganisms by providing special nutrient substrates to support the intestinal function. Additionally, the β-glucan and mannan effectively stimulate intestinal mucosal immunity, promote immune response, activate macrophages, and increase acid phosphatase levels, thereby improving the body's resistance to several disease. The incorporation of yeast culture into young ruminants' diet significantly alleviated the damage caused by weaning stress to the gastrointestinal tract which also acts an effective strategy to promote the balance of intestinal flora, development of intestinal tissue, and establishment of mucosal immune system. Our review provides a theoretical basis for the application of yeast culture in the diet of young ruminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dacheng Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
31
|
Yang K, Zhang X, Gui W, Zhen Q, Ban Y, Chen Y, Ma L, Pan S, Yan Y, Ding M. Alteration of Plasma Indoles in Polycystic Ovary Syndrome. Reprod Sci 2024; 31:764-772. [PMID: 37828362 DOI: 10.1007/s43032-023-01377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies in reproductive-aged women. The occurrence of PCOS was reported to be associated with the alteration of gut microbiota. Microbiota-derived indoles may possibly play a key role in glycemic control. The purpose of this work is to reveal the alteration of plasma indoles in PCOS patients and to investigate the correlation between indoles levels and glucose metabolism. Sixty-five patients with PCOS and twenty-eight age-matched women were enrolled in this work. The concentrations of plasma indoles, including indoxyl sulfate (IS), indole-3-acetic acid (IAA), indole-3-propionate (IPA), indole (IND), and 3-methylindole (3-MI), were measured by HPLC with the fluorescence detection. The plasma levels of IS, IAA, and IND were significantly elevated in patients with PCOS compared to those in the control group (p < 0.05). Furthermore, the plasma levels of IS, IAA, and IND were positively correlated with fasting glucose, fasting insulin, and the homeostatic model of insulin resistance index (HOMA-IR) (p < 0.05). Besides, the 3-MI level in the plasma was positively correlated with the fasting glucose level, whereas plasma levels of IS, IAA, IND, and 3-MI were negatively correlated with glucagon-like peptide 1 (p < 0.05). Moreover, IS and IND were considered to be risk factors for PCOS after age, BMI, T, LH, and HOMA-IR adjustment. The area under the receiver-operating characteristic curve of the combined index of five indoles was 0.867 for PCOS diagnosis. Additionally, plasma indoles altered in PCOS, which was closely associated with the glucose metabolism.
Collapse
Affiliation(s)
- Ke Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaoqing Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenwu Gui
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianna Zhen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanna Ban
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ma
- Laboratory of Lipid &Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengnan Pan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yutong Yan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Min Ding
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
32
|
Sultana R, Islam SMN, Sriti N, Ahmed M, Shuvo SB, Rahman MH, Jashim AII. Sphingomonas panaciterrae PB20 increases growth, photosynthetic pigments, antioxidants, and mineral nutrient contents in spinach ( Spinacia oleracea L.). Heliyon 2024; 10:e25596. [PMID: 38356594 PMCID: PMC10865318 DOI: 10.1016/j.heliyon.2024.e25596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) have been intensively investigated in agricultural crops for decades. Nevertheless, little information is available on the application of Sphingomonas spp. as a PGPR particularly in vegetables, despite of potential plant growth promoting traits of this group. This study investigated the role of Sphingomonas panaciterrae (PB20) on growth and nutritional profile of spinach applied through seed priming (SP), soil drenching (SD), foliar application (FA), and bacterial culture filtrate foliar (BCF) applications. The results showed that, depending on different methods of application, PB20 significantly increased plant height (19.57-65.65 %), fresh weight (7.26-37.41 %), total chlorophyll (71.14-192.54 %), carotenoid (67.10-211.67 %) antioxidant (55.99-207.04), vitamin C (8.1-94.6 %) and protein content (6.7-21.5 %) compared to control in the edible part of spinach. Among the mineral nutrients, root nitrogen (N) showed greater response to bacterial application (18.65%-46.15 % increase over control) than shoot nitrogen (6.70%-21.52 % increased over control). Likewise, in all methods of application, phosphorus (P) content showed significant increase over control both in root (42.79-78.48 %) and in shoot (3.57-27.0 %). Seed priming and foliar application of PB20 increased the shoot calcium (Ca) content compared to control. BCF foliar application yielded maximum magnesium (Mg), iron (Fe) and zinc (Zn) in shoot. However, seed priming resulted in maximum Fe in root. Overall, seed priming outperformed in growth, vitamin C, antioxidants, N and P uptake, while BCF foliar application resulted in better uptake of several nutrients. Multivariate analysis validated the positive association of most of the growth parameters with SP while several nutrients with FA and BCF. Based on the findings it is evident that this rhizobacteria PB20 has the potentiality to be applied as a biofertilizer to produce nutrient-enriched spinach with an improved yield. Farmers can conveniently incorporate PR20 through seed priming before planting of spinach, with additional benefits through foliar spray.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shah Mohammad Naimul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
| | - Nurjahan Sriti
- Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mysha Ahmed
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sourav Biswas Shuvo
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Habibur Rahman
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Asif Iqbal Ibne Jashim
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
33
|
Liikonen V, Gomez-Gallego C, Kolehmainen M. The effects of whole grain cereals on tryptophan metabolism and intestinal barrier function: underlying factors of health impact. Proc Nutr Soc 2024; 83:42-54. [PMID: 37843435 DOI: 10.1017/s0029665123003671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
This review aims to investigate the relationship between the health impact of whole grains mediated via the interaction with intestinal microbiota and intestinal barrier function with special interest on tryptophan metabolism, focusing on the role of the intestinal microbiota and their impact on barrier function. Consuming various types of whole grains can lead to the growth of different microbiota species, which in turn leads to the production of diverse metabolites, including those derived from tryptophan metabolism, although the impact of whole grains on intestinal microbiota composition results remains inconclusive and vary among different studies. Whole grains can exert an influence on tryptophan metabolism through interactions with the intestinal microbiota, and the presence of fibre in whole grains plays a notable role in establishing this connection. The impact of whole grains on intestinal barrier function is closely related to their effects on the composition and activity of intestinal microbiota, and SCFA and tryptophan metabolites serve as potential links connecting whole grains, intestinal microbiota and the intestinal barrier function. Tryptophan metabolites affect various aspects of the intestinal barrier, such as immune balance, mucus and microbial barrier, tight junction complexes and the differentiation and proliferation of epithelial cells. Despite the encouraging discoveries in this area of research, the evidence regarding the effects of whole grain consumption on intestine-related activity remains limited. Hence, we can conclude that we are just starting to understand the actual complexity of the intestinal factors mediating in part the health impacts of whole grain cereals.
Collapse
Affiliation(s)
- Vilma Liikonen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| | - Carlos Gomez-Gallego
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| | - Marjukka Kolehmainen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O.Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
34
|
Khaova EA, Tkachenko AG. Effects of polyamines and indole on the expression of ribosome hibernation factors in Escherichia coli at the translational level. Vavilovskii Zhurnal Genet Selektsii 2024; 28:24-32. [PMID: 38465244 PMCID: PMC10917681 DOI: 10.18699/vjgb-24-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 03/12/2024] Open
Abstract
Polyamines and indole are small regulatory molecules that are involved in the adaptation to stress in bacteria, including the regulation of gene expression. Genes, the translation of which is under the regulatory effects of polyamines, form the polyamine modulon. Previously, we showed that polyamines upregulated the transcription of genes encoding the ribosome hibernation factors RMF, RaiA, SRA, EttA and RsfS in Escherichia coli. At the same time, indole affected the expression at the transcriptional level of only the raiA and rmf genes. Ribosome hibernation factors reversibly inhibit translation under stress conditions, including exposure to antibiotics, to avoid resource waste and to conserve ribosomes for a quick restoration of their functions when favorable conditions occur. In this work, we have studied the influence of indole on the expression of the raiA and rmf genes at the translational level and regulatory effects of the polyamines putrescine, cadaverine and spermidine on the translation of the rmf, raiA, sra, ettA and rsfS genes. We have analyzed the mRNA primary structures of the studied genes and the predicted mRNA secondary structures obtained by using the RNAfold program for the availability of polyamine modulon features. We have found that all of the studied genes contain specific features typical of the polyamine modulon. Furthermore, to investigate the influence of polyamines and indole on the translation of the studied genes, we have constructed the translational reporter lacZ-fusions by using the pRS552/λRS45 system. According to the results obtained, polyamines upregulated the expression of the rmf, raiA and sra genes, the highest expression of which was observed at the stationary phase, but did not affect the translation of the ettA and rsfS genes, the highest expression of which took place during the exponential phase. The stimulatory effects were polyamine-specific and observed at the stationary phase, when bacteria are under multiple stresses. In addition, the data obtained demonstrated that indole significantly inhibited translation of the raiA and rmf genes, despite the stimulatory effect on their transcrip- tion. This can suggest the activity of a posttranscriptional regulatory mechanism of indole on gene expression.
