1
|
Fuller MJ, Andrys NRR, Gupta SC, Ghobbeh A, Kreple CJ, Fan R, Taugher-Hebl RJ, Radley JJ, Lalumiere RT, Wemmie JA. The Role of Acid-Sensing Ion Channel 1A (ASIC1A) in the Behavioral and Synaptic Effects of Oxycodone and Other Opioids. Int J Mol Sci 2024; 25:11584. [PMID: 39519136 PMCID: PMC11545886 DOI: 10.3390/ijms252111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Opioid-seeking behaviors depend on glutamatergic plasticity in the nucleus accumbens core (NAcc). Here we investigated whether the behavioral and synaptic effects of opioids are influenced by acid-sensing ion channel 1A (ASIC1A). We tested the effects of ASIC1A on responses to several opioids and found that Asic1a-/- mice had elevated behavioral responses to acute opioid administration as well as opioid seeking behavior in conditioned place preference (CPP). Region-restricted restoration of ASIC1A in NAcc was sufficient to reduce opioid CPP, suggesting NAcc is an important site of action. We next tested the effects of oxycodone withdrawal on dendritic spines in NAcc. We found effects of oxycodone and ASIC1A that contrasted with changes previously described following cocaine withdrawal. Finally, we examined α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated and N-methyl-D-aspartic acid (NMDA) receptor-mediated synaptic currents in NAcc. Oxycodone withdrawal, like morphine withdrawal, increased the AMPAR/NMDAR ratio in Asic1a+/+ mice, whereas oxycodone withdrawal reduced the AMPAR/NMDAR ratio in Asic1a-/- mice. A single dose of oxycodone was sufficient to induce this paradoxical effect in Asic1a-/- mice, suggesting an increased sensitivity to oxycodone. We conclude that ASIC1A plays an important role in the behavioral and synaptic effects of opioids and may constitute a potential future target for developing novel therapies.
Collapse
Affiliation(s)
- Margaret J. Fuller
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
| | - Noah R. R. Andrys
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Subhash C. Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Ali Ghobbeh
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Collin J. Kreple
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Rebecca J. Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; (J.J.R.); (R.T.L.)
| | - Ryan T. Lalumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; (J.J.R.); (R.T.L.)
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (M.J.F.); (N.R.R.A.); (S.C.G.); (R.J.T.-H.)
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Knouse MC, Kniffin AR, English EA, Cuadrado W, Houser TM, Briand LA. PKMζ alters oxycodone-taking in a dose- and sex-dependent manner. ADDICTION NEUROSCIENCE 2024; 12:100169. [PMID: 39449991 PMCID: PMC11500720 DOI: 10.1016/j.addicn.2024.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2024]
Abstract
Opioid use disorder involves disruptions to glutamate homeostasis and dendritic spine density in the reward system. PKMζ is an atypical isoform of protein kinase C that is expressed exclusively in neurons and plays a role in postsynaptic glutamate signaling and dendritic spine maturation. As opioid use leads to alterations in glutamate transmission and dendritic spine density, we hypothesized that PKMζ deletion would alter opioid-taking behaviors. The current study examined two doses of oxycodone self-administration in male and female mice with constitutive deletion of PKMζ compared to wildtype controls. At a dose of 0.25 mg/kg/infusion, PKMζ deletion significantly potentiated oxycodone self-administration in both male and female mice. However, increases in motivation for oxycodone, as indicated by increased breakpoint on a progressive ratio schedule, were only seen in male PKMζ knockout mice and not females. When we examined a lower dose of oxycodone, 0.125 mg/kg/infusion, PKMζ knockout led to increases in oxycodone self-administration only in female mice. Additionally, female PKMζ knockout mice exhibited higher breakpoints on a progressive ratio schedule at this dose compared to all other groups. In addition to the self-administration studies, we also examined locomotor sensitization in response to experimenter administered oxycodone. PKMζ KO decreased oxycodone induced locomotion in males and potentiated oxycodone sensitization in females. Together, these results suggest that PKMζ acts to dampen oxycodone taking in both sexes, but females may be more sensitive to its effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Lisa A. Briand
- Department of Psychology & Neuroscience, Temple University, USA
- Neuroscience Program, Temple University, USA
| |
Collapse
|
3
|
Alasmari MS, Alasmari F, Alsharari SD, Alasmari AF, Ali N, Ahamad SR, Alghamdi AM, Kadi AA, Hammad AM, Ali YSM, Childers WE, Abou-Gharbia M, Sari Y. Neuroinflammation and Neurometabolomic Profiling in Fentanyl Overdose Mouse Model Treated with Novel β-Lactam, MC-100093, and Ceftriaxone. TOXICS 2024; 12:604. [PMID: 39195706 PMCID: PMC11360732 DOI: 10.3390/toxics12080604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/05/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Opioid-related deaths are attributed to overdoses, and fentanyl overdose has been on the rise in many parts of the world, including the USA. Glutamate transporter 1 (GLT-1) has been identified as a therapeutic target in several preclinical models of substance use disorders, and β-lactams effectively enhance its expression and function. In the current study, we characterized the metabolomic profile of the nucleus accumbens (NAc) in fentanyl-overdose mouse models, and we evaluated the protective effects of the functional enhancement of GLT-1 using β-lactams, ceftriaxone, and MC-100093. BALB/c mice were divided into four groups: control, fentanyl, fentanyl/ceftriaxone, and fentanyl/MC-100093. While the control group was intraperitoneally (i.p.) injected with normal saline simultaneously with other groups, all fentanyl groups were i.p. injected with 1 mg/kg of fentanyl as an overdose after habituation with four repetitive non-consecutive moderate doses (0.05 mg/kg) of fentanyl for a period of seven days. MC-100093 (50 mg/kg) and ceftriaxone (200 mg/kg) were i.p. injected from days 5 to 9. Gas chromatography-mass spectrometry (GC-MS) was used for metabolomics, and Western blotting was performed to determine the expression of target proteins. Y-maze spontaneous alternation performance and the open field activity monitoring system were used to measure behavioral manifestations. Fentanyl overdose altered the abundance of about 30 metabolites, reduced the expression of GLT-1, and induced the expression of inflammatory mediators IL-6 and TLR-4 in the NAc. MC-100093 and ceftriaxone attenuated the effects of fentanyl-induced downregulation of GLT-1 and upregulation of IL-6; however, only ceftriaxone attenuated fentanyl-induced upregulation of TRL4 expression. Both of the β-lactams attenuated the effects of fentanyl overdose on locomotor activities but did not induce significant changes in the overall metabolomic profile. Our findings revealed that the exposure to a high dose of fentanyl causes alterations in key metabolic pathways in the NAc. Pretreatment with ceftriaxone and MC-100093 normalized fentanyl-induced downregulation of GLT-1 expression with subsequent attenuation of neuroinflammation as well as the hyperactivity, indicating that β-lactams may be promising drugs for treating fentanyl use disorder.
Collapse
Affiliation(s)
- Mohammed S. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Shakir D. Alsharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdullah M. Alghamdi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Aban A. Kadi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Alaa M. Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Yousif S. Mohamed Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (W.E.C.); (M.A.-G.)
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (W.E.C.); (M.A.-G.)
| | - Youssef Sari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
4
|
Alonso-Caraballo Y, Li Y, Constantino NJ, Neal MA, Driscoll GS, Mavrikaki M, Bolshakov VY, Chartoff EH. Sex-specific behavioral and thalamo-accumbal circuit adaptations after oxycodone abstinence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605459. [PMID: 39149276 PMCID: PMC11326127 DOI: 10.1101/2024.08.01.605459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 08/17/2024]
Abstract
Opioid use disorder is marked by a progressive change in the motivation to administer the drug even in the presence of negative consequences. After long periods of abstinence, the urge to return to taking the drug intensifies over time, known as incubation of craving. Conditioned responses to drug-related stimuli, can acquire motivational properties and exert control over motivated behaviors leading to relapse. Although, preclinical data suggest that the behavioral expression of opioid use is similar between male and female rodents, we do not have conclusive results on sex differences on craving and relapse across abstinence periods. Here, we investigated the effects of abstinence from oxycodone self-administration on neurotransmission in the paraventricular thalamus (PVT) to nucleus accumbens shell (NAcSh) pathway in male and female rats. Using optogenetics and ex vivo electrophysiology, we assessed synaptic strength and glutamate release probability in this pathway, as well as NAcSh medium spiny neurons (MSN) intrinsic excitability, in slices from rats which were subjected to either 1 (acute) or 14 (prolonged) days of forced abstinence after self-administration. Our results revealed no sex differences in oxycodone self-administration or somatic withdrawal symptoms following acute abstinence. However, we found a sex-specific enhancement in cue-induced relapse after prolonged, but not acute, abstinence from oxycodone self-administration, with females exhibiting higher relapse rates. Notably, prolonged abstinence led to similar increases in synaptic strength at PVT-NAcSh inputs compared to saline controls in both sexes, which was not observed after acute abstinence. Thus, prolonged abstinence results in a time-dependent increase in PVT-NAcSh synaptic strength and sex-specific effects on cue-induced relapse rates. These findings suggest that prolonged abstinence leads to significant synaptic changes, contributing to heightened relapse vulnerability, highlighting the need for targeted therapeutic strategies in opioid use disorder.
Collapse
Affiliation(s)
- Y Alonso-Caraballo
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Neuroscience & Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, USA
| | - Y Li
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - N J Constantino
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - M A Neal
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - G S Driscoll
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M Mavrikaki
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - V Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - E H Chartoff
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
5
|
Mozafari R, Khodagholi F, Kaveh N, Zibaii ME, Kalivas P, Haghparast A. Blockade of mGluR5 in nucleus accumbens modulates calcium sensor proteins, facilitates extinction, and attenuates reinstated morphine place preference in rats. J Psychiatr Res 2024; 176:23-32. [PMID: 38833749 DOI: 10.1016/j.jpsychires.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Numerous findings confirm that the metabotropic glutamate receptors (mGluRs) are involved in the conditioned place preference (CPP) induced by morphine. Here we focused on the role of mGluR5 in the nucleus accumbens (NAc) as a main site of glutamate action on the rewarding effects of morphine. Firstly, we investigated the effects of intra-NAc administrating mGluR5 antagonist 3-((2-Methyl-1,3-thiazol-4-yl) ethynyl) pyridine hydrochloride (MTEP; 1, 3, and 10 μg/μl saline) on the extinction and the reinstatement phase of morphine CPP. Moreover, to determine the downstream signaling cascades of mGluR5 in morphine CPP, the protein levels of stromal interaction molecules (STIM1 and 2) in the NAc and hippocampus (HPC) were measured by western blotting. The behavioral data indicated that the mGluR5 blockade by MTEP at the high doses of 3 and 10 μg facilitated the extinction of morphine-induced CPP and attenuated the reinstatement to morphine in extinguished rats. Molecular results showed that the morphine led to increased levels of STIM proteins in the HPC and increased the level of STIM1 without affecting STIM2 in the NAc. Furthermore, intra-NAc microinjection of MTEP (10 μg) in the reinstatement phase decreased STIM1 in the NAc and HPC and reduced the STIM2 in the HPC. Collectively, our data show that morphine could facilitate brain reward function in part by increasing glutamate-mediated transmission through activation of mGluR5 and modulation of STIM proteins. Therefore, these results highlight the therapeutic potential of mGluR5 antagonists in morphine use disorder.
Collapse
Affiliation(s)
- Roghayeh Mozafari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Kaveh
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Peter Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sari Y, Swiss GM, Alrashedi FA, Baeshen KA, Alshammari SA, Alsharari SD, Ali N, Alasmari AF, Alhoshani A, Alameen AA, Childers WE, Abou-Gharbia M, Alasmari F. Effects of novel beta-lactam, MC-100093, and ceftriaxone on astrocytic glutamate transporters and neuroinflammatory factors in nucleus accumbens of C57BL/6 mice exposed to escalated doses of morphine. Saudi Pharm J 2024; 32:102108. [PMID: 38868175 PMCID: PMC11166880 DOI: 10.1016/j.jsps.2024.102108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2024] Open
Abstract
Chronic exposure to opioids can lead to downregulation of astrocytic glutamate transporter 1 (GLT-1), which regulates the majority of glutamate uptake. Studies from our lab revealed that beta-lactam antibiotic, ceftriaxone, attenuated hydrocodone-induced downregulation of GLT-1 as well as cystine/glutamate antiporter (xCT) expression in central reward brain regions. In this study, we investigated the effects of escalating doses of morphine and tested the efficacy of novel synthetic non-antibiotic drug, MC-100093, and ceftriaxone in attenuating the effects of morphine exposure in the expression of GLT-1, xCT, and neuroinflammatory factors (IL-6 and TGF-β) in the nucleus accumbens (NAc). This study also investigated the effects of morphine and beta-lactams in locomotor activity, spontaneous alternation percentage (SAP) and number of entries in Y maze since opioids have effects in locomotor sensitization. Mice were exposed to moderate dose of morphine (20 mg/kg, i.p.) on days 1, 3, 5, 7, and a higher dose of morphine (150 mg/kg, i.p.) on day 9, and these mice were then behaviorally tested and euthanized on Day 10. Western blot analysis showed that exposure to morphine downregulated GLT-1 and xCT expression in the NAc, and both MC-100093 and ceftriaxone attenuated these effects. In addition, morphine exposure increased IL-6 mRNA and TGF-β mRNA expression, and MC-100093 and ceftriaxone attenuated only the effect on IL-6 mRNA expression in the NAc. Furthermore, morphine exposure induced an increase in distance travelled, and MC-100093 and ceftriaxone attenuated this effect. In addition, morphine exposure decreased the SAP and increased the number of arm entries in Y maze, however, neither MC-100093 nor ceftriaxone showed any attenuating effect. Our findings demonstrated for the first time that MC-100093 and ceftriaxone attenuated morphine-induced downregulation of GLT-1 and xCT expression, and morphine-induced increase in neuroinflammatory factor, IL-6, as well as hyperactivity. These findings revealed the beneficial therapeutic effects of MC-100093 and ceftriaxone against the effects of exposure to escalated doses of morphine.
Collapse
Affiliation(s)
- Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghadeer M.S. Swiss
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatin A. Alrashedi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kholoud A. Baeshen
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Sultan A. Alshammari
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Shakir D. Alsharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alaa A. Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Zachry JE, Kutlu MG, Yoon HJ, Leonard MZ, Chevée M, Patel DD, Gaidici A, Kondev V, Thibeault KC, Bethi R, Tat J, Melugin PR, Isiktas AU, Joffe ME, Cai DJ, Conn PJ, Grueter BA, Calipari ES. D1 and D2 medium spiny neurons in the nucleus accumbens core have distinct and valence-independent roles in learning. Neuron 2024; 112:835-849.e7. [PMID: 38134921 PMCID: PMC10939818 DOI: 10.1016/j.neuron.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2022] [Revised: 10/03/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
At the core of value-based learning is the nucleus accumbens (NAc). D1- and D2-receptor-containing medium spiny neurons (MSNs) in the NAc core are hypothesized to have opposing valence-based roles in behavior. Using optical imaging and manipulation approaches in mice, we show that neither D1 nor D2 MSNs signal valence. D1 MSN responses were evoked by stimuli regardless of valence or contingency. D2 MSNs were evoked by both cues and outcomes, were dynamically changed with learning, and tracked valence-free prediction error at the population and individual neuron level. Finally, D2 MSN responses to cues were necessary for associative learning. Thus, D1 and D2 MSNs work in tandem, rather than in opposition, by signaling specific properties of stimuli to control learning.
Collapse
Affiliation(s)
- Jennifer E Zachry
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Munir Gunes Kutlu
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Hye Jean Yoon
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Michael Z Leonard
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Maxime Chevée
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Dev D Patel
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Anthony Gaidici
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Veronika Kondev
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Kimberly C Thibeault
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Rishik Bethi
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer Tat
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick R Melugin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Atagun U Isiktas
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Max E Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Denise J Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
8
|
Phan BN, Ray MH, Xue X, Fu C, Fenster RJ, Kohut SJ, Bergman J, Haber SN, McCullough KM, Fish MK, Glausier JR, Su Q, Tipton AE, Lewis DA, Freyberg Z, Tseng GC, Russek SJ, Alekseyev Y, Ressler KJ, Seney ML, Pfenning AR, Logan RW. Single nuclei transcriptomics in human and non-human primate striatum in opioid use disorder. Nat Commun 2024; 15:878. [PMID: 38296993 PMCID: PMC10831093 DOI: 10.1038/s41467-024-45165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
In brain, the striatum is a heterogenous region involved in reward and goal-directed behaviors. Striatal dysfunction is linked to psychiatric disorders, including opioid use disorder (OUD). Striatal subregions are divided based on neuroanatomy, each with unique roles in OUD. In OUD, the dorsal striatum is involved in altered reward processing, formation of habits, and development of negative affect during withdrawal. Using single nuclei RNA-sequencing, we identified both canonical (e.g., dopamine receptor subtype) and less abundant cell populations (e.g., interneurons) in human dorsal striatum. Pathways related to neurodegeneration, interferon response, and DNA damage were significantly enriched in striatal neurons of individuals with OUD. DNA damage markers were also elevated in striatal neurons of opioid-exposed rhesus macaques. Sex-specific molecular differences in glial cell subtypes associated with chronic stress were found in OUD, particularly female individuals. Together, we describe different cell types in human dorsal striatum and identify cell type-specific alterations in OUD.
Collapse
Affiliation(s)
- BaDoi N Phan
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Madelyn H Ray
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Robert J Fenster
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Division of Depression and Anxiety, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Stephen J Kohut
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Suzanne N Haber
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine, Rochester, NY, 14642, USA
| | - Kenneth M McCullough
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Madeline K Fish
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Qiao Su
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Allison E Tipton
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shelley J Russek
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Yuriy Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Division of Depression and Anxiety, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Andreas R Pfenning
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Ryan W Logan
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
9
|
Johnson CS, Chapp AD, Lind EB, Thomas MJ, Mermelstein PG. Sex differences in mouse infralimbic cortex projections to the nucleus accumbens shell. Biol Sex Differ 2023; 14:87. [PMID: 38082417 PMCID: PMC10712109 DOI: 10.1186/s13293-023-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The nucleus accumbens (NAc) is an important region in motivation and reward. Glutamatergic inputs from the infralimbic cortex (ILC) to the shell region of the NAc (NAcSh) have been implicated in driving the motivation to seek reward through repeated action-based behavior. While this has primarily been studied in males, observed sex differences in motivational circuitry and behavior suggest that females may be more sensitive to rewarding stimuli. These differences have been implicated for the observed vulnerability in women to substance use disorders. METHODS We used an optogenetic self-stimulation task in addition to ex vivo electrophysiological recordings of NAcSh neurons in mouse brain slices to investigate potential sex differences in ILC-NAcSh circuitry in reward-seeking behavior. Glutamatergic neurons in the ILC were infected with an AAV delivering DNA encoding for channelrhodopsin. Entering the designated active corner of an open field arena resulted in photostimulation of the ILC terminals in the NAcSh. Self-stimulation occurred during two consecutive days of testing over three consecutive weeks: first for 10 Hz, then 20 Hz, then 30 Hz. Whole-cell recordings of medium spiny neurons in the NAcSh assessed both optogenetically evoked local field potentials and intrinsic excitability. RESULTS Although both sexes learned to seek the active zone, within the first day, females entered the zone more than males, resulting in a greater amount of photostimulation. Increasing the frequency of optogenetic stimulation amplified female reward-seeking behavior. Males were less sensitive to ILC stimulation, with higher frequencies and repeated days required to increase male reward-seeking behavior. Unexpectedly, ex vivo optogenetic local field potentials in the NAcSh were greater in slices from male animals. In contrast, female medium-spiny neurons (MSNs) displayed significantly greater intrinsic neuronal excitability. CONCLUSIONS Taken together, these data indicate that there are sex differences in the motivated behavior driven by glutamate within the ILC-NAcSh circuit. Though glutamatergic signaling was greater in males, heightened intrinsic excitability in females appears to drive this sex difference.
Collapse
Affiliation(s)
- Caroline S Johnson
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
| | - Andrew D Chapp
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Erin B Lind
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Paul G Mermelstein
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA.
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Puig S, Xue X, Salisbury R, Shelton MA, Kim SM, Hildebrand MA, Glausier JR, Freyberg Z, Tseng GC, Yocum AK, Lewis DA, Seney ML, MacDonald ML, Logan RW. Circadian rhythm disruptions associated with opioid use disorder in synaptic proteomes of human dorsolateral prefrontal cortex and nucleus accumbens. Mol Psychiatry 2023; 28:4777-4792. [PMID: 37674018 PMCID: PMC10914630 DOI: 10.1038/s41380-023-02241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/10/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24-h cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes associated with vesicle-mediated transport and membrane trafficking in the NAc and platelet-derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.
Collapse
Affiliation(s)
- Stephanie Puig
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Micah A Shelton
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sam-Moon Kim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mariah A Hildebrand
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Ryan W Logan
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA.
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Puig S, Xue X, Salisbury R, Shelton MA, Kim SM, Hildebrand MA, Glausier JR, Freyberg Z, Tseng GC, Yocum AK, Lewis DA, Seney ML, MacDonald ML, Logan RW. Circadian rhythm disruptions associated with opioid use disorder in the synaptic proteomes of the human dorsolateral prefrontal cortex and nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536056. [PMID: 37066169 PMCID: PMC10104116 DOI: 10.1101/2023.04.07.536056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 04/18/2023]
Abstract
Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24- hour cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes related to vesicle-mediated transport and membrane trafficking in the NAc and platelet derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.
Collapse
|
12
|
Kalivas PW, Gourley SL, Paulus MP. Intrusive thinking: Circuit and synaptic mechanisms of a transdiagnostic psychiatric symptom. Neurosci Biobehav Rev 2023; 150:105196. [PMID: 37094741 PMCID: PMC10249786 DOI: 10.1016/j.neubiorev.2023.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Spontaneous thought is an adaptive cognitive process that can produce novel and insightful thought sequences useful in guiding future behavior. In many psychiatric disorders, spontaneous thinking becomes intrusive and uncontrolled, and can trigger symptoms such as craving, repetitive negative thinking and trauma-related memories. We link studies using clinical imaging and rodent modeling towards understanding the neurocircuitry and neuroplasticity of intrusive thinking. We propose a framework in which drugs or stress change the homeostatic set point of brain reward circuitry, which then impacts subsequent plasticity induced by drug/stress conditioned cues (metaplastic allostasis). We further argue for the importance of examining not only the canonical pre- and postsynapse, but also the adjacent astroglial protrusions and extracellular matrix that together form the tetrapartite synapse and that plasticity throughout the tetrapartite synapse is necessary for cue-induced drug or stress behaviors. This analysis reveals that drug use or trauma cause long-lasting allostatic brain plasticity that sets the stage for subsequent drug/trauma-associated cues to induce transient plasticity that can lead to intrusive thinking.
