1
|
Ye Y, Tang L, Wang JS, Tang L, Ning X, Sun J, Sheng L, Sun X. Unexpected antagonism of deoxynivalenol and enniatins in intestinal toxicity through the Ras/PI3K/AKT signaling pathway. Toxicology 2024; 508:153928. [PMID: 39153657 DOI: 10.1016/j.tox.2024.153928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Deoxynivalenol (DON) is a kind of widespread traditional Fusarium mycotoxins in the environment, and its intestinal toxicity has received considerable attention. Recently, the emerging Fusarium mycotoxin enniatins (ENNs) have also been shown to frequently coexist with DON in animal feed and food with large consumption. However, the mechanism of intestinal damage caused by the two mycotoxins co-exposure remains unclear. In this study, Caco-2 cell line was used to investigate the combined toxicity and potential mechanisms of four representative ENNs (ENA, ENA1, ENB, and ENB1) and DON. The results showed that almost all mixed groups showed antagonistic effects, particularly ENB at 1/4 IC50 (CI = 6.488). Co-incubation of ENNs mitigated the levels of signaling molecule levels disrupted by DON, including reactive oxygen species (ROS), calcium mobilization (Ca2+), adenosine triphosphate (ATP). The differentially expressed genes (DEGs) between the mixed and ENB groups were significantly enriched in the Ras/PI3K/Akt signaling pathway, including 28 up-regulated genes and 40 down-regulated genes. Quantitative real-time PCR further confirmed the lower expression of apoptotic gene in the mixed group, thereby reducing the cytotoxic effects caused by DON exposure. This study emphasizes that co-exposure of ENNs and DON reduces cytotoxicity by regulating the Ras/PI3K/Akt signaling pathway. Our results provide the first comprehensive evidence about the antagonistic toxicity of ENNs and DON on Caco-2 cells, and new insights into mechanisms investigated by transcriptomics.
Collapse
Affiliation(s)
- Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Luyao Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Xiao Ning
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
2
|
Liu R, Ouyang J, Li L. Anti-tumor activity of beauvericin: focus on intracellular signaling pathways. Mycotoxin Res 2024; 40:535-546. [PMID: 39289326 DOI: 10.1007/s12550-024-00561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Beauvericin, a Fusarium mycotoxin commonly found in feeds, particularly cereals worldwide, exhibits a wide array of biofunction. It exhibits anticancer characteristics in addition to its antiviral, antifungal and antibacterial capabilities against gram-positive and gram-negative microorganisms. The mechanism underlying most of beauvericin's properties lies in its ionophoric activity. By facilitating calcium (Ca2+) flow from the extracellular space as well as its release from intracellular reservoirs, beauvericin increases intracellular free Ca2+. This elevation in Ca2+ levels leads to detrimental effects on mitochondria and oxidative stress, ultimately resulting in apoptosis and cell death. Studies on various cancer cell lines have shown that beauvericin induces apoptosis upon exposure. Moreover, besides its cytotoxic effects, beauvericin also inhibits cancer growth and progression by exerting anti-angiogenic and anti-migratory effects on cancer cells. Additionally, beauvericin possesses immunomodulatory properties, albeit less explored. Recent research indicates its potential to enhance the maturation and activation of dendritic cells (DCs) and T cells, both directly through its interaction with Toll-like receptor 4 (TLR4) and indirectly by increasing intracellular Ca2+ levels. Hence, beauvericin could serve as an adjuvant in chemoimmunotherapy regimens to enhance treatment outcomes. Given these diverse properties, beauvericin emerges as an intriguing candidate for developing effective cancer treatments. This review explores the cellular signaling pathways involved in its anticancer effects.
Collapse
Affiliation(s)
- Ruoxuan Liu
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jie Ouyang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Liming Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
3
|
Calvo AM, Dabholkar A, Wyman EM, Lohmar JM, Cary JW. Beyond morphogenesis and secondary metabolism: function of Velvet proteins and LaeA in fungal pathogenesis. Appl Environ Microbiol 2024; 90:e0081924. [PMID: 39230285 PMCID: PMC11497805 DOI: 10.1128/aem.00819-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Velvet proteins, as well as the epigenetic regulator LaeA, are conserved in numerous fungal species, where, in response to environmental cues, they control several crucial cellular processes, including sexual and asexual morphogenesis, secondary metabolism, response to oxidative stress, and virulence. During the last two decades, knowledge of their mechanism of action as well as understanding their functional roles, has greatly increased, particularly in Aspergillus species. Research efforts from multiple groups followed, leading to the characterization of other Velvet and LaeA homologs in species of other fungal genera, including important opportunistic plant and animal pathogens. This review focuses mainly on the current knowledge of the role of Velvet and LaeA function in fungal pathogenesis. Velvet proteins and LaeA are unique to fungi, and for this reason, additional knowledge of these critical regulatory proteins will be important in the development of targeted control strategies to decrease the detrimental impact of fungal pathogens capable of causing disease in plants and animals.