Collapse
Affiliation(s)
- E A Khaova
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - A G Tkachenko
- Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences, Perm Federal Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
35
|
Johansson L, Ringmark S, Bergquist J, Skiöldebrand E, Jansson A. A metabolomics perspective on 2 years of high-intensity training in horses. Sci Rep 2024; 14:2139. [PMID: 38273017 PMCID: PMC10810775 DOI: 10.1038/s41598-024-52188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
The plasma metabolomic profile of elite harness horses subjected to different training programmes was explored. All horses had the same training programme from 1.5 until 2 years of age and then high-intensity training was introduced, with horses divided into high and low training groups. Morning blood samples were collected at 1.5, 2, 2.5 and 3.5 years of age. The plasma was analysed using targeted absolute quantitative analysis and a combination of tandem mass spectrometry, flow-injection analysis and liquid chromatography. Differences between the two training groups were observed at 2 years of age, when 161 metabolites and sums and ratios were lower (e.g. ceramide and several triglycerides) and 51 were higher (e.g. aconitic acid, anserine, sum of PUFA cholesteryl esters and solely ketogenic AAs) in High compared with low horses. The metabolites aconitic acid, anserine, leucine, HArg synthesis and sum of solely ketogenic AAs increased over time, while beta alanine synthesis, ceramides and indole decreased. Therefore high-intensity training promoted adaptations linked to aerobic energy production and amino acid metabolism, and potentially also affected pH-buffering and vascular and insulin responses.
Collapse
Affiliation(s)
- L Johansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, 750 07, Uppsala, Sweden
| | - S Ringmark
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, 750 07, Uppsala, Sweden
| | - J Bergquist
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, 750 07, Uppsala, Sweden
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, P.O. Box 599, 751 24, Uppsala, Sweden
| | - E Skiöldebrand
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - A Jansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, 750 07, Uppsala, Sweden.
| |
Collapse
|
36
|
Li Y, Chen Y, Fu Y, Shao J, Liu Y, Xuan W, Xu G, Zhang R. Signal communication during microbial modulation of root system architecture. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:526-537. [PMID: 37419655 DOI: 10.1093/jxb/erad263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023]
Abstract
Every living organism on Earth depends on its interactions with other organisms. In the rhizosphere, plants and microorganisms constantly exchange signals and influence each other's behavior. Recent studies have shown that many beneficial rhizosphere microbes can produce specific signaling molecules that affect plant root architecture and therefore could have substantial effects on above-ground growth. This review examines these chemical signals and summarizes their mechanisms of action, with the aim of enhancing our understanding of plant-microbe interactions and providing references for the comprehensive development and utilization of these active components in agricultural production. In addition, we highlight future research directions and challenges, such as searching for microbial signals to induce primary root development.
Collapse
Affiliation(s)
- Yucong Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansong Fu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
37
|
Jonkergouw C, Savola P, Osmekhina E, van Strien J, Batys P, Linder MB. Exploration of Chemical Diversity in Intercellular Quorum Sensing Signalling Systems in Prokaryotes. Angew Chem Int Ed Engl 2024; 63:e202314469. [PMID: 37877232 DOI: 10.1002/anie.202314469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Quorum sensing (QS) serves as a vital means of intercellular signalling in a variety of prokaryotes, which enables single cells to act in multicellular configurations. The potential to control community-wide responses has also sparked numerous recent biotechnological innovations. However, our capacity to utilize intercellular communication is hindered due to a scarcity of complementary signalling systems and a restricted comprehension of interconnections between these systems caused by variations in their dynamic range. In this study, we utilize uniform manifold approximation and projection and extended-connectivity fingerprints to explore the available chemical space of QS signalling molecules. We investigate and experimentally characterize a set of closely related QS signalling ligands, consisting of N-acyl homoserine lactones and the aryl homoserine lactone p-coumaroyl, as well as a set of more widely diverging QS ligands, consisting of photopyrones, dialkylresorcinols, 3,5-dimethylpyrazin-2-ol and autoinducer-2, and define their performance. We report on a set of six signal- and promoter-orthogonal intercellular QS signalling systems, significantly expanding the toolkit for engineering community-wide behaviour. Furthermore, we demonstrate that ligand diversity can serve as a statistically significant tool to predict much more complicated ligand-receptor interactions. This approach highlights the potential of dimensionality reduction to explore chemical diversity in microbial dynamics.
