1
|
Hao JR, Li Y, Ge Y. Harnessing the plant microbiome for environmental sustainability: From ecological foundations to novel applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175766. [PMID: 39187075 DOI: 10.1016/j.scitotenv.2024.175766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
In plant environments, there exist heterogeneous microbial communities, referred to as the plant microbiota, which are recruited by plants and play crucial roles in promoting plant growth, aiding in resistance against pathogens and environmental stresses, thereby maintaining plant health. These microorganisms, along with their genomes, collectively form the plant microbiome. Research on the plant microbiome can help unravel the intricate interactions between plants and microbes, providing a theoretical foundation to reduce pesticide use, enhance agricultural productivity, and promote environmental sustainability. Despite significant progress in the field of research, unresolved challenges persist due to ongoing technological limitations and the complexities inherent in studying microorganisms at small scales. Recently, synthetic community (SynCom) has emerged as a novel technique for microbiome research, showing promising prospects for applications in the plant microbiome field. This article systematically introduces the origin and distribution of plant microbiota, the processes of their recruitment and colonization, and the mechanisms underlying their beneficial functions for plants, from the aspects of composition, assembly, and function. Furthermore, we discuss the principles, applications, challenges, and prospects of SynCom for promoting plant health.
Collapse
Affiliation(s)
- Jing-Ru Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Huang X, Braga LPP, Ding C, Yang B, Ge T, Di H, He Y, Xu J, Philippot L, Li Y. Impact of Viruses on Prokaryotic Communities and Greenhouse Gas Emissions in Agricultural Soils. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407223. [PMID: 39373699 DOI: 10.1002/advs.202407223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Viruses are abundant and ubiquitous in soil, but their importance in modulating greenhouse gas (GHG) emissions in terrestrial ecosystems remains largely unknown. Here, various loads of viral communities are introduced into paddy soils with different fertilization histories via a reciprocal transplant approach to study the role of viruses in regulating greenhouse gas emissions and prokaryotic communities. The results showed that the addition of viruses has a strong impact on methane (CH4) and nitrous oxide (N2O) emissions and, to a minor extent, carbon dioxide (CO2) emissions, along with dissolved carbon and nitrogen pools, depending on soil fertilization history. The addition of a high viral load resulted in a decrease in microbial biomass carbon (MBC) by 31.4%, with changes in the relative abundance of 16.6% of dominant amplicon sequence variants (ASVs) in comparison to control treatments. More specifically, large effects of viral pressure are observed on some specific microbial communities with decreased relative abundance of prokaryotes that dissimilate sulfur compounds and increased relative abundance of Nanoarchaea. Structural equation modeling further highlighted the differential direct and indirect effects of viruses on CO2, N2O, and CH4 emissions. These findings underpin the understanding of the complex microbe-virus interactions and advance current knowledge on soil virus ecology.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lucas P P Braga
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Chenxiao Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bokai Yang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Laurent Philippot
- Université Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, Dijon, 21000, France
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Zimmerman AE, Graham EB, McDermott J, Hofmockel KS. Estimating the Importance of Viral Contributions to Soil Carbon Dynamics. GLOBAL CHANGE BIOLOGY 2024; 30:e17524. [PMID: 39450620 DOI: 10.1111/gcb.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024]
Abstract
Biogeochemical models for predicting carbon dynamics increasingly include microbial processes, reflecting the importance of microorganisms in regulating the movement of carbon between soils and the atmosphere. Soil viruses can redirect carbon among various chemical pools, indicating a need for quantification and development soil carbon models that explicitly represent viral dynamics. In this opinion, we derive a global estimate of carbon potentially released from microbial biomass by viral infections in soils and synthesize a quantitative soil carbon budget from existing literature that explicitly includes viral impacts. We then adapt known mechanisms by which viruses influence carbon cycles in marine ecosystems into a soil-explicit framework. Finally, we explore the diversity of virus-host interactions during infection and conceptualize how infection mode may impact soil carbon fate. Our synthesis highlights key knowledge gaps hindering the incorporation of viruses into soil carbon cycling research and generates specific hypotheses to test in the pursuit of better quantifying microbial dynamics that explain ecosystem-scale carbon fluxes. The importance of identifying critical drivers behind soil carbon dynamics, including these elusive but likely pervasive viral mechanisms of carbon redistribution, becomes more pressing with climate change.
Collapse
Affiliation(s)
- Amy E Zimmerman
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
| | - Emily B Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Jason McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Zang B, Zhou H, Zhao Y, Sano D, Chen R. Investigating potential auxiliary anaerobic digestion activity of phage under polyvinyl chloride microplastic stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135950. [PMID: 39326145 DOI: 10.1016/j.jhazmat.2024.135950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/18/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Polyvinyl chloride (PVC) microplastics present in sewage were trapped in sludge, thereby hindering anaerobic digestion performance of waste active sludge (WAS). Phages regulate virocell metabolism by encoding auxiliary metabolic genes (AMGs) related to energy acquisition and material degradation, supporting hosts survive in harsh environments and play a crucial role in biogeochemical cycles. This study investigated the potential effects of phages on the recovery of WAS anaerobic digestion under PVC stress. We observed a significant alteration in the phage community induced by PVC microplastics. Phages encoded AMGs related to anaerobic digestion and cell growth probably alleviate PVC microplastics inhibition on WAS anaerobic digestion, and 54.2 % of hydrolysis-related GHs and 40.8 % of acidification-related AMGs were actively transcribed in the PVC-exposed group. Additionally, the degradation of chitin and peptidoglycan during hydrolysis and the conversion of glucose to pyruvate during acidification were more susceptible to phages. Prediction of phage-host relationship indicated that the phyla Pseudomonadota were predominantly targeted hosts by hydrolysis-related and acidification-related phages, and PVC toxicity had minimal impact on phage-host interaction. Our findings highlight the importance of phages in anaerobic digestion and provide a novel strategy for using phages in the functional recovery of microplastic-exposed sludge.
Collapse
Affiliation(s)
- Bei Zang
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hang Zhou
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yubin Zhao
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
5
|
Huss P, Kieft K, Meger A, Nishikawa K, Anantharaman K, Raman S. Engineering bacteriophages through deep mining of metagenomic motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.07.527309. [PMID: 36798209 PMCID: PMC9934549 DOI: 10.1101/2023.02.07.527309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bacteriophages can adapt to new hosts by altering sequence motifs through recombination or convergent evolution. Where such motifs exist and what fitness advantage they confer remains largely unknown. We report a new method, Metagenomic Sequence Informed Functional Scoring (Meta-SIFT), to discover sequence motifs in metagenomic datasets that can be used to engineer phage activity. Meta-SIFT uses experimental deep mutational scanning data to create sequence profiles to enable deep mining of metagenomes for functional motifs which are otherwise invisible to searches. We experimentally tested over 17,000 Meta-SIFT derived sequence motifs in the receptor-binding protein of the T7 phage. The screen revealed thousands of T7 variants with novel host specificity with functional motifs sourced from distant families. Position, substitution and location preferences dictated specificity across a panel of 20 hosts and conditions. To demonstrate therapeutic utility, we engineered active T7 variants against foodborne pathogen E. coli O121. Meta-SIFT is a powerful tool to unlock the functional potential encoded in phage metagenomes to engineer bacteriophages.
Collapse
|
6
|
Jia P, Liang JL, Lu JL, Zhong SJ, Xiong T, Feng SW, Wang Y, Wu ZH, Yi XZ, Gao SM, Zheng J, Wen P, Li F, Li Y, Liao B, Shu WS, Li JT. Soil keystone viruses are regulators of ecosystem multifunctionality. ENVIRONMENT INTERNATIONAL 2024; 191:108964. [PMID: 39173234 DOI: 10.1016/j.envint.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Ecosystem multifunctionality reflects the capacity of ecosystems to simultaneously maintain multiple functions which are essential bases for human sustainable development. Whereas viruses are a major component of the soil microbiome that drive ecosystem functions across biomes, the relationships between soil viral diversity and ecosystem multifunctionality remain under-studied. To address this critical knowledge gap, we employed a combination of amplicon and metagenomic sequencing to assess prokaryotic, fungal and viral diversity, and to link viruses to putative hosts. We described the features of viruses and their potential hosts in 154 soil samples from 29 farmlands and 25 forests distributed across China. Although 4,460 and 5,207 viral populations (vOTUs) were found in the farmlands and forests respectively, the diversity of specific vOTUs rather than overall soil viral diversity was positively correlated with ecosystem multifunctionality in both ecosystem types. Furthermore, the diversity of these keystone vOTUs, despite being 10-100 times lower than prokaryotic or fungal diversity, was a better predictor of ecosystem multifunctionality and more strongly associated with the relative abundances of prokaryotic genes related to soil nutrient cycling. Gemmatimonadota and Actinobacteria dominated the host community of soil keystone viruses in the farmlands and forests respectively, but were either absent or showed a significantly lower relative abundance in that of soil non-keystone viruses. These findings provide novel insights into the regulators of ecosystem multifunctionality and have important implications for the management of ecosystem functioning.
Collapse
Affiliation(s)
- Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Sheng-Ji Zhong
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Tian Xiong
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yutao Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xin-Zhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin Zheng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Fenglin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yanying Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
7
|
Guo X, Zhang X, Shao H, McMinn A, Liang Y, Wang M. A novel flavobacterial phage abundant during green tide, representing a new viral family, Zblingviridae. Appl Environ Microbiol 2024; 90:e0036724. [PMID: 38953371 PMCID: PMC11267871 DOI: 10.1128/aem.00367-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Flavobacteriia are the dominant and active bacteria during algal blooms and play an important role in polysaccharide degradation. However, little is known about phages infecting Flavobacteriia, especially during green tide. In this study, a novel virus, vB_TgeS_JQ, infecting Flavobacteriia was isolated from the surface water of the Golden Beach of Qingdao, China. Transmission electron microscopy demonstrated that vB_TgeS_JQ had the morphology of siphovirus. The experiments showed that it was stable from -20°C to 45°C and pH 5 to pH 8, with latent and burst periods both lasting for 20 min. Genomic analysis showed that the phage vB_TgeS_JQ contained a 40,712-bp dsDNA genome with a GC content of 30.70%, encoding 74 open-reading frames. Four putative auxiliary metabolic genes were identified, encoding electron transfer-flavoprotein dehydrogenase, calcineurin-like phosphoesterase, phosphoribosyl-ATP pyrophosphohydrolase, and TOPRIM nucleotidyl hydrolase. The abundance of phage vB_TgeS_JQ was higher during Ulva prolifera (U. prolifera) blooms compared with other marine environments. The phylogenetic and comparative genomic analyses revealed that vB_TgeS_JQ exhibited significant differences from all other phage isolates in the databases and therefore was classified as an undiscovered viral family, named Zblingviridae. In summary, this study expands the knowledge about the genomic, phylogenetic diversity and distribution of flavobacterial phages (flavophages), especially their roles during U. prolifera blooms. IMPORTANCE The phage vB_TgeS_JQ was the first flavobacterial phage isolated during green tide, representing a new family in Caudoviricetes and named Zblingviridae. The abundance of phage vB_TgeS_JQ was higher during the Ulva prolifera blooms. This study provides insights into the genomic, phylogenetic diversity, and distribution of flavophages, especially their roles during U. prolifera blooms.
Collapse
Affiliation(s)
- Xiaoyue Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Kozlova AP, Muntyan VS, Vladimirova ME, Saksaganskaia AS, Kabilov MR, Gorbunova MK, Gorshkov AN, Grudinin MP, Simarov BV, Roumiantseva ML. Soil Giant Phage: Genome and Biological Characteristics of Sinorhizobium Jumbo Phage. Int J Mol Sci 2024; 25:7388. [PMID: 39000497 PMCID: PMC11242549 DOI: 10.3390/ijms25137388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage-microbe interactions with nitrogen-fixing symbiotic microorganisms.
Collapse
Affiliation(s)
- Alexandra P Kozlova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Victoria S Muntyan
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Maria E Vladimirova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Alla S Saksaganskaia
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Marsel R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Maria K Gorbunova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Andrey N Gorshkov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Mikhail P Grudinin
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Boris V Simarov
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Marina L Roumiantseva
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| |
Collapse
|
9
|
Zhu Y, Yan S, Chen X, Li Y, Xie S. Thallium spill shifts the structural and functional characteristics of viral communities with different lifestyles in river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174531. [PMID: 38971241 DOI: 10.1016/j.scitotenv.2024.174531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Thallium (Tl), a highly toxic heavy metal, can affect microbial community, while little is known about its effect on viral community. The present study investigated the variation of viral communities, as well as their interactions with microbial hosts under Tl stress. Tl in sediments significantly altered the composition and diversity of the viral communities, but showed no significant links with the prokaryotic communities, which may reveal a potential discrepancy in the sensitivity of the viral and prokaryotic communities to heavy metal stress. Auxiliary metabolic genes (AMGs) involved in denitrification, methane oxidation and organic sulfur transformation were enriched at T1-contaminated sites, while the abundance of AMGs related to methanogenesis and sulfate reduction were higher at pristine sites. Specially, the enrichment of AMGs involved in assimilatory sulfate reduction in Tl-contaminated sites could possibly reduce Tl bioavailability by enhancing the microbially-driven sulfur cycling to generate sulfides that could be complexed with Tl. Moreover, there was a significantly positive correlation between virus-carrying metal resistant genes and the sedimentary Tl concentration, implying that Tl contamination might enhance the metal resistant potential of the viruses. Serving as the functional gene reservoir, the response of viral AMGs to Tl stress could represent a potential pathway for microorganisms to be adapted to the metal-polluted environments. Our study provided novel insights into the impact of Tl spill on viral communities, shedding light on functional characteristics and the links of virus-host interaction with Tl level.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Graham EB, Camargo AP, Wu R, Neches RY, Nolan M, Paez-Espino D, Kyrpides NC, Jansson JK, McDermott JE, Hofmockel KS. A global atlas of soil viruses reveals unexplored biodiversity and potential biogeochemical impacts. Nat Microbiol 2024; 9:1873-1883. [PMID: 38902374 PMCID: PMC11222151 DOI: 10.1038/s41564-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/25/2024] [Indexed: 06/22/2024]
Abstract
Historically neglected by microbial ecologists, soil viruses are now thought to be critical to global biogeochemical cycles. However, our understanding of their global distribution, activities and interactions with the soil microbiome remains limited. Here we present the Global Soil Virus Atlas, a comprehensive dataset compiled from 2,953 previously sequenced soil metagenomes and composed of 616,935 uncultivated viral genomes and 38,508 unique viral operational taxonomic units. Rarefaction curves from the Global Soil Virus Atlas indicate that most soil viral diversity remains unexplored, further underscored by high spatial turnover and low rates of shared viral operational taxonomic units across samples. By examining genes associated with biogeochemical functions, we also demonstrate the viral potential to impact soil carbon and nutrient cycling. This study represents an extensive characterization of soil viral diversity and provides a foundation for developing testable hypotheses regarding the role of the virosphere in the soil microbiome and global biogeochemistry.
Collapse
Affiliation(s)
- Emily B Graham
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| | - Antonio Pedro Camargo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Russell Y Neches
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Matt Nolan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Paez-Espino
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C Kyrpides
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| |
Collapse
|
11
|
Li W, Wang Y, Zhao K, Xu L, Shi T, Ma B, Lv X. Host-virus coevolution drives soil microbial function succession along a millennium land reclamation chronosequence. J Adv Res 2024:S2090-1232(24)00258-3. [PMID: 38960277 DOI: 10.1016/j.jare.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Gene exchange between viruses and hosts plays an important role in driving virus-host coevolution, enabling adaptation of both viruses and hosts to environmental changes. However, the mechanisms and functional significance of virus-host gene exchanges over long-term scales remain largely unexplored. OBJECTIVE The present study aimed to gain insights into the role of viruses in virus-host interactions and coevolution by monitoring virome dynamics along a millennium-long land reclamation chronosequence. METHODS We collected 24 soil samples from 8 stages of a millennium-long land reclamation chronosequence, including non-reclamation, and reclamation periods of 10, 50, 100, 300, 500, 700, and 1000 years. We characterized their metagenomes, and identified DNA viruses within these metagenomes. RESULTS Our findings reveal a significant shift in viral community composition after 50 years of land reclamation, but soil viral diversity reached a stable phase approximately 300 years after the initial reclamation. Analysis of the virus-host network showed a scale-free degree distribution and a reduction in complexity over time, with generalist viruses emerging as key facilitators of horizontal gene transfer. CONCLUSION These findings highlight the integral role of viruses, especially generalist types, in mediating gene exchanges between viruses and hosts, thereby influencing the coevolutionary dynamics in soil ecosystems over significant timescales. This study offers novel insights into long-term virus-host interactions, showing how the virome responds to environmental changes, driving shifts in various microbial functions in reclaimed land.
Collapse
Affiliation(s)
- Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Linya Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Tingfeng Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
12
|
Jaglan AB, Vashisth M, Sharma P, Verma R, Virmani N, Bera BC, Vaid RK, Singh RK, Anand T. Phage Mediated Biocontrol: A Promising Green Solution for Sustainable Agriculture. Indian J Microbiol 2024; 64:318-327. [PMID: 39011019 PMCID: PMC11246405 DOI: 10.1007/s12088-024-01204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/06/2024] [Indexed: 07/17/2024] Open
Abstract
In the current scenario of growing world population, limited cultivable land resources, plant diseases, and pandemics are some of the major factors responsible for declining global food security. Along with meeting the food demand, the maintenance of food quality is also required to ensure healthy consumption and marketing. In agricultural fields, pest infestations and bacterial diseases are common causes of crop damage, leading to massive yield losses. Conventionally, antibiotics and several pesticides have been used to manage and control these plant pathogens. However, the overuse of antibiotics and pesticides has led to the emergence of resistant strains of pathogenic bacteria. The bacteriophages are the natural predators of bacteria and are host-specific in their action. Therefore, the use of bacteriophages for the biocontrol of pathogenic bacteria is serving as a sustainable and green solution in crop protection and production. In this review, we have discussed the important plant pathogens and their impact on plant health and yield loss. Further, we have abridged the role of bacteriophages in the protection of crops from bacterial disease by discussing various greenhouse and field trials. Finally, we have discussed the impact of bacteriophages on the plant microbiome, phage resistance, and legal challenges in the registration and commercial production of bacteriophage-based biopesticides. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01204-x.
Collapse
Affiliation(s)
- Anu Bala Jaglan
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Medhavi Vashisth
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Priya Sharma
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Ravikant Verma
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Nitin Virmani
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Bidhan C Bera
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Rajesh K Vaid
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Raj K Singh
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Taruna Anand
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| |
Collapse
|
13
|
Akashi M, Takemura M, Suzuki S. Continuous year-round isolation of giant viruses from brackish shoreline soils. Front Microbiol 2024; 15:1402690. [PMID: 38756730 PMCID: PMC11096492 DOI: 10.3389/fmicb.2024.1402690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Giant viruses, categorized under Nucleocytoviricota, are believed to exist ubiquitously in natural environments. However, comprehensive reports on isolated giant viruses remain scarce, with limited information available on unrecoverable strains, viral proliferation sites, and natural hosts. Previously, the author highlighted Pandoravirus hades, Pandoravirus persephone, and Mimivirus sp. styx, isolated from brackish water soil, as potential hotspots for giant virus multiplication. This study presents findings from nearly a year of monthly sampling within the same brackish water region after isolating the three aforementioned strains. This report details the recurrent isolation of a wide range of giant viruses. Each month, four soil samples were randomly collected from an approximately 5 × 10 m plot, comprising three soil samples and one water sample containing sediment from the riverbed. Acanthamoeba castellanii was used as a host for virus isolation. These efforts consistently yielded at least one viral species per month, culminating in a total of 55 giant virus isolates. The most frequently isolated species was Mimiviridae (24 isolates), followed by Marseilleviridae (23 isolates), Pandoravirus (6 isolates), and singular isolates of Pithovirus and Cedratvirus. Notably, viruses were not consistently isolated from any of the four samples every month, with certain sites yielding no viruses. Cluster analysis based on isolate numbers revealed that soil samples from May and water and sediment samples from January produced the highest number of viral strains. These findings underscore brackish coastal soil as a significant site for isolating numerous giant viruses, highlighting the non-uniform distribution along coastlines.
Collapse
Affiliation(s)
- Motohiro Akashi
- Department of Science and Technology, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| | - Masaharu Takemura
- Institute of Arts and Sciences, Tokyo University of Science, Tokyo, Japan
| | - Seiichi Suzuki
- Department of Science and Technology, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| |
Collapse
|
14
|
Barnes O, Workman CJ, Patterson NC, Oesch R, Johnson KL, Goncz K, Sharbrough J, DeVeaux LC. Desert diversity: genome sequence of Gordonia rubripertincta cluster DJ phage Mossy and cluster DV phage Erutan. Microbiol Resour Announc 2024; 13:e0124523. [PMID: 38470028 PMCID: PMC11008172 DOI: 10.1128/mra.01245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Lytic bacteriophages Mossy and Erutan were directly isolated from desert soil on Gordonia rubripertincta and characterized by their morphologies and genomes. Mossy, part of the DJ cluster of Actinobacteriophage, has a genome of 61,183 bp. The genome of Erutan, part of the DV cluster, is 66,957 bp.
Collapse
Affiliation(s)
- October Barnes
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Christopher J. Workman
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Noah C. Patterson
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Riley Oesch
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Katie L. Johnson
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Kaarin Goncz
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Joel Sharbrough
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Linda C. DeVeaux
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| |
Collapse
|
15
|
Périat C, Kuhn T, Buffi M, Corona-Ramirez A, Fatton M, Cailleau G, Chain PS, Stanley CE, Wick LY, Bindschedler S, Gonzalez D, Li Richter XY, Junier P. Host and nonhost bacteria support bacteriophage dissemination along mycelia and abiotic dispersal networks. MICROLIFE 2024; 5:uqae004. [PMID: 38463165 PMCID: PMC10924533 DOI: 10.1093/femsml/uqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Bacteriophages play a crucial role in shaping bacterial communities, yet the mechanisms by which nonmotile bacteriophages interact with their hosts remain poorly understood. This knowledge gap is especially pronounced in structured environments like soil, where spatial constraints and air-filled zones hinder aqueous diffusion. In soil, hyphae of filamentous microorganisms form a network of 'fungal highways' (FHs) that facilitate the dispersal of other microorganisms. We propose that FHs also promote bacteriophage dissemination. Viral particles can diffuse in liquid films surrounding hyphae or be transported by infectable (host) or uninfectable (nonhost) bacterial carriers coexisting on FH networks. To test this, two bacteriophages that infect Pseudomonas putida DSM291 (host) but not KT2440 (nonhost) were used. In the absence of carriers, bacteriophages showed limited diffusion on 3D-printed abiotic networks, but diffusion was significantly improved in Pythium ultimum-formed FHs when the number of connecting hyphae exceeded 20. Transport by both host and nonhost carriers enhanced bacteriophage dissemination. Host carriers were five times more effective in transporting bacteriophages, particularly in FHs with over 30 connecting hyphae. This study enhances our understanding of bacteriophage dissemination in nonsaturated environments like soils, highlighting the importance of biotic networks and bacterial hosts in facilitating this process.
Collapse
Affiliation(s)
- Claire Périat
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Thierry Kuhn
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Matteo Buffi
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Andrea Corona-Ramirez
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Mathilda Fatton
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Patrick S Chain
- Los Alamos National Laboratory, Bioscience Division, P.O. Box 1663, NM 87545, Los Alamos, United States
| | - Claire E Stanley
- Department of Bioengineering, Imperial College London, B304, Bessemer Building, South Kensington Campus, SW7 2AZ, London, United Kingdom
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Diego Gonzalez
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Xiang-Yi Li Richter
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
16
|
Zhang H, Zhang H, Du H, Yu X, Xu Y. The insights into the phage communities of fermented foods in the age of viral metagenomics. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38214674 DOI: 10.1080/10408398.2023.2299323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Phages play a critical role in the assembly and regulation of fermented food microbiome through lysis and lysogenic lifestyle, which in turn affects the yield and quality of fermented foods. Therefore, it is important to investigate and characterize the diversity and function of phages under complex microbial communities and nutrient substrate conditions to provide novel insights into the regulation of traditional spontaneous fermentation. Viral metagenomics has gradually garnered increasing attention in fermented food research to elucidate phage functions and characterize the interactions between phages and the microbial community. Advances in this technology have uncovered a wide range of phages associated with the production of traditional fermented foods and beverages. This paper reviews the common methods of viral metagenomics applied in fermented food research, and summarizes the ecological functions of phages in traditional fermented foods. In the future, combining viral metagenomics with culturable methods and metagenomics will broaden the scope of research on fermented food systems, revealing the complex role of phages and intricate phage-bacterium interactions.
Collapse
Affiliation(s)
- Huadong Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxia Zhang
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
17
|
Vacheron J, Heiman CM, Garneau JR, Kupferschmied P, de Jonge R, Garrido-Sanz D, Keel C. Molecular and evolutionary basis of O-antigenic polysaccharide-driven phage sensitivity in environmental pseudomonads. Microbiol Spectr 2023; 11:e0204923. [PMID: 37800913 PMCID: PMC10715155 DOI: 10.1128/spectrum.02049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE The application of plant-beneficial microorganisms to protect crop plants is a promising alternative to the usage of chemicals. However, biocontrol research often faces difficulties in implementing this approach due to the inconsistency of the bacterial inoculant to establish itself within the root microbiome. Beneficial bacterial inoculants can be decimated by the presence of their natural predators, notably bacteriophages (also called phages). Thus, it is important to gain knowledge regarding the mechanisms behind phage-bacteria interactions to overcome this challenge. Here, we evidence that the major long O-antigenic polysaccharide (O-PS, O-antigen) of the widely used model plant-beneficial bacterium Pseudomonas protegens CHA0 is the receptor of its natural predator, the phage ΦGP100. We examined the distribution of the gene cluster directing the synthesis of this O-PS and identified signatures of horizontal gene acquisitions. Altogether, our study highlights the importance of bacterial cell surface structure variation in the complex interplay between phages and their Pseudomonas hosts.
Collapse
Affiliation(s)
- Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Clara M. Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Julian R. Garneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Peter Kupferschmied
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Fujiki J, Schnabl B. Phage therapy: Targeting intestinal bacterial microbiota for the treatment of liver diseases. JHEP Rep 2023; 5:100909. [PMID: 37965159 PMCID: PMC10641246 DOI: 10.1016/j.jhepr.2023.100909] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 11/16/2023] Open
Abstract
Phage therapy has been overshadowed by antibiotics for decades. However, it is being revisited as a powerful approach against antimicrobial-resistant bacteria. As bacterial microbiota have been mechanistically linked to gastrointestinal and liver diseases, precise editing of the gut microbiota via the selective bactericidal action of phages has prompted renewed interest in phage therapy. In this review, we summarise the basic virological properties of phages and the latest findings on the composition of the intestinal phageome and the changes associated with liver diseases. We also review preclinical and clinical studies assessing phage therapy for the treatment of gastrointestinal and liver diseases, as well as future prospects and challenges.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
19
|
Merges D, Schmidt A, Schmitt I, Neuschulz EL, Dal Grande F, Bálint M. Metatranscriptomics reveals contrasting effects of elevation on the activity of bacteria and bacterial viruses in soil. Mol Ecol 2023; 32:6552-6563. [PMID: 36321191 DOI: 10.1111/mec.16756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022]
Abstract
Soil microbial diversity affects ecosystem functioning and global biogeochemical cycles. Soil bacterial communities catalyse a diversity of biogeochemical reactions and have thus sparked considerable scientific interest. One driver of bacterial community dynamics in natural ecosystems has so far been largely neglected: the predator-prey interactions between bacterial viruses (bacteriophages) and bacteria. To generate ground level knowledge on environmental drivers of these particular predator-prey dynamics, we propose an activity-based ecological framework to simultaneous capture community dynamics of bacteria and bacteriophages in soils. An ecological framework and specifically the analyses of community dynamics across latitudinal and elevational gradients have been widely used in ecology to understand community-wide responses of innumerable taxa to environmental change, in particular to climate. Here, we tested the hypothesis that the activity of bacteria and bacteriophages codeclines across an elevational gradient. We used metatranscriptomics to investigate bacterial and bacteriophage activity patterns at five sites across 400 elevational metres in the Swiss Alps in 2015 and 2017. We found that metabolic activity (transcription levels) of bacteria declined significantly with increasing elevation, but activity of bacteriophages did not. We showed that bacteriophages are consistently active in soil along the entire gradient, making bacteriophage activity patterns divergent from that of their putative bacterial prey. Future efforts will be necessary to link the environment-activity relationship to predator-prey dynamics, and to understand the magnitude of viral contributions to carbon, nitrogen and phosphorus cycling when infection causes bacterial cell death, a process that may represent an overlooked component of soil biogeochemical cycles.
Collapse
Affiliation(s)
- Dominik Merges
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Alexandra Schmidt
- Department of Biology, Limnological Institute, University Konstanz, Konstanz, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padua, Italy
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute of Insect Biotechnology, Justus Liebig University Gießen, Gießen, Germany
| |
Collapse
|
20
|
Zhou X, Gao J, Xiao R, Qiao Y, Zhu Y, Zhang D, Zhang X, Li H, Xu J. Characterization and genomic analysis of a novel Pseudoalteromonas phage PS_L5. Mar Genomics 2023; 72:101069. [PMID: 38008529 DOI: 10.1016/j.margen.2023.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 11/28/2023]
Abstract
Pseudoalteromonas is a widely distributed bacterial genus that is associated with marine algae. However, there is still limited knowledge about their bacteriophage. In this study, we reported the isolation of a novel lytic bacteriophage that infects Pseudoalteromonas marina. Transmission electron microscopy revealed that PS_L5 had an icosahedral head of 52.6 ± 2 nm and a non-contractile tail with length of 96.5 ± 2 nm. The genome sequence of this phage was 34, 257 bp and had a GC content of 40.75%. Furthermore, this genome contained 61 predicted open reading frames (ORFs), which involved in various functions such as phage structure, packaging, DNA metabolism, host lysis and other additional functions. Additionally, the phylogenetic analysis based on major capsid protein showed that the phage PS_L5 was closely related to five other Pseudoalteromonas phages, namely PHS3, PHS21, AL, SL25 and Pq0 which also possessed the non-contractile long tail. This study provided the fundamental insights into the evolutionary dynamics of Pseudoalteromonas phages and the interaction between phage and host.