Collapse
Affiliation(s)
- Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Shannon L Gourley
- Emory National Primate Research Center, Emory University, Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
13
|
Monroe SC, Radke AK. Opioid withdrawal: role in addiction and neural mechanisms. Psychopharmacology (Berl) 2023; 240:1417-1433. [PMID: 37162529 PMCID: PMC11166123 DOI: 10.1007/s00213-023-06370-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/03/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Withdrawal from opioids involves a negative affective state that promotes maintenance of drug-seeking behavior and relapse. As such, understanding the neurobiological mechanisms underlying withdrawal from opioid drugs is critical as scientists and clinicians seek to develop new treatments and therapies. In this review, we focus on the neural systems known to mediate the affective and somatic signs and symptoms of opioid withdrawal, including the mesolimbic dopaminergic system, basolateral amygdala, extended amygdala, and brain and hormonal stress systems. Evidence from preclinical studies suggests that these systems are altered following opioid exposure and that these changes mediate behavioral signs of negative affect such as aversion and anxiety during withdrawal. Adaptations in these systems also parallel the behavioral and psychological features of opioid use disorder (OUD), highlighting the important role of withdrawal in the development of addictive behavior. Implications for relapse and treatment are discussed as well as promising avenues for future research, with the hope of promoting continued progress toward characterizing neural contributors to opioid withdrawal and compulsive opioid use.
Collapse
Affiliation(s)
- Sean C Monroe
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, USA.
| |
Collapse
|
14
|
Kokane SS, Cole RD, Bordieanu B, Ray CM, Haque IA, Otis JM, McGinty JF. Increased Excitability and Synaptic Plasticity of Drd1- and Drd2-Expressing Prelimbic Neurons Projecting to Nucleus Accumbens after Heroin Abstinence Are Reversed by Cue-Induced Relapse and Protein Kinase A Inhibition. J Neurosci 2023; 43:4019-4032. [PMID: 37094933 PMCID: PMC10255008 DOI: 10.1523/jneurosci.0108-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Dysregulation of the input from the prefrontal cortex (PFC) to the nucleus accumbens (NAc) contributes to cue-induced opioid seeking but the heterogeneity in, and regulation of, prelimbic (PL)-PFC to NAc (PL->NAc) neurons that are altered has not been comprehensively explored. Recently, baseline and opiate withdrawal-induced differences in intrinsic excitability of Drd1+ (D1+) versus Drd2+ (D2+) PFC neurons have been demonstrated. Thus, here we investigated physiological adaptations of PL->NAc D1+ versus D2+ neurons after heroin abstinence and cue-induced relapse. Drd1-Cre+ and Drd2-Cre+ transgenic male Long-Evans rats with virally labeled PL->NAc neurons were trained to self-administer heroin followed by 1 week of forced abstinence. Heroin abstinence significantly increased intrinsic excitability in D1+ and D2+ PL->NAc neurons and increased postsynaptic strength selectively in D1+ neurons. These changes were normalized by cue-induced relapse to heroin seeking. Based on protein kinase A (PKA)-dependent changes in the phosphorylation of plasticity-related proteins in the PL cortex during abstinence and cue-induced relapse to cocaine seeking, we assessed whether the electrophysiological changes in D1+ and D2+ PL->NAc neurons during heroin abstinence were regulated by PKA. In heroin-abstinent PL slices, application of the PKA antagonist (R)-adenosine, cyclic 3',5'-(hydrogenphosphorothioate) triethylammonium (RP-cAMPs) reversed intrinsic excitability in both D1+ and D2+ neurons and postsynaptic strength in only D1+ neurons. Additionally, in vivo bilateral intra-PL infusion of RP-cAMPs after abstinence from heroin inhibited cue-induced relapse to heroin seeking. These data reveal that PKA activity in D1+ and D2+ PL->NAc neurons is not only required for abstinence-induced physiological adaptations but is also required for cue-induced relapse to heroin seeking.SIGNIFICANCE STATEMENT Neuronal plasticity in the medial prefrontal cortex is thought to underlie relapse to drug seeking, yet the subpopulation of neurons that express this plasticity to functionally guide relapse is unclear. Here we show cell type-specific adaptations in Drd1-expressing versus Drd2-expressing prelimbic pyramidal neurons with efferent projections to nucleus accumbens. These adaptations are bidirectionally regulated during abstinence versus relapse and involve protein kinase A (PKA) activation. Furthermore, we show that disruption of the abstinence-associated adaptations via site-specific PKA inhibition abolishes relapse. These data reveal the promising therapeutic potential of PKA inhibition for preventing relapse to heroin seeking and suggest that cell type-specific pharmacologies that target subpopulations of prefrontal neurons would be ideal for future therapeutic developments.
Collapse
Affiliation(s)
- Saurabh S Kokane
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Robert D Cole
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bogdan Bordieanu
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Chevin M Ray
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ishraq A Haque
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - James M Otis
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jacqueline F McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
15
|
Towers EB, Williams IL, Qillawala EI, Rissman EF, Lynch WJ. Sex/Gender Differences in the Time-Course for the Development of Substance Use Disorder: A Focus on the Telescoping Effect. Pharmacol Rev 2023; 75:217-249. [PMID: 36781217 PMCID: PMC9969523 DOI: 10.1124/pharmrev.121.000361] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2021] [Revised: 10/05/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Sex/gender effects have been demonstrated for multiple aspects of addiction, with one of the most commonly cited examples being the "telescoping effect" where women meet criteria and/or seek treatment of substance use disorder (SUD) after fewer years of drug use as compared with men. This phenomenon has been reported for multiple drug classes including opioids, psychostimulants, alcohol, and cannabis, as well as nonpharmacological addictions, such as gambling. However, there are some inconsistent reports that show either no difference between men and women or opposite effects and a faster course to addiction in men than women. Thus, the goals of this review are to evaluate evidence for and against the telescoping effect in women and to determine the conditions/populations for which the telescoping effect is most relevant. We also discuss evidence from preclinical studies, which strongly support the validity of the telescoping effect and show that female animals develop addiction-like features (e.g., compulsive drug use, an enhanced motivation for the drug, and enhanced drug-craving/vulnerability to relapse) more readily than male animals. We also discuss biologic factors that may contribute to the telescoping effect, such as ovarian hormones, and its neurobiological basis focusing on the mesolimbic dopamine reward pathway and the corticomesolimbic glutamatergic pathway considering the critical roles these pathways play in the rewarding/reinforcing effects of addictive drugs and SUD. We conclude with future research directions, including intervention strategies to prevent the development of SUD in women. SIGNIFICANCE STATEMENT: One of the most widely cited gender/sex differences in substance use disorder (SUD) is the "telescoping effect," which reflects an accelerated course in women versus men for the development and/or seeking treatment for SUD. This review evaluates evidence for and against a telescoping effect drawing upon data from both clinical and preclinical studies. We also discuss the contribution of biological factors and underlying neurobiological mechanisms and highlight potential targets to prevent the development of SUD in women.
Collapse
Affiliation(s)
- Eleanor Blair Towers
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Ivy L Williams
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Emaan I Qillawala
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Emilie F Rissman
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Wendy J Lynch
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| |
Collapse
|
16
|
Lind EB, Sweis BM, Asp AJ, Esguerra M, Silvis KA, David Redish A, Thomas MJ. A quadruple dissociation of reward-related behaviour in mice across excitatory inputs to the nucleus accumbens shell. Commun Biol 2023; 6:119. [PMID: 36717646 PMCID: PMC9886947 DOI: 10.1038/s42003-023-04429-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2021] [Accepted: 01/05/2023] [Indexed: 02/01/2023] Open
Abstract
The nucleus accumbens shell (NAcSh) is critically important for reward valuations, yet it remains unclear how valuation information is integrated in this region to drive behaviour during reinforcement learning. Using an optogenetic spatial self-stimulation task in mice, here we show that contingent activation of different excitatory inputs to the NAcSh change expression of different reward-related behaviours. Our data indicate that medial prefrontal inputs support place preference via repeated actions, ventral hippocampal inputs consistently promote place preferences, basolateral amygdala inputs produce modest place preferences but as a byproduct of increased sensitivity to time investments, and paraventricular inputs reduce place preferences yet do not produce full avoidance behaviour. These findings suggest that each excitatory input provides distinct information to the NAcSh, and we propose that this reflects the reinforcement of different credit assignment functions. Our finding of a quadruple dissociation of NAcSh input-specific behaviours provides insights into how types of information carried by distinct inputs to the NAcSh could be integrated to help drive reinforcement learning and situationally appropriate behavioural responses.
Collapse
Affiliation(s)
- Erin B Lind
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Brian M Sweis
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Anders J Asp
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Manuel Esguerra
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Keelia A Silvis
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - A David Redish
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA.
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
17
|
Towers EB, Kilgore M, Bakhti-Suroosh A, Pidaparthi L, Williams IL, Abel JM, Lynch WJ. Sex differences in the neuroadaptations associated with incubated cocaine-craving: A focus on the dorsomedial prefrontal cortex. Front Behav Neurosci 2023; 16:1027310. [PMID: 36688133 PMCID: PMC9854116 DOI: 10.3389/fnbeh.2022.1027310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Women have a shorter course from initial cocaine use to meeting the criteria for cocaine use disorder as compared to men. Preclinical findings similarly indicate that females develop key features of an addiction-like phenotype faster than males, including an enhanced motivation for cocaine and compulsive use, indicating that this phenomenon is biologically based. The goals of this study were to determine whether cocaine-craving, another key feature of addiction, also develops sooner during withdrawal in females than males and to determine whether there are sex differences in the molecular mechanisms associated with its development focusing on markers known to mediate cocaine-craving in males (i.e., dorsomedial prefrontal cortex, dmPFC, expression of brain-derived neurotrophic factor exon-IV, Bdnf-IV, and NMDA receptor subunits, Grin2a, Grin2b, and Grin1). Methods Cocaine-craving was assessed following extended-access cocaine self-administration and 2, 7, or 14 days of withdrawal using an extinction/cue-induced reinstatement procedure. Tissue was obtained from the dmPFC immediately after reinstatement testing and gene expression changes were analyzed using real-time qPCR. Results In males, cocaine-craving (total extinction and cue-induced reinstatement responding) progressively increased from early to later withdrawal time-points whereas in females, cocaine-craving was already elevated during early withdrawal (after 2 days) and did not further increase at later withdrawal time-points. Levels of cocaine-craving, however, were similar between the sexes. Gene expression changes differed markedly between the sexes such that males showed the expected relapse- and withdrawal-associated changes in Bdnf-IV, Grin2a, Grin2b, and Grin1 expression, but females only showed a modest increase Grin1 expression at the intermediate withdrawal timepoint. Discussion These findings indicate that cocaine-craving is similarly expressed in males and females although the time-course for its incubation appears to be accelerated in females; the molecular mechanisms also likely differ in females versus males.
Collapse
Affiliation(s)
- Eleanor Blair Towers
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, United States
| | - Madison Kilgore
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Anousheh Bakhti-Suroosh
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Lasyapriya Pidaparthi
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Ivy L. Williams
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Jean M. Abel
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Wendy J. Lynch
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
18
|
Brandner DD, Retzlaff CL, Kocharian A, Stieve BJ, Mashal MA, Mermelstein PG, Rothwell PE. Neuroligin-3 in dopaminergic circuits promotes behavioural and neurobiological adaptations to chronic morphine exposure. Addict Biol 2023; 28:e13247. [PMID: 36577719 PMCID: PMC9803875 DOI: 10.1111/adb.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 12/12/2022]
Abstract
Chronic opioid exposure causes structural and functional changes in brain circuits, which may contribute to opioid use disorders. Synaptic cell-adhesion molecules are prime candidates for mediating this opioid-evoked plasticity. Neuroligin-3 (NL3) is an X-linked postsynaptic adhesion protein that shapes synaptic function at multiple sites in the mesolimbic dopamine system. We therefore studied how genetic knockout of NL3 alters responses to chronic morphine in male mice. Constitutive NL3 knockout caused a persistent reduction in psychomotor sensitization after chronic morphine exposure and change in the topography of locomotor stimulation produced by morphine. This latter change was recapitulated by conditional genetic deletion of NL3 from cells expressing the Drd1 dopamine receptor, whereas reduced psychomotor sensitization was recapitulated by conditional genetic deletion from dopamine neurons. Without NL3 expression, dopamine neurons in the ventral tegmental area exhibited diminished activation following chronic morphine exposure, by measuring in vivo calcium signals with fibre photometry. This altered pattern of dopamine neuron activity may be driven by aberrant forms of opioid-evoked synaptic plasticity in the absence of NL3: dopamine neurons lacking NL3 showed weaker synaptic inhibition at baseline, which was subsequently strengthened after chronic morphine. In total, our study highlights neurobiological adaptations in dopamine neurons of the ventral tegmental area that correspond with increased behavioural sensitivity to opioids and further suggests that NL3 expression by dopamine neurons provides a molecular substrate for opioid-evoked adaptations in brain function and behaviour.
Collapse
Affiliation(s)
- Dieter D. Brandner
- Graduate Program in NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
- Medical Scientist Training ProgramUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Adrina Kocharian
- Graduate Program in NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
- Medical Scientist Training ProgramUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Bethany J. Stieve
- Graduate Program in NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Mohammed A. Mashal
- Department of NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | | |
Collapse
|
19
|
Armstrong C, Ferrante J, Lamichhane N, Reavis Z, Walker D, Patkar A, Kuhn C. Rapastinel accelerates loss of withdrawal signs after repeated morphine and blunts relapse to conditioned place preference. Pharmacol Biochem Behav 2022; 221:173485. [PMID: 36302442 DOI: 10.1016/j.pbb.2022.173485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/04/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
The purpose of the present study was to evaluate the efficacy of rapastinel, an allosteric modulator of NMDA receptor function, to accelerate the loss of opioid withdrawal symptoms and blunt or prevent relapse to morphine conditioned place preference (CPP) in rats. Two studies were conducted. In study 1, adult and adolescent male and female rats were treated with increasing doses of morphine (5 mg/kg, bid to 25 mg/kg bid) for 5 days. On day 6 animals were treated with naloxone (1 mg/kg) and withdrawal was assessed. They were then treated with saline or rapastinel (5 mg/kg) on days 6 and 8, and withdrawal was assessed on day 9. Rapastinel treated animals exhibited significantly lower levels of withdrawal signs on day 9. No sex or age differences were observed. In Study 2, CPP for morphine was established in adult rats (males and females) by 4 daily pairings with saline and morphine (am/pm alternation). They were tested for CPP on day 5, and then treated with rapastinel (5 mg/kg) or saline daily on days 6-10 of extinction. On day 11 they received a final dose of rapastinel or saline followed by extinction trial. On day 12, animals received 1 mg/kg of morphine and were tested for relapse. Rapastinel did not affect extinction of CPP, but rapastinel-treated animals spent significantly less time in the previously morphine-paired side than saline-treated animals during the relapse trial. These findings of accelerated loss of withdrawal signs and blunted relapse to CPP suggest that rapastinel could provide an adjunctive therapy for opioid dependence during initiation of pharmacotherapy for opioid dependence.
Collapse
Affiliation(s)
- Christopher Armstrong
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Julia Ferrante
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Nidesh Lamichhane
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Zachery Reavis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Ashwin Patkar
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, United States of America; Avance Psychiatry, 7850 Brier Creek Pkwy, Ste. 102, Raleigh, NC 27617, United States of America
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, United States of America.
| |
Collapse
|
20
|
Inbar K, Levi LA, Kupchik YM. Cocaine induces input and cell-type-specific synaptic plasticity in ventral pallidum-projecting nucleus accumbens medium spiny neurons. Neuropsychopharmacology 2022; 47:1461-1472. [PMID: 35121830 PMCID: PMC9205871 DOI: 10.1038/s41386-022-01285-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/23/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Cocaine use and abstinence induce long-term synaptic alterations in the excitatory input to nucleus accumbens (NAc) medium spiny neurons (MSNs). The NAc regulates reward-related behaviors through two parallel projections to the ventral pallidum (VP)-originating in D1 or D2-expressing MSNs (D1-MSNs→VP; D2-MSNs→VP). The activity of these projections depends on their excitatory synaptic inputs, but it is not known whether and how abstinence from cocaine affects the excitatory transmission to D1-MSNs→VP and D2-MSNs→VP. Here we examined different forms of cocaine-induced synaptic plasticity in the inputs from the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) to NAc D1-MSNs→VP and putative D2-MSNs→VP (pD2-MSNs→VP) in the core and shell subcompartments of the NAc. We used the whole-cell patch-clamp technique to record excitatory postsynaptic currents from D1-tdTomato mice injected with ChR2 in either the BLA or the mPFC and retrograde tracer (RetroBeads) in the VP. We found that cocaine conditioned place preference (CPP) followed by abstinence potentiated the excitatory input from the BLA and mPFC to both D1-MSNs→VP and pD2-MSNs→VP. Interestingly, while the strengthening of the inputs to D1-MSNs→VP was of postsynaptic origin and manifested as increased AMPA to NMDA ratio, in pD2-MSNs→VP plasticity was predominantly presynaptic and was detected as changes in the paired-pulse ratio and coefficient of variation. Lastly, some of the changes were sex-specific. Overall our data show that abstinence from cocaine changes the excitatory inputs to both D1-MSNs→VP and pD2-MSNs→VP but with different mechanisms. This may help understand how circuits converging into the VP change after cocaine exposure.
Collapse
Affiliation(s)
- Kineret Inbar
- grid.9619.70000 0004 1937 0538Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, 9112102 Israel
| | - Liran A. Levi
- grid.9619.70000 0004 1937 0538Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, 9112102 Israel
| | - Yonatan M. Kupchik
- grid.9619.70000 0004 1937 0538Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, 9112102 Israel
| |
Collapse
|
21
|
Postsynaptic signaling at glutamatergic synapses as therapeutic targets. Curr Opin Neurobiol 2022; 75:102585. [PMID: 35738196 DOI: 10.1016/j.conb.2022.102585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
Dysregulation of glutamatergic synapses plays an important role in the pathogenesis of neurological diseases. In addition to mediating excitatory synaptic transmission, postsynaptic glutamate receptors interact with various membrane and intracellular proteins. They form structural and/or signaling synaptic protein complexes and thereby play diverse postsynaptic functions. Recently, several postsynaptic protein complexes have been associated with various neurological diseases and hence, have been characterized as important therapeutic targets. Moreover, novel small molecules and therapeutic peptides targeting and modulating the activities of these protein complexes have been discovered, some of which have advanced through preclinical translational research and/or clinical studies. This article describes the recent investigation of eight key protein complexes associated with the postsynaptic ionotropic and metabotropic glutamate receptors as therapeutic targets for central nervous system diseases.
Collapse
|
22
|
Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci 2022; 15:919773. [PMID: 35782382 PMCID: PMC9242007 DOI: 10.3389/fnmol.2022.919773] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Nikhil Shah
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
23
|
Prenatal Opioid Exposure Impairs Endocannabinoid and Glutamate Transmission in the Dorsal Striatum. eNeuro 2022; 9:ENEURO.0119-22.2022. [PMID: 35396255 PMCID: PMC9034757 DOI: 10.1523/eneuro.0119-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
The opioid crisis has contributed to a growing population of children exposed to opioids during fetal development; however, many of the long-term effects of opioid exposure on development are unknown. We previously demonstrated that opioids have deleterious effects on endocannabinoid plasticity at glutamate synapses in the dorsal striatum of adolescent rodents, but it is unclear whether prenatal opioid exposure produces similar neuroadaptations. Using a mouse model of prenatal methadone exposure (PME), we performed proteomics, phosphoproteomics, and patch-clamp electrophysiology in the dorsolateral striatum (DLS) and dorsomedial striatum (DMS) to examine synaptic functioning in adolescent PME offspring. PME impacted the proteome and phosphoproteome in a region- and sex-dependent manner. Many proteins and phosphorylated proteins associated with glutamate transmission were differentially abundant in PME offspring, which was associated with reduced glutamate release in the DLS and altered the rise time of excitatory events in the DMS. Similarly, the intrinsic excitability properties of DMS neurons were significantly affected by PME. Last, pathway analyses revealed an enrichment in retrograde endocannabinoid signaling in the DLS, but not in the DMS, of males. Electrophysiology studies confirmed that endocannabinoid-mediated synaptic depression was impaired in the DLS, but not DMS, of PME-males. These results indicate that PME induces persistent neuroadaptations in the dorsal striatum and could contribute to the aberrant behavioral development described in offspring with prenatal opioid exposure.
Collapse
|
24
|
Manz KM, Coleman BC, Jameson AN, Ghose DG, Patel S, Grueter BA. Cocaine restricts nucleus accumbens feedforward drive through a monoamine-independent mechanism. Neuropsychopharmacology 2022; 47:652-663. [PMID: 34545194 PMCID: PMC8782870 DOI: 10.1038/s41386-021-01167-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/23/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Parvalbumin-expressing fast-spiking interneurons (PV-INs) within feedforward microcircuits in the nucleus accumbens (NAc) coordinate goal-directed motivational behavior. Feedforward inhibition of medium spiny projection neurons (MSNs) is initiated by glutamatergic input from corticolimbic brain structures. While corticolimbic synapses onto MSNs are targeted by the psychostimulant, cocaine, it remains unknown whether cocaine also exerts acute neuromodulatory actions at collateralizing synapses onto PV-INs. Using whole-cell patch-clamp electrophysiology, optogenetics, and pharmacological tools in transgenic reporter mice, we found that cocaine decreases thalamocortical glutamatergic drive onto PV-INs by engaging a monoamine-independent mechanism. This mechanism relies on postsynaptic sigma-1 (σ1) activity, leading to the mobilization of intracellular Ca2+ stores that trigger retrograde endocannabinoid signaling at presynaptic type-1 cannabinoid receptors (CB1R). Cocaine-evoked CB1R activity occludes the expression of CB1R-dependent long-term depression (LTD) at this synaptic locus. These findings provide evidence that acute cocaine exposure targets feedforward microcircuits in the NAc and extend existing models of cocaine action on mesolimbic reward circuits.
Collapse
Affiliation(s)
- Kevin M Manz
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Alexis N Jameson
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Dipanwita G Ghose
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
25
|
Kruyer A, Dixon D, Angelis A, Amato D, Kalivas PW. Astrocytes in the ventral pallidum extinguish heroin seeking through GAT-3 upregulation and morphological plasticity at D1-MSN terminals. Mol Psychiatry 2022; 27:855-864. [PMID: 34642457 PMCID: PMC9054673 DOI: 10.1038/s41380-021-01333-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/28/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
GABAergic projections from the nucleus accumbens core to the dorsolateral ventral pallidum are necessary for drug-conditioned cues to initiate relapse-like drug seeking. Astrocytes in the ventral pallidum are situated perisynaptically and regulate GABA transmission through expression of GABA uptake transporters, but whether they are involved in regulating drug seeking is unknown. To determine the contribution of ventral pallidal astrocytes to heroin seeking, we labeled astrocytes in male and female rats with a membrane-bound fluorescent tag and used confocal microscopy to quantify astroglial expression of the GABA transporter GAT-3 and astrocyte synaptic proximity after withdrawal from heroin self-administration and during 15 min of cued heroin seeking. We found that GAT-3 was upregulated in rats that had extinguished heroin seeking, but not in animals that were withdrawn from heroin without extinction training or in rats that extinguished sucrose seeking. When GAT-3 upregulation was reversed using a vivo-morpholino oligo, heroin seeking was restored in the extinguished context and extinction of cued heroin seeking was disrupted compared to control animals. Although astrocyte synaptic proximity was not altered overall after heroin withdrawal, examination of astrocyte proximity to accumbens D1- or D2-expressing afferents revealed a selective increase in astrocyte proximity with D1-expressing terminals during extinction of heroin self-administration. Experimentally-induced reduction of astrocyte synaptic proximity through knockdown of the astrocyte-selective actin-binding protein ezrin also markedly disrupted extinction of heroin seeking. Notably, GAT-3 or ezrin knockdown had no impact on context- or cue-induced seeking in sucrose-trained animals. These data show that astrocytes in the ventral pallidum undergo plasticity after extinction of heroin use that reduces seeking and highlight the importance of astrocyte-neuron interactions in shaping behaviors associated with opioid use disorder.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Danielle Dixon
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Ariana Angelis
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Davide Amato
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
26
|
Davis S, Zhu J. Substance abuse and neurotransmission. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:403-441. [PMID: 35341573 PMCID: PMC9759822 DOI: 10.1016/bs.apha.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2023]
Abstract
The number of people who suffer from a substance abuse disorder has continued to rise over the last decade; particularly, the number of drug-related overdose deaths has sharply increased during the COVID-19 pandemic. Converging lines of clinical observations, supported by imaging and neuropsychological performance testing, have demonstrated that substance abuse-induced dysregulation of neurotransmissions in the brain is critical for development and expression of the addictive properties of abused substances. Recent scientific advances have allowed for better understanding of the neurobiological processes that mediates drugs of abuse and addiction. This chapter presents the past classic concepts and the recent advances in our knowledge about how cocaine, amphetamines, opioids, alcohol, and nicotine alter multiple neurotransmitter systems, which contribute to the behaviors associated with each drug. Additionally, we discuss the interactive effects of HIV-1 or COVID-19 and substance abuse on neurotransmission and neurobiological pathways. Finally, we introduce therapeutic strategies for development of pharmacotherapies for substance abuse disorders.
Collapse
Affiliation(s)
- Sarah Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
27
|
Gos T, Steiner J, Trübner K, Krzyżanowska M, Kaliszan M. Ribosomal DNA transcription is increased in the left nucleus accumbens of heroin-dependent males. Eur Arch Psychiatry Clin Neurosci 2022; 272:1603-1609. [PMID: 35567616 PMCID: PMC9106793 DOI: 10.1007/s00406-022-01423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/17/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022]
Abstract
Opioid addiction is a worldwide problem accentuated in the USA and European countries by the COVID-19 pandemic. The nucleus accumbens (NAc) plays an outstanding neurobiological role in opioid addiction as a part of the striatum and key component of brain reward system. The striatal GABAergic medium spiny projection neurons (MSNs) are the main neuronal type in the NAc where addiction-specific synaptic plasticity occurs. The activity of ribosomal DNA (rDNA) transcription is crucial for neural plasticity and molecular studies suggest its increase in the NAc of heroin addicts. Silver-stained argyrophilic nucleolar organizer region (AgNOR) areas visualised in neuronal nuclei in paraffin-embedded brain sections are reliable morphological estimators of rDNA transcription and thus surrogate markers for the activity of brain regions. Our study revealed increased AgNOR areas in MSNs of the left NAc in 11 heroin addicts versus 11 healthy controls from the Magdeburg Brain Bank (U-test P = 0.007). No differences were observed in another investigated part of the striatum, namely the head of caudate nucleus, which is located closely to the NAc. The results were not confounded by significant differences in the age, brain volume and time of formalin fixation existing between compared groups. Our findings suggest an increased NAc activity in heroin addicts, which is consistent with human and animal experimental data.
Collapse
Affiliation(s)
- Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204, Gdańsk, Poland. .,Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany.
| | - Johann Steiner
- grid.5807.a0000 0001 1018 4307Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany
| | - Kurt Trübner
- grid.5718.b0000 0001 2187 5445Institute of Legal Medicine, University of Duisburg-Essen, Essen, Germany
| | - Marta Krzyżanowska
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Michał Kaliszan
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| |
Collapse
|
28
|
Mu L, Liu X, Yu H, Hu M, Friedman V, Kelly TJ, Zhao L, Liu QS. Ibudilast attenuates cocaine self-administration and prime- and cue-induced reinstatement of cocaine seeking in rats. Neuropharmacology 2021; 201:108830. [PMID: 34626665 PMCID: PMC8656241 DOI: 10.1016/j.neuropharm.2021.108830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022]
Abstract
Ibudilast is a non-selective phosphodiesterase (PDE) inhibitor and glial cell modulator which has shown great promise for the treatment of drug and alcohol use disorders in recent clinical studies. However, it is unknown whether and how ibudilast affects cocaine seeking behavior. Here we show that systemic administration of ibudilast dose-dependently reduced cocaine self-administration under fixed- and progressive-ratio reinforcement schedules in rats and shifted cocaine dose-response curves downward. In addition, ibudilast decreased cocaine prime- and cue-induced reinstatement of cocaine seeking. These results indicate that ibudilast was effective in reducing the reinforcing effects of cocaine and relapse to cocaine seeking. Chronic cocaine exposure induces cAMP-related neuroadaptations in the reward circuitry of the brain. To investigate potential mechanisms for ibudilast-induced attenuation of cocaine self-administration, we recorded from ventral tegmental area (VTA) dopamine neurons in ex vivo midbrain slices prepared from rats that had undergone saline and cocaine self-administration. We found cocaine self-administration led to a decrease in inhibitory postsynaptic currents (IPSCs), an increase in the AMPAR/NMDAR ratio, and an increase in the excitation to inhibition (E/I) ratio. Ibudilast pretreatments enhanced GABAergic inhibition and did not further change cocaine-induced potentiation of excitation, leading to normalization of the E/I ratio. Restoration of the balance between excitation and inhibition in VTA dopamine neurons may contribute to the attenuation of cocaine self-administration by ibudilast.
Collapse
Affiliation(s)
- Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Mengming Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Thomas J Kelly
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
29
|
Astrocyte-neuron signaling in the mesolimbic dopamine system: the hidden stars of dopamine signaling. Neuropsychopharmacology 2021; 46:1864-1872. [PMID: 34253855 PMCID: PMC8429665 DOI: 10.1038/s41386-021-01090-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/12/2021] [Revised: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Astrocytes are fundamental components of brain information processing and possess the ability to respond to synaptic signaling with increases in cytoplasmic calcium and modulate neuronal activity with the subsequent release of neuroactive transmitters. Dopamine signaling is essential for brain physiology and pathology, participating in learning and memory, motor control, neurological diseases, and psychiatric diseases, and astrocytes are emerging as a key cellular target of dopamine signaling. The present review will examine evidence revealing that astrocytes respond to dopamine and modulate information processing in the primary brain regions implicated in the mesolimbic dopamine system. Astrocytes exhibit circuit-specific modulation of neuronal networks and have the potential to serve as a therapeutic target for interventions designed for dopamine pathologies.
Collapse
|
30
|
Giannotti G, Gong S, Fayette N, Heinsbroek JA, Orfila JE, Herson PS, Ford CP, Peters J. Extinction blunts paraventricular thalamic contributions to heroin relapse. Cell Rep 2021; 36:109605. [PMID: 34433067 PMCID: PMC8418780 DOI: 10.1016/j.celrep.2021.109605] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
Here, we use optogenetics and chemogenetics to investigate the contribution of the paraventricular thalamus (PVT) to nucleus accumbens (NAc) pathway in aversion and heroin relapse in two different heroin self-administration models in rats. In one model, rats undergo forced abstinence in the home cage prior to relapse testing, and in the other, they undergo extinction training, a procedure that is likened to cognitive behavioral therapy. We find that the PVT→NAc pathway is both sufficient and necessary to drive aversion and heroin seeking after abstinence, but not extinction. The ability of extinction to reduce this pathway's contribution to heroin relapse is accompanied by a loss of synaptic plasticity in PVT inputs onto a specific subset of NAc neurons. Thus, extinction may exert therapeutic reductions in opioid seeking by altering synaptic plasticity within the PVT→NAc pathway, resulting in reduced aversion during opioid withdrawal as well as reduced relapse propensity.
Collapse
Affiliation(s)
- Giuseppe Giannotti
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sheng Gong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas Fayette
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jasper A Heinsbroek
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James E Orfila
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jamie Peters
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
31
|
Knouse MC, Briand LA. Behavioral sex differences in cocaine and opioid use disorders: The role of gonadal hormones. Neurosci Biobehav Rev 2021; 128:358-366. [PMID: 34214512 DOI: 10.1016/j.neubiorev.2021.06.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2020] [Revised: 05/20/2021] [Accepted: 06/27/2021] [Indexed: 11/20/2022]
Abstract
Females are more vulnerable than males to many aspects of cocaine use disorder. This vulnerability also translates to opioid use disorder, with females exhibiting stronger behavioral responses than males to drugs such as heroin and morphine. While there is evidence for many overlapping neural mechanisms underlying cocaine and opioid abuse, there is also a breadth of evidence indicating divergent effects of the drugs on synaptic plasticity. This makes it unclear whether the behavioral sex differences seen in substance use disorder across different drugs of abuse rely on the same mechanisms. Ovarian hormones have consistently been implicated as drivers of the behavioral sex differences in cocaine taking and seeking. While there are far fewer studies on the role of ovarian hormones in opioid use disorder, the existing data suggest that ovarian hormones may not drive these behavioral effects in the same manner as in cocaine use disorder. This review highlights evidence that behavioral sex differences in substance use disorder might be driven by different mechanisms depending on drug class.
Collapse
Affiliation(s)
| | - Lisa A Briand
- Department of Psychology, Temple University, United States; Neuroscience Program, Temple University, United States.
| |
Collapse
|
32
|
Freedman ZG, Kane JA, King TS, Graziane NM. The effect of prescribing antibiotics with opioids on the development of opioid use disorder: a national database study. J Addict Dis 2021; 40:62-70. [PMID: 34030608 DOI: 10.1080/10550887.2021.1926889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
The goal of this study was to examine the impact of inpatient- or emergency department- prescribed antibiotic treatment in combination with opioids on the risk of developing opioid use disorder 12 months following discharge from the hospital. The authors conducted a propensity score-matched cohort study with data from the TriNetX Research Network database to identify adult subjects (18-65 years old) with no previous history of an opioid use disorder. Three cohorts were defined for the analyses: subjects who were prescribed an opioid, opioid in combination with an antibiotic, or an antibiotic while in the emergency department or inpatient unit, from the years 2012 to 2018. The diagnosis of an Opioid Related Disorder (F11.10-F11.20) 12 months following discharge from the emergency department or inpatient unit was then observed within the cohorts following the index event as identified by the ICD-10 procedural coding system. Primary analysis (propensity-score matched on age and sex) showed that opioids prescribed in combination with antibiotics had a protective effect against the development of opioid use disorder. This effect was consistent throughout all of the years included in this study with the smallest protective effect observed in 2018 (2012 risk ratio = 1.27 (95% CI: 1.23, 1.32); 2018 risk ratio: 1.03 (95% CI: 1.01, 1.05). These findings suggest that opioids prescribed in combination with antibiotics in the hospital setting are protective against the development of OUD at later time points following hospital discharge.
Collapse
Affiliation(s)
- Zachary G Freedman
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, PA, USA
| | - Jennifer A Kane
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, PA, USA
| | - Tonya S King
- Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
33
|
Chioma VC, Kruyer A, Bobadilla AC, Angelis A, Ellison Z, Hodebourg R, Scofield MD, Kalivas PW. Heroin Seeking and Extinction From Seeking Activate Matrix Metalloproteinases at Synapses on Distinct Subpopulations of Accumbens Cells. Biol Psychiatry 2021; 89:947-958. [PMID: 33579535 PMCID: PMC8434769 DOI: 10.1016/j.biopsych.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Seeking addictive drugs is regulated by synaptic plasticity in the nucleus accumbens core and involves distinct plasticity in D1 and D2 receptor-expressing medium spiny neurons (D1/2-MSNs). However, it is unknown how differential plasticity between the two cell types is coordinated. Synaptic plasticity and seeking behavior induced by drug-paired cues depends not only on plasticity in the canonical pre- and postsynapse, but also on cue-induced changes in astrocytes and the extracellular matrix adjacent to the synapse. Drug cue-induced signaling in the extracellular matrix is regulated by catalytic activity of matrix metalloproteinases MMP-2,9. We hypothesized that the cell type-specific synaptic plasticity is associated with parallel cell-specific activity of MMP-2 and MMP-9. METHODS Transgenic rats were trained on a heroin self-administration protocol in which a light/tone cue was paired with heroin delivery, followed by 2 weeks of drug withdrawal, and then reinstated to heroin-conditioned cues. Confocal microscopy was used to make morphological measurements in membrane reporter-transduced D1- and D2-MSNs and astrocytes, and MMP-2,9 gelatinase activity adjacent to cell surfaces was quantified using in vivo zymography. RESULTS Presenting heroin-paired cues transiently increased MMP-9 activity around D1-MSN dendritic spines and synapse-proximal astroglial processes. Conversely, extinction training induced long-lasting increases in MMP-2 activity adjacent to D2-MSN synapses. Moreover, heroin-paired cues increased tissue inhibitor of metalloproteinases TIMP-1,2, which caused transient inhibition of MMP-2 activity around D2-MSNs during cue-induced heroin seeking. CONCLUSIONS The differential regulation of heroin seeking and extinguished seeking by different MMP subtypes on distinct cell populations poses MMP-2,9 activity as an important mediator and contributor in heroin-induced cell-specific synaptic plasticity.
Collapse
Affiliation(s)
- Vivian C Chioma
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Ana-Clara Bobadilla
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; School of Pharmacy, University of Wyoming, Laramie, Wyoming
| | - Ariana Angelis
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Zachary Ellison
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Ritchy Hodebourg
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
34
|
Christoffel DJ, Walsh JJ, Heifets BD, Hoerbelt P, Neuner S, Sun G, Ravikumar VK, Wu H, Halpern CH, Malenka RC. Input-specific modulation of murine nucleus accumbens differentially regulates hedonic feeding. Nat Commun 2021; 12:2135. [PMID: 33837200 PMCID: PMC8035198 DOI: 10.1038/s41467-021-22430-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2019] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Hedonic feeding is driven by the "pleasure" derived from consuming palatable food and occurs in the absence of metabolic need. It plays a critical role in the excessive feeding that underlies obesity. Compared to other pathological motivated behaviors, little is known about the neural circuit mechanisms mediating excessive hedonic feeding. Here, we show that modulation of prefrontal cortex (PFC) and anterior paraventricular thalamus (aPVT) excitatory inputs to the nucleus accumbens (NAc), a key node of reward circuitry, has opposing effects on high fat intake in mice. Prolonged high fat intake leads to input- and cell type-specific changes in synaptic strength. Modifying synaptic strength via plasticity protocols, either in an input-specific optogenetic or non-specific electrical manner, causes sustained changes in high fat intake. These results demonstrate that input-specific NAc circuit adaptations occur with repeated exposure to a potent natural reward and suggest that neuromodulatory interventions may be therapeutically useful for individuals with pathologic hedonic feeding.
Collapse
Affiliation(s)
- Daniel J Christoffel
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jessica J Walsh
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul Hoerbelt
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sophie Neuner
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Gordon Sun
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vinod K Ravikumar
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hemmings Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
35
|
Abstract
Opioid use disorder (OUD) is diagnosed using the qualitative criteria defined by the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Diagnostic biomarkers for OUD do not currently exist. Our study focused on developing objective biological markers to differentiate chronic opiate users with OUD from chronic opiate users without OUD. Using biospecimens from the Golestan Cohort Study, we compared the metabolomics profiles of high opium users who were diagnosed as OUD positive with high opium users who were diagnosed as OUD negative. High opium use was defined as maximum weekly opium usage greater than or equal to the median usage (2.4 g per week), and OUD was defined as having 2 or more DSM-5 criteria in any 12-month period. Among the 218 high opium users in this study, 80 were diagnosed as OUD negative, while 138 were diagnosed as OUD positive. Seven hundred and twelve peaks differentiated high opium users diagnosed as OUD positive from high opium users diagnosed as OUD negative. Stepwise logistic regression modeling of subject characteristics data together with the 712 differentiating peaks revealed a signature that is 95% predictive of an OUD positive diagnosis, a significant (p < 0.0001) improvement over a 63% accurate prediction based on subject characteristic data for these samples. These results suggest that a metabolic profile can be used to predict an OUD positive diagnosis.
Collapse
|
36
|
Current Evidence on the Role of the Gut Microbiome in ADHD Pathophysiology and Therapeutic Implications. Nutrients 2021; 13:nu13010249. [PMID: 33467150 PMCID: PMC7830868 DOI: 10.3390/nu13010249] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Studies suggest that the bidirectional relationship existent between the gut microbiome (GM) and the central nervous system (CNS), or so-called the microbiome–gut–brain axis (MGBA), is involved in diverse neuropsychiatric diseases in children and adults. In pediatric age, most studies have focused on patients with autism. However, evidence of the role played by the MGBA in attention deficit/hyperactivity disorder (ADHD), the most common neurodevelopmental disorder in childhood, is still scanty and heterogeneous. This review aims to provide the current evidence on the functioning of the MGBA in pediatric patients with ADHD and the specific role of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in this interaction, as well as the potential of the GM as a therapeutic target for ADHD. We will explore: (1) the diverse communication pathways between the GM and the CNS; (2) changes in the GM composition in children and adolescents with ADHD and association with ADHD pathophysiology; (3) influence of the GM on the ω-3 PUFA imbalance characteristically found in ADHD; (4) interaction between the GM and circadian rhythm regulation, as sleep disorders are frequently comorbid with ADHD; (5) finally, we will evaluate the most recent studies on the use of probiotics in pediatric patients with ADHD.
Collapse
|
37
|
Chapp AD, Mermelstein PG, Thomas MJ. The ethanol metabolite acetic acid activates mouse nucleus accumbens shell medium spiny neurons. J Neurophysiol 2021; 125:620-627. [PMID: 33405999 DOI: 10.1152/jn.00659.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
Although ethanol consumption leads to an array of neurophysiological alterations involving the neural circuits for reward, the underlying mechanisms remain unclear. Acetic acid is a major metabolite of ethanol with high bioactivity and potentially significant pharmacological importance in regulating brain function. Yet, the impact of acetic acid on reward circuit function has not been well explored. Given the rewarding properties associated with ethanol consumption, we investigated the acute effects of ethanol and/or acetic acid on the neurophysiological function of medium spiny neurons of the nucleus accumbens shell, a key node in the mammalian reward circuit. We find that acetic acid, but not ethanol, provided a rapid and robust boost in neuronal excitability at physiologically relevant concentrations, whereas both compounds enhanced glutamatergic synaptic activity. These effects were consistent across both sexes in C57BL/6J mice. Overall, our data suggest acetic acid is a promising candidate mediator for ethanol effects on mood and motivation that deserves further investigation.NEW & NOTEWORTHY Ethanol consumption disrupts many neurophysiological processes leading to alterations in behavior and physiological function. The possible involvement of acetic acid, produced via ethanol metabolism, has been insufficiently explored. Here, we demonstrate that acetic acid contributes to rapid neurophysiological alterations in the accumbens shell. These findings raise the interesting possibility that ethanol may serve as a prodrug-generating acetic acid as a metabolite-that may influence ethanol consumption-associated behaviors and physiological responses by altering neurophysiological function.
Collapse
Affiliation(s)
- Andrew D Chapp
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota.,Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota.,Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota.,Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
38
|
Schall TA, Wright WJ, Dong Y. Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors. Mol Psychiatry 2021; 26:234-246. [PMID: 32071384 PMCID: PMC7431371 DOI: 10.1038/s41380-020-0683-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/24/2019] [Revised: 01/02/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
The development of drug addiction is associated with functional adaptations within the reward circuitry, within which the nucleus accumbens (NAc) is anatomically positioned as an interface between motivational salience and behavioral output. The functional output of NAc is profoundly altered after exposure to drugs of abuse, and some of the functional changes continue to evolve during drug abstinence, contributing to numerous emotional and motivational alterations related drug taking, seeking, and relapse. As in most brain regions, the functional output of NAc is critically dependent on the dynamic interaction between excitation and inhibition. One of the most prominent sources of inhibition within the NAc arises from fast-spiking interneurons (FSIs). Each NAc FSI innervates hundreds of principal neurons, and orchestrates population activity through its powerful and sustained feedforward inhibition. While the role of NAc FSIs in the context of drug addiction remains poorly understood, emerging evidence suggests that FSIs and FSI-mediated local circuits are key targets for drugs of abuse to tilt the functional output of NAc toward a motivational state favoring drug seeking and relapse. In this review, we discuss recent findings and our conceptualization about NAc FSI-mediated regulation of motivated and cocaine-induced behaviors. We hope that the conceptual framework proposed in this review may provide a useful guidance for ongoing and future studies to determine how FSIs influence the function of NAc and related reward circuits, ultimately leading to addictive behaviors.
Collapse
Affiliation(s)
- Terra A Schall
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Yan Dong
- Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
39
|
Zhang X, Yu H, Bai R, Ma C. Identification and Characterization of Biomarkers and Their Role in Opioid Addiction by Integrated Bioinformatics Analysis. Front Neurosci 2020; 14:608349. [PMID: 33328875 PMCID: PMC7729193 DOI: 10.3389/fnins.2020.608349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
Although numerous studies have confirmed that the mechanisms of opiate addiction include genetic and epigenetic aspects, the results of such studies are inconsistent. Here, we downloaded gene expression profiling information, GSE87823, from the Gene Expression Omnibus database. Samples from males between ages 19 and 35 were selected for analysis of differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses were used to analyze the pathways associated with the DEGs. We further constructed protein-protein interaction (PPI) networks using the STRING database and used 10 different calculation methods to validate the hub genes. Finally, we utilized the Basic Local Alignment Search Tool (BLAST) to identify the DEG with the highest sequence similarity in mouse and detected the change in expression of the hub genes in this animal model using RT-qPCR. We identified three key genes, ADCY9, PECAM1, and IL4. ADCY9 expression decreased in the nucleus accumbens of opioid-addicted mice compared with control mice, which was consistent with the change seen in humans. The importance and originality of this study are provided by two aspects. Firstly, we used a variety of calculation methods to obtain hub genes; secondly, we exploited homology analysis to solve the difficult challenge that addiction-related experiments cannot be carried out in patients or healthy individuals. In short, this study not only explores potential biomarkers and therapeutic targets of opioid addiction but also provides new ideas for subsequent research on opioid addiction.
Collapse
Affiliation(s)
- Xiuning Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China.,Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hailei Yu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Rui Bai
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| |
Collapse
|
40
|
Campos-Jurado Y, Martí-Prats L, Morón JA, Polache A, Granero L, Hipólito L. Dose-dependent induction of CPP or CPA by intra-pVTA ethanol: Role of mu opioid receptors and effects on NMDA receptors. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109875. [PMID: 31978422 PMCID: PMC7096259 DOI: 10.1016/j.pnpbp.2020.109875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/03/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
The neurobiological mechanisms underlying alcohol motivational properties are still not fully understood, however, the mu-opioid receptors (MORs) have been evidenced as central elements in the manifestation of the alcohol reinforcing properties. Drug-associated environmental stimuli can trigger alcohol relapse and promote alcohol consumption whereby N-methyl-d-aspartate (NMDA) receptors play a pivotal role. Here we sought to demonstrate, for the first time, that ethanol induces conditioned place preference or aversion (CPP or CPA) when administered locally into the ventral tegmental area (VTA) and the associated role of MORs. We further analyzed the changes in the expression and mRNA levels of GluN1 and GluN2A subunits in designated brain areas. The expression of CPP or CPA was characterized following intra-VTA ethanol administration and we showed that either reinforcing (CPP) or aversive (CPA) properties are dependent on the dose administered (ranging here from 35 to 300 nmol). Furthermore, the critical contribution of local MORs in the acquisition of CPP was revealed by a selective antagonist, namely β-Funaltrexamine. Finally, modifications of the expression of NMDA receptor subunits in the Nucleus Accumbens (NAc) and Hippocampus after ethanol-induced CPP were analyzed at the proteomic and transcriptomic levels by western blot and In Situ Hybridation RNAscope techniques, respectively. Results showed that the mRNA levels of GluN2A but not GluN1 in NAc are higher after ethanol CPP. These novel results pave the way for further characterisation of the mechanisms by which ethanol motivational properties are associated with learned environmental cues.
Collapse
Affiliation(s)
- Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Tech. and Parasit., University of València, Spain
| | - Lucía Martí-Prats
- Department of Pharmacy and Pharmaceutical Tech. and Parasit., University of València, Spain
| | - Jose A Morón
- Department of Anesthesiology, Washington University Pain Center, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ana Polache
- Department of Pharmacy and Pharmaceutical Tech. and Parasit., University of València, Spain
| | - Luis Granero
- Department of Pharmacy and Pharmaceutical Tech. and Parasit., University of València, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Tech. and Parasit., University of València, Spain.
| |
Collapse
|
41
|
McKendrick G, Garrett H, Jones HE, McDevitt DS, Sharma S, Silberman Y, Graziane NM. Ketamine Blocks Morphine-Induced Conditioned Place Preference and Anxiety-Like Behaviors in Mice. Front Behav Neurosci 2020; 14:75. [PMID: 32508606 PMCID: PMC7253643 DOI: 10.3389/fnbeh.2020.00075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Patients suffering from opioid use disorder often relapse during periods of abstinence, which is posited to be caused by negative affective states that drive motivated behaviors. Here, we explored whether conditioning mice with morphine in a conditioned place preference (CPP) training paradigm evoked anxiety-like behavior during morphine abstinence. To do this, mice were conditioned with morphine (10 mg/kg, i.p.) for 5 days. Twenty-four hours following conditioning, anxiety levels were tested by measuring time in the open arms of the elevated plus-maze. The next day, mice were placed in the three-compartment chamber to measure morphine-induced CPP. Our results show that following morphine conditioning, mice spent significantly less time in the open arm of the elevated plus-maze and expressed robust morphine CPP on CPP test day. Furthermore, we found that an acute treatment with (R,S)-ketamine (10 mg/kg, i.p.), a medication demonstrating promise for preventing anxiety-related phenotypes, 30 min before testing on post-conditioning day 1, increased time spent in the open arm of the elevated plus-maze in saline- and morphine-conditioned mice. Additionally, we found that the second injection of ketamine 30 min before CPP tests on post-conditioning day 2 prevented morphine-induced CPP, which lasted for up to 28 days post-conditioning. Furthermore, we found that conditioning mice with 10% (w/v) sucrose using an oral self-administration procedure did not evoke anxiety-like behavior, but elicited robust CPP, which was attenuated by ketamine treatment 30 min before CPP tests. Overall, our results suggest that the ketamine-induced block of morphine CPP may not be attributed solely to alleviating negative affective states, but potentially through impaired memory of morphine-context associations.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Graduate Program, Penn State College of Medicine, Hershey, PA, United States.,Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Hannah Garrett
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Holly E Jones
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States.,Summer Undergraduate Research Internship Program, Penn State College of Medicine, Hershey, PA, United States
| | - Dillon S McDevitt
- Neuroscience Graduate Program, Penn State College of Medicine, Hershey, PA, United States.,Summer Undergraduate Research Internship Program, Penn State College of Medicine, Hershey, PA, United States
| | - Sonakshi Sharma
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
42
|
Nucleus Accumbens Cell Type- and Input-Specific Suppression of Unproductive Reward Seeking. Cell Rep 2020; 30:3729-3742.e3. [DOI: 10.1016/j.celrep.2020.02.095] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2019] [Revised: 08/11/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
|
43
|
McConnell PA, Garland EL, Zubieta J, Newman‐Norlund R, Powers S, Froeliger B. Impaired frontostriatal functional connectivity among chronic opioid using pain patients is associated with dysregulated affect. Addict Biol 2020; 25:e12743. [PMID: 30945801 DOI: 10.1111/adb.12743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2018] [Revised: 01/21/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Preclinical studies have shown effects of chronic exposure to addictive drugs on glutamatergic-mediated neuroplasticity in frontostriatal circuitry. These initial findings have been paralleled by human functional magnetic resonance imaging (fMRI) research demonstrating weaker frontostriatal resting-state functional connectivity (rsFC) among individuals with psychostimulant use disorders. However, there is a dearth of human imaging literature describing associations between long-term prescription opioid use, frontostriatal rsFC, and brain morphology among chronic pain patients. We hypothesized that prescription opioid users with chronic pain, as compared with healthy control subjects, would evidence weaker frontostriatal rsFC coupled with less frontostriatal gray matter volume (GMV). Further, those opioid use-related deficits in frontostriatal circuitry would be associated with negative affect and drug misuse. Prescription opioid users with chronic pain (n = 31) and drug-free healthy controls (n = 30) underwent a high-resolution anatomical and an eyes-closed resting-state functional scan. The opioid group, relative to controls, exhibited weaker frontostriatal rsFC, and less frontostriatal GMV in both L.NAc and L.vmPFC. Frontostriatal rsFC partially mediated group differences in negative affect. Within opioid users, L.NAc GMV predicted opioid misuse severity. The current study revealed that prescription opioid use in the context of chronic pain is associated with functional and structural abnormalities in frontostriatal circuitry. These results suggest that opioid use-related abnormalities in frontostriatal circuitry may undergird disturbances in affect that may contribute to the ongoing maintenance of opioid use and misuse. These findings warrant further examination of interventions to treat opioid pathophysiology in frontostriatal circuitry over the course of treatment.
Collapse
Affiliation(s)
- Patrick A. McConnell
- Department of NeuroscienceMedical University of South Carolina Charleston South Carolina USA
| | - Eric L. Garland
- Center on Mindfulness and Integrative Health Intervention DevelopmentUniversity of Utah Salt Lake City Utah USA
- College of Social WorkUniversity of Utah Salt Lake City Utah USA
| | - Jon‐Kar Zubieta
- Department of PsychiatryUniversity of Utah Salt Lake City Utah USA
- University Neuropsychiatric InstituteUniversity of Utah Salt Lake City Utah USA
| | - Roger Newman‐Norlund
- Department of PsychologyUniversity of South Carolina Columbia South Carolina USA
| | - Shannon Powers
- Department of NeuroscienceMedical University of South Carolina Charleston South Carolina USA
| | - Brett Froeliger
- Department of NeuroscienceMedical University of South Carolina Charleston South Carolina USA
- Hollings Cancer CenterMedical University of South Carolina Charleston South Carolina USA
- Center for Biomedical ImagingMedical University of South Carolina Charleston South Carolina USA
| |
Collapse
|
44
|
Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic Mechanisms of Opioid Addiction. Biol Psychiatry 2020; 87:22-33. [PMID: 31477236 PMCID: PMC6898774 DOI: 10.1016/j.biopsych.2019.06.027] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
Opioid use kills tens of thousands of Americans each year, devastates families and entire communities, and cripples the health care system. Exposure to opioids causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug seeking and drug taking that can remain a lifelong struggle. The persistence of these neuroadaptations is mediated in part by epigenetic remodeling of gene expression programs in discrete brain regions. Although the majority of work examining how epigenetic modifications contribute to addiction has focused on psychostimulants such as cocaine, research into opioid-induced changes to the epigenetic landscape is emerging. This review summarizes our knowledge of opioid-induced epigenetic modifications and their consequential changes to gene expression. Current evidence points toward opioids promoting higher levels of permissive histone acetylation and lower levels of repressive histone methylation as well as alterations to DNA methylation patterns and noncoding RNA expression throughout the brain's reward circuitry. Additionally, studies manipulating epigenetic enzymes in specific brain regions are beginning to build causal links between these epigenetic modifications and changes in addiction-related behavior. Moving forward, studies must leverage advanced chromatin analysis and next-generation sequencing approaches combined with bioinformatics pipelines to identify novel gene networks regulated by particular epigenetic modifications. Improved translational relevance also requires increased focus on volitional drug-intake models and standardization of opioid exposure paradigms. Such work will significantly advance our understanding of how opioids cause persistent changes to brain function and will provide a platform on which to develop interventions for treating opioid addiction.
Collapse
Affiliation(s)
- Caleb J Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Arthur Godino
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Marine Salery
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
45
|
Mei DS, Cai YJ, Wang FM, Ma BM, Liu HF, Zhou WH, Xu JP. Reciprocal Substitution Between Methamphetamine and Heroin in Terms of Reinforcement Effects in Rats. Front Psychiatry 2020; 11:750. [PMID: 32848928 PMCID: PMC7411143 DOI: 10.3389/fpsyt.2020.00750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/05/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Heroin and methamphetamine are both popular illicit drugs in China. Previous clinical data showed that habitual users of either heroin or methamphetamine abuse the other drug for substitution in case of unavailability of their preferred drug. The present study aimed to observe whether heroin can substitute the methamphetamine reinforcement effect in rats, and vice versa. Rats were trained to self-administer heroin or methamphetamine (both 50 μg/kg/infusion) under an FR1 reinforcing schedule for 10 days. After having extracted the dose-effect curve of the two drugs, we administered methamphetamine at different doses (12.5-200 μg/kg/infusion) to replace heroin during the period of self-administration, and vice versa. The heroin dose-effect curve showed an inverted U-shaped trend, and the total intake dose of heroin significantly increased when the training dose increased from 50 to 100 or 200 μg/kg/infusion. Following replacement with methamphetamine, the total dose-effect curve shifted leftwards and upwards. By contrast, although the dose-effect curve of methamphetamine also showed an inverted U-shaped trend, the total dose of methamphetamine significantly decreased when the training dose decreased from 50 to 25 μg/kg/infusion; conversely, when the methamphetamine training dose increased, the total dose did not change significantly. The total dose-effect curve shifted rightwards after heroin was substituted with methamphetamine. Although heroin and methamphetamine had their own independent reward effects, low doses of methamphetamine can replace the heroin reward effect, while high doses of heroin can replace the methamphetamine reward effect. These results demonstrated that heroin and methamphetamine can substitute each other in terms of reinforcement effects in rats.
Collapse
Affiliation(s)
- Di-Sen Mei
- Neuropharmacology and Drug Discovery Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Zhejiang Provincial Key Lab of Addiction, Ningbo University School of Medicine, Ningbo, China
| | - Yu-Jia Cai
- Zhejiang Provincial Key Lab of Addiction, Ningbo University School of Medicine, Ningbo, China
| | - Fang-Min Wang
- Zhejiang Provincial Key Lab of Addiction, Ningbo University School of Medicine, Ningbo, China
| | - Bao-Miao Ma
- Zhejiang Provincial Key Lab of Addiction, Ningbo University School of Medicine, Ningbo, China
| | - Hui-Fen Liu
- Zhejiang Provincial Key Lab of Addiction, Ningbo University School of Medicine, Ningbo, China.,Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Ningbo University School of Medicine, Ningbo, China
| | - Wen-Hua Zhou
- Zhejiang Provincial Key Lab of Addiction, Ningbo University School of Medicine, Ningbo, China.,Laboratory of Behavioral Neuroscience, Ningbo Addiction Research and Treatment Center, Ningbo University School of Medicine, Ningbo, China
| | - Jiang-Ping Xu
- Neuropharmacology and Drug Discovery Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Skupio U, Tertil M, Bilecki W, Barut J, Korostynski M, Golda S, Kudla L, Wiktorowska L, Sowa JE, Siwiec M, Bobula B, Pels K, Tokarski K, Hess G, Ruszczycki B, Wilczynski G, Przewlocki R. Astrocytes determine conditioned response to morphine via glucocorticoid receptor-dependent regulation of lactate release. Neuropsychopharmacology 2020; 45:404-415. [PMID: 31254970 PMCID: PMC6901448 DOI: 10.1038/s41386-019-0450-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/20/2018] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
To date, neurons have been the primary focus of research on the role of glucocorticoids in the regulation of brain function and pathological behaviors, such as addiction. Astrocytes, which are also glucocorticoid-responsive, have been recently implicated in the development of drug abuse, albeit through as yet undefined mechanisms. Here, using a spectrum of tools (whole-transcriptome profiling, viral-mediated RNA interference in vitro and in vivo, behavioral pharmacology and electrophysiology), we demonstrate that astrocytes in the nucleus accumbens (NAc) are an important locus of glucocorticoid receptor (GR)-dependent transcriptional changes that regulate rewarding effects of morphine. Specifically, we show that targeted knockdown of the GR in the NAc astrocytes enhanced conditioned responses to morphine, with a concomitant inhibition of morphine-induced neuronal excitability and plasticity. Interestingly, GR knockdown did not influence sensitivity to cocaine. Further analyses revealed GR-dependent regulation of astroglial metabolism. Notably, GR knockdown inhibited induced by glucocorticoids lactate release in astrocytes. Finally, lactate administration outbalanced conditioned responses to morphine in astroglial GR knockdown mice. These findings demonstrate a role of GR-dependent regulation of astrocytic metabolism in the NAc and a key role of GR-expressing astrocytes in opioid reward processing.
Collapse
Affiliation(s)
- Urszula Skupio
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Tertil
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wiktor Bilecki
- 0000 0001 1958 0162grid.413454.3Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Justyna Barut
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Michal Korostynski
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Slawomir Golda
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Lucja Kudla
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Lucja Wiktorowska
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna E. Sowa
- 0000 0001 1958 0162grid.413454.3Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Marcin Siwiec
- 0000 0001 1958 0162grid.413454.3Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Bartosz Bobula
- 0000 0001 1958 0162grid.413454.3Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Pels
- 0000 0001 1958 0162grid.413454.3Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland ,0000 0001 1943 2944grid.419305.aDepartment of Neurophysiology, Nencki Institute, Warsaw, Poland
| | - Krzysztof Tokarski
- 0000 0001 1958 0162grid.413454.3Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Grzegorz Hess
- 0000 0001 1958 0162grid.413454.3Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Blazej Ruszczycki
- 0000 0001 1943 2944grid.419305.aDepartment of Neurophysiology, Nencki Institute, Warsaw, Poland
| | - Grzegorz Wilczynski
- 0000 0001 1943 2944grid.419305.aDepartment of Neurophysiology, Nencki Institute, Warsaw, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
47
|
McDevitt DS, Jonik B, Graziane NM. Morphine Differentially Alters the Synaptic and Intrinsic Properties of D1R- and D2R-Expressing Medium Spiny Neurons in the Nucleus Accumbens. Front Synaptic Neurosci 2019; 11:35. [PMID: 31920618 PMCID: PMC6932971 DOI: 10.3389/fnsyn.2019.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
Exposure to opioids reshapes future reward and motivated behaviors partially by altering the functional output of medium spiny neurons (MSNs) in the nucleus accumbens shell. Here, we investigated how morphine, a highly addictive opioid, alters synaptic transmission and intrinsic excitability on dopamine D1-receptor (D1R) expressing and dopamine D2-receptor (D2R) expressing MSNs, the two main output neurons in the nucleus accumbens shell. Using whole-cell electrophysiology recordings, we show, that 24 h abstinence following repeated non-contingent administration of morphine (10 mg/kg, i.p.) in mice reduces the miniature excitatory postsynaptic current (mEPSC) frequency and miniature inhibitory postsynaptic current (mIPSC) frequency on D2R-MSNs, with concomitant increases in D2R-MSN intrinsic membrane excitability. We did not observe any changes in synaptic or intrinsic changes on D1R-MSNs. Last, in an attempt to determine the integrated effect of the synaptic and intrinsic alterations on the overall functional output of D2R-MSNs, we measured the input-output efficacy by measuring synaptically-driven action potential firing. We found that both D1R-MSN and D2R-MSN output was unchanged following morphine treatment.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Departments of Anesthesiology and Perioperative Medicine, and Pharmacology, Penn State College of Medicine, Hershey, PA, United States.,Neuroscience Graduate Program, Penn State College of Medicine, Hershey, PA, United States
| | - Benjamin Jonik
- Medical Student Research Program, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine, and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
48
|
Martin JA, Werner CT, Mitra S, Zhong P, Wang ZJ, Gobira PH, Stewart AF, Zhang J, Erias K, Siemian JN, Hagarty D, Mueller LE, Neve RL, Li JX, Chandra R, Dietz KC, Lobo MK, Gancarz AM, Yan Z, Dietz DM. A novel role for the actin-binding protein drebrin in regulating opiate addiction. Nat Commun 2019; 10:4140. [PMID: 31515501 PMCID: PMC6742638 DOI: 10.1038/s41467-019-12122-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Persistent transcriptional and morphological events in the nucleus accumbens (NAc) and other brain reward regions contribute to the long-lasting behavioral adaptations that characterize drug addiction. Opiate exposure reduces the density of dendritic spines on medium spiny neurons of the NAc; however, the underlying transcriptional and cellular events mediating this remain unknown. We show that heroin self-administration negatively regulates the actin-binding protein drebrin in the NAc. Using virus-mediated gene transfer, we show that drebrin overexpression in the NAc is sufficient to decrease drug seeking and increase dendritic spine density, whereas drebrin knockdown potentiates these effects. We demonstrate that drebrin is transcriptionally repressed by the histone modifier HDAC2, which is relieved by pharmacological inhibition of histone deacetylases. Importantly, we demonstrate that heroin-induced adaptations occur only in the D1+ subset of medium spiny neurons. These findings establish an essential role for drebrin, and upstream transcriptional regulator HDAC2, in opiate-induced plasticity in the NAc. The underlying transcriptional and cellular events mediating the reduction of dendritic spines on medium spiny neurons of the nucleus accumbens (NAc) remains unknown. Here, authors demonstrate that heroin self-administration negatively regulates the actin-binding protein drebrin in the NAc, which is shown to be transcriptionally repressed by the histone modifier HDAC2, and that overexpression of drebrin is sufficient to decrease drug seeking and increase dendritic spine density
Collapse
Affiliation(s)
- Jennifer A Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Craig T Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Zi-Jun Wang
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Pedro H Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andrew F Stewart
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Jay Zhang
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Kyra Erias
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Justin N Siemian
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Devin Hagarty
- Department of Psychology, California State University Bakersfield, Bakersfield, CA, 93311, USA
| | - Lauren E Mueller
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA, 02139, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Karen C Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amy M Gancarz
- Department of Psychology, California State University Bakersfield, Bakersfield, CA, 93311, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, NY, 14214, USA. .,Department of Psychology, The State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
49
|
Madayag AC, Gomez D, Anderson EM, Ingebretson AE, Thomas MJ, Hearing MC. Cell-type and region-specific nucleus accumbens AMPAR plasticity associated with morphine reward, reinstatement, and spontaneous withdrawal. Brain Struct Funct 2019; 224:2311-2324. [PMID: 31201496 PMCID: PMC6698404 DOI: 10.1007/s00429-019-01903-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2018] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Despite evidence that morphine-related pathologies reflect adaptations in NAc glutamate signaling, substantial gaps in basic information remain. The current study examines the impact of non-contingent acute, repeated, and withdrawal-inducing morphine dosing regimens on glutamate transmission in D1- or D2-MSNs in the nucleus accumbens shell (NAcSh) and core (NAcC) sub-regions in hopes of identifying excitatory plasticity that may contribute to unique facets of opioid addiction-related behavior. Following an acute morphine injection (10 mg/kg), average miniature excitatory postsynaptic current (mEPSC) amplitude mediated by AMPA-type glutamate receptors was increased at D1-MSNs in the both the NAcShl and NAcC, whereas only the frequency of events was elevated at D2-MSNs in the NAcSh. In contrast, spontaneous somatic withdrawal induced by escalating dose of repeated morphine twice per day (20, 40, 60, 80, 100 mg/kg) enhanced mEPSC frequency specifically at D2-MSNs in the NAcSh. Similar to previous findings, excitatory drive was elevated at NAcSh D1-MSNs after 10-14 days home cage abstinence. Following abstinence, an acute drug re-exposure produced a rapid and enduring endocytosis of GluA2-containing AMPARs at D1-MSNs in the shell, that when blocked by an intra-NAc shell infusion of the Tat-GluA23Y peptide, increased reinstatement of morphine place preference-a phenomenon distinctly different than effects previously found with cocaine. The present study is the first to directly identify unique circuit specific adaptations in NAc glutamate synaptic transmission associated with morphine-related acute reward and somatic withdrawal as well as post-abstinence short-term plasticity. Moreover, while differing classes of abused drugs (i.e., psychostimulants and opioids) produce seemingly similar bidirectional plasticity in the NAc following drug re-exposure, our findings indicate this plasticity has distinct behavioral consequences.
Collapse
Affiliation(s)
- Aric C Madayag
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Devan Gomez
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Eden M Anderson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Anna E Ingebretson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matthew C Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA.
| |
Collapse
|
50
|
Stellwagen D, Kemp GM, Valade S, Chambon J. Glial regulation of synaptic function in models of addiction. Curr Opin Neurobiol 2019; 57:179-185. [PMID: 31163290 DOI: 10.1016/j.conb.2019.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2019] [Accepted: 02/26/2019] [Indexed: 12/25/2022]
Abstract
The glial regulation of synaptic function provides important modulation of the synaptic and behavioral changes induced by drugs of abuse. In some cases, this regulation is adaptive, reducing drug-induced change, and in other cases maladaptive, contributing to the induction or maintenance of these changes. Understanding the contribution of glia to addictive behaviors will be important to fully understand the development of addiction, and a critical entry into methods to potentially mitigate this affliction. This review will cover recent advances in elucidating the contribution of the major types of glia - microglia and astrocytes - to drug-induced synaptic plasticity.
Collapse
Affiliation(s)
- David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
| | - Gina M Kemp
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Simone Valade
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Julien Chambon
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|