Collapse
Affiliation(s)
- Christopher Jonkergouw
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Pihla Savola
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Ekaterina Osmekhina
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Joeri van Strien
- Medical BioSciences Department, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland
| | - Markus B Linder
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| |
Collapse
|
38
|
Babbar R, Kaur A, Vanya, Arora R, Gupta JK, Wal P, Tripathi AK, Koparde AA, Goyal P, Ramniwas S, Gulati M, Behl T. Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases. Curr Pharm Des 2024; 30:1880-1893. [PMID: 38818920 DOI: 10.2174/0113816128299615240513174041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
Inflammation is an individual's physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arpanpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vanya
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | | | - Akshada Amit Koparde
- Department of Pharmaceutical Chemistry, Krishna Vishwa Vidyapeeth, Krishna Institute of Pharmacy, Malkapur, Karad 415110, Maharashtra, India
| | - Pradeep Goyal
- Department of Pharmacology, Saraswati College of Pharmacy, Gharuan, Mohali, Punjab, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India
- ARCCIM, Faculty of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| |
Collapse
|
39
|
Jin Y, Chen W, Hu J, Wang J, Ren H. Constructions of quorum sensing signaling network for activated sludge microbial community. ISME COMMUNICATIONS 2024; 4:ycae018. [PMID: 38500706 PMCID: PMC10945367 DOI: 10.1093/ismeco/ycae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 03/20/2024]
Abstract
In wastewater treatment systems, the interactions among various microbes based on chemical signals, namely quorum sensing (QS), play critical roles in influencing microbial structure and function. However, it is challenging to understand the QS-controlled behaviors and the underlying mechanisms in complex microbial communities. In this study, we constructed a QS signaling network, providing insights into the intra- and interspecies interactions of activated sludge microbial communities based on diverse QS signal molecules. Our research underscores the role of diffusible signal factors in both intra- and interspecies communication among activated sludge microorganisms, and signal molecules commonly considered to mediate intraspecies communication may also participate in interspecies communication. QS signaling molecules play an important role as communal resources among the entire microbial group. The communication network within the microbial community is highly redundant, significantly contributing to the stability of natural microbial systems. This work contributes to the establishment of QS signaling network for activated sludge microbial communities, which may complement metabolic exchanges in explaining activated sludge microbial community structure and may help with a variety of future applications, such as making the dynamics and resilience of highly complex ecosystems more predictable.
Collapse
Affiliation(s)
- Ying Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenkang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jie Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
40
|
Walsh L, Hill C, Ross RP. Impact of glyphosate (Roundup TM) on the composition and functionality of the gut microbiome. Gut Microbes 2023; 15:2263935. [PMID: 38099711 PMCID: PMC10561581 DOI: 10.1080/19490976.2023.2263935] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/24/2023] [Indexed: 12/18/2023] Open
Abstract
Glyphosate, the active ingredient in the broad-spectrum herbicide RoundupTM, has been a topic of discussion for decades due to contradictory reports of the effect of glyphosate on human health. Glyphosate inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimic pathway producing aromatic amino acids in plants, a mechanism that suggests that the herbicide would not affect humans as this pathway is not found in mammals. However, numerous studies have implicated glyphosate exposure in the manifestation of a variety of disorders in the human body. This review specifically outlines the potential effect of glyphosate exposure on the composition and functionality of the gut microbiome. Evidence has been building behind the hypothesis that the composition of each individual gut microbiota significantly impacts health. For this reason, the potential of glyphosate to inhibit the growth of beneficial microbes in the gut or alter their functionality is an important topic that warrants further consideration.
Collapse
Affiliation(s)
- Lauren Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Yang RQ, Chen YH, Wu QY, Tang J, Niu SZ, Zhao Q, Ma YC, Zou CG. Indole produced during dysbiosis mediates host-microorganism chemical communication. eLife 2023; 12:e85362. [PMID: 37987602 PMCID: PMC10691800 DOI: 10.7554/elife.85362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
An imbalance of the gut microbiota, termed dysbiosis, has a substantial impact on host physiology. However, the mechanism by which host deals with gut dysbiosis to maintain fitness remains largely unknown. In Caenorhabditis elegans, Escherichia coli, which is its bacterial diet, proliferates in its intestinal lumen during aging. Here, we demonstrate that progressive intestinal proliferation of E. coli activates the transcription factor DAF-16, which is required for maintenance of longevity and organismal fitness in worms with age. DAF-16 up-regulates two lysozymes lys-7 and lys-8, thus limiting the bacterial accumulation in the gut of worms during aging. During dysbiosis, the levels of indole produced by E. coli are increased in worms. Indole is involved in the activation of DAF-16 by TRPA-1 in neurons of worms. Our finding demonstrates that indole functions as a microbial signal of gut dysbiosis to promote fitness of the host.
Collapse
Affiliation(s)
- Rui-Qiu Yang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Yong-Hong Chen
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Qin-yi Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Traditional Chinese MedicineKunmingChina
| | - Jie Tang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Shan-Zhuang Niu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Qiu Zhao
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Yi-Cheng Ma
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| | - Cheng-Gang Zou
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan UniversityKunmingChina
| |
Collapse
|
42
|
Yap CH, Ramle AQ, Lim SK, Rames A, Tay ST, Chin SP, Kiew LV, Tiekink ERT, Chee CF. Synthesis and Staphylococcus aureus biofilm inhibitory activity of indolenine-substituted pyrazole and pyrimido[1,2-b]indazole derivatives. Bioorg Med Chem 2023; 95:117485. [PMID: 37812886 DOI: 10.1016/j.bmc.2023.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Staphylococcus aureus is a highly adaptable opportunistic pathogen that can form biofilms and generate persister cells, leading to life-threatening infections that are difficult to treat with antibiotics alone. Therefore, there is a need for an effective S. aureus biofilm inhibitor to combat this public health threat. In this study, a small library of indolenine-substituted pyrazoles and pyrimido[1,2-b]indazole derivatives were synthesised, of which the hit compound exhibited promising antibiofilm activities against methicillin-susceptible S. aureus (MSSA ATCC 29213) and methicillin-resistant S. aureus (MRSA ATCC 33591) at concentrations significantly lower than the planktonic growth inhibition. The hit compound could prevent biofilm formation and eradicate mature biofilms of MSSA and MRSA, with a minimum biofilm inhibitory concentration (MBIC50) value as low as 1.56 µg/mL and a minimum biofilm eradication concentration (MBEC50) value as low as 6.25 µg/mL. The minimum inhibitory concentration (MIC) values of the hit compound against MSSA and MRSA were 50 µg/mL and 25 µg/mL, respectively, while the minimum bactericidal concentration (MBC) values against MSSA and MRSA were > 100 µg/mL. Preliminary structure-activity relationship analysis reveals that the fused benzene ring and COOH group of the hit compound are crucial for the antibiofilm activity. Additionally, the compound was not cytotoxic to human alveolar A549 cells, thus highlighting its potential as a suitable candidate for further development as a S. aureus biofilm inhibitor.
Collapse
Affiliation(s)
- Cheng Hong Yap
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abdul Qaiyum Ramle
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - See Khai Lim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Avinash Rames
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Sek Peng Chin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 30068 Hsinchu, Taiwan, Republic of China
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500, Selangor Darul Ehsan, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
43
|
Li ML, Sun SP, Sun K, Lv B, Fan YH. Role of tryptophan metabolism in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2023; 31:896-903. [DOI: 10.11569/wcjd.v31.i21.896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is comprised of ulcerative colitis and Crohn's disease, the pathogenesis of which is closely related to intestinal flora disorders. Abnormalities in the intestinal microenvironment caused by intestinal flora disorders affect amino acid metabolism. Tryptophan is an essential amino acid, and its metabolites are involved in the regulation of immunity, neuronal function, intestinal homeostasis, etc. The development of IBD disease is accompanied by tryptophan deficiency or metabolic abnormalities. This review focuses on the relationship between the intestinal flora metabolite tryptophan and its metabolites and the occurrence and development of IBD disease, and provides new ideas for future diagnostic methods for predicting IBD disease activity and protocols for treating IBD.
Collapse
Affiliation(s)
- Meng-Lin Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Shao-Peng Sun
- Zhejiang Provincial Key Laboratory of Pathophysiology of Gastrointestinal Diseases, Hangzhou 310053, Zhejiang Province, China
| | - Ke Sun
- Department of Nephrology, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Yi-Hong Fan
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
44
|
Zhao J, Zhao F, Yuan J, Liu H, Wang Y. Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon 2023; 9:e21431. [PMID: 38027795 PMCID: PMC10643359 DOI: 10.1016/j.heliyon.2023.e21431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. It is caused by excess levels of free radicals and leads to the damage of DNA, proteins, and lipids. The crucial role of gut microbiota in regulating oxidative stress has been widely demonstrated. Studies have suggested that the redox regulatory effects of gut microbiota are related to gut microbiota metabolites, including fatty acids, lipopolysaccharides, tryptophan metabolites, trimethylamine-N-oxide and polyphenolic metabolites. In recent years, the potential benefits of probiotics have been gaining increasing scientific interest owing to their ability to modulate gut microbiota and oxidative stress. In this review, we summarise the adverse health effects of oxidative stress and discuss the role of the gut microbiota and its metabolites in redox regulation. Based on the influence of gut microbiota metabolites, the roles of probiotics in preventing oxidative stress are highlighted.
Collapse
Affiliation(s)
| | | | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
45
|
Shi X, Zhao G, Li H, Zhao Z, Li W, Wu M, Du YL. Hydroxytryptophan biosynthesis by a family of heme-dependent enzymes in bacteria. Nat Chem Biol 2023; 19:1415-1422. [PMID: 37653171 DOI: 10.1038/s41589-023-01416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Hydroxytryptophan serves as a chemical precursor to a variety of bioactive specialized metabolites, including the human neurotransmitter serotonin and the hormone melatonin. Although the human and animal routes to hydroxytryptophan have been known for decades, how bacteria catalyze tryptophan indole hydroxylation remains a mystery. Here we report a class of tryptophan hydroxylases that are involved in various bacterial metabolic pathways. These enzymes utilize a histidine-ligated heme cofactor and molecular oxygen or hydrogen peroxide to catalyze regioselective hydroxylation on the tryptophan indole moiety, which is mechanistically distinct from their animal counterparts from the nonheme iron enzyme family. Through genome mining, we also identify members that can hydroxylate the tryptophan indole ring at alternative positions. Our results not only reveal a conserved way to synthesize hydroxytryptophans in bacteria but also provide a valuable enzyme toolbox for biocatalysis. As proof of concept, we assemble a highly efficient pathway for melatonin in a bacterial host.
Collapse
Affiliation(s)
- Xinjie Shi
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guiyun Zhao
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Pharmacy, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Hu Li
- Polytechnic Institute, Zhejiang University, Hangzhou, China
| | - Zhijie Zhao
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Li
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miaolian Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Yi-Ling Du
- The Fourth Affiliated Hospital and Department of Microbiology, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China.
| |
Collapse
|
46
|
Deng JJ, Hu JY, Han XY, Li Y, Luo XC, Wang ZL, Li JZ. Degradation of indole via a two-component indole oxygenase system from Enterococcus hirae GDIAS-5. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131707. [PMID: 37379596 DOI: 10.1016/j.jhazmat.2023.131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Animal farming copiously generates indoles, which contribute to odor and pose a challenge for deodorization. While biodegradation is widely accepted, there is a lack of suitable indole-degrading bacteria for animal husbandry. In this study, we aimed to construct genetically engineered strains with indole-degrading abilities. Enterococcus hirae GDIAS-5 is a highly efficient indole-degrading bacterium, which functions via a monooxygenase YcnE presumably contributes to indole oxidation. However, the efficiency of engineered Escherichia coli expressing YcnE for indole degradation is lower than that of GDIAS-5. To improve its efficacy, the underlying indole-degradation mechanisms in GDIAS-5 were analyzed. An ido operon that responds to a two-component indole oxygenase system was identified. In vitro experiments showed that the reductase component of YcnE, YdgI, can improve the catalytic efficiency. The reconstruction of the two-component system in E. coli exhibited higher indole removal efficiency than GDIAS-5. Furthermore, isatin, the key intermediate metabolite in indole degradation, might be degraded via a novel isatin-acetaminophen-aminophenol pathway involving an amidase whose coding gene is located near the ido operon. The two-component anaerobic oxidation system, upstream degradation pathway, and engineering strains investigated in this study provide important insights into indole degradation metabolism and offer efficient resources for achieving bacterial odor elimination.
Collapse
Affiliation(s)
- Jun-Jin Deng
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Jing-Yi Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Xue-Ying Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Yang Li
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China.
| | - Jia-Zhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture Heyuan Sub-center, Heyuan, Guangdong 517000, China.
| |
Collapse
|
47
|
McCann JR, Rawls JF. Essential Amino Acid Metabolites as Chemical Mediators of Host-Microbe Interaction in the Gut. Annu Rev Microbiol 2023; 77:479-497. [PMID: 37339735 PMCID: PMC11188676 DOI: 10.1146/annurev-micro-032421-111819] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Amino acids are indispensable substrates for protein synthesis in all organisms and incorporated into diverse aspects of metabolic physiology and signaling. However, animals lack the ability to synthesize several of them and must acquire these essential amino acids from their diet or perhaps their associated microbial communities. The essential amino acids therefore occupy a unique position in the health of animals and their relationships with microbes. Here we review recent work connecting microbial production and metabolism of essential amino acids to host biology, and the reciprocal impacts of host metabolism of essential amino acids on their associated microbes. We focus on the roles of the branched-chain amino acids (valine, leucine, and isoleucine) and tryptophan on host-microbe communication in the intestine of humans and other vertebrates. We then conclude by highlighting research questions surrounding the less-understood aspects of microbial essential amino acid synthesis in animal hosts.
Collapse
Affiliation(s)
- Jessica R McCann
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA; ,
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA; ,
| |
Collapse
|
48
|
Ganesh BP, Peesh P, Blasco MP, Hamamy AE, Khan R, Guzman G, Honarpisheh P, Mohan EC, Goodman GW, Nguyen JN, Banerjee A, Ko KA, Korf J, Tan C, Fan H, Colpo G, Ahnstedt H, Couture L, Kofler J, Moruno-Manchon J, Maniskas M, Aronowski J, Lee J, Li J, Bryan RM, Chauhan A, Venna VR, McCullough L. Restoring a balanced pool of host-derived and microbiota-derived ligands of the aryl hydrocarbon receptor is beneficial after stroke. RESEARCH SQUARE 2023:rs.3.rs-3143015. [PMID: 37790313 PMCID: PMC10543021 DOI: 10.21203/rs.3.rs-3143015/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Stroke is a major cause of morbidity and mortality, and its incidence increases with age. While acute therapies for stroke are currently limited to intravenous thrombolytics and endovascular thrombectomy, recent studies have implicated an important role for the gut microbiome in post-stroke neuroinflammation. After stroke, several immuno-regulatory pathways, including the aryl hydrocarbon receptor (AHR) pathway, become activated. AHR is a master regulatory pathway that mediates neuroinflammation. Among various cell types, microglia (MG), as the resident immune cells of the brain, play a vital role in regulating post-stroke neuroinflammation and antigen presentation. Activation of AHR is dependent on a dynamic balance between host-derived and microbiota-derived ligands. While previous studies have shown that activation of MG AHR by host-derived ligands, such as kynurenine, is detrimental after stroke, the effects of post-stroke changes in microbiota-derived ligands of AHR, such as indoles, is unknown. Our study builds on the concept that differential activation of MG AHR by host-derived versus microbiome-derived metabolites affects outcomes after ischemic stroke. We examined the link between stroke-induced dysbiosis and loss of essential microbiota-derived AHR ligands. We hypothesize that restoring the balance between host-derived (kynurenine) and microbiota-derived (indoles) ligands of AHR is beneficial after stroke, offering a new potential avenue for therapeutic intervention in post-stroke neuroinflammation. Method We performed immunohistochemical analysis of brain samples from stroke patients to assess MG AHR expression after stroke. We used metabolomics analysis of plasma samples from stroke and non-stroke control patients with matched comorbidities to determine the levels of indole-based AHR ligands after stroke. We performed transient middle cerebral artery occlusion (MCAO) in aged (18 months) wild-type (WT) and germ-free (GF) mice to investigate the effects of post-stroke treatment with microbiota-derived indoles on outcome. To generate our results, we employed a range of methodologies, including flow cytometry, metabolomics, and 16S microbiome sequencing. Results We found that MG AHR expression is increased in human brain after stroke and after ex vivo oxygen-glucose deprivation and reperfusion (OGD/R). Microbiota-derived ligands of AHR are decreased in the human plasma at 24 hours after ischemic stroke. Kynurenine and indoles exhibited differential effects on aged WT MG survival after ex vivoOGD/R. We found that specific indole-based ligands of AHR (indole-3-propionic acid and indole-3-aldehyde) were absent in GF mice, thus their production depends on the presence of a functional gut microbiota. Additionally, a time-dependent decrease in the concentration of these indole-based AHR ligands occurred in the brain within the first 24 hours after stroke in aged WT mice. Post-stroke treatment of GF mice with a cocktail of microbiota-derived indole-based ligands of AHR regulated MG-mediated neuroinflammation and molecules involved in antigen presentation (increased CD80, MHC-II, and CD11b). Post-stroke treatment of aged WT mice with microbiota-derived indole-based ligands of AHR reduced both infarct volume and neurological deficits at 24 hours. Conclusion Our novel findings provide compelling evidence that the restoration of a well-balanced pool of host-derived kynurenine-based and microbiota-derived indole-based ligands of AHR holds considerable therapeutic potential for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Bhanu Priya Ganesh
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Pedram Peesh
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Maria Pilar Blasco
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Ahmad El Hamamy
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Romeesa Khan
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Gary Guzman
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Parisa Honarpisheh
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Eric C Mohan
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Grant W Goodman
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Justin N Nguyen
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | | | - Kyung Ae Ko
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Janelle Korf
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | | | - Huihui Fan
- The University of Texas Health Science Center at Houston
| | - Gabriela Colpo
- The University of Texas McGovern Medical School at Houston, 77030, TX
| | - Hilda Ahnstedt
- The University of Texas Health Science Center at Houston
| | - Lucy Couture
- The University of Texas McGovern Medical School at Houston, 77030, TX
| | | | - Jose Moruno-Manchon
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School at Houston, 77030, TX
| | - Michael Maniskas
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | | | - Juneyoung Lee
- The University of Texas Health Science Center at Houston
| | - Jun Li
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | | | | | | | - Louise McCullough
- McGovern Medical School/University of Texas Health Science Center at Houston
| |
Collapse
|
49
|
ISHIGURO N, HAYASHI T, OKAYAMA M, YAMAGUCHI T, KOHNO M, KAWAKAMI H, MITSUNAGA T, NAKAMURA K, INAGAKI M. Effects of blackcurrant extract on indole and ammonia productions in an in vitro human fecal culture model. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:23-28. [PMID: 38188663 PMCID: PMC10767324 DOI: 10.12938/bmfh.2022-094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/13/2023] [Indexed: 01/09/2024]
Abstract
Blackcurrant is available as a traditional medicine in Europe. However, the detailed effects of blackcurrant on the human gut microbiota remain unknown. In this study, we investigated the prebiotic effects of a blackcurrant extract using a human fecal culture model in six healthy subjects. Feces were individually inoculated into a medium with or without the blackcurrant extract and then fermented for 48 hr under anaerobic conditions. The results obtained from analysis of samples from the fermented medium demonstrated that after 48 hr of fermentation, the pH of the medium with the blackcurrant extract was significantly decreased (control, 6.62 ± 0.20; blackcurrant extract, 6.41 ± 0.33; p=0.0312). A 16S rRNA gene sequencing analysis of the microbiota of the fermented medium showed a significant increase in the relative abundance of Bifidobacteriaceae. In measuring the concentrations of putrefactive components in the fermented medium, we found that the blackcurrant extract significantly reduced ammonia levels and displayed a tendency toward reduced indole levels. Our results suggest that blackcurrant extract could be a potential ingredient for relief of putrefactive components in the gut.
Collapse
Affiliation(s)
- Nanami ISHIGURO
- Faculty of Applied Biological Sciences, Gifu University, 1-1
Yanagido, Gifu, Gifu 501-1193, Japan
| | - Takayuki HAYASHI
- Faculty of Applied Biological Sciences, Gifu University, 1-1
Yanagido, Gifu, Gifu 501-1193, Japan
| | - Miho OKAYAMA
- Faculty of Applied Biological Sciences, Gifu University, 1-1
Yanagido, Gifu, Gifu 501-1193, Japan
| | - Taiki YAMAGUCHI
- Morishita Jintan Co., Ltd., 2-40, Tamatsukuri 1-Chome,
Chuo-Ku, Osaka 540-8566, Japan
| | - Mamiko KOHNO
- Morishita Jintan Co., Ltd., 2-40, Tamatsukuri 1-Chome,
Chuo-Ku, Osaka 540-8566, Japan
| | - Hirosato KAWAKAMI
- Morishita Jintan Co., Ltd., 2-40, Tamatsukuri 1-Chome,
Chuo-Ku, Osaka 540-8566, Japan
| | - Tohru MITSUNAGA
- Faculty of Applied Biological Sciences, Gifu University, 1-1
Yanagido, Gifu, Gifu 501-1193, Japan
| | - Kohei NAKAMURA
- Faculty of Applied Biological Sciences, Gifu University, 1-1
Yanagido, Gifu, Gifu 501-1193, Japan
| | - Mizuho INAGAKI
- Faculty of Applied Biological Sciences, Gifu University, 1-1
Yanagido, Gifu, Gifu 501-1193, Japan
| |
Collapse
|
50
|
Peng M, He H, Jiang M, Wang Z, Li G, Zhuang L. Morphological, physiological and metabolomic analysis to unravel the adaptive relationship between root growth of ephemeral plants and different soil habitats. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107986. [PMID: 37651954 DOI: 10.1016/j.plaphy.2023.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
To gain insights into the adaptive characteristics of ephemeral plants and enrich their potential for resource exploitation, the adaptive changes in two highly dominant species (Malcolmia scorpioides and Isatis violascens) to soil habitats (aeolian soil, AS; grey desert soil, GS) were investigated from the aspects of root morphology, physiology, and metabolism in this study. The results revealed that changes in root morphology and enzyme activity were affected by soil habitat. Total root length (TRL), root volume (RV) and root surface area (RSA) were higher in GS than in AS. The levels of proline (Pro), glutathione (GSH), soluble sugar (SS), and lysine (Lys) were higher in GS than in AS. Untargeted LC-MS metabolomics indicates that root metabolites of both species differed among the two soil habitats. Root responses to different soil habitats mainly affected some metabolic pathways. A total of 780 metabolites were identified, common differential metabolites (DMs) in both species included amino acids, fatty acids, organic acids, carbohydrates, benzene and derivatives, and flavonoids, which were mainly involved in carbohydrate metabolism, amino acid metabolism, flavonoid biosynthesis and fatty acid metabolism, and their abundance varied among different habitats and species. Some key DMs were significantly related to root morphology and enzyme activity, and indole, malonate, quercetin, uridine, tetrahydroharmine, and gluconolactone were important metabolites associated with root growth. Therefore, the response changes in root growth and metabolite of ephemeral plants in response to soil habitats reflect their ecological adaptation, and lay a foundation for the exploitation of plant resources in various habitats.
Collapse
Affiliation(s)
- Mengwen Peng
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Hao He
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Meng Jiang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Zhongke Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Guifang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Li Zhuang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China.
| |
Collapse
|