Collapse
Affiliation(s)
- Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Apoorva Dabholkar
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Elizabeth M. Wyman
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jessica M. Lohmar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Tao J, Yang Q, Long L, Tian L, Tian T, Shang X, Sun L, Zheng X, Wang W, Chen F, Hou K, Chen X. Combined toxic effects of polystyrene microplastic and benzophenone-4 on the bioaccumulation, feeding, growth, and reproduction of Daphniamagna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125108. [PMID: 39393756 DOI: 10.1016/j.envpol.2024.125108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
The potential toxicity of microplastics (MPs) and UV filter Benzophenone-4 (BP4) to aquatic organisms has caused widespread concern among the public. However, the combined effects of MPs and BP4 on aquatic organisms are not well understood. This study sought to examine the combined impacts of 10 μg/L BP4, 1 mg/L Polystyrene (PS, 10 μm), and a mixture of both on the feeding, behavior, growth, and reproduction of Daphnia magna (D. magna) over a period of 21 days. The results showed that the combined exposure led to a reciprocal facilitation of bioaccumulation, along with a decrease in the second antenna beats frequency in D. magna. While the co-exposure did not change the body size or growth rate of D. magna, it did affect their feeding efficiency, leading to a decrease in Chlorella ingestion within a 24-h period. Furthermore, there was a high occurrence of malformations in two generations of D. magna exposed to BP4 and PS. The combined exposure also negatively affected reproductive parameters, such as the cumulative number of neonates and the days of first brood, suggesting a decline in overall reproductive success possibly due to feeding inhibition, with available energy potentially being redistributed between reproduction and growth in the daphnids. Co-exposure to BP4 and PS also led to elevated levels of Reactive Oxygen Species (ROS), Malonydialdehyde (MDA), and Glutathione (GSH) levels, as well as mRNA levels related to reproduction, growth, and detoxification in D. magna. Overall, this study delved into the consequences of BP4 and PS on bioaccumulation, feeding, behavior, growth, and reproduction, demonstrating that simultaneous exposure to BP4 and PS could pose a synergistic ecological hazard, potentially threatening aquatic organisms. These findings are critical and should be taken into account for accurate environmental risk assessments.
Collapse
Affiliation(s)
- Junyan Tao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China.
| | - Qinyuan Yang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Liangjiao Long
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Lingnian Tian
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Tao Tian
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Xuehua Shang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Liangju Sun
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Xiongqi Zheng
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Weiwei Wang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Fengfeng Chen
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Kun Hou
- Biomedical Research Institute, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Xiong Chen
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| |
Collapse
|
5
|
Montanarí C, Franco-Campos F, Taroncher M, Rodríguez-Carrasco Y, Zingales V, Ruiz MJ. Chlorpyrifos induces cytotoxicity via oxidative stress and mitochondrial dysfunction in HepG2 cells. Food Chem Toxicol 2024; 192:114933. [PMID: 39147357 DOI: 10.1016/j.fct.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Chlorpyrifos (CPF), a widely used broad-spectrum organophosphate pesticide, has been associated with various adverse health effects in animals and humans. While its primary mechanism of action involves the irreversible inhibition of acetylcholinesterase, secondary mechanisms have also been suggested. The aim of the present study was to explore the secondary mechanisms of action involved in CPF-induced acute cytotoxicity using human hepatocarcinoma HepG2 cells. In particular, we investigated oxidative stress and mitochondrial function by assessing reactive oxygen species (ROS) generation, lipid peroxidation (LPO) and mitochondrial membrane potential (ΔΨm) alteration. Results showed that 24-h exposure to CPF (78.125-2500 μM) decreased cell viability in a concentration-dependent manner (IC50 = 280.87 ± 26.63 μM). Sub-toxic CPF concentrations (17.5, 35 and 70 μM) induced increases in ROS generation (by 83%), mitochondrial superoxide (by 7.1%), LPO (by 11%), and decreased ΔΨm (by 20%). CPF also upregulated Nrf2 protein expression, indicating the role of the latter in modulating the cellular response to oxidative insults. Overall, our findings suggest that CPF caused hepatotoxicity through oxidative stress and mitochondrial dysfunction. Given the re-emerging use of CPF, this study emphasizes the need for comprehensive analysis to elucidate its toxicity on non-target organs and associated mechanisms.
Collapse
Affiliation(s)
- C Montanarí
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - F Franco-Campos
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - M Taroncher
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - Y Rodríguez-Carrasco
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - V Zingales
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain.
| | - M J Ruiz
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| |
Collapse
|
6
|
Zingales V, Esposito MR, Quagliata M, Cimetta E, Ruiz MJ. Cytotoxic effects induced by combined exposure to the mycotoxins sterigmatocystin, ochratoxin A and patulin on human tumour and healthy 3D spheroids. Food Chem Toxicol 2024; 192:114951. [PMID: 39182638 DOI: 10.1016/j.fct.2024.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Humans are exposed to complex mixtures of mycotoxins through diet. Despite the serious threat they pose, mycotoxin risk assessment often overlooks co-exposure. With the aim of filling this gap, the present study investigates the combined cytotoxicity of sterigmatocystin (STE), ochratoxin A (OTA) and patulin (PAT) in human tumour Neuroblastoma and healthy Mesenchymal Stem Cells three-dimensional (3D) spheroids. The range of concentrations tested (1.56-50 μM for STE, 0.78-25 μM for OTA and 0.15-5 μM for PAT) was selected considering the IC50 values obtained in previous studies and the estimated dietary exposure of consumers. To ensure appropriate experimental conditions, assessments for single mycotoxins and their combinations were conducted simultaneously. The nature of the toxicological interactions among the mycotoxins was then defined using the isobologram analysis. Our results demonstrated increased cytotoxicity in mycotoxin mixtures compared to individual exposure, with abundance of synergistic interactions. These findings highlight that the co-occurrence of STE, OTA and PAT in food may increase their individual toxic effects and should not be underestimated. Moreover, the use of advanced culture models increased the reliability and physiological relevance of our results which can serve as a groundwork for formulating standardized regulatory approaches towards mycotoxin mixtures in food and feed.
Collapse
Affiliation(s)
- Veronica Zingales
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Valencia, Spain; Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)-Lab BIAMET, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)-Lab BIAMET, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Martina Quagliata
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)-Lab BIAMET, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)-Lab BIAMET, Corso Stati Uniti 4, 35127, Padova, Italy
| | - María-José Ruiz
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Valencia, Spain
| |
Collapse
|
7
|
Wnuk E, Zwolak I, Kochanowicz E. The physiological levels of epigallocatechin gallate (EGCG) enhance the Cd-induced oxidative stress and apoptosis in CHO-K1 cells. Sci Rep 2024; 14:13625. [PMID: 38871787 DOI: 10.1038/s41598-024-64478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Currently, the increasing pollution of the environment by heavy metals is observed, caused both by natural factors and those related to human activity. They pose a significant threat to human health and life. It is therefore important to find an effective way of protecting organisms from their adverse effects. One potential product showing a protective effect is green tea. It has been shown that EGCG, which is found in large amounts in green tea, has strong antioxidant properties and can therefore protect cells from the adverse effects of heavy metals. Therefore, the aim of the study was to investigate the effect of EGCG on cells exposed to Cd. In the study, CHO-K1 cells (Chinese hamster ovary cell line) were treated for 24 h with Cd (5 and 10 µM) and EGCG (0.5 and 1 µM) together or separately. Cell viability, ATP content, total ROS activity, mitochondrial membrane potential and apoptosis potential were determined. The results showed that, in tested concentrations, EGCG enhanced the negative effect of Cd. Further analyses are needed to determine the exact mechanism of action of EGCG due to the small number of publications on the subject and the differences in the results obtained in the research.
Collapse
Affiliation(s)
- Ewa Wnuk
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty Medicine, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland.
| | - Iwona Zwolak
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty Medicine, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland
| | - Elzbieta Kochanowicz
- Department of Molecular Biology, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1I, 20-708, Lublin, Poland
| |
Collapse
|
8
|
Liang WZ, Chia YY, Sun HJ, Sun GC. Exploration of beauvericin's toxic effects and mechanisms in human astrocytes and N-acetylcysteine's protective role. Toxicon 2024; 243:107734. [PMID: 38670497 DOI: 10.1016/j.toxicon.2024.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Beauvericin (BEA) is a newly identified mycotoxin produced by various Fusarium species, and its contamination in food and animal feed is widespread globally. This mycotoxin demonstrates cytotoxic effects by inducing oxidative stress in multiple models. Furthermore, evidence indicates that BEA possesses diverse toxic activities, making it a promising candidate for toxicological research. Recent studies have highlighted the ability of BEA to traverse the blood-brain barrier, suggesting its potential neurotoxicity. However, limited information is available regarding the neurotoxic effects of BEA on human astrocytes. Therefore, this study aimed to assess the neurotoxic effects of BEA on the Gibco® Human Astrocyte (GHA) cell line and elucidate the underlying mechanisms. Additionally, the study aimed to investigate the protective effects of the antioxidant N-acetylcysteine (NAC) against BEA-induced toxicity. The data show that exposure to BEA within the 2.5-15 μM concentration range resulted in concentration-dependent cytotoxicity. BEA-treated cells exhibited significantly increased levels of reactive oxygen species (ROS), while intracellular glutathione (GSH) content was significantly reduced. Western blot analysis of cells treated with BEA revealed altered protein levels of Bax, cleaved caspase-9, and caspase-3, along with an increased Bax/Bcl-2 ratio, indicating the induction of apoptosis. Additionally, BEA exposure triggered antioxidant responses, as evidenced by increased protein expression of Nrf2, HO-1, and NQO1. Significantly, pretreatment with NAC partially attