1
|
Krabberød AK, Stokke E, Thoen E, Skrede I, Kauserud H. The Ribosomal Operon Database: A Full-Length rDNA Operon Database Derived From Genome Assemblies. Mol Ecol Resour 2024:e14031. [PMID: 39428982 DOI: 10.1111/1755-0998.14031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Current rDNA reference sequence databases are tailored towards shorter DNA markers, such as parts of the 16/18S marker or the internally transcribed spacer (ITS) region. However, due to advances in long-read DNA sequencing technologies, longer stretches of the rDNA operon are increasingly used in environmental sequencing studies to increase the phylogenetic resolution. There is, therefore, a growing need for longer rDNA reference sequences. Here, we present the ribosomal operon database (ROD), which includes eukaryotic full-length rDNA operons fished from publicly available genome assemblies. Full-length operons were detected in 34.1% of the 34,701 examined eukaryotic genome assemblies from NCBI. In most cases (53.1%), more than one operon variant was detected, which can be due to intragenomic operon copy variability, allelic variation in non-haploid genomes, or technical errors from the sequencing and assembly process. The highest copy number found was 5947 in Zea mays. In total, 453,697 unique operons were detected, with 69,480 operon variant clusters remaining after intragenomic clustering at 99% sequence identity. The operon length varied extensively across eukaryotes, ranging from 4136 to 16,463 bp, which will lead to considerable polymerase chain reaction (PCR) bias during amplification of the entire operon. Clustering the full-length operons revealed that the different parts (i.e., 18S, 28S, and the hypervariable regions V4 and V9 of 18S) provide divergent taxonomic resolution, with 18S, the V4 and V9 regions being the most conserved. The ROD will be updated regularly to provide an increasing number of full-length rDNA operons to the scientific community.
Collapse
Affiliation(s)
- Anders K Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Embla Stokke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Ella Thoen
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Inger Skrede
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Håvard Kauserud
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Zhang H, Wang X, Chen A, Li S, Tao R, Chen K, Huang P, Li L, Huang J, Li C, Zhang S. Comparison of the full-length sequence and sub-regions of 16S rRNA gene for skin microbiome profiling. mSystems 2024; 9:e0039924. [PMID: 38934545 PMCID: PMC11264597 DOI: 10.1128/msystems.00399-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
The skin microbiome plays a pivotal role in human health by providing protective and functional benefits. Furthermore, its inherent stability and individual specificity present novel forensic applications. These aspects have sparked considerable research enthusiasm among scholars across various fields. However, the selection of specific 16S rRNA hypervariable regions for skin microbiome studies is not standardized and should be validated through extensive research tailored to different research objectives and targeted bacterial taxa. Notably, third-generation sequencing (TGS) technology leverages the full discriminatory power of the 16S gene and enables more detailed and accurate microbial community analyses. Here, we conducted full-length 16S sequencing of 141 skin microbiota samples from multiple human anatomical sites using the PacBio platform. Based on this data, we generated derived 16S sub-region data through an in silico experiment. Comparisons between the 16S full-length and the derived variable region data revealed that the former can provide superior taxonomic resolution. However, even with full 16S gene sequencing, limitations arise in achieving 100% taxonomic resolution at the species level for skin samples. Additionally, the capability to resolve high-abundance bacteria (TOP30) at the genus level remains generally consistent across different 16S variable regions. Furthermore, the V1-V3 region offers a resolution comparable with that of full-length 16S sequences, in comparison to other hypervariable regions studied. In summary, while acknowledging the benefits of full-length 16S gene analysis, we propose the targeting of specific sub-regions as a practical choice for skin microbial research, especially when balancing the accuracy of taxonomic classification with limited sequencing resources, such as the availability of only short-read sequencing or insufficient DNA.IMPORTANCESkin acts as the primary barrier to human health. Considering the different microenvironments, microbial research should be conducted separately for different skin regions. Third-generation sequencing (TGS) technology can make full use of the discriminatory power of the full-length 16S gene. However, 16S sub-regions are widely used, particularly when faced with limited sequencing resources including the availability of only short-read sequencing and insufficient DNA. Comparing the 16S full-length and the derived variable region data from five different human skin sites, we confirmed the superiority of the V1-V3 region in skin microbiota analysis. We propose the targeting of specific sub-regions as a practical choice for microbial research.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Forensic Science, Fudan University, Shanghai, China
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, Liaoning, China
| | - Anqi Chen
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Shilin Li
- Institute of Forensic Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Ministry of Justice, Academy of Forensic Science, Shanghai, China
| | - Kaiqin Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ping Huang
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiang Huang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chengtao Li
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Suhua Zhang
- Institute of Forensic Science, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Núñez-Muñoz LA, Sánchez-García ME, Calderón-Pérez B, De la Torre-Almaraz R, Ruiz-Medrano R, Xoconostle-Cázares B. Metagenomic Analysis of Rhizospheric Bacterial Community of Citrus Trees Expressing Phloem-Directed Antimicrobials. MICROBIAL ECOLOGY 2024; 87:93. [PMID: 39008123 PMCID: PMC11249458 DOI: 10.1007/s00248-024-02408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Huanglongbing, also known as citrus greening, is currently the most devastating citrus disease with limited success in prevention and mitigation. A promising strategy for Huanglongbing control is the use of antimicrobials fused to a carrier protein (phloem protein of 16 kDa or PP16) that targets vascular tissues. This study investigated the effects of genetically modified citrus trees expressing Citrus sinensis PP16 (CsPP16) fused to human lysozyme and β-defensin-2 on the soil microbiome diversity using 16S amplicon analysis. The results indicated that there were no significant alterations in alpha diversity, beta diversity, phylogenetic diversity, differential abundance, or functional prediction between the antimicrobial phloem-overexpressing plants and the control group, suggesting minimal impact on microbial community structure. However, microbiota diversity analysis revealed distinct bacterial assemblages between the rhizosphere soil and root environments. This study helps to understand the ecological implications of crops expressing phloem-targeted antimicrobials for vascular disease management, with minimal impact on soil microbiota.
Collapse
Affiliation(s)
- Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Martín Eduardo Sánchez-García
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Rodolfo De la Torre-Almaraz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Mexico City, Estado de México, Mexico
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
- Centro de Investigación y de Estudios Avanzados, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico.
- Centro de Investigación y de Estudios Avanzados, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
4
|
Miao J, Chen T, Misir M, Lin Y. Deep learning for predicting 16S rRNA gene copy number. Sci Rep 2024; 14:14282. [PMID: 38902329 PMCID: PMC11190246 DOI: 10.1038/s41598-024-64658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Culture-independent 16S rRNA gene metabarcoding is a commonly used method for microbiome profiling. To achieve more quantitative cell fraction estimates, it is important to account for the 16S rRNA gene copy number (hereafter 16S GCN) of different community members. Currently, there are several bioinformatic tools available to estimate the 16S GCN values, either based on taxonomy assignment or phylogeny. Here we present a novel approach ANNA16, Artificial Neural Network Approximator for 16S rRNA gene copy number, a deep learning-based method that estimates the 16S GCN values directly from the 16S gene sequence strings. Based on 27,579 16S rRNA gene sequences and gene copy number data from the rrnDB database, we show that ANNA16 outperforms the commonly used 16S GCN prediction algorithms. Interestingly, Shapley Additive exPlanations (SHAP) shows that ANNA16 can identify unexpected informative positions in 16S rRNA gene sequences without any prior phylogenetic knowledge, which suggests potential applications beyond 16S GCN prediction.
Collapse
Affiliation(s)
- Jiazheng Miao
- Division of Applied and Natural Sciences, Duke Kunshan University, Suzhou, China
- Department of Biomedical Informatics, Harvard Medical School, Boston, USA
| | - Tianlai Chen
- Division of Applied and Natural Sciences, Duke Kunshan University, Suzhou, China
- Department of Biomedical Engineering, Duke University, Durham, USA
| | - Mustafa Misir
- Division of Applied and Natural Sciences, Duke Kunshan University, Suzhou, China.
| | - Yajuan Lin
- Division of Applied and Natural Sciences, Duke Kunshan University, Suzhou, China.
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, USA.
| |
Collapse
|
5
|
Lecaudé C, Orieux N, Chuzeville S, Bertry A, Coissac E, Boyer F, Bonin A, Colomb-Boeckler N, Mathieu B, Recour M, Vindret J, Pignol C, Romand S, Petite C, Taberlet P, Charles C, Bel N, Hauwuy A. Deciphering microbial communities of three Savoyard raw milk cheeses along ripening and regarding the cheese process. Int J Food Microbiol 2024; 418:110712. [PMID: 38723541 DOI: 10.1016/j.ijfoodmicro.2024.110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/27/2024]
Abstract
Different Savoyard cheeses are granted with PDO (Protected Designation or Origin) and PGI (Protected Geographical Indication) which guarantees consumers compliance with strict specifications. The use of raw milk is known to be crucial for specific flavor development. To unravel the factors influencing microbial ecosystems across cheese making steps, according to the seasonality (winter and summer) and the mode of production (farmhouse and dairy factory ones), gene targeting on bacteria and fungus was used to have a full picture of 3 cheese making technologies, from the raw milk to the end of the ripening. Our results revealed that Savoyard raw milks are a plenteous source of biodiversity together with the brines used during the process, that may support the development of specific features for each cheese. It was shown that rinds and curds have very contrasted ecosystem diversity, composition, and evolution. Ripening stage was selective for some bacterial species, whereas fungus were mainly ubiquitous in dairy samples. All ripening stages are impacted by the type of cheese technologies, with a higher impact on bacterial communities, except for fungal rind communities, for which the technology is the more discriminant. The specific microorganism's abundance for each technology allow to see a real bar-code, with more or less differences regarding bacterial or fungal communities. Bacterial structuration is shaped mainly by matrices, differently regarding technologies while the influence of technology is higher for fungi. Production types showed 10 differential bacterial species, farmhouses showed more ripening taxa, while dairy factory products showing more lactic acid bacteria. Meanwhile, seasonality looks to be a minor element for the comprehension of both microbial ecosystems, but the uniqueness of each dairy plant is a key explicative feature, more for bacteria than for fungus communities.
Collapse
Affiliation(s)
- Cresciense Lecaudé
- CERAQ, Centre de ressources pour l'agriculture de qualité et de montagne, 40 Rue du Terraillet, 73190 Saint-Baldoph, France.
| | - Nicolas Orieux
- ENILV, Ecole Nationale des industries du lait et de la viande, 212Rue Anatole France, 74800 La Roche-sur-Foron, France
| | - Sarah Chuzeville
- ACTALIA, Centre technique d'expertise agroalimentaire, Division d'expertise analytique sur le lait et les produits laitiers, 419 Rte des Champs Laitiers, 74800 Eteaux, France
| | - Alicia Bertry
- ACTALIA, Centre technique d'expertise agroalimentaire, Division d'expertise analytique sur le lait et les produits laitiers, 419 Rte des Champs Laitiers, 74800 Eteaux, France
| | - Eric Coissac
- Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000 Grenoble, France
| | - Frederic Boyer
- Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000 Grenoble, France
| | - Aurélie Bonin
- Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000 Grenoble, France
| | - Nelly Colomb-Boeckler
- ACTALIA, Centre technique d'expertise agroalimentaire, Division d'expertise analytique sur le lait et les produits laitiers, 419 Rte des Champs Laitiers, 74800 Eteaux, France
| | - Bruno Mathieu
- Syndicat Interprofessionnel du Reblochon, 28 Rue Louis Haase, 74230 Thônes, France
| | - Manon Recour
- Syndicat Interprofessionnel du Reblochon, 28 Rue Louis Haase, 74230 Thônes, France
| | - Joël Vindret
- sifa syndicat interprofessionnel du fromage abondance, 16 chemin d'Hirmentaz, 74200 Thonon-les-Bains, France
| | - Céline Pignol
- Savoicime, Syndicat Interprofessionnel de la Tomme de Savoie, 10 Allée Jules Vernes, 74150 Rumilly, France
| | - Stéphane Romand
- Syndicat Interprofessionnel du Reblochon, 28 Rue Louis Haase, 74230 Thônes, France
| | - Caroline Petite
- Syndicat Interprofessionnel de la Tome des Bauges, Rue Henri Bouvier, 73630 Le Chatelard, France
| | - Pierre Taberlet
- Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000 Grenoble, France
| | - Cécile Charles
- CERAQ, Centre de ressources pour l'agriculture de qualité et de montagne, 40 Rue du Terraillet, 73190 Saint-Baldoph, France
| | - Nadège Bel
- ACTALIA, Centre technique d'expertise agroalimentaire, Division d'expertise analytique sur le lait et les produits laitiers, 419 Rte des Champs Laitiers, 74800 Eteaux, France
| | - Agnès Hauwuy
- CERAQ, Centre de ressources pour l'agriculture de qualité et de montagne, 40 Rue du Terraillet, 73190 Saint-Baldoph, France
| |
Collapse
|
6
|
Zavadska D, Henry N, Auladell A, Berney C, Richter DJ. Diverse patterns of correspondence between protist metabarcodes and protist metagenome-assembled genomes. PLoS One 2024; 19:e0303697. [PMID: 38843225 PMCID: PMC11156365 DOI: 10.1371/journal.pone.0303697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Two common approaches to study the composition of environmental protist communities are metabarcoding and metagenomics. Raw metabarcoding data are usually processed into Operational Taxonomic Units (OTUs) or amplicon sequence variants (ASVs) through clustering or denoising approaches, respectively. Analogous approaches are used to assemble metagenomic reads into metagenome-assembled genomes (MAGs). Understanding the correspondence between the data produced by these two approaches can help to integrate information between the datasets and to explain how metabarcoding OTUs and MAGs are related with the underlying biological entities they are hypothesised to represent. MAGs do not contain the commonly used barcoding loci, therefore sequence homology approaches cannot be used to match OTUs and MAGs. We made an attempt to match V9 metabarcoding OTUs from the 18S rRNA gene (V9 OTUs) and MAGs from the Tara Oceans expedition based on the correspondence of their relative abundances across the same set of samples. We evaluated several metrics for detecting correspondence between features in these two datasets and developed controls to filter artefacts of data structure and processing. After selecting the best-performing metrics, ranking the V9 OTU/MAG matches by their proportionality/correlation coefficients and applying a set of selection criteria, we identified candidate matches between V9 OTUs and MAGs. In some cases, V9 OTUs and MAGs could be matched with a one-to-one correspondence, implying that they likely represent the same underlying biological entity. More generally, matches we observed could be classified into 4 scenarios: one V9 OTU matches many MAGs; many V9 OTUs match many MAGs; many V9 OTUs match one MAG; one V9 OTU matches one MAG. Notably, we found some instances in which different OTU-MAG matches from the same taxonomic group were not classified in the same scenario, with all four scenarios possible even within the same taxonomic group, illustrating that factors beyond taxonomic lineage influence the relationship between OTUs and MAGs. Overall, each scenario produces a different interpretation of V9 OTUs, MAGs and how they compare in terms of the genomic and ecological diversity they represent.
Collapse
Affiliation(s)
- Daryna Zavadska
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Nicolas Henry
- CNRS, FR2424, ABiMS, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Adrià Auladell
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Cédric Berney
- CNRS, UMR7144, AD2M, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Daniel J. Richter
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
7
|
Jiang C, Zhao G, Wang H, Zheng W, Zhang R, Wang L, Zheng Z. Comparative genomics analysis and transposon mutagenesis provides new insights into high menaquinone-7 biosynthetic potential of Bacillus subtilis natto. Gene 2024; 907:148264. [PMID: 38346457 DOI: 10.1016/j.gene.2024.148264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This research combined Whole-Genome sequencing, intraspecific comparative genomics and transposon mutagenesis to investigate the menaquinone-7 (MK-7) synthesis potential in Bacillus subtilis natto. First, Whole-Genome sequencing showed that Bacillus subtilis natto BN-P15-11-1 contains one single circular chromosome in size of 3,982,436 bp with a GC content of 43.85 %, harboring 4,053 predicted coding genes. Next, the comparative genomics analysis among strain BN-P15-11-1 with model Bacillus subtilis 168 and four typical Bacillus subtilis natto strains proves that the closer evolutionary relationship Bacillus subtilis natto BN-P15-11-1 and Bacillus subtilis 168 both exhibit strong biosynthetic potential. To further dig for MK-7 biosynthesis latent capacity of BN-P15-11-1, we constructed a mutant library using transposons and a high throughput screening method using microplates. We obtained a YqgQ deficient high MK-7 yield strain F4 with a yield 3.02 times that of the parent strain. Experiments also showed that the high yield mutants had defects in different transcription and translation regulatory factor genes, indicating that regulatory factor defects may affect the biosynthesis and accumulation of MK-7 by altering the overall metabolic level. The findings of this study will provide more novel insights on the precise identification and rational utilization of the Bacillus subtilis subspecies for biosynthesis latent capacity.
Collapse
Affiliation(s)
- Chunxu Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, Anhui, PR China
| | - Genhai Zhao
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Han Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Wenqian Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; University of Science and Technology of China, Hefei, Anhui, PR China
| | - Rui Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Li Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Zhiming Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| |
Collapse
|
8
|
Wang H, Liu K, He Z, Chen Y, Hu Z, Chen W, Leaw CP, Chen N. Extensive intragenomic variations of the 18S rDNA V4 region in the toxigenic diatom species Pseudo-nitzschia multistriata revealed through high-throughput sequencing. MARINE POLLUTION BULLETIN 2024; 201:116198. [PMID: 38428045 DOI: 10.1016/j.marpolbul.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Metabarcoding analysis is an effective technique for monitoring the domoic acid-producing Pseudo-nitzschia species in marine environments, uncovering high-levels of molecular diversity. However, such efforts may result in the overinterpretation of Pseudo-nitzschia species diversity, as molecular diversity not only encompasses interspecies and intraspecies diversities but also exhibits extensive intragenomic variations (IGVs). In this study, we analyzed the V4 region of the 18S rDNA of 30 strains of Pseudo-nitzschia multistriata collected from the coasts of China. The results showed that each P. multistriata strain harbored about a hundred of unique 18S rDNA V4 sequence varieties, of which each represented by a unique amplicon sequence variant (ASV). This study demonstrated the extensive degree of IGVs in P. multistriata strains, suggesting that IGVs may also present in other Pseudo-nitzschia species and other phytoplankton species. Understanding the scope and levels of IGVs is crucial for accurately interpreting the results of metabarcoding analysis.
Collapse
Affiliation(s)
- Hui Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kuiyan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ziyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- Department of Aquaculture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Weizhou Chen
- Institution of Marine Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310 Bachok, Kelantan, Malaysia
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
9
|
Gross M, Dunthorn M, Mauvisseau Q, Stoeck T. Using digital PCR to predict ciliate abundance from ribosomal RNA gene copy numbers. Environ Microbiol 2024; 26:e16619. [PMID: 38649189 DOI: 10.1111/1462-2920.16619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024]
Abstract
Ciliates play a key role in most ecosystems. Their abundance in natural samples is crucial for answering many ecological questions. Traditional methods of quantifying individual species, which rely on microscopy, are often labour-intensive, time-consuming and can be highly biassed. As a result, we investigated the potential of digital polymerase chain reaction (dPCR) for quantifying ciliates. A significant challenge in this process is the high variation in the copy number of the taxonomic marker gene (ribosomal RNA [rRNA]). We first quantified the rRNA gene copy numbers (GCN) of the model ciliate, Paramecium tetraurelia, during different stages of the cell cycle and growth phases. The per-cell rRNA GCN varied between approximately 11,000 and 130,000, averaging around 50,000 copies per cell. Despite these variations in per-cell rRNA GCN, we found a highly significant correlation between GCN and cell numbers. This is likely due to the coexistence of different cellular stages in an uncontrolled (environmental) ciliate population. Thanks to the high sensitivity of dPCR, we were able to detect the target gene in a sample that contained only a single cell. The dPCR approach presented here is a valuable addition to the molecular toolbox in protistan ecology. It may guide future studies in quantifying and monitoring the abundance of targeted (even rare) ciliates in natural samples.
Collapse
Affiliation(s)
- Megan Gross
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Thorsten Stoeck
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
10
|
Pineda-Mendoza RM, Gutiérrez-Ávila JL, Salazar KF, Rivera-Orduña FN, Davis TS, Zúñiga G. Comparative metabarcoding and biodiversity of gut-associated fungal assemblages of Dendroctonus species (Curculionidae: Scolytinae). Front Microbiol 2024; 15:1360488. [PMID: 38525076 PMCID: PMC10959539 DOI: 10.3389/fmicb.2024.1360488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
The genus Dendroctonus is a Holarctic taxon composed of 21 nominal species; some of these species are well known in the world as disturbance agents of forest ecosystems. Under the bark of the host tree, these insects are involved in complex and dynamic associations with phoretic ectosymbiotic and endosymbiotic communities. Unlike filamentous fungi and bacteria, the ecological role of yeasts in the bark beetle holobiont is poorly understood, though yeasts were the first group to be recorded as microbial symbionts of these beetles. Our aim was characterize and compare the gut fungal assemblages associated to 14 species of Dendroctonus using the internal transcribed spacer 2 (ITS2) region. A total of 615,542 sequences were recovered yielding 248 fungal amplicon sequence variants (ASVs). The fungal diversity was represented by 4 phyla, 16 classes, 34 orders, 54 families, and 71 genera with different relative abundances among Dendroctonus species. The α-diversity consisted of 32 genera of yeasts and 39 genera of filamentous fungi. An analysis of β-diversity indicated differences in the composition of the gut fungal assemblages among bark beetle species, with differences in species and phylogenetic diversity. A common core mycobiome was recognized at the genus level, integrated mainly by Candida present in all bark beetles, Nakazawaea, Cladosporium, Ogataea, and Yamadazyma. The bipartite networks confirmed that these fungal genera showed a strong association between beetle species and dominant fungi, which are key to maintaining the structure and stability of the fungal community. The functional variation in the trophic structure was identified among libraries and species, with pathotroph-saprotroph-symbiotroph represented at the highest frequency, followed by saprotroph-symbiotroph, and saprotroph only. The overall network suggested that yeast and fungal ASVs in the gut of these beetles showed positive and negative associations among them. This study outlines a mycobiome associated with Dendroctonus nutrition and provides a starting point for future in vitro and omics approaches addressing potential ecological functions and interactions among fungal assemblages and beetle hosts.
Collapse
Affiliation(s)
- Rosa María Pineda-Mendoza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Luis Gutiérrez-Ávila
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Kevin F. Salazar
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Flor N. Rivera-Orduña
- Laboratorio de Ecología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Thomas S. Davis
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, United States
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
11
|
Useros F, García-Cunchillos I, Henry N, Berney C, Lara E. How good are global DNA-based environmental surveys for detecting all protist diversity? Arcellinida as an example of biased representation. Environ Microbiol 2024; 26:e16606. [PMID: 38509748 DOI: 10.1111/1462-2920.16606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Metabarcoding approaches targeting microeukaryotes have deeply changed our vision of protist environmental diversity. The public repository EukBank consists of 18S v4 metabarcodes from 12,672 samples worldwide. To estimate how far this database provides a reasonable overview of all eukaryotic diversity, we used Arcellinida (lobose testate amoebae) as a case study. We hypothesised that (1) this approach would allow the discovery of unexpected diversity, but also that (2) some groups would be underrepresented because of primer/sequencing biases. Most of the Arcellinida sequences appeared in freshwater and soil, but their abundance and diversity appeared underrepresented. Moreover, 84% of ASVs belonged to the suborder Phryganellina, a supposedly species-poor clade, whereas the best-documented suborder (Glutinoconcha, 600 described species) was only marginally represented. We explored some possible causes of these biases. Mismatches in the primer-binding site seem to play a minor role. Excessive length of the target region could explain some of these biases, but not all. There must be some other unknown factors involved. Altogether, while metabarcoding based on ribosomal genes remains a good first approach to document microbial eukaryotic clades, alternative approaches based on other genes or sequencing techniques must be considered for an unbiased picture of the diversity of some groups.
Collapse
Affiliation(s)
| | - Iván García-Cunchillos
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nicolas Henry
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Paris, France
- CNRS, FR2424, ABiMS, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Cédric Berney
- CNRS, FR2424, ABiMS, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | | |
Collapse
|
12
|
Garcia S, Kovarik A, Maiwald S, Mann L, Schmidt N, Pascual-Díaz JP, Vitales D, Weber B, Heitkam T. The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics. Mol Biol Evol 2024; 41:msae025. [PMID: 38306580 PMCID: PMC10946416 DOI: 10.1093/molbev/msae025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Although both are salient features of genomes, at first glance ribosomal DNAs and transposable elements are genetic elements with not much in common: whereas ribosomal DNAs are mainly viewed as housekeeping genes that uphold all prime genome functions, transposable elements are generally portrayed as selfish and disruptive. These opposing characteristics are also mirrored in other attributes: organization in tandem (ribosomal DNAs) versus organization in a dispersed manner (transposable elements); evolution in a concerted manner (ribosomal DNAs) versus evolution by diversification (transposable elements); and activity that prolongs genomic stability (ribosomal DNAs) versus activity that shortens it (transposable elements). Re-visiting relevant instances in which ribosomal DNA-transposable element interactions have been reported, we note that both repeat types share at least four structural and functional hallmarks: (1) they are repetitive DNAs that shape genomes in evolutionary timescales, (2) they exchange structural motifs and can enter co-evolution processes, (3) they are tightly controlled genomic stress sensors playing key roles in senescence/aging, and (4) they share common epigenetic marks such as DNA methylation and histone modification. Here, we give an overview of the structural, functional, and evolutionary characteristics of both ribosomal DNAs and transposable elements, discuss their roles and interactions, and highlight trends and future directions as we move forward in understanding ribosomal DNA-transposable element associations.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | - Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | | | - Daniel Vitales
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
- Laboratori de Botànica–Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Beatrice Weber
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, A-8010 Graz, Austria
| |
Collapse
|
13
|
Jiang S, Cai Z, Wang Y, Zeng C, Zhang J, Yu W, Su C, Zhao S, Chen Y, Shen Y, Ma Y, Cai Y, Dai J. High plasticity of ribosomal DNA organization in budding yeast. Cell Rep 2024; 43:113742. [PMID: 38324449 DOI: 10.1016/j.celrep.2024.113742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
In eukaryotic genomes, rDNA generally resides as a highly repetitive and dynamic structure, making it difficult to study. Here, a synthetic rDNA array on chromosome III in budding yeast was constructed to serve as the sole source of rRNA. Utilizing the loxPsym site within each rDNA repeat and the Cre recombinase, we were able to reduce the copy number to as few as eight copies. Additionally, we constructed strains with two or three rDNA arrays and found that the presence of multiple arrays did not affect the formation of a single nucleolus. Although alteration of the position and number of rDNA arrays did impact the three-dimensional genome structure, the additional rDNA arrays had no deleterious influence on cell growth or transcriptomes. Overall, this study sheds light on the high plasticity of rDNA organization and opens up opportunities for future rDNA engineering.
Collapse
Affiliation(s)
- Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zelin Cai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wang
- BGI Research, BGI, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Cheng Zeng
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaying Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Wenfei Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghao Su
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shijun Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, BGI, Shenzhen 518083, China
| | - Yue Shen
- BGI Research, BGI, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; College of Life Sciences and Oceanography, Shenzhen University, 1066 Xueyuan Road, Shenzhen 518055, China.
| |
Collapse
|
14
|
Xie Z, Canalda-Baltrons A, d'Enfert C, Manichanh C. Shotgun metagenomics reveals interkingdom association between intestinal bacteria and fungi involving competition for nutrients. MICROBIOME 2023; 11:275. [PMID: 38098063 PMCID: PMC10720197 DOI: 10.1186/s40168-023-01693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The accuracy of internal-transcribed-spacer (ITS) and shotgun metagenomics has not been robustly evaluated, and the effect of diet on the composition and function of the bacterial and fungal gut microbiome in a longitudinal setting has been poorly investigated. Here we compared two approaches to study the fungal community (ITS and shotgun metagenomics), proposed an enrichment protocol to perform a reliable mycobiome analysis using a comprehensive in-house fungal database, and correlated dietary data with both bacterial and fungal communities. RESULTS We found that shotgun DNA sequencing after a new enrichment protocol combined with the most comprehensive and novel fungal databases provided a cost-effective approach to perform gut mycobiome profiling at the species level and to integrate bacterial and fungal community analyses in fecal samples. The mycobiome was significantly more variable than the bacterial community at the compositional and functional levels. Notably, we showed that microbial diversity, composition, and functions were associated with habitual diet composition instead of driven by global dietary changes. Our study indicates a potential competitive inter-kingdom interaction between bacteria and fungi for food foraging. CONCLUSION Together, our present work proposes an efficient workflow to study the human gut microbiome integrating robustly fungal, bacterial, and dietary data. These findings will further advance our knowledge of the interaction between gut bacteria and fungi and pave the way for future investigations in human mycobiome. Video Abstract.
Collapse
Affiliation(s)
- Zixuan Xie
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Aleix Canalda-Baltrons
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Chaysavanh Manichanh
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
15
|
Giroux MS, Reichman JR, Langknecht T, Burgess RM, Ho KT. Using eRNA/eDNA metabarcoding to detect community-level impacts of nanoplastic exposure to benthic estuarine ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122650. [PMID: 37777055 PMCID: PMC10762991 DOI: 10.1016/j.envpol.2023.122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Plastic particles are ubiquitous in marine systems and fragment into smaller pieces, such as nanoplastics (NPs). The effects of NPs on marine organisms are of growing concern but are not well understood. Marine sediments act as a sink for many contaminants, like microplastics, and are rich habitats for benthic micro- and meiofauna which are ecologically-important components of marine food webs; however, little is known about the sensitivities of specific organisms to NPs or the effects on community diversity and composition. Utilizing molecular methods, such as metabarcoding of environmental DNA/RNA, allows for the rapid and comprehensive detection of microscopic organisms via high-throughput sequencing to assess adverse effects at the community level. The objective of this study was to use a metabarcoding approach to investigate the effects of NPs on benthic micro- and meiofaunal community diversity. Mesocosms were created with sediment cores collected from the Narrow River estuary (Rhode Island, USA) and exposed to 900 nm diameter weathered polystyrene beads at concentrations of 0.1, 1, 10, or 100 mg/kg dry weight in sediment for two weeks. Following exposure, RNA and DNA were co-extracted from the sediment, RNA was reverse-transcribed, 18S and COI markers were PCR-amplified, and amplicons were sequenced on an Illumina MiSeq. Using the 18S marker and eRNA template, increases to α-diversity and significant differences to β-diversity were observed in the highest NP exposures relative to the control. Observed differences in community composition were driven by the differential abundance of several types of protists and arthropods. Significant dose-dependent shifts in composition were observed in β-diversity Jaccard and Unweighted-Unifrac metrics with the 18S marker using the RNA template. To our knowledge, this is the first demonstration of a dose-response relationship for NPs at a community level, and it highlights the value of using community-level endpoints to assess environmental impacts of nanoparticles.
Collapse
Affiliation(s)
- Marissa S Giroux
- U.S. EPA, Office of Research and Development, Atlantic Coastal Environmental Sciences Division, Narragansett, RI, USA.
| | - Jay R Reichman
- U.S. EPA, Office of Research and Development, Pacific Ecological Systems Division, Corvallis, OR, USA
| | - Troy Langknecht
- ORISE c/o U.S. EPA ORD/CEMM Atlantic Coastal Environmental Sciences Division, USA
| | - Robert M Burgess
- U.S. EPA, Office of Research and Development, Atlantic Coastal Environmental Sciences Division, Narragansett, RI, USA
| | - Kay T Ho
- U.S. EPA, Office of Research and Development, Atlantic Coastal Environmental Sciences Division, Narragansett, RI, USA
| |
Collapse
|
16
|
Meyer S, Hüttig N, Zenk M, Jäckel U, Pöther D. Bioaerosols in swine confinement buildings: A metaproteomic view. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:684-697. [PMID: 37919246 PMCID: PMC10667663 DOI: 10.1111/1758-2229.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Swine confinement buildings represent workplaces with high biological air pollution. It is suspected that individual components of inhalable air are causatives of chronic respiratory disease that are regularly detected among workers. In order to understand the relationship between exposure and stress, it is necessary to study the components of bioaerosols in more detail. For this purpose, bioaerosols from pig barns were collected on quartz filters and analysed via a combinatorial approach of 16S rRNA amplicon sequencing and metaproteomics. The study reveals the presence of peptides from pigs, their feed and microorganisms. The proportion of fungal peptides detected is considered to be underrepresented compared to bacterial peptides. In addition, the metaproteomic workflow enabled functional predictions about the discovered peptides. Housekeeping proteins were found in particular, but also evidence for the presence of bacterial virulence factors (e.g., serralysin-like metalloprotease) as well as plant (e.g., chitinase) and fungal allergens (e.g., alt a10). Metaproteomic analyses can thus be used to identify factors that may be relevant to the health of pig farmers. Accordingly, such studies could be used in the future to assess the adverse health potential of an occupationally relevant bioaerosol and help consider defined protective strategies for workers.
Collapse
Affiliation(s)
- Susann Meyer
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | - Nicole Hüttig
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | - Marianne Zenk
- Research Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Udo Jäckel
- Federal Institute for Occupational Safety and HealthBerlinGermany
| | | |
Collapse
|
17
|
Ajani PA, Savela H, Kahlke T, Harrison D, Jeffries T, Kohli GS, Verma A, Laczka O, Doblin MA, Seymour JR, Larsson ME, Potts J, Scanes P, Gribben PE, Harrison L, Murray SA. Response of planktonic microbial assemblages to disturbance in an urban sub-tropical estuary. WATER RESEARCH 2023; 243:120371. [PMID: 37506634 DOI: 10.1016/j.watres.2023.120371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Microbes are sensitive indicators of estuarine processes because they respond rapidly to dynamic disturbance events. As most of the world's population lives in urban areas and climate change-related disturbance events are becoming more frequent, estuaries bounded by cities are experiencing increasing stressors, at the same time that their ecosystem services are required more than ever. Here, using a multidisciplinary approach, we determined the response of planktonic microbial assemblages in response to seasonality and a rainfall disturbance in an urban estuary bounded by Australia's largest city, Sydney. We used molecular barcoding (16S, 18S V4 rRNA) and microscopy-based identification to compare microbial assemblages at locations with differing characteristics and urbanisation histories. Across 142 samples, we identified 8,496 unique free-living bacterial zOTUs, 8,175 unique particle associated bacterial zOTUs, and 1,920 unique microbial eukaryotic zOTUs. Using microscopy, we identified only the top <10% abundant, larger eukaryotic taxa (>10 µm), however quantification was possible. The site with the greater history of anthropogenic impact showed a more even community of associated bacteria and eukaryotes, and a significant increase in dissolved inorganic nitrogen following rainfall, when compared to the more buffered site. This coincided with a reduced proportional abundance of Actinomarina and Synechococcus spp., a change in SAR 11 clades, and an increase in the eukaryotic microbial groups Dinophyceae, Mediophyceae and Bathyoccocaceae, including a temporary dominance of the harmful algal bloom dinoflagellate Prorocentrum cordatum (syn. P. minimum). Finally, a validated hydrodynamic model of the estuary supported these results, showing that the more highly urbanised and upstream location consistently experienced a higher magnitude of salinity reduction in response to rainfall events during the study period. The best abiotic variables to explain community dissimilarities between locations were TDP, PN, modelled temperature and salinity (r = 0.73) for the free living bacteria, TP for the associated bacteria (r = 0.43), and modelled temperature (r = 0.28) for the microbial eukaryotic communities. Overall, these results show that a minor disturbance such as a brief rainfall event can significantly shift the microbial assemblage of an anthropogenically impacted area within an urban estuary to a greater degree than a seasonal change, but may result in a lesser response to the same disturbance at a buffered, more oceanic influenced location. Fine scale research into the factors driving the response of microbial communities in urban estuaries to climate related disturbances will be necessary to understand and implement changes to maintain future estuarine ecosystem services.
Collapse
Affiliation(s)
- Penelope A Ajani
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia; Sydney Institute of Marine Sciences, Mosman, New South Wales 2088, Australia.
| | - Henna Savela
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia
| | - Tim Kahlke
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia; University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Daniel Harrison
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour NSW 2450, Australia
| | - Thomas Jeffries
- Western Sydney University, School of Science, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Gurjeet S Kohli
- University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Arjun Verma
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia; University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Olivier Laczka
- University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Martina A Doblin
- Sydney Institute of Marine Sciences, Mosman, New South Wales 2088, Australia; University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Justin R Seymour
- University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Michaela E Larsson
- University of Technology Sydney, Climate Change Cluster, 15 Broadway, Ultimo NSW 2007, Australia
| | - Jaimie Potts
- Science, Economics and Insights Division, NSW Department of Planning and Environment
| | - Peter Scanes
- Science, Economics and Insights Division, NSW Department of Planning and Environment
| | - Paul E Gribben
- Sydney Institute of Marine Sciences, Mosman, New South Wales 2088, Australia; University of NSW, Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, New South Wales 2052, Australia
| | - Luke Harrison
- Marine Studies Institute, School of Geosciences, University of Sydney, Australia
| | - Shauna A Murray
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Ultimo NSW 2007, Australia; Sydney Institute of Marine Sciences, Mosman, New South Wales 2088, Australia
| |
Collapse
|
18
|
Xue Y, Abdullah Al M, Chen H, Xiao P, Zhang H, Jeppesen E, Yang J. Relic DNA obscures DNA-based profiling of multiple microbial taxonomic groups in a river-reservoir ecosystem. Mol Ecol 2023; 32:4940-4952. [PMID: 37452629 DOI: 10.1111/mec.17071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Numerous studies have investigated the spatiotemporal variability in water microbial communities, yet the effects of relic DNA on microbial community profiles, especially microeukaryotes, remain far from fully understood. Here, total and active bacterial and microeukaryotic community compositions were characterized using propidium monoazide (PMA) treatment coupled with high-throughput sequencing in a river-reservoir ecosystem. Beta diversity analysis showed a significant difference in community composition between both the PMA untreated and treated bacteria and microeukaryotes; however, the differentiating effect was much stronger for microeukaryotes. Relic DNA only resulted in underestimation of the relative abundances of Bacteroidota and Nitrospirota, while other bacterial taxa exhibited no significant changes. As for microeukaryotes, the relative abundances of some phytoplankton (e.g. Chlorophyta, Dinoflagellata and Ochrophyta) and fungi were greater after relic DNA removal, whereas Cercozoa and Ciliophora showed the opposite trend. Moreover, relic DNA removal weakened the size and complexity of cross-trophic microbial networks and significantly changed the relationships between environmental factors and microeukaryotic community composition. However, there was no significant difference in the rates of temporal community turnover between the PMA untreated and treated samples for either bacteria or microeukaryotes. Overall, our results imply that the presence of relic DNA in waters can give misleading information of the active microbial community composition, co-occurrence networks and their relationships with environmental conditions. More studies of the abundance, decay rate and functioning of nonviable DNA in freshwater ecosystems are highly recommended in the future.
Collapse
Affiliation(s)
- Yuanyuan Xue
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Huihuang Chen
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xiao
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongteng Zhang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Sino-Danish Centre for Education and Research, Beijing, China
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
19
|
Ruvindy R, Barua A, Bolch CJS, Sarowar C, Savela H, Murray SA. Genomic copy number variability at the genus, species and population levels impacts in situ ecological analyses of dinoflagellates and harmful algal blooms. ISME COMMUNICATIONS 2023; 3:70. [PMID: 37422553 PMCID: PMC10329664 DOI: 10.1038/s43705-023-00274-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
The application of meta-barcoding, qPCR, and metagenomics to aquatic eukaryotic microbial communities requires knowledge of genomic copy number variability (CNV). CNV may be particularly relevant to functional genes, impacting dosage and expression, yet little is known of the scale and role of CNV in microbial eukaryotes. Here, we quantify CNV of rRNA and a gene involved in Paralytic Shellfish Toxin (PST) synthesis (sxtA4), in 51 strains of 4 Alexandrium (Dinophyceae) species. Genomes varied up to threefold within species and ~7-fold amongst species, with the largest (A. pacificum, 130 ± 1.3 pg cell-1 /~127 Gbp) in the largest size category of any eukaryote. Genomic copy numbers (GCN) of rRNA varied by 6 orders of magnitude amongst Alexandrium (102- 108 copies cell-1) and were significantly related to genome size. Within the population CNV of rRNA was 2 orders of magnitude (105 - 107 cell-1) in 15 isolates from one population, demonstrating that quantitative data based on rRNA genes needs considerable caution in interpretation, even if validated against locally isolated strains. Despite up to 30 years in laboratory culture, rRNA CNV and genome size variability were not correlated with time in culture. Cell volume was only weakly associated with rRNA GCN (20-22% variance explained across dinoflagellates, 4% in Gonyaulacales). GCN of sxtA4 varied from 0-102 copies cell-1, was significantly related to PSTs (ng cell-1), displaying a gene dosage effect modulating PST production. Our data indicate that in dinoflagellates, a major marine eukaryotic group, low-copy functional genes are more reliable and informative targets for quantification of ecological processes than unstable rRNA genes.
Collapse
Affiliation(s)
- Rendy Ruvindy
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Abanti Barua
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Christopher J S Bolch
- Institute for Marine & Antarctic Studies, University of Tasmania, Launceston, 7248, TAS, Australia
| | - Chowdhury Sarowar
- Sydney Institute of Marine Science, Chowder Bay Rd, Mosman, NSW, Australia
| | - Henna Savela
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW, 2007, Australia
- Finnish Environment Institute, Marine Research Centre, Helsinki, Finland
| | - Shauna A Murray
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
20
|
Ohta A, Nishi K, Hirota K, Matsuo Y. Using nanopore sequencing to identify fungi from clinical samples with high phylogenetic resolution. Sci Rep 2023; 13:9785. [PMID: 37328565 PMCID: PMC10275880 DOI: 10.1038/s41598-023-37016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023] Open
Abstract
The study of microbiota has been revolutionized by the development of DNA metabarcoding. This sequence-based approach enables the direct detection of microorganisms without the need for culture and isolation, which significantly reduces analysis time and offers more comprehensive taxonomic profiles across broad phylogenetic lineages. While there has been an accumulating number of researches on bacteria, molecular phylogenetic analysis of fungi still remains challenging due to the lack of standardized tools and the incompleteness of reference databases limiting the accurate and precise identification of fungal taxa. Here, we present a DNA metabarcoding workflow for characterizing fungal microbiota with high taxonomic resolution. This method involves amplifying longer stretches of ribosomal RNA operons and sequencing them using nanopore long-read sequencing technology. The resulting reads were error-polished to generate consensus sequences with 99.5-100% accuracy, which were then aligned against reference genome assemblies. The efficacy of this method was explored using a polymicrobial mock community and patient-derived specimens, demonstrating the marked potential of long-read sequencing combined with consensus calling for accurate taxonomic classification. Our approach offers a powerful tool for the rapid identification of pathogenic fungi and has the promise to significantly improve our understanding of the role of fungi in health and disease.
Collapse
Affiliation(s)
- Atsufumi Ohta
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Kenichiro Nishi
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
- Department of Anesthesiology and Intensive Care, Osaka Red Cross Hospital, Osaka, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
21
|
Gao Y, Wu M. Accounting for 16S rRNA copy number prediction uncertainty and its implications in bacterial diversity analyses. ISME COMMUNICATIONS 2023; 3:59. [PMID: 37301942 PMCID: PMC10257666 DOI: 10.1038/s43705-023-00266-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
16S rRNA gene copy number (16S GCN) varies among bacterial species and this variation introduces potential biases to microbial diversity analyses using 16S rRNA read counts. To correct the biases, methods have been developed to predict 16S GCN. A recent study suggests that the prediction uncertainty can be so great that copy number correction is not justified in practice. Here we develop RasperGade16S, a novel method and software to better model and capture the inherent uncertainty in 16S GCN prediction. RasperGade16S implements a maximum likelihood framework of pulsed evolution model and explicitly accounts for intraspecific GCN variation and heterogeneous GCN evolution rates among species. Using cross-validation, we show that our method provides robust confidence estimates for the GCN predictions and outperforms other methods in both precision and recall. We have predicted GCN for 592605 OTUs in the SILVA database and tested 113842 bacterial communities that represent an exhaustive and diverse list of engineered and natural environments. We found that the prediction uncertainty is small enough for 99% of the communities that 16S GCN correction should improve their compositional and functional profiles estimated using 16S rRNA reads. On the other hand, we found that GCN variation has limited impacts on beta-diversity analyses such as PCoA, NMDS, PERMANOVA and random-forest test.
Collapse
Affiliation(s)
- Yingnan Gao
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA
| | - Martin Wu
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA.
| |
Collapse
|
22
|
Wirth R, Bagi Z, Shetty P, Szuhaj M, Cheung TTS, Kovács KL, Maróti G. Inter-kingdom interactions and stability of methanogens revealed by machine-learning guided multi-omics analysis of industrial-scale biogas plants. THE ISME JOURNAL 2023:10.1038/s41396-023-01448-3. [PMID: 37286740 DOI: 10.1038/s41396-023-01448-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Multi-omics analysis is a powerful tool for the detection and study of inter-kingdom interactions, such as those between bacterial and archaeal members of complex biogas-producing microbial communities. In the present study, the microbiomes of three industrial-scale biogas digesters, each fed with different substrates, were analysed using a machine-learning guided genome-centric metagenomics framework complemented with metatranscriptome data. This data permitted us to elucidate the relationship between abundant core methanogenic communities and their syntrophic bacterial partners. In total, we detected 297 high-quality, non-redundant metagenome-assembled genomes (nrMAGs). Moreover, the assembled 16 S rRNA gene profiles of these nrMAGs showed that the phylum Firmicutes possessed the highest copy number, while the representatives of the archaeal domain had the lowest. Further investigation of the three anaerobic microbial communities showed characteristic alterations over time but remained specific to each industrial-scale biogas plant. The relative abundance of various microorganisms as revealed by metagenome data was independent from corresponding metatranscriptome activity data. Archaea showed considerably higher activity than was expected from their abundance. We detected 51 nrMAGs that were present in all three biogas plant microbiomes with different abundances. The core microbiome correlated with the main chemical fermentation parameters, and no individual parameter emerged as a predominant shaper of community composition. Various interspecies H2/electron transfer mechanisms were assigned to hydrogenotrophic methanogens in the biogas plants that ran on agricultural biomass and wastewater. Analysis of metatranscriptome data revealed that methanogenesis pathways were the most active of all main metabolic pathways.
Collapse
Affiliation(s)
- Roland Wirth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Prateek Shetty
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Márk Szuhaj
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | | | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
- Faculty of Water Sciences, University of Public Service, Baja, Hungary.
| |
Collapse
|
23
|
Toma GA, Dos Santos N, Dos Santos R, Rab P, Kretschmer R, Ezaz T, Bertollo LAC, Liehr T, Porto-Foresti F, Hatanaka T, Tanomtong A, Utsunomia R, Cioffi MB. Cytogenetics Meets Genomics: Cytotaxonomy and Genomic Relationships among Color Variants of the Asian Arowana Scleropages formosus. Int J Mol Sci 2023; 24:ijms24109005. [PMID: 37240350 DOI: 10.3390/ijms24109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Scleropages formosus (Osteoglossiformes, Teleostei) represents one of the most valued ornamental fishes, yet it is critically endangered due to overexploitation and habitat destruction. This species encompasses three major color groups that naturally occur in allopatric populations, but the evolutionary and taxonomic relationships of S. formosus color varieties remain uncertain. Here, we utilized a range of molecular cytogenetic techniques to characterize the karyotypes of five S. formosus color phenotypes, which correspond to naturally occurring variants: the red ones (Super Red); the golden ones (Golden Crossback and Highback Golden); the green ones (Asian Green and Yellow Tail Silver). Additionally, we describe the satellitome of S. formosus (Highback Golden) by applying a high-throughput sequencing technology. All color phenotypes possessed the same karyotype structure 2n = 50 (8m/sm + 42st/a) and distribution of SatDNAs, but different chromosomal locations of rDNAs, which were involved in a chromosome size polymorphism. Our results show indications of population genetic structure and microstructure differences in karyotypes of the color phenotypes. However, the findings do not clearly back up the hypothesis that there are discrete lineages or evolutionary units among the color phenotypes of S. formosus, but another case of interspecific chromosome stasis cannot be excluded.
Collapse
Affiliation(s)
- Gustavo A Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | | | | | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil
| | - Tariq Ezaz
- Institute for Aplied Ecology, University of Canberra, Canberra 2617, Australia
| | - Luiz A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | | | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | | | - Marcelo B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
24
|
Abstract
The microbiome may impact cancer development, progression and treatment responsiveness, but its fungal components remain insufficiently studied in this context. In this review, we highlight accumulating evidence suggesting a possible involvement of commensal and pathogenic fungi in modulation of cancer-related processes. We discuss the mechanisms by which fungi can influence tumour biology, locally by activity exerted within the tumour microenvironment, or remotely through secretion of bioactive metabolites, modulation of host immunity and communications with neighbouring bacterial commensals. We examine prospects of utilising fungi-related molecular signatures in cancer diagnosis, patient stratification and assessment of treatment responsiveness, while highlighting challenges and limitations faced in performing such research. In all, we demonstrate that fungi likely constitute important members of mucosal and tumour-residing microbiomes. Exploration of fungal inter-kingdom interactions with the bacterial microbiome and the host and decoding of their causal impacts on tumour biology may enable their harnessing into cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Aurelia Saftien
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jens Puschhof
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Yang Q, Jie S, Lei P, Gan M, He P, Zhu J, Zhou Q. Effect of Anthropogenic Disturbances on the Microbial Relationship during Bioremediation of Heavy Metal-Contaminated Sediment. Microorganisms 2023; 11:1185. [PMID: 37317159 DOI: 10.3390/microorganisms11051185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Soil, sediment, and waters contaminated with heavy metals pose a serious threat to ecosystem function and human health, and microorganisms are an effective way to address this problem. In this work, sediments containing heavy metals (Cu, Pb, Zn, Mn, Cd, As) were treated differently (sterilized and unsterilized) and bio-enhanced leaching experiments were carried out with the addition of exogenous iron-oxidizing bacteria A. ferrooxidans and sulfur-oxidizing bacteria A. thiooxidans. The leaching of As, Cd, Cu, and Zn was higher in the unsterilized sediment at the beginning 10 days, while heavy metals leached more optimally in the later sterilized sediment. The leaching of Cd from sterilized sediments was favored by A. ferrooxidans compared to A. thiooxidans. Meanwhile, the microbial community structure was analyzed using 16S rRNA gene sequencing, which revealed that 53.4% of the bacteria were Proteobacteria, 26.22% were Bacteroidetes, 5.04% were Firmicutes, 4.67% were Chlamydomonas, and 4.08% were Acidobacteria. DCA analysis indicated that microorganisms abundance (diversity and Chao values) increased with time. Furthermore, network analysis showed that complex networks of interactions existed in the sediments. After adapting to the acidic environmental conditions, the growth of some locally dominant bacteria increased the microbial interactions, allowing more bacteria to participate in the network, making their connections stronger. This evidence points to a disruption in the microbial community structure and its diversity following artificial disturbance, which then develops again over time. These results could contribute to the understanding of the evolution of microbial communities in the ecosystem during the remediation of anthropogenically disturbed heavy metals.
Collapse
Affiliation(s)
- Quanliu Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shiqi Jie
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Pan Lei
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Qingming Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
26
|
Conti A, Casagrande Pierantoni D, Robert V, Corte L, Cardinali G. MinION Sequencing of Yeast Mock Communities To Assess the Effect of Databases and ITS-LSU Markers on the Reliability of Metabarcoding Analysis. Microbiol Spectr 2023; 11:e0105222. [PMID: 36519933 PMCID: PMC9927109 DOI: 10.1128/spectrum.01052-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microbial communities play key roles both for humans and the environment. They are involved in ecosystem functions, maintaining their stability, and provide important services, such as carbon cycle and nitrogen cycle. Acting both as symbionts and as pathogens, description of the structure and composition of these communities is important. Metabarcoding uses ribosomal DNA (rDNA) (eukaryotic) or rRNA gene (prokaryotic) sequences for identification of species present in a site and measuring their abundance. This procedure requires several technical steps that could be source of bias producing a distorted view of the real community composition. In this work, we took advantage of an innovative "long-read" next-generation sequencing (NGS) technology (MinION) amplifying the DNA spanning from the internal transcribed spacer (ITS) to large subunit (LSU) that can be read simultaneously in this platform, providing more information than "short-read" systems. The experimental system consisted of six fungal mock communities composed of species present at various relative amounts to mimic natural situations characterized by predominant and low-frequency species. The influence of the sequencing platform (MinION and Illumina MiSeq) and the effect of different reference databases and marker sequences on metagenomic identification of species were evaluated. The results showed that the ITS-based database provided more accurate species identification than LSU. Furthermore, a procedure based on a preliminary identification with standard reference databases followed by the production of custom databases, including only the best outputs of the first step, is proposed. This additional step improved the estimate of species proportion of the mock communities and reduced the number of ghost species not really present in the simulated communities. IMPORTANCE Metagenomic analyses are fundamental in many research areas; therefore, improvement of methods and protocols for the description of microbial communities becomes more and more necessary. Long-read sequencing could be used for reducing biases due to the multicopy nature of rDNA sequences and short-read limitations. However, these novel technologies need to be assessed and standardized with controlled experiments, such as mock communities. The interest behind this work was to evaluate how long reads performed identification and quantification of species mixed in precise proportions and how the choice of database affects such analyses. Development of a pipeline that mitigates the effect of the barcoding sequences and the impact of the reference database on metagenomic analyses can help microbiome studies go one step further.
Collapse
Affiliation(s)
- Angela Conti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Vincent Robert
- Westerdjik Institute for Biodiversity, Utrecht, Netherlands
| | - Laura Corte
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- CEMIN Excellence Research Centre, Perugia, Italy
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- CEMIN Excellence Research Centre, Perugia, Italy
| |
Collapse
|
27
|
Campos MD, Varanda C, Patanita M, Amaro Ribeiro J, Campos C, Materatski P, Albuquerque A, Félix MDR. A TaqMan ® Assay Allows an Accurate Detection and Quantification of Fusarium spp., the Causal Agents of Tomato Wilt and Rot Diseases. BIOLOGY 2023; 12:268. [PMID: 36829545 PMCID: PMC9953614 DOI: 10.3390/biology12020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
In tomato plants, Fusarium spp. have been increasingly associated with several wilt and rot diseases that are responsible for severe yield losses. Here, we present a real-time PCR TaqMan® MGB (Minor Groove Binder) assay to detect and discriminate Fusarium spp. from other fungal species that affect tomato plants. The methodology used is based on the selective amplification of the internal transcribed spacer (ITS) region of Fusarium spp. This assay revealed to be highly specific and sensitive for Fusarium species, targeting only the 29 Fusarium isolates from the 45 tested isolates associated to tomato diseases. Sensitivity was assessed with serial dilutions of Fusarium genomic DNA, with the limit of detection of 3.05 pg. An absolute DNA quantification method was also established, based on the determination of the absolute number of target copies. Finally, the effectiveness of the assay was successfully validated with the detection and quantification of Fusarium spp. in potentially infected tomato plants from an experimental field and in control plants grown under controlled conditions. The established methodology allows a reliable, sensitive, and reproducible estimation of Fusarium accumulation in infected tomato plants, gaining new insights for disease control and providing an additional tool in the screening of resistant plants.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Carla Varanda
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Mariana Patanita
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Joana Amaro Ribeiro
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Patrick Materatski
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - André Albuquerque
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Maria do Rosário Félix
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
28
|
Sun Y, Hu X, Qiu D, Zhang Z, Lei L. rDNA Transcription in Developmental Diseases and Stem Cells. Stem Cell Rev Rep 2023; 19:839-852. [PMID: 36633782 DOI: 10.1007/s12015-023-10504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2023] [Indexed: 01/13/2023]
Abstract
As the first and rate-limiting step in ribosome biogenesis, rDNA transcription undergoes significant dynamic changes during cell pluripotency alteration. Over the past decades, rDNA activity has demonstrated dynamic changes, but most people view it as passive compliance with cellular needs. The evidence for rDNA transcriptional activity determining stem cell pluripotency is growing as research advances, resulting in the arrest of embryonic development and impairment of stem cell lines stemness by rDNA transcription inhibition. The exact mechanism by which rDNA activation influences pluripotency remains unknown. The first objective of this opinion article is to describe rDNA changes in the pathological and physiological course of life, including developmental diseases, tumor genesis, and stem cell differentiation. After that, we propose three hypotheses regarding rDNA regulation of pluripotency: 1) Specialized ribosomes synthesized from rDNA variant, 2) Nucleolar stress induced by the drop of rDNA transcription, 3) Interchromosomal interactions between rDNA and other genes. The pluripotency regulatory center is expected to focus strongly on rDNA. A small molecule inhibitor of rDNA is used to treat tumors caused by abnormal pluripotency activation. By understanding how rDNA regulates pluripotency, we hope to treat developmental diseases and safely apply somatic cell reprogramming in clinical settings.
Collapse
Affiliation(s)
- Yuchen Sun
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Dan Qiu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Zhijing Zhang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, 194 Xuefu Rd, Nangang District, Harbin, Heilongjiang Province, People's Republic of China, 150081.
| |
Collapse
|
29
|
Klapper R, Velasco A, Döring M, Schröder U, Sotelo CG, Brinks E, Muñoz-Colmenero M. A next-generation sequencing approach for the detection of mixed species in canned tuna. Food Chem X 2023; 17:100560. [PMID: 36845509 PMCID: PMC9943852 DOI: 10.1016/j.fochx.2023.100560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Tuna cans are relevant seafood products for which mixtures of different tuna species are not allowed according to European regulations. In order to support the prevention of food fraud and mislabelling, a next-generation sequencing methodology based on mitochondrial cytochrome b and control region markers has been tested. Analyses of defined mixtures of DNA, fresh tissue and canned tissue revealed a qualitative and, to some extent, semiquantitative identification of tuna species. While the choice of the bioinformatic pipeline had no influence in the results (p = 0.71), quantitative differences occurred depending on the treatment of the sample, marker, species, and mixture (p < 0.01). The results revealed that matrix-specific calibrators or normalization models should also be used in NGS. The method represents an important step towards a semiquantitative method for routine control of this analytically challenging food matrix. Tests of commercial samples uncovered mixed species in some cans, being not in compliance with EU regulations.
Collapse
Affiliation(s)
- Regina Klapper
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, National Reference Centre for Authentic Food, E.-C.-Baumann-Straße 20, 95326 Kulmbach, Germany,Corresponding author.
| | - Amaya Velasco
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Maik Döring
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, National Reference Centre for Authentic Food, E.-C.-Baumann-Straße 20, 95326 Kulmbach, Germany
| | - Ute Schröder
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Palmaille 9, 22767 Hamburg, Germany
| | - Carmen G. Sotelo
- Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Erik Brinks
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | | |
Collapse
|
30
|
Yang M, Wang Q, Chen J, Wu H. The occurrence of potential pathogenic bacteria on international ships' ballast water at Yangshan Port, Shanghai, China. MARINE POLLUTION BULLETIN 2022; 184:114190. [PMID: 36208551 DOI: 10.1016/j.marpolbul.2022.114190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Ballast water is a primary vector for the global transfer of non-indigenous species, which threaten the balance of aquatic ecosystems. The second-generation high-throughput sequencing (HTS) and culture method (by the first-generation sequencing technology) were used to explore pathogens in ballast water from international ships on the routes of China-Australia (AU), China-Europe (E) and China-America (AM). No significant differences in dominant bacteria among ballast water samples from different routes. Thirty-four pathogens were detected in all samples by HTS, including Acinetobacter lwoffii, Brevundimonas vesicular and Pseudomonas sp., etc., while nine pathogens were detected by culture, including Pseudoalteromonas piscicida, Rhodococcus erythropolis and Vibrio alginolyticus, etc. All ballast water carried a potential bacteriological risk to Yangshan Port. The abundance of pathogens was significant affected by holding time, temperature, salinity and NH4. Detection of pathogens as much as possible through different technologies is desirable, more pathogens could provide beneficial information for enhancing ballast water management.
Collapse
Affiliation(s)
- Min Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Qiong Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Jianwu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Huixian Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
31
|
Ma G, Logares R, Xue Y, Yang J. Does filter pore size introduce bias in DNA sequence-based plankton community studies? Front Microbiol 2022; 13:969799. [PMID: 36225356 PMCID: PMC9549009 DOI: 10.3389/fmicb.2022.969799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
The cell size of microbial eukaryotic plankton normally ranges from 0.2 to 200 μm. During the past decade, high-throughput sequencing of DNA has been revolutionizing their study on an unprecedented scale. Nonetheless, it is currently unclear whether we can accurately, effectively, and quantitatively depict the microbial eukaryotic plankton community using size-fractionated filtration combined with environmental DNA (eDNA) molecular methods. Here we assessed the microbial eukaryotic plankton communities with two filtering strategies from two subtropical reservoirs, that is one-step filtration (0.2–200 μm) and size-fractionated filtration (0.2–3 and 3–200 μm). The difference of 18S rRNA gene copy abundance between the two filtering treatments was less than 50% of the 0.2–200 μm microbial eukaryotic community for 95% of the total samples. Although the microbial eukaryotic plankton communities within the 0.2–200 μm and the 0.2–3 and 3–200 μm size fractions had approximately identical 18S rRNA gene copies, there were significant differences in their community composition. Furthermore, our results demonstrate that the systemic bias introduced by size-fractionation filtration has more influence on unique OTUs than shared OTUs, and the significant differences in abundance between the two eukaryotic plankton communities largely occurred in low-abundance OTUs in specific seasons. This work provides new insights into the use of size-fractionation in molecular studies of microbial eukaryotes populating the plankton.
Collapse
Affiliation(s)
- Guolin Ma
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- *Correspondence: Yuanyuan Xue,
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Ningbo Observation and Research Station, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- Jun Yang,
| |
Collapse
|
32
|
Vazquez-Ortiz K, Pineda-Mendoza RM, González-Escobedo R, Davis TS, Salazar KF, Rivera-Orduña FN, Zúñiga G. Metabarcoding of mycetangia from the Dendroctonus frontalis species complex (Curculionidae: Scolytinae) reveals diverse and functionally redundant fungal assemblages. Front Microbiol 2022; 13:969230. [PMID: 36187976 PMCID: PMC9524821 DOI: 10.3389/fmicb.2022.969230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Dendroctonus-bark beetles are associated with microbes that can detoxify terpenes, degrade complex molecules, supplement and recycle nutrients, fix nitrogen, produce semiochemicals, and regulate ecological interactions between microbes. Females of some Dendroctonus species harbor microbes in specialized organs called mycetangia; yet little is known about the microbial diversity contained in these structures. Here, we use metabarcoding to characterize mycetangial fungi from beetle species in the Dendroctonus frontalis complex, and analyze variation in biodiversity of microbial assemblages between beetle species. Overall fungal diversity was represented by 4 phyla, 13 classes, 25 orders, 39 families, and 48 genera, including 33 filamentous fungi, and 15 yeasts. The most abundant genera were Entomocorticium, Candida, Ophiostoma-Sporothrix, Ogataea, Nakazawaea, Yamadazyma, Ceratocystiopsis, Grosmannia-Leptographium, Absidia, and Cyberlindnera. Analysis of α-diversity indicated that fungal assemblages of D. vitei showed the highest richness and diversity, whereas those associated with D. brevicomis and D. barberi had the lowest richness and diversity, respectively. Analysis of β-diversity showed clear differentiation in the assemblages associated with D. adjunctus, D. barberi, and D. brevicomis, but not between closely related species, including D. frontalis and D. mesoamericanus and D. mexicanus and D. vitei. A core mycobiome was not statistically identified; however, the genus Ceratocystiopsis was shared among seven beetle species. Interpretation of a tanglegram suggests evolutionary congruence between fungal assemblages and species of the D. frontalis complex. The presence of different amplicon sequence variants (ASVs) of the same genus in assemblages from species of the D. frontalis complex outlines the complexity of molecular networks, with the most complex assemblages identified from D. vitei, D. mesoamericanus, D. adjunctus, and D. frontalis. Analysis of functional variation of fungal assemblages indicated multiple trophic groupings, symbiotroph/saprotroph guilds represented with the highest frequency (∼31% of identified genera). These findings improve our knowledge about the diversity of mycetangial communities in species of the D. frontalis complex and suggest that minimal apparently specific assemblages are maintained and regulated within mycetangia.
Collapse
Affiliation(s)
- Karina Vazquez-Ortiz
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rosa María Pineda-Mendoza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Román González-Escobedo
- Laboratorio de Microbiología, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Thomas S. Davis
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, United States
| | - Kevin F. Salazar
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Flor N. Rivera-Orduña
- Laboratorio de Ecología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Flor N. Rivera-Orduña,
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Gerardo Zúñiga,
| |
Collapse
|
33
|
Heidrich V, Beule L. Are short-read amplicons suitable for the prediction of microbiome functional potential? A critical perspective. IMETA 2022; 1:e38. [PMID: 38868716 PMCID: PMC10989910 DOI: 10.1002/imt2.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 06/14/2024]
Abstract
Taxonomic marker gene analysis allows uncovering taxonomic profiles of microbial communities at low cost, making it omnipresent in microbiome research. There is an ever-expanding set of tools to extract further biological information from this kind of data. In this perspective, we enunciate several concerns regarding the biological validity of predicting functional potential from taxonomic profiles, especially when they are generated by short-read sequencing. The taxonomic resolution of marker genes, intragenomic variability of marker genes, and the compositional nature of microbiome data are discussed. Combining actual measurements of microbiome functions with predicted functional potentials is proposed as a powerful approach to better understand microbiome functioning. In this context, the significance of predicted functional potentials for generating and testing hypotheses is highlighted. We argue that functions of microbiomes predicted from microbiome DNA read count data generated by short-read amplicon sequencing should not serve as the only basis to draw biological inferences.
Collapse
Affiliation(s)
- Vitor Heidrich
- Centro de Oncologia MolecularHospital Sírio‐LibanêsSão PauloBrazil
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
| | - Lukas Beule
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated PlantsInstitute for Ecological Chemistry, Plant Analysis and Stored Product ProtectionBerlinGermany
| |
Collapse
|
34
|
Lara E, Singer D, Geisen S. Discrepancies between prokaryotes and eukaryotes need to be considered in soil DNA-based studies. Environ Microbiol 2022; 24:3829-3839. [PMID: 35437903 PMCID: PMC9790305 DOI: 10.1111/1462-2920.16019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/30/2022]
Abstract
Metabarcoding approaches are exponentially increasing our understanding of soil biodiversity, with a major focus on the bacterial part of the microbiome. Part of the soil diversity are also eukaryotes that include fungi, algae, protists and Metazoa. Nowadays, soil eukaryotes are targeted with the same approaches developed for bacteria and archaea (prokaryotes). However, fundamental differences exist between domains. After providing a short historical overview of the developments of metabarcoding applied to environmental microbiology, we compile the most important differences between domains that prevent direct method transfers between prokaryotic and eukaryotic soil metabarcoding approaches, currently dominated by short-read sequencing. These include the existence of divergent diversity concepts and the variations in eukaryotic morphology that affect sampling and DNA extraction. Furthermore, eukaryotes experienced much more variable evolutionary rates than prokaryotes, which prevent capturing the entire eukaryotic diversity in a soil with a single amplification protocol fit for short-read sequencing. In the final part we focus on future potentials for optimization of eukaryotic metabarcoding that include superior possibility of functionally characterizing eukaryotes and to extend the current information obtained, such as by adding a real quantitative component. This review should optimize future metabarcoding approaches targeting soil eukaryotes and kickstart this promising research direction.
Collapse
Affiliation(s)
- Enrique Lara
- Real Jardín Botánico‐CSIC, Plaza de Murillo 2Madrid28014Spain
| | - David Singer
- UMR CNRS 6112 LPG‐BIAFAngers University, 2 Boulevard LavoisierAngers49045France
| | - Stefan Geisen
- Laboratory of NematologyWageningen UniversityWageningen6700 AAThe Netherlands
| |
Collapse
|
35
|
Delafont V, Mercier A, Barrouilhet S, Mollichella ML, Herbelin P, Héchard Y. Identifying group-specific primers for environmental Heterolobosa by high-throughput sequencing. Microb Biotechnol 2022; 15:2476-2487. [PMID: 35920130 PMCID: PMC9437880 DOI: 10.1111/1751-7915.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Diversity of Heterolobosea (Excavata) in environments is poorly understood despite their ecological occurrence and health‐associated risk, partly because this group tends to be under‐covered by most universal eukaryotic primers used for sequencing. To overcome the limits of the traditional morpho‐taxonomy‐based biomonitoring, we constructed a primer database listing existing and newly designed specific primer pairs that have been evaluated for Heterolobosea 18S rRNA sequencing. In silico taxonomy performance against the current SILVA SSU database allowed the selection of primer pairs that were next evaluated on reference culture amoebal strains. Two primer pairs were retained for monitoring the diversity of Heterolobosea in freshwater environments, using high‐throughput sequencing. Results showed that one of the newly designed primer pairs allowed species‐level identification of most heterolobosean sequences. Such primer pair could enable informative, cultivation‐free assays for characterizing heterolobosean populations in various environments.
Collapse
Affiliation(s)
- Vincent Delafont
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, CNRS UMR 7267, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Anne Mercier
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, CNRS UMR 7267, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Stéphanie Barrouilhet
- EDF, Division Recherche et Développement, LNHE, 6 Quai Watier, 78401, Chatou, France
| | - Marie-Laure Mollichella
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, CNRS UMR 7267, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Pascaline Herbelin
- EDF, Division Recherche et Développement, LNHE, 6 Quai Watier, 78401, Chatou, France
| | - Yann Héchard
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, CNRS UMR 7267, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| |
Collapse
|
36
|
Cambisol Mycobiome in a Long-Term Field Experiment with Korean Pine as a Sole Edificator: A Case Study. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A culture-independent mycobiome survey in Haplic Cambisol under Korean pine in a long-term field experiment in the Russian Far East was conducted using sequence analysis of the ITS region amplified with ITS3/ITS4 primers using the metagenomic DNA as a matrix. Overall 758 fungal OTUs were identified, representing 15 phyla, 47 classes, 104 orders, 183 families, and 258 genera. More OTUs represented the Ascomycota phylum (513) than Basidiomycota (113), with both phyla together comprising 95% of the relative abundance. The Leotiomycetes class was ultimately prevailing; apparently contributing significantly to the organic matter decomposition and microbial biomass in soil, as shown by a PCA. Only two dominant OTUs (Pseudogymnoascus sp. and Hyaloscyphaceae, both Ascomycota) were common in the studied samples. The presented high mycobiome diversity in soil under the monospecies artificial forest, where Korean pine had been the sole edificator for forty years, allows concluding that plant chemistry diversity is the main factor shaping the soil mycobiome in such an environment. The obtained data provide a reference for further studies of soil mycobiota, especially under Korean pine with its aesthetic, as well as nut-producing, potential. The results can be helpful in the targeted creating of a soil mycobiome beneficial for pines in afforestation and remediation contexts.
Collapse
|
37
|
Watts PC, Mappes T, Tukalenko E, Mousseau TA, Boratyński Z, Møller AP, Lavrinienko A. Interpretation of gut microbiota data in the 'eye of the beholder': A commentary and re-evaluation of data from 'Impacts of radiation exposure on the bacterial and fungal microbiome of small mammals in the Chernobyl Exclusion Zone'. J Anim Ecol 2022; 91:1535-1545. [PMID: 35694772 PMCID: PMC9541917 DOI: 10.1111/1365-2656.13667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Evidence that exposure to environmental pollutants can alter the gut microbiota composition of wildlife includes studies of rodents exposed to radionuclides. Antwis et al. (2021) used amplicon sequencing to characterise the gut microbiota of four species of rodent (Myodes glareolus, Apodemus agrarius, A. flavicollis and A. sylvaticus) inhabiting the Chernobyl Exclusion Zone (CEZ) to examine possible changes in gut bacteria (microbiota) and gut fungi (mycobiota) associated with exposure to radionuclides and whether the sample type (from caecum or faeces) affected the analysis. The conclusions derived from the analyses of gut mycobiota are based on data that represent a mixture of ingested fungi (e.g. edible macrofungi, polypores, lichens and ectomycorrhizae) and gut mycobiota (e.g. microfungi and yeasts), which mask the patterns of inter‐ and intraspecific variation in the authentic gut mycobiota. Implying that ‘faecal samples are not an accurate indicator of gut composition’ creates an unnecessary controversy about faecal sampling because the comparison of samples from the caecum and faeces confounds many other possible drivers (including different animals from different locations, sampled in different years) of variation in gut microbiota. It is relevant also that Antwis et al.'s (2021) data lack statistical power to detect an effect of exposure to radionuclides on the gut microbiota because (1) all of their samples of Apodemus mice had experienced a medium or high total absorbed dose rate and (2) they did not collect samples of bank voles (M. glareolus) from replicate contaminated and uncontaminated locations. Discussion of Antwis et al.'s (2021) analysis, especially the claims presented in the Abstract, is important to prevent controversy about the outcome of research on the biological impacts of wildlife inhabiting the CEZ.
Collapse
Affiliation(s)
- Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Eugene Tukalenko
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,National Research Center for Radiation Medicine of the National Academy of Medical Science, Kyiv, Ukraine
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Zbyszek Boratyński
- CIBIO/InBio, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Anders P Møller
- Laboratoire d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud 11, Orsay Cedex, France
| | - Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
38
|
Guseva K, Darcy S, Simon E, Alteio LV, Montesinos-Navarro A, Kaiser C. From diversity to complexity: Microbial networks in soils. SOIL BIOLOGY & BIOCHEMISTRY 2022; 169:108604. [PMID: 35712047 PMCID: PMC9125165 DOI: 10.1016/j.soilbio.2022.108604] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/07/2023]
Abstract
Network analysis has been used for many years in ecological research to analyze organismal associations, for example in food webs, plant-plant or plant-animal interactions. Although network analysis is widely applied in microbial ecology, only recently has it entered the realms of soil microbial ecology, shown by a rapid rise in studies applying co-occurrence analysis to soil microbial communities. While this application offers great potential for deeper insights into the ecological structure of soil microbial ecosystems, it also brings new challenges related to the specific characteristics of soil datasets and the type of ecological questions that can be addressed. In this Perspectives Paper we assess the challenges of applying network analysis to soil microbial ecology due to the small-scale heterogeneity of the soil environment and the nature of soil microbial datasets. We review the different approaches of network construction that are commonly applied to soil microbial datasets and discuss their features and limitations. Using a test dataset of microbial communities from two depths of a forest soil, we demonstrate how different experimental designs and network constructing algorithms affect the structure of the resulting networks, and how this in turn may influence ecological conclusions. We will also reveal how assumptions of the construction method, methods of preparing the dataset, and definitions of thresholds affect the network structure. Finally, we discuss the particular questions in soil microbial ecology that can be approached by analyzing and interpreting specific network properties. Targeting these network properties in a meaningful way will allow applying this technique not in merely descriptive, but in hypothesis-driven research. Analysing microbial networks in soils opens a window to a better understanding of the complexity of microbial communities. However, this approach is unfortunately often used to draw conclusions which are far beyond the scientific evidence it can provide, which has damaged its reputation for soil microbial analysis. In this Perspectives Paper, we would like to sharpen the view for the real potential of microbial co-occurrence analysis in soils, and at the same time raise awareness regarding its limitations and the many ways how it can be misused or misinterpreted.
Collapse
Affiliation(s)
- Ksenia Guseva
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Corresponding author.
| | - Sean Darcy
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Eva Simon
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Lauren V. Alteio
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alicia Montesinos-Navarro
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera Km 4.5, 46113, Moncada, Valencia, Spain
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Corresponding author.
| |
Collapse
|
39
|
Okamoto N, Keeling PJ, Leander BS, Tai V. Microbial communities in sandy beaches from the three domains of life differ by microhabitat and intertidal location. Mol Ecol 2022; 31:3210-3227. [PMID: 35364623 DOI: 10.1111/mec.16453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
The microbial communities of sandy beaches are poorly described despite the biogeochemical importance and ubiquity of these ecosystems. Using metabarcoding of the 16S and 18S rRNA genes, we investigated the diversity, microhabitats (with or between sand grains), and intertidal distributions of microorganisms (including meiofauna) from pristine sandy beaches in British Columbia, Canada, and hypothesized that abiotic variations due to microhabitat or intertidal gradients influences the distribution of microorganisms on local scales. Bacterial, archaeal, and protistan communities of the sand were clearly distinct from interstitial communities, and from planktonic communities of the overlying seawater, which correlated with differences in function and lifestyle, e.g., sulfur reduction and gliding motility. In contrast, meiofaunal communities could not be distinguished by sample type, suggesting that they are more frequently mobilized between these microhabitats. Across intertidal zones, high intertidal, mid intertidal, and low intertidal/swash communities were distinct and correlated with moisture, organic carbon and phosphate content, implying that the distribution of microorganisms is influenced by intertidal abiotic gradients. However, few taxa at the genus or species level individually contributed to this zonation pattern; rather, a unique combination of multiple microbial taxa was more likely responsible. Although significant differences in microbial community composition on sandy beaches can be attributed to microhabitat and intertidal gradients, further investigations are needed to assess community assembly processes, the consistency of these distributions, and the functions of the majority of the microorganisms observed in the sand and their effects on the biogeochemistry and ecology of sandy beaches.
Collapse
Affiliation(s)
- Noriko Okamoto
- University of British Columbia, Vancouver, British Columbia, Canada.,Hakai Institute, Quadra Island, British Columbia, Canada
| | | | - Brian S Leander
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Vera Tai
- University of British Columbia, Vancouver, British Columbia, Canada.,University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
40
|
Pierella Karlusich JJ, Pelletier E, Zinger L, Lombard F, Zingone A, Colin S, Gasol JM, Dorrell RG, Henry N, Scalco E, Acinas SG, Wincker P, de Vargas C, Bowler C. A robust approach to estimate relative phytoplankton cell abundances from metagenomes. Mol Ecol Resour 2022; 23:16-40. [PMID: 35108459 PMCID: PMC10078663 DOI: 10.1111/1755-0998.13592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Abstract
Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of phytoplankton abundance or biomass is limited by PCR-amplification biases, rRNA gene copy number variations across taxa, and the fact that rRNA genes do not provide insights into metabolic traits such as photosynthesis. Here, we targeted the photosynthetic gene psbO from metagenomes to circumvent these limitations: the method is PCR-free, and the gene is universally and exclusively present in photosynthetic prokaryotes and eukaryotes, mainly in one copy per genome. We applied and validated this new strategy with the size-fractionated marine samples collected by Tara Oceans, and showed improved correlations with flow cytometry and microscopy than when based on rRNA genes. Furthermore, we revealed unexpected features of the ecology of these ecosystems, such as the high abundance of picocyanobacterial aggregates and symbionts in the ocean, and the decrease in relative abundance of phototrophs towards the larger size classes of marine dinoflagellates. To facilitate the incorporation of psbO in molecular-based surveys, we compiled a curated database of >18,000 unique sequences. Overall, psbO appears to be a promising new gene marker for molecular-based evaluations of entire phytoplankton communities.
Collapse
Affiliation(s)
- Juan José Pierella Karlusich
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France.,CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Eric Pelletier
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Lucie Zinger
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France.,CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Fabien Lombard
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Sorbonne Universités, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), 06230, Villefranche-sur-Mer, France.,Institut Universitaire de France (IUF), Paris, France
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Sébastien Colin
- European Molecular Biology Laboratory, Heidelberg, Germany.,Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, 29680, Roscoff, France.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciènces del Mar, CSIC, Barcelona, Spain
| | - Richard G Dorrell
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France
| | - Nicolas Henry
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Eleonora Scalco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciènces del Mar, CSIC, Barcelona, Spain
| | - Patrick Wincker
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Colomban de Vargas
- CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France.,Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, 29680, Roscoff, France
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Département de biologie, 75005, Paris, France.,CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| |
Collapse
|
41
|
Quiroga MV, Valverde A, Mataloni G, Casa V, Stegen JC, Cowan D. The ecological assembly of bacterial communities in Antarctic wetlands varies across levels of phylogenetic resolution. Environ Microbiol 2022; 24:3486-3499. [PMID: 35049116 PMCID: PMC9541017 DOI: 10.1111/1462-2920.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
As functional traits are conserved at different phylogenetic depths, the ability to detect community assembly processes can be conditional on the phylogenetic resolution; yet most previous work quantifying their influence has focused on a single level of phylogenetic resolution. Here, we have studied the ecological assembly of bacterial communities from an Antarctic wetland complex, applying null models across different levels of phylogenetic resolution (i.e. clustering ASVs into OTUs with decreasing sequence identity thresholds). We found that the relative influence of the community assembly processes varies with phylogenetic resolution. More specifically, selection processes seem to impose stronger influence at finer (100% sequence similarity ASV) than at coarser (99%–97% sequence similarity OTUs) resolution. We identified environmental features related with the ecological processes and propose a conceptual model for the bacterial community assembly in this Antarctic ecosystem. Briefly, eco‐evolutionary processes appear to be leading to different but very closely related ASVs in lotic, lentic and terrestrial environments. In all, this study shows that assessing community assembly processes at different phylogenetic resolutions is key to improve our understanding of microbial ecology. More importantly, a failure to detect selection processes at coarser phylogenetic resolution does not imply the absence of such processes at finer resolutions.
Collapse
Affiliation(s)
- María V Quiroga
- Instituto Tecnológico de Chascomús (INTECH, UNSAM - CONICET), Chascomús, Argentina
| | - Angel Valverde
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Gabriela Mataloni
- Instituto de Investigación e Ingeniería Ambiental (IIIA, UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - Valeria Casa
- Instituto de Investigación e Ingeniería Ambiental (IIIA, UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - James C Stegen
- Pacific Northwest National Laboratory, Ecosystem Science Team, Richland, WA, USA
| | - Don Cowan
- Centre for Microbial Ecology and Genomics (CMEG), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
42
|
Joo M, Yeom JH, Choi Y, Jun H, Song W, Kim HL, Lee K, Shin E. Specialised ribosomes as versatile regulators of gene expression. RNA Biol 2022; 19:1103-1114. [PMID: 36255182 PMCID: PMC9586635 DOI: 10.1080/15476286.2022.2135299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The ribosome has long been thought to be a homogeneous cellular machine that constitutively and globally synthesises proteins from mRNA. However, recent studies have revealed that ribosomes are highly heterogeneous, dynamic macromolecular complexes with specialised roles in translational regulation in many organisms across the kingdoms. In this review, we summarise the current understanding of ribosome heterogeneity and the specialised functions of heterogeneous ribosomes. We also discuss specialised translation systems that utilise orthogonal ribosomes.
Collapse
Affiliation(s)
- Minju Joo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Younkyung Choi
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyeon Jun
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Wooseok Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun-Lee Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Eunkyoung Shin
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Neave EF, Seim H, Gifford SM, Torano O, Johnson ZI, Páez-Rosas D, Marchetti A. Protistan plankton communities in the Galápagos Archipelago respond to changes in deep water masses resulting from the 2015/16 El Niño. Environ Microbiol 2021; 24:1746-1759. [PMID: 34921709 DOI: 10.1111/1462-2920.15863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022]
Abstract
The Galápagos Archipelago lies within the Eastern Equatorial Pacific Ocean at the convergence of major ocean currents that are subject to changes in circulation. The nutrient-rich Equatorial Undercurrent upwells from the west onto the Galápagos platform, stimulating primary production, but this source of deep water weakens during El Niño events. Based on measurements from repeat cruises, the 2015/16 El Niño was associated with declines in phytoplankton biomass at most sites throughout the archipelago and reduced utilization of nitrate, particularly in large-sized phytoplankton in the western region. Protistan assemblages were identified by sequencing the V4 region of the 18S rRNA gene. Dinoflagellates, chlorophytes and diatoms dominated most sites. Shifts in dinoflagellate communities were most apparent between the years; parasitic dinoflagellates, Syndiniales, were highly detected during the El Niño (2015) while the dinoflagellate genus, Gyrodinium, increased at many sites during the neutral period (2016). Variations in protistan communities were most strongly correlated with changes in subthermocline water density. These findings indicate that marine protistan communities in this region are regimented by deep water mass sources and thus could be profoundly affected by altered ocean circulation.
Collapse
Affiliation(s)
- Erika F Neave
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Life Sciences, Natural History Museum, London, UK.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Harvey Seim
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott M Gifford
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Olivia Torano
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zackary I Johnson
- Marine Laboratory and Biology Department, Duke University, Beaufort, NC, USA
| | - Diego Páez-Rosas
- Galápagos Science Center, Universidad San Francisco de Quito, Isla San Cristóbal, Islas Galápagos, Ecuador
| | - Adrian Marchetti
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Lavrinienko A, Scholier T, Bates ST, Miller AN, Watts PC. Defining gut mycobiota for wild animals: a need for caution in assigning authentic resident fungal taxa. Anim Microbiome 2021; 3:75. [PMID: 34711273 PMCID: PMC8554864 DOI: 10.1186/s42523-021-00134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Animal gut mycobiota, the community of fungi that reside within the gastrointestinal tract, make an important contribution to host health. Accordingly, there is an emerging interest to quantify the gut mycobiota of wild animals. However, many studies of wild animal gut mycobiota do not distinguish between the fungi that likely can reside within animal gastrointestinal tracts from the fungal taxa that are non-residents, such as macrofungi, lichens or plant symbionts/pathogens that can be ingested as part of the host's diet. Confounding the non-resident and resident gut fungi may obscure attempts to identify processes associated with the authentic, resident gut mycobiota per se. To redress this problem, we propose some strategies to filter the taxa identified within an apparent gut mycobiota based on an assessment of host ecology and fungal traits. Consideration of the different sources and roles of fungi present within the gastrointestinal tract should facilitate a more precise understanding of the causes and consequences of variation in wild animal gut mycobiota composition.
Collapse
Affiliation(s)
- Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Tiffany Scholier
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Scott T Bates
- Department of Biological Sciences, Purdue University Northwest, Westville, IN, 46391, USA
| | - Andrew N Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, IL, 61820-6970, USA
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
45
|
Risely A, Wilhelm K, Clutton-Brock T, Manser MB, Sommer S. Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nat Commun 2021; 12:6017. [PMID: 34650048 PMCID: PMC8516918 DOI: 10.1038/s41467-021-26298-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Circadian rhythms in gut microbiota composition are crucial for metabolic function, yet the extent to which they govern microbial dynamics compared to seasonal and lifetime processes remains unknown. Here, we investigate gut bacterial dynamics in wild meerkats (Suricata suricatta) over a 20-year period to compare diurnal, seasonal, and lifetime processes in concert, applying ratios of absolute abundance. We found that diurnal oscillations in bacterial load and composition eclipsed seasonal and lifetime dynamics. Diurnal oscillations were characterised by a peak in Clostridium abundance at dawn, were associated with temperature-constrained foraging schedules, and did not decay with age. Some genera exhibited seasonal fluctuations, whilst others developed with age, although we found little support for microbial senescence in very old meerkats. Strong microbial circadian rhythms in this species may reflect the extreme daily temperature fluctuations typical of arid-zone climates. Our findings demonstrate that accounting for circadian rhythms is essential for future gut microbiome research.
Collapse
Affiliation(s)
- Alice Risely
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm, Germany.
| | - Kerstin Wilhelm
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm, Germany
| | - Tim Clutton-Brock
- Large Animal Research Group, Department of Zoology, University of Cambridge, Cambridge, UK
- University of Pretoria, Mammal Research Institute, Pretoria, South Africa
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa
| | - Marta B Manser
- University of Pretoria, Mammal Research Institute, Pretoria, South Africa
- Kalahari Research Trust, Kuruman River Reserve, Northern Cape, South Africa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Simone Sommer
- Institute for Evolutionary Ecology and Conservation Genomics, Ulm, Germany
| |
Collapse
|
46
|
Gonzalez-de-Salceda L, Garcia-Pichel F. The allometry of cellular DNA and ribosomal gene content among microbes and its use for the assessment of microbiome community structure. MICROBIOME 2021; 9:173. [PMID: 34404486 PMCID: PMC8371883 DOI: 10.1186/s40168-021-01111-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The determination of taxon-specific composition of microbiomes by combining high-throughput sequencing of ribosomal genes with phyloinformatic analyses has become routine in microbiology and allied sciences. Systematic biases to this approach based on the demonstrable variability of ribosomal operon copy number per genome were recognized early. The more recent realization that polyploidy is probably the norm, rather than the exception, among microbes from all domains of life, points to an even larger source bias. RESULTS We found that the number of 16S or 18S RNA genes per cell, a combined result of the number of RNA gene loci per genome and ploidy level, follows an allometric power law of cell volume with an exponent of 2/3 across 6 orders of magnitude in small subunit copy number per cell and 9 orders of magnitude in cell size. This stands in contrast to cell DNA content, which follows a power law with an exponent of ¾. CONCLUSION In practical terms, that relationship allows for a single, simple correction for variations in both copy number per genome and ploidy level in ribosomal gene analyses of taxa-specific abundance. In biological terms, it points to the uniqueness of ribosomal gene content among microbial properties that scale with size. Video Abstract.
Collapse
Affiliation(s)
- Luis Gonzalez-de-Salceda
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, USA
| |
Collapse
|
47
|
Baptista B, Riscado M, Queiroz J, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021. [DOI: 10.1016/j.bcp.2021.114469 order by 22025--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
48
|
Jernfors T, Danforth J, Kesäniemi J, Lavrinienko A, Tukalenko E, Fajkus J, Dvořáčková M, Mappes T, Watts PC. Expansion of rDNA and pericentromere satellite repeats in the genomes of bank voles Myodes glareolus exposed to environmental radionuclides. Ecol Evol 2021; 11:8754-8767. [PMID: 34257925 PMCID: PMC8258220 DOI: 10.1002/ece3.7684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Altered copy number of certain highly repetitive regions of the genome, such as satellite DNA within heterochromatin and ribosomal RNA loci (rDNA), is hypothesized to help safeguard the genome against damage derived from external stressors. We quantified copy number of the 18S rDNA and a pericentromeric satellite DNA (Msat-160) in bank voles (Myodes glareolus) inhabiting the Chernobyl Exclusion Zone (CEZ), an area that is contaminated by radionuclides and where organisms are exposed to elevated levels of ionizing radiation. We found a significant increase in 18S rDNA and Msat-160 content in the genomes of bank voles from contaminated locations within the CEZ compared with animals from uncontaminated locations. Moreover, 18S rDNA and Msat-160 copy number were positively correlated in the genomes of bank voles from uncontaminated, but not in the genomes of animals inhabiting contaminated, areas. These results show the capacity for local-scale geographic variation in genome architecture and are consistent with the genomic safeguard hypothesis. Disruption of cellular processes related to genomic stability appears to be a hallmark effect in bank voles inhabiting areas contaminated by radionuclides.
Collapse
Affiliation(s)
- Toni Jernfors
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - John Danforth
- Department of Biochemistry & Molecular BiologyRobson DNA Science CentreArnie Charbonneau Cancer InstituteCumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Jenni Kesäniemi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anton Lavrinienko
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Eugene Tukalenko
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- National Research Center for Radiation Medicine of the National Academy of Medical ScienceKyivUkraine
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and ProteomicsCentral European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
- Laboratory of Functional Genomics and ProteomicsNCBRFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Department of Cell Biology and RadiobiologyInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and ProteomicsCentral European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Tapio Mappes
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Phillip C. Watts
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
49
|
Lalla C, Calvaruso R, Dick S, Reyes-Prieto A. Winogradsky columns as a strategy to study typically rare microbial eukaryotes. Eur J Protistol 2021; 80:125807. [PMID: 34091379 DOI: 10.1016/j.ejop.2021.125807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
Winogradsky columns have been widely used to study soil microbial communities, but the vast majority of those investigations have focused on the ecology and diversity of bacteria. In contrast, microbial eukaryotes (ME) have been regularly overlooked in studies based on experimental soil columns. Despite the recognized ecological relevance of ME in soil communities, investigations focused on ME diversity and the abundance of certain groups of interest are still scarce. In the present study, we used DNA metabarcoding (high-throughput sequencing of the V4 region of the 18S rRNA locus) to survey the ME diversity and abundance in an experimental Winogradsky soil column. Consistent with previous surveys in natural soils, our survey identified members of Cercozoa (Rhizaria; 31.2%), Apicomplexa and Ciliophora (Alveolata; 12.5%) as the predominant ME groups, but at particular depths we also detected the abundant presence of ME lineages that are typically rare in natural environments, such as members of the Vampyrellida (Rhizaria) and Breviatea (Amorphea). Our survey demonstrates that experimental soil columns are an efficient enrichment-culture approach that can enhance investigations about the diversity and ecology of ME in soils.
Collapse
Affiliation(s)
- Clarissa Lalla
- Department of Biology, University of New Brunswick, Fredericton. 10 Bailey Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Rossella Calvaruso
- Department of Biology, University of New Brunswick, Fredericton. 10 Bailey Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Sophia Dick
- Department of Biology, University of New Brunswick, Fredericton. 10 Bailey Drive, Fredericton, New Brunswick E3B 5A3, Canada
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton. 10 Bailey Drive, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
50
|
Abstract
The oral microbiome is likely a key element of homeostasis in the oral cavity. With >600 bacterial species and >160 fungal species comprising the oral microbiome, influences on its composition can have an impact on both local and systemic health. The oral microbiome is considered an important factor in health and disease. We recently reported significant effects of HIV and several other clinical variables on the oral bacterial communities in a large cohort of HIV-positive and -negative individuals. The purpose of the present study was to similarly analyze the oral mycobiome in the same cohort. To identify fungi, the internal transcribed spacer 2 (ITS2) of the fungal rRNA genes was sequenced using oral rinse samples from 149 HIV-positive and 88 HIV-negative subjects that had previously undergone bacterial amplicon sequencing. Quantitative PCR was performed for total fungal content and total bacterial content. Interestingly, samples often showed predominance of a single fungal species with four major clusters predominated by Candida albicans, Candida dubliniensis, Malassezia restricta, or Saccharomyces cerevisiae. Quantitative PCR analysis showed the Candida-dominated sample clusters had significantly higher total fungal abundance than the Malassezia or Saccharomyces species. Of the 25 clinical variables evaluated for potential influences on the oral mycobiome, significant effects were associated with caries status, geographical site of sampling, sex, HIV under highly active antiretroviral therapy (HAART), and missing teeth, in rank order of statistical significance. Investigating specific interactions between fungi and bacteria in the samples often showed Candida species positively correlated with Firmicutes or Actinobacteria and negatively correlated with Fusobacteria, Proteobacteria, and Bacteroidetes. Our data suggest that the oral mycobiome, while diverse, is often dominated by a limited number of species per individual; is affected by several clinical variables, including HIV positivity and HAART; and shows genera-specific associations with bacterial groups.
Collapse
|