Collapse
Affiliation(s)
- Xing Zhou
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Jie Gao
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Rongda Xiao
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Yifan Qiao
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Yuang Zhu
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Di Zhang
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Xinyu Zhang
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Huifang Li
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China; College of Marine Life Sciences, Ocean University of China, Qingdao, PR China; MNR Key Laboratory of Coastal Salt Marsh Ecosystems and Resources, Jiangsu Ocean University, Lianyungang 222005, PR China.
| | - Juntian Xu
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, PR China.
| |
Collapse
|
21
|
Wu R, Davison MR, Nelson WC, Smith ML, Lipton MS, Jansson JK, McClure RS, McDermott JE, Hofmockel KS. Hi-C metagenome sequencing reveals soil phage-host interactions. Nat Commun 2023; 14:7666. [PMID: 37996432 PMCID: PMC10667309 DOI: 10.1038/s41467-023-42967-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteriophages are abundant in soils. However, the majority are uncharacterized, and their hosts are unknown. Here, we apply high-throughput chromosome conformation capture (Hi-C) to directly capture phage-host relationships. Some hosts have high centralities in bacterial community co-occurrence networks, suggesting phage infections have an important impact on the soil bacterial community interactions. We observe increased average viral copies per host (VPH) and decreased viral transcriptional activity following a two-week soil-drying incubation, indicating an increase in lysogenic infections. Soil drying also alters the observed phage host range. A significant negative correlation between VPH and host abundance prior to drying indicates more lytic infections result in more host death and inversely influence host abundance. This study provides empirical evidence of phage-mediated bacterial population dynamics in soil by directly capturing specific phage-host interactions.
Collapse
Affiliation(s)
- Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michelle R Davison
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - William C Nelson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Montana L Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mary S Lipton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan S McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
- Department of Agronomy, Iowa State University, Ames, IA, USA.
| |
Collapse
|
22
|
Ma B, Lu C, Wang Y, Yu J, Zhao K, Xue R, Ren H, Lv X, Pan R, Zhang J, Zhu Y, Xu J. A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources. Nat Commun 2023; 14:7318. [PMID: 37951952 PMCID: PMC10640626 DOI: 10.1038/s41467-023-43000-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Soil harbors a vast expanse of unidentified microbes, termed as microbial dark matter, presenting an untapped reservo)ir of microbial biodiversity and genetic resources, but has yet to be fully explored. In this study, we conduct a large-scale excavation of soil microbial dark matter by reconstructing 40,039 metagenome-assembled genome bins (the SMAG catalogue) from 3304 soil metagenomes. We identify 16,530 of 21,077 species-level genome bins (SGBs) as unknown SGBs (uSGBs), which expand archaeal and bacterial diversity across the tree of life. We also illustrate the pivotal role of uSGBs in augmenting soil microbiome's functional landscape and intra-species genome diversity, providing large proportions of the 43,169 biosynthetic gene clusters and 8545 CRISPR-Cas genes. Additionally, we determine that uSGBs contributed 84.6% of previously unexplored viral-host associations from the SMAG catalogue. The SMAG catalogue provides an useful genomic resource for further studies investigating soil microbial biodiversity and genetic resources.
Collapse
Affiliation(s)
- Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Caiyu Lu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jingwen Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Ran Xue
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Hao Ren
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Ronghui Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongguan Zhu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Santos-Medellín C, Blazewicz SJ, Pett-Ridge J, Firestone MK, Emerson JB. Viral but not bacterial community successional patterns reflect extreme turnover shortly after rewetting dry soils. Nat Ecol Evol 2023; 7:1809-1822. [PMID: 37770548 DOI: 10.1038/s41559-023-02207-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
As central members of soil trophic networks, viruses have the potential to drive substantial microbial mortality and nutrient turnover. Pinpointing viral contributions to terrestrial ecosystem processes remains a challenge, as temporal dynamics are difficult to unravel in the spatially and physicochemically heterogeneous soil environment. In Mediterranean grasslands, the first rainfall after seasonal drought provides an ecosystem reset, triggering microbial activity during a tractable window for capturing short-term dynamics. Here, we simulated precipitation in microcosms from four distinct dry grassland soils and generated 144 viromes, 84 metagenomes and 84 16S ribosomal RNA gene amplicon datasets to characterize viral, prokaryotic and relic DNA dynamics over 10 days. Vastly different viral communities in each soil followed remarkably similar successional trajectories. Wet-up triggered a significant increase in viral richness, followed by extensive compositional turnover. Temporal succession in prokaryotic communities was much less pronounced, perhaps suggesting differences in the scales of activity captured by viromes (representing recently produced, ephemeral viral particles) and total DNA. Still, differences in the relative abundances of Actinobacteria (enriched in dry soils) and Proteobacteria (enriched in wetted soils) matched those of their predicted phages, indicating viral predation of dominant bacterial taxa. Rewetting also rapidly depleted relic DNA, which subsequently reaccumulated, indicating substantial new microbial mortality in the days after wet-up, particularly of the taxa putatively under phage predation. Production of abundant, diverse viral particles via microbial host cell lysis appears to be a conserved feature of the early response to soil rewetting, and results suggest the potential for 'Cull-the-Winner' dynamics, whereby viruses infect and cull but do not decimate dominant host populations.
Collapse
Affiliation(s)
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California, Merced, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Mary K Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
24
|
Coclet C, Sorensen PO, Karaoz U, Wang S, Brodie EL, Eloe-Fadrosh EA, Roux S. Virus diversity and activity is driven by snowmelt and host dynamics in a high-altitude watershed soil ecosystem. MICROBIOME 2023; 11:237. [PMID: 37891627 PMCID: PMC10604447 DOI: 10.1186/s40168-023-01666-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Viruses impact nearly all organisms on Earth, including microbial communities and their associated biogeochemical processes. In soils, highly diverse viral communities have been identified, with a global distribution seemingly driven by multiple biotic and abiotic factors, especially soil temperature and moisture. However, our current understanding of the stability of soil viral communities across time and their response to strong seasonal changes in environmental parameters remains limited. Here, we investigated the diversity and activity of environmental soil DNA and RNA viruses, focusing especially on bacteriophages, across dynamics' seasonal changes in a snow-dominated mountainous watershed by examining paired metagenomes and metatranscriptomes. RESULTS We identified a large number of DNA and RNA viruses taxonomically divergent from existing environmental viruses, including a significant proportion of fungal RNA viruses, and a large and unsuspected diversity of positive single-stranded RNA phages (Leviviricetes), highlighting the under-characterization of the global soil virosphere. Among these, we were able to distinguish subsets of active DNA and RNA phages that changed across seasons, consistent with a "seed-bank" viral community structure in which new phage activity, for example, replication and host lysis, is sequentially triggered by changes in environmental conditions. At the population level, we further identified virus-host dynamics matching two existing ecological models: "Kill-The-Winner" which proposes that lytic phages are actively infecting abundant bacteria, and "Piggyback-The-Persistent" which argues that when the host is growing slowly, it is more beneficial to remain in a dormant state. The former was associated with summer months of high and rapid microbial activity, and the latter with winter months of limited and slow host growth. CONCLUSION Taken together, these results suggest that the high diversity of viruses in soils is likely associated with a broad range of host interaction types each adapted to specific host ecological strategies and environmental conditions. As our understanding of how environmental and host factors drive viral activity in soil ecosystems progresses, integrating these viral impacts in complex natural microbiome models will be key to accurately predict ecosystem biogeochemistry. Video Abstract.
Collapse
Affiliation(s)
- Clement Coclet
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Patrick O Sorensen
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shi Wang
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Emiley A Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
25
|
Wu Z, Cai P, Liang E, Chen Q, Sun W, Wang J. Distinct adaptive strategies and microbial interactions of soil viruses under different metal(loid) contaminations. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132347. [PMID: 37619274 DOI: 10.1016/j.jhazmat.2023.132347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Viruses, as the most abundant organisms, significantly influence ecological function and microbial survival in soils, yet little was known about how viruses and virus-microbe interactions respond to environmental stresses induced by metal(loid) contaminations. Here, we conducted the metagenomic analysis to investigate the adaptative mechanisms of soil viruses under different metal(loid) contamination levels. By capturing a catalogue of 23,066 viruses, we found that viral communities exhibited the increased richness, diversity, and the temperate to lytic ratio in facing the highest metal(loid) contaminations. Meanwhile, viruses displayed obvious lineage-specific infection modes to distinct dominant hosts under different pollution levels. Viral functions linking to the inhibition of transcription and the enhancement of DNA repairment as well as multiple resistance not only contributed to coping with elevated multiple metal(loid) stresses, but also facilitated the adaptation and functioning of viral hosts. Moreover, the harmonious coexistence of viruses and resistant/pathogenic bacteria under the heaviest contaminations potentially exacerbated disseminating resistance and pathogenicity, while viruses under the lightest contaminations might be natural predators of resistant/pathogenic bacteria through lysing host cells. Overall, this study highlights the ecological importance of viral adaptation and the interactions between viruses and resistant/pathogenic bacteria in contaminated environments, contributing to developing virus-based approaches to soil restoration.
Collapse
Affiliation(s)
- Zongzhi Wu
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Pinggui Cai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Jiawen Wang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
26
|
Barnett SE, Buckley DH. Metagenomic stable isotope probing reveals bacteriophage participation in soil carbon cycling. Environ Microbiol 2023; 25:1785-1795. [PMID: 37139849 DOI: 10.1111/1462-2920.16395] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Soil viruses are important components of the carbon (C) cycle, yet we still know little about viral ecology in soils. We added diverse 13 C-labelled carbon sources to soil and we used metagenomic-SIP to detect 13 C assimilation by viruses and their putative bacterial hosts. These data allowed us to link a 13 C-labelled bacteriophage to its 13 C-labelled Streptomyces putative host, and we used qPCR to track the dynamics of the putative host and phage in response to C inputs. Following C addition, putative host numbers increased rapidly for 3 days, and then more gradually, reaching maximal abundance on Day 6. Viral abundance and virus:host ratio increased dramatically over 6 days, and remained high thereafter (8.42 ± 2.94). From Days 6 to 30, virus:host ratio remained high, while putative host numbers declined more than 50%. Putative host populations were 13 C-labelled on Days 3-30, while 13 C-labelling of phage was detected on Days 14 and 30. This dynamic suggests rapid growth and 13 C-labelling of the host fueled by new C inputs, followed by extensive host mortality driven by phage lysis. These findings indicate that the viral shunt promotes microbial turnover in soil following new C inputs, thereby altering microbial community dynamics, and facilitating soil organic matter production.
Collapse
Affiliation(s)
- Samuel E Barnett
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Daniel H Buckley
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
27
|
Nicolas AM, Sieradzki ET, Pett-Ridge J, Banfield JF, Taga ME, Firestone MK, Blazewicz SJ. A subset of viruses thrives following microbial resuscitation during rewetting of a seasonally dry California grassland soil. Nat Commun 2023; 14:5835. [PMID: 37730729 PMCID: PMC10511743 DOI: 10.1038/s41467-023-40835-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/09/2023] [Indexed: 09/22/2023] Open
Abstract
Viruses are abundant, ubiquitous members of soil communities that kill microbial cells, but how they respond to perturbation of soil ecosystems is essentially unknown. Here, we investigate lineage-specific virus-host dynamics in grassland soil following "wet-up", when resident microbes are both resuscitated and lysed after a prolonged dry period. Quantitative isotope tracing, time-resolved metagenomics and viromic analyses indicate that dry soil holds a diverse but low biomass reservoir of virions, of which only a subset thrives following wet-up. Viral richness decreases by 50% within 24 h post wet-up, while viral biomass increases four-fold within one week. Though recent hypotheses suggest lysogeny predominates in soil, our evidence indicates that viruses in lytic cycles dominate the response to wet-up. We estimate that viruses drive a measurable and continuous rate of cell lysis, with up to 46% of microbial death driven by viral lysis one week following wet-up. Thus, viruses contribute to turnover of soil microbial biomass and the widely reported CO2 efflux following wet-up of seasonally dry soils.
Collapse
Affiliation(s)
- Alexa M Nicolas
- Plant & Microbial Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Ella T Sieradzki
- Environmental Science, Policy & Management Department, University of California Berkeley, Berkeley, CA, USA.
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | - Jillian F Banfield
- Environmental Science, Policy & Management Department, University of California Berkeley, Berkeley, CA, USA
- Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michiko E Taga
- Plant & Microbial Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Mary K Firestone
- Environmental Science, Policy & Management Department, University of California Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
28
|
Rangel-Pineros G, Almeida A, Beracochea M, Sakharova E, Marz M, Reyes Muñoz A, Hölzer M, Finn RD. VIRify: An integrated detection, annotation and taxonomic classification pipeline using virus-specific protein profile hidden Markov models. PLoS Comput Biol 2023; 19:e1011422. [PMID: 37639475 PMCID: PMC10491390 DOI: 10.1371/journal.pcbi.1011422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 09/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
The study of viral communities has revealed the enormous diversity and impact these biological entities have on various ecosystems. These observations have sparked widespread interest in developing computational strategies that support the comprehensive characterisation of viral communities based on sequencing data. Here we introduce VIRify, a new computational pipeline designed to provide a user-friendly and accurate functional and taxonomic characterisation of viral communities. VIRify identifies viral contigs and prophages from metagenomic assemblies and annotates them using a collection of viral profile hidden Markov models (HMMs). These include our manually-curated profile HMMs, which serve as specific taxonomic markers for a wide range of prokaryotic and eukaryotic viral taxa and are thus used to reliably classify viral contigs. We tested VIRify on assemblies from two microbial mock communities, a large metagenomics study, and a collection of publicly available viral genomic sequences from the human gut. The results showed that VIRify could identify sequences from both prokaryotic and eukaryotic viruses, and provided taxonomic classifications from the genus to the family rank with an average accuracy of 86.6%. In addition, VIRify allowed the detection and taxonomic classification of a range of prokaryotic and eukaryotic viruses present in 243 marine metagenomic assemblies. Finally, the use of VIRify led to a large expansion in the number of taxonomically classified human gut viral sequences and the improvement of outdated and shallow taxonomic classifications. Overall, we demonstrate that VIRify is a novel and powerful resource that offers an enhanced capability to detect a broad range of viral contigs and taxonomically classify them.
Collapse
Affiliation(s)
- Guillermo Rangel-Pineros
- The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogota, Colombia
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Alexandre Almeida
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Martin Beracochea
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ekaterina Sakharova
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Manja Marz
- RNA Bioinformatics, Friedrich Schiller University, Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University, Jena, Germany
| | - Alejandro Reyes Muñoz
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogota, Colombia
| | - Martin Hölzer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- European Virus Bioinformatics Center, Friedrich Schiller University, Jena, Germany
- Methodology and Research Infrastructure, Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany
| | - Robert D. Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
29
|
Du X, Li X, Cheng K, Zhao W, Cai Z, Chen G, Zhou J. Virome reveals effect of Ulva prolifera green tide on the structural and functional profiles of virus communities in coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163609. [PMID: 37100126 DOI: 10.1016/j.scitotenv.2023.163609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/03/2023]
Abstract
Viruses are widely distributed in marine environments, where they influence the transformation of matter and energy by modulating host metabolism. Driven by eutrophication, green tides are a rising concern in Chinese coastal areas, and are a serious ecological disaster that negatively affects coastal ecosystems and disrupts biogeochemical cycles. Although the composition of bacterial communities in green algae has been investigated, the diversity and roles of viruses in green algal blooms are largely unexplored. Therefore, the diversity, abundance, lifestyle, and metabolic potential of viruses in a natural bloom in Qingdao coastal area were investigated at three different stages (pre-bloom, during-bloom, and post-bloom) by metagenomics analysis. The dsDNA viruses, Siphoviridae, Myoviridae, Podoviridae, and Phycodnaviridae, were found to dominate the viral community. The viral dynamics exhibited distinct temporal patterns across different stages. The composition of the viral community varied during the bloom, especially in populations with low abundance. The lytic cycle was most predominant, and the abundance of lytic viruses increased slightly in the post-bloom stage. The diversity and richness of the viral communities varied distinctly during the green tide, and the post-bloom stage favored viral diversity and richness. The total organic carbon, dissolved oxygen, NO3-, NO2-, PO43-, chlorophyll-a contents, and temperature variably co-influenced the viral communities. The primary hosts included bacteria, algae, and other microplankton. Network analysis revealed the closer links between the viral communities as the bloom progressed. Functional prediction revealed that the viruses possibly influenced the biodegradation of microbial hydrocarbons and carbon by metabolic augmentation via auxiliary metabolic genes. The composition, structure, metabolic potential, and interaction taxonomy of the viromes differed significantly across the different stages of the green tide. The study demonstrated that the ecological event shaped the viral communities during algal bloom, and the viral communities played a significant role in phycospheric microecology.
Collapse
Affiliation(s)
- Xiaopeng Du
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Wei Zhao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
30
|
Gao R, Ma B, Hu M, Fang L, Chen G, Zhang W, Wang Y, Song X, Li F. Ecological drivers and potential functions of viral communities in flooded arsenic-contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162289. [PMID: 36804971 DOI: 10.1016/j.scitotenv.2023.162289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/21/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
This work revealed the profile of viral communities in paddy soils with different levels of arsenic (As) contamination during the flooded period. The structure of viral communities differed significantly in highly and moderately As-contaminated soils. The diversity of soil viral communities under high As contamination decreased. Siphoviridae, Podoviridae, Myoviridae, and Microviridae were the dominant viral families in all samples, and the relative abundances of five of the top 20 viral genera were significantly different between highly and moderately As-contaminated groups. Seventeen dissimilatory As(V)-reducing bacteria were predicted to host 161 viral operational taxonomic units (vOTUs), mainly affiliated with the genera of Sulfurospirillum, Deferribacter, Bacillus and Fusibacter. Among them, 28 vOTUs were also associated with Fe(III)-reducing bacteria, which belonged to different species of the genus Shewanella. Procrustes analysis showed that the community structure of soil viruses was strongly correlated with both prokaryotic community structure and geochemical properties. Random forest analyses revealed that the Total-Fe, DCB-Fe and oxalate-Fe were the most significant variables on viral community richness, while the total-As concentration was an important factor on the Shannon index. Furthermore, As resistance genes (ArsC, ArsR and ArsD), As methylation genes (arsM) and As transporter genes (Pst and Pit) were identified among the auxiliary metabolic genes (AMGs) of the virome. This work revealed that the viruses might influence microbial adaptation in response to As-induced stress, and provided a perspective on the potential virus-mediated biogeochemical cycling of As.
Collapse
Affiliation(s)
- Ruichuan Gao
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guanhong Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenqiang Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinwei Song
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
31
|
Abstract
Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. Climate change is resulting in unprecedented changes to soil ecosystems and the life forms that reside there, including viruses. In this Review, we explore our current understanding of soil viral diversity and ecology, and we discuss how climate change (such as extended and extreme drought events or more flooding and altered precipitation patterns) is influencing soil viruses. Finally, we provide our perspective on future research needs to better understand how climate change will impact soil viral ecology.
Collapse
Affiliation(s)
- Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
32
|
Xia R, Sun M, Balcázar JL, Yu P, Hu F, Alvarez PJJ. Benzo[a]pyrene stress impacts adaptive strategies and ecological functions of earthworm intestinal viromes. THE ISME JOURNAL 2023:10.1038/s41396-023-01408-x. [PMID: 37069233 DOI: 10.1038/s41396-023-01408-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The earthworm gut virome influences the structure and function of the gut microbiome, which in turn influences worm health and ecological functions. However, despite its ecological and soil quality implications, it remains elusive how earthworm intestinal phages respond to different environmental stress, such as soil pollution. Here we used metagenomics and metatranscriptomics to investigate interactions between the worm intestinal phages and their bacteria under different benzo[a]pyrene (BaP) concentrations. Low-level BaP (0.1 mg kg-1) stress stimulated microbial metabolism (1.74-fold to control), and enhanced the antiphage defense system (n = 75) against infection (8 phage-host pairs). Low-level BaP exposure resulted in the highest proportion of lysogenic phages (88%), and prophages expressed auxiliary metabolic genes (AMGs) associated with nutrient transformation (e.g., amino acid metabolism). In contrast, high-level BaP exposure (200 mg kg-1) disrupted microbial metabolism and suppressed the antiphage systems (n = 29), leading to the increase in phage-bacterium association (37 phage-host pairs) and conversion of lysogenic to lytic phages (lysogenic ratio declined to 43%). Despite fluctuating phage-bacterium interactions, phage-encoded AMGs related to microbial antioxidant and pollutant degradation were enriched, apparently to alleviate pollution stress. Overall, these findings expand our knowledge of complex phage-bacterium interactions in pollution-stressed worm guts, and deepen our understanding of the ecological and evolutionary roles of phages.
Collapse
Affiliation(s)
- Rong Xia
- Soil Ecology Lab, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing, 210095, China
| | - Mingming Sun
- Soil Ecology Lab, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing, 210095, China.
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain
- University of Girona, 17004, Girona, Spain
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310085, China.
| | - Feng Hu
- Soil Ecology Lab, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing, 210095, China
| | - Pedro J J Alvarez
- Civil and Environmental Engineering Department, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
33
|
Yuan L, Ju F. Potential Auxiliary Metabolic Capabilities and Activities Reveal Biochemical Impacts of Viruses in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5485-5498. [PMID: 36947091 DOI: 10.1021/acs.est.2c07800] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Viruses influence biogeochemical cycles in oceans, freshwater, soil, and human gut through infection and by modulating virocell metabolism through virus-encoded auxiliary metabolic genes (vAMGs). However, the geographical distribution, potential metabolic function, and engineering significance of vAMGs in wastewater treatment plants (WWTPs) remain to be explored. Here, 752 single-contig viral genomes with high confidence, 510 of which belonged to Caudovirales, were recovered from the activated sludge metagenomes of 32 geographically distributed WWTPs. A total of 101 vAMGs involved in various metabolic pathways were identified, the most common of which were the queuosine biosynthesis genes folE, queD, and queE and the sulfur metabolism gene cysH. Phylogenetic analysis and virus-host relationship prediction revealed the probable evolutionary histories of vAMGs involved in carbon (acpP and prsA), nitrogen (amoC), sulfur (cysH), and phosphate (phoH) metabolism, which potentially mediate microbial carbon and nutrient cycling. Notably, 11 of the 38 (28.3%) vAMGs identified in the metagenomes with corresponding metatranscriptomes were transcriptionally expressed, implying an active functional state. This meta-analysis provides the first broad catalog of vAMGs in municipal WWTPs and how they may assist in the basic physiological reactions of their microbial hosts or nutrient cycling in the WWTPs, and therefore, may have important effects on the engineering of wastewater treatment processes.
Collapse
Affiliation(s)
- Ling Yuan
- Environmental Science and Engineering Department, Zhejiang University, Hangzhou 310012, Zhejiang, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
34
|
Smith L, Goldobina E, Govi B, Shkoporov AN. Bacteriophages of the Order Crassvirales: What Do We Currently Know about This Keystone Component of the Human Gut Virome? Biomolecules 2023; 13:584. [PMID: 37189332 PMCID: PMC10136315 DOI: 10.3390/biom13040584] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
The order Crassvirales comprises dsDNA bacteriophages infecting bacteria in the phylum Bacteroidetes that are found in a variety of environments but are especially prevalent in the mammalian gut. This review summarises available information on the genomics, diversity, taxonomy, and ecology of this largely uncultured viral taxon. With experimental data available from a handful of cultured representatives, the review highlights key properties of virion morphology, infection, gene expression and replication processes, and phage-host dynamics.
Collapse
|
35
|
Braga LPP, Schumacher RI. Awaking the dormant virome in the rhizosphere. Mol Ecol 2023; 32:2985-2999. [PMID: 36807953 DOI: 10.1111/mec.16893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
The rhizosphere is a vital soil compartment providing key plant-beneficial functions. However, little is known about the mechanisms driving viral diversity in the rhizosphere. Viruses can establish lytic or lysogenic interactions with their bacterial hosts. In the latter, they assume a dormant state integrated in the host genome and can be awakened by different perturbations that impact host cell physiology, triggering a viral bloom, which is potentially a fundamental mechanism driving soil viral diversity, as 22%-68% of soil bacteria are predicted to harbour dormant viruses. Here we assessed the viral bloom response in rhizospheric viromes by exposing them to three contrasting soil perturbation agents: earthworms, herbicide and antibiotic pollutant. The viromes were next screened for rhizosphere-relevant genes and also used as inoculant on microcosms incubations to test their impacts on pristine microbiomes. Our results show that while post-perturbation viromes diverged from control conditions, viral communities exposed to both herbicide and antibiotic pollutant were more similar to each other than those influenced by earthworms. The latter also favoured an increase in viral populations harbouring genes involved in plant-beneficial functions. Post-perturbation viromes inoculated on soil microcosms changed the diversity of pristine microbiomes, suggesting that viromes are important components of the soil ecological memory driving eco-evolutionary processes that determine future microbiome trajectories according to past events. Our findings demonstrate that viromes are active players in the rhizosphere and need to be considered in efforts to understand and control the microbial processes towards sustainable crop production.
Collapse
Affiliation(s)
- Lucas P P Braga
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.,Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Robert I Schumacher
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
36
|
Tundra Soil Viruses Mediate Responses of Microbial Communities to Climate Warming. mBio 2023; 14:e0300922. [PMID: 36786571 PMCID: PMC10127799 DOI: 10.1128/mbio.03009-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The rise of global temperature causes the degradation of the substantial reserves of carbon (C) stored in tundra soils, in which microbial processes play critical roles. Viruses are known to influence the soil C cycle by encoding auxiliary metabolic genes and infecting key microorganisms, but their regulation of microbial communities under climate warming remains unexplored. In this study, we evaluated the responses of viral communities for about 5 years of experimental warming at two depths (15 to 25 cm and 45 to 55 cm) in the Alaskan permafrost region. Our results showed that the viral community and functional gene composition and abundances (including viral functional genes related to replication, structure, infection, and lysis) were significantly influenced by environmental conditions such as total nitrogen (N), total C, and soil thawing duration. Although long-term warming did not impact the viral community composition at the two depths, some glycoside hydrolases encoded by viruses were more abundant at both depths of the warmed plots. With the continuous reduction of total C, viruses may alleviate methane release by altering infection strategies on methanogens. Importantly, viruses can adopt lysogenic and lytic lifestyles to manipulate microbial communities at different soil depths, respectively, which could be one of the major factors causing the differences in microbial responses to warming. This study provides a new ecological perspective on how viruses regulate the responses of microbes to warming at community and functional scales. IMPORTANCE Permafrost thawing causes microbial release of greenhouse gases, exacerbating climate warming. Some previous studies examined the responses of the microbial communities and functions to warming in permafrost region, but the roles of viruses in mediating the responses of microbial communities to warming are poorly understood. This study revealed that warming induced changes in some viral functional classes and in the virus/microbe ratios for specific lineages, which might influence the entire microbial community. Furthermore, differences in viral communities and functions, along with soil depths, are important factors influencing microbial responses to warming. Collectively, our study revealed the regulation of microbial communities by viruses and demonstrated the importance of viruses in the microbial ecology research.
Collapse
|
37
|
Bi L, Han LL, Du S, Yu DT, He JZ, Zhang LM, Hu HW. Cross-biome soil viruses as an important reservoir of virulence genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130111. [PMID: 36209605 DOI: 10.1016/j.jhazmat.2022.130111] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Viruses can significantly influence the composition and functions of their host communities and enhance host pathogenicity via the transport of virus-encoded virulence genes. However, the contribution of viral communities to the dissemination of virulence genes across various biomes across a large scale is largely unknown. Here, we constructed 29,283 soil viral contigs (SVCs) from viral size fraction metagenomes and public databases. A total of 1310 virulence genes were identified from 1164 SVCs in a wide variety of soil biomes, including grassland, agricultural and forest soils. The virulence gene gmd was the most abundant one, followed by csrA, evpJ, and pblA. A great proportion of viruses encoding virulence genes were uncharacterized. Virus-host linkage analysis revealed that most viruses were linked to only one bacterial genus, whereas several SVCs were associated with more than one bacterial genus and even two bacterial phyla, suggesting the potential risk of spreading virulence genes across different bacterial communities via viruses. Altogether, we provided new evidence for the prevalence of virulence genes in soil viruses across biomes, which advanced our understanding of the potential role of soil viruses in driving the pathogenesis of their hosts in terrestrial ecosystems.
Collapse
Affiliation(s)
- Li Bi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shuai Du
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan-Ting Yu
- School of Geographical Sciences, Fujian Normal University, Fujian 350007, China
| | - Ji-Zheng He
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
38
|
Liu Q, Liu F, Miao Y, He J, Dong T, Hou T, Liu Y. Virsearcher: Identifying Bacteriophages from Metagenomes by Combining Convolutional Neural Network and Gene Information. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:763-774. [PMID: 35316191 DOI: 10.1109/tcbb.2022.3161135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Metagenome sequencing provides an unprecedented opportunity for the discovery of unknown microbes and viruses. A large number of phages and prokaryotes are mixed together in metagenomes. To study the influence of phages on human bodies and environments, it is of great significance to isolate phages from metagenomes. However, it is difficult to identify novel phages because of the diversity of their sequences and the frequent presence of short contigs in metagenomes. Here, virSearcher is developed to identify phages from metagenomes by combining the convolutional neural network (CNN) and the gene information of input sequences. Firstly, an input sequence is encoded in accordance with the different functions of its coding and the non-coding regions and then is converted into word embedding code through a word embedding layer before a convolutional layer. Meanwhile, the hit ratio of the virus genes is combined with the output of the CNN to further improve the performance of the network. The genes used by virSearcher consist of complete and incomplete genes. Experiments on several metagenomes have showed that, compared with others, virSearcher can significantly improve the performance for the identification of short sequences, while maintaining the performance for long ones. The source code of virSearcher is freely available from http://github.com/DrJackson18/virSearcher.
Collapse
|
39
|
Lin X, Yang S, Gong Z, Ni R, Shi X, Song L. Viral community in landfill leachate: Occurrence, bacterial hosts, mediation antibiotic resistance gene dissemination, and function in municipal solid waste decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158561. [PMID: 36087678 DOI: 10.1016/j.scitotenv.2022.158561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
A municipal solid waste (MSW) landfill is a significant source of antibiotic resistance, pathogens and viruses and also a habitat for microbial consortia that perform MSW decomposition. Viruses are of great significance in ecological interactions such as MSW decomposition and antibiotic resistance gene (ARG) transmission. In this study, the viral community structure and the associated driver, the linkage of viruses and their bacterial hosts, the virus-associated ARG dissemination and virtual community function on MSW decomposition were investigated in landfill leachate from seven cities, China. The seven cities include four megacities, two large-scale cities and one small-scale city, representing the leachate characters of China. The results showed that the leachates were dominated by the phage families Siphoviridae, Myoviridae and Podoviridae (91.7 ± 3.6) %. Their putative hosts were the important MSW decomposers Lactobacillus, Pseudomonas, Clostridium, Proteiniphilum, and Bacteroides. The structure of the viral community was significantly affected by pH (P = 0.007, analyzed by RDA) and the bacterial community (R = 0.83, P < 0.001, analyzed by Mantel test). The relative abundance of ARGs showed a strong correlation (R > 0.8, P < 0.01) with viral family, suggesting that viruses play an important role in ARGs dissemination. Phage regulate bacterial population abundance through top-down effects, thus participating in MSW decomposition. These results demonstrate that viral community are involve in ARGs transmission and dissemination and mediate MSW decomposition in landfill.
Collapse
Affiliation(s)
- Xiaoxing Lin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Zhourui Gong
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Xianyang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China.
| |
Collapse
|
40
|
Bhatt K, Suyal DC, Kumar S, Singh K, Goswami P. New insights into engineered plant-microbe interactions for pesticide removal. CHEMOSPHERE 2022; 309:136635. [PMID: 36183882 DOI: 10.1016/j.chemosphere.2022.136635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Over the past decades, rapid industrialization along with the overutilization of organic pollutants/pesticides has altered the environmental circumstances. Moreover, various anthropogenic, xenobiotics and natural activities also affected plants, soil, and human health, in both direct and indirect ways. To counter this, several conventional methods are currently practiced, but are uneconomical, noxious, and is yet inefficient for large-scale application. Plant-microbe interactions are mediated naturally in an ecosystem and are practiced in several areas. Plant growth promoting rhizobacteria (PGPR) possess certain attributes affecting plant and soil consequently performing decontamination activity via a direct and indirect mechanism. PGPR also harbors indispensable genes stimulating the mineralization of several organic and inorganic compounds. This makes microbes potential candidates for contributing to sustainably remediating the harmful pesticide contaminants. There is a limited piece of information about the plant-microbe interaction pertaining predict and understand the overall interaction concerning a sustainable environment. Therefore, this review focuses on the plant-microbe interaction in the rhizosphere and inside the plant's tissues, along with the utilization augmenting the crop productivity, reduction in plant stress along with decontamination of pesticides/organic pollutants in soil for sustainable environmental management.
Collapse
Affiliation(s)
- Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| | - Saurabh Kumar
- ICAR-Research Complex for Eastern Region, Patna, 800014, Bihar, India
| | - Kuldeep Singh
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
| | - Priya Goswami
- Department of Biotechnology, Mangalayatan University, Uttar Pradesh, India
| |
Collapse
|
41
|
Roux S, Emerson JB. Diversity in the soil virosphere: to infinity and beyond? Trends Microbiol 2022; 30:1025-1035. [PMID: 35644779 DOI: 10.1016/j.tim.2022.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/13/2023]
Abstract
Viruses are key members of Earth's microbiomes, shaping microbial community composition and metabolism. Here, we describe recent advances in 'soil viromics', that is, virus-focused metagenome and metatranscriptome analyses that offer unprecedented windows into the soil virosphere. Given the emerging picture of high soil viral activity, diversity, and dynamics over short spatiotemporal scales, we then outline key eco-evolutionary processes that we hypothesize are the major diversity drivers for soil viruses. We argue that a community effort is needed to establish a 'global soil virosphere atlas' that can be used to address the roles of viruses in soil microbiomes and terrestrial biogeochemical cycles across spatiotemporal scales.
Collapse
Affiliation(s)
- Simon Roux
- DOE (Department of Energy) Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA; Genome Center, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
42
|
Muscatt G, Hilton S, Raguideau S, Teakle G, Lidbury IDEA, Wellington EMH, Quince C, Millard A, Bending GD, Jameson E. Crop management shapes the diversity and activity of DNA and RNA viruses in the rhizosphere. MICROBIOME 2022; 10:181. [PMID: 36280853 PMCID: PMC9590211 DOI: 10.1186/s40168-022-01371-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/18/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND The rhizosphere is a hotspot for microbial activity and contributes to ecosystem services including plant health and biogeochemical cycling. The activity of microbial viruses, and their influence on plant-microbe interactions in the rhizosphere, remains undetermined. Given the impact of viruses on the ecology and evolution of their host communities, determining how soil viruses influence microbiome dynamics is crucial to build a holistic understanding of rhizosphere functions. RESULTS Here, we aimed to investigate the influence of crop management on the composition and activity of bulk soil, rhizosphere soil, and root viral communities. We combined viromics, metagenomics, and metatranscriptomics on soil samples collected from a 3-year crop rotation field trial of oilseed rape (Brassica napus L.). By recovering 1059 dsDNA viral populations and 16,541 ssRNA bacteriophage populations, we expanded the number of underexplored Leviviricetes genomes by > 5 times. Through detection of viral activity in metatranscriptomes, we uncovered evidence of "Kill-the-Winner" dynamics, implicating soil bacteriophages in driving bacterial community succession. Moreover, we found the activity of viruses increased with proximity to crop roots, and identified that soil viruses may influence plant-microbe interactions through the reprogramming of bacterial host metabolism. We have provided the first evidence of crop rotation-driven impacts on soil microbial communities extending to viruses. To this aim, we present the novel principal of "viral priming," which describes how the consecutive growth of the same crop species primes viral activity in the rhizosphere through local adaptation. CONCLUSIONS Overall, we reveal unprecedented spatial and temporal diversity in viral community composition and activity across root, rhizosphere soil, and bulk soil compartments. Our work demonstrates that the roles of soil viruses need greater consideration to exploit the rhizosphere microbiome for food security, food safety, and environmental sustainability. Video Abstract.
Collapse
Affiliation(s)
- George Muscatt
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Sebastien Raguideau
- School of Life Sciences, University of Warwick, Coventry, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Graham Teakle
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Ian D E A Lidbury
- School of Life Sciences, University of Warwick, Coventry, UK
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Christopher Quince
- School of Life Sciences, University of Warwick, Coventry, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, UK.
- School of Natural Sciences, Bangor University, Bangor, UK.
| |
Collapse
|
43
|
Liao H, Li H, Duan CS, Zhou XY, Luo QP, An XL, Zhu YG, Su JQ. Response of soil viral communities to land use changes. Nat Commun 2022; 13:6027. [PMID: 36224209 PMCID: PMC9556555 DOI: 10.1038/s41467-022-33771-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/30/2022] [Indexed: 02/07/2023] Open
Abstract
Soil viruses remain understudied when compared to virus found in aquatic ecosystems. Here, we investigate the ecological patterns of soil viral communities across various land use types encompassing forest, agricultural, and urban soil in Xiamen, China. We recovered 59,626 viral operational taxonomic units (vOTUs) via size-fractioned viromic approach with additional mitomycin C treatment to induce virus release from bacterial fraction. Our results show that viral communities are significantly different amongst the land use types considered. A microdiversity analysis indicates that selection act on soil vOTUs, resulting in disparities between land use associated viral communities. Soil pH is one of the major determinants of viral community structure, associated with changes of in-silico predicted host compositions of soil vOTUs. Habitat disturbance and variation of soil moisture potentially contribute to the dynamics of putative lysogenic vOTUs. These findings provide mechanistic understandings of the ecology and evolution of soil viral communities in changing environments.
Collapse
Affiliation(s)
- Hu Liao
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hu Li
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China
| | - Chen-Song Duan
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xin-Yuan Zhou
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qiu-Ping Luo
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xin-Li An
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China
| | - Yong-Guan Zhu
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China ,grid.9227.e0000000119573309State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Jian-Qiang Su
- grid.9227.e0000000119573309Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021 Xiamen, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
44
|
Van Cauwenberghe J, Santamaría RI, Bustos P, González V. Novel lineages of single-stranded DNA phages that coevolved with the symbiotic bacteria Rhizobium. Front Microbiol 2022; 13:990394. [PMID: 36177468 PMCID: PMC9512667 DOI: 10.3389/fmicb.2022.990394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022] Open
Abstract
This study describes novel single-stranded DNA phages isolated from common bean agriculture soils by infection of the nitrogen-fixing symbiotic bacteria Rhizobium etli and R. phaseoli. A total of 29 phages analyzed have 4.3-6 kb genomes in size and GC 59-60%. They belong to different clades unrelated to other Microviridae subfamilies. Three-dimensional models of the major capsid protein (MCP) showed a conserved β-barrel structural "jelly-roll" fold. A variable-length loop in the MCPs distinguished three Rhizobium microvirus groups. Microviridae subfamilies were consistent with viral clusters determined by the protein-sharing network. All viral clusters, except for Bullavirinae, included mostly microviruses identified in metagenomes from distinct ecosystems. Two Rhizobium microvirus clusters, chaparroviruses, and chicoviruses, were included within large viral unknown clusters with microvirus genomes identified in diverse metagenomes. A third Rhizobium microvirus cluster belonged to the subfamily Amoyvirinae. Phylogenetic analysis of the MCP confirms the divergence of the Rhizobium microviruses into separate clades. The phylogeny of the bacterial hosts matches the microvirus MCP phylogeny, suggesting a coevolutionary history between the phages and their bacterial host. This study provided essential biological information on cultivated microvirus for understanding the evolution and ecological diversification of the Microviridae family in diverse microbial ecosystems.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Cuernavaca, Mexico
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Rosa I. Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Cuernavaca, Mexico
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Cuernavaca, Mexico
| | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autonóma de México, Cuernavaca, Mexico
| |
Collapse
|
45
|
Vill AC, Delesalle VA, Tomko BE, Lichty KB, Strine MS, Guffey AA, Burton EA, Tanke NT, Krukonis GP. Comparative Genomics of Six Lytic Bacillus subtilis Phages from the Southwest United States. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:171-178. [PMID: 36793550 PMCID: PMC9917325 DOI: 10.1089/phage.2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Despite their importance to microbial dynamics involving Bacillus subtilis, we have a limited understanding of the diversity of phages that can lyse this model organism. Materials and Methods Phages were isolated from soil samples collected from various sites in the southwest U.S. deserts on a wild B. subtilis strain. Their genomes were assembled, characterized, and bioinformatically compared. Results Six Siphoviruses with high nucleotide and amino acid similarity to each other (>80%) but very limited similarity to phages currently in GenBank were isolated. These phages have double-stranded DNA genomes (55,312 to 56,127 bp) with 86-91 putative protein coding genes, and a low GC content. Comparative genomics reveal differences in loci encoding proteins that are putatively involved in bacterial adsorption with evidence for genomic mosaicism and a possible role for small genes. Conclusions A comparative approach provides insights into phage evolution, including the role of indels in protein folding.
Collapse
Affiliation(s)
- Albert C. Vill
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | | | - Brianne E. Tomko
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | | | - Madison S. Strine
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | | | | | - Natalie T. Tanke
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Greg P. Krukonis
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| |
Collapse
|
46
|
Wagemans J, Holtappels D, Vainio E, Rabiey M, Marzachì C, Herrero S, Ravanbakhsh M, Tebbe CC, Ogliastro M, Ayllón MA, Turina M. Going Viral: Virus-Based Biological Control Agents for Plant Protection. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:21-42. [PMID: 35300520 DOI: 10.1146/annurev-phyto-021621-114208] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The most economically important biotic stresses in crop production are caused by fungi, oomycetes, insects, viruses, and bacteria. Often chemical control is still the most commonly used method to manage them. However, the development of resistance in the different pathogens/pests, the putative damage on the natural ecosystem, the toxic residues in the field, and, thus, the contamination of the environment have stimulated the search for saferalternatives such as the use of biological control agents (BCAs). Among BCAs, viruses, a major driver for controlling host populations and evolution, are somewhat underused, mostly because of regulatory hurdles that make the cost of registration of such host-specific BCAs not affordable in comparison with the limited potential market. Here, we provide a comprehensive overview of the state of the art of virus-based BCAs against fungi, bacteria, viruses, and insects, with a specific focus on new approaches that rely on not only the direct biocidal virus component but also the complex ecological interactions between viruses and their hosts that do not necessarily result in direct damage to the host.
Collapse
Affiliation(s)
| | | | - Eeva Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Mojgan Rabiey
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | | | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | | | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| |
Collapse
|
47
|
Rosado-Porto D, Ratering S, Moser G, Deppe M, Müller C, Schnell S. Soil metatranscriptome demonstrates a shift in C, N, and S metabolisms of a grassland ecosystem in response to elevated atmospheric CO 2. Front Microbiol 2022; 13:937021. [PMID: 36081791 PMCID: PMC9445814 DOI: 10.3389/fmicb.2022.937021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Soil organisms play an important role in the equilibrium and cycling of nutrients. Because elevated CO2 (eCO2) affects plant metabolism, including rhizodeposition, it directly impacts the soil microbiome and microbial processes. Therefore, eCO2 directly influences the cycling of different elements in terrestrial ecosystems. Hence, possible changes in the cycles of carbon (C), nitrogen (N), and sulfur (S) were analyzed, alongside the assessment of changes in the composition and structure of the soil microbiome through a functional metatranscriptomics approach (cDNA from mRNA) from soil samples taken at the Giessen free-air CO2 enrichment (Gi-FACE) experiment. Results showed changes in the expression of C cycle genes under eCO2 with an increase in the transcript abundance for carbohydrate and amino acid uptake, and degradation, alongside an increase in the transcript abundance for cellulose, chitin, and lignin degradation and prokaryotic carbon fixation. In addition, N cycle changes included a decrease in the transcript abundance of N2O reductase, involved in the last step of the denitrification process, which explains the increase of N2O emissions in the Gi-FACE. Also, a shift in nitrate (NO 3 - ) metabolism occurred, with an increase in transcript abundance for the dissimilatoryNO 3 - reduction to ammonium (NH 4 + ) (DNRA) pathway. S metabolism showed increased transcripts for sulfate (SO 4 2 - ) assimilation under eCO2 conditions. Furthermore, soil bacteriome, mycobiome, and virome significantly differed between ambient and elevated CO2 conditions. The results exhibited the effects of eCO2 on the transcript abundance of C, N, and S cycles, and the soil microbiome. This finding showed a direct connection between eCO2 and the increased greenhouse gas emission, as well as the importance of soil nutrient availability to maintain the balance of soil ecosystems.
Collapse
Affiliation(s)
- David Rosado-Porto
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, Barranquilla, Colombia
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
| | - Gerald Moser
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
| | - Marianna Deppe
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
| | - Christoph Müller
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
48
|
Florent P, Cauchie HM, Herold M, Jacquet S, Ogorzaly L. Soil pH, Calcium Content and Bacteria as Major Factors Responsible for the Distribution of the Known Fraction of the DNA Bacteriophage Populations in Soils of Luxembourg. Microorganisms 2022; 10:1458. [PMID: 35889177 PMCID: PMC9321959 DOI: 10.3390/microorganisms10071458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages participate in soil life by influencing bacterial community structure and function, biogeochemical cycling and horizontal gene transfer. Despite their great abundance, diversity, and importance in microbial processes, they remain little explored in environmental studies. The influence of abiotic factors on the persistence of bacteriophages is now recognized; however, it has been mainly studied under experimental conditions. This study aimed to determine whether the abiotic factors well-known to influence bacteriophage persistence also control the natural distribution of the known DNA bacteriophage populations. To this end, soil from eight study sites including forests and grasslands located in the Attert River basin (Grand Duchy of Luxembourg) were sampled, covering different soil and land cover characteristics. Shotgun metagenomics, reference-based bioinformatics and statistical analyses allowed characterising the diversity of known DNA bacteriophage and bacterial communities. After combining soil properties with the identified DNA bacteriophage populations, our in-situ study highlighted the influence of pH and calcium cations on the diversity of the known fraction of the soil DNA bacteriophages. More interestingly, significant relationships were established between bacteriophage and bacterial populations. This study provides new insights into the importance of abiotic and biotic factors in the distribution of DNA bacteriophages and the natural ecology of terrestrial bacteriophages.
Collapse
Affiliation(s)
- Perrine Florent
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
- Faculté des Sciences, de la Technologie et de la Communication (FSTC), Doctoral School in Science and Engineering (DSSE), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Henry-Michel Cauchie
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
| | - Malte Herold
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
| | - Stéphan Jacquet
- INRAE, UMR CARRTEL, Université Savoie Mont Blanc, 74200 Thonon-les-Bains, France;
| | - Leslie Ogorzaly
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
| |
Collapse
|
49
|
Abstract
Microfluidics has enabled a new era of cellular and molecular assays due to the small length scales, parallelization, and the modularity of various analysis and actuation functions. Droplet microfluidics, in particular, has been instrumental in providing new tools for biology with its ability to quickly and reproducibly generate drops that act as individual reactors. A notable beneficiary of this technology has been single-cell RNA sequencing, which has revealed new heterogeneities and interactions for the fundamental unit of life. However, viruses far surpass the diversity of cellular life, affect the dynamics of all ecosystems, and are a chronic source of global health crises. Despite their impact on the world, high-throughput and high-resolution viral profiling has been difficult, with conventional methods being limited to population-level averaging, large sample volumes, and few cultivable hosts. Consequently, most viruses have not been identified and studied. Droplet microfluidics holds the potential to address many of these limitations and offers new levels of sensitivity and throughput for virology. This Feature highlights recent efforts that have applied droplet microfluidics to the detection and study of viruses, including for diagnostics, virus-host interactions, and cell-independent virus assays. In combination with traditional virology methods, droplet microfluidics should prove a potent tool toward achieving a better understanding of the most abundant biological species on Earth.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hee-Sun Han
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Nair A, Ghugare GS, Khairnar K. An Appraisal of Bacteriophage Isolation Techniques from Environment. MICROBIAL ECOLOGY 2022; 83:519-535. [PMID: 34136953 DOI: 10.1007/s00248-021-01782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Researchers have recently renewed interest in bacteriophages. Being valuable models for the study of eukaryotic viruses, and more importantly, natural killers of bacteria, bacteriophages are being tapped for their potential role in multiple applications. Bacteriophages are also being increasingly sought for bacteriophage therapy due to rising antimicrobial resistance among pathogens. Reports show that there is an increasing trend in therapeutic application of natural bacteriophages, genetically engineered bacteriophages, and bacteriophage-encoded products as antimicrobial agents. In view of these applications, the isolation and characterization of bacteriophages from the environment has caught attention. In this review, various methods for isolation of bacteriophages from environmental sources like water, soil, and air are comprehensively described. The review also draws attention towards a handful on-field bacteriophage isolation techniques and the need for their further rapid development.
Collapse
Affiliation(s)
- Aparna Nair
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav S Ghugare
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishna Khairnar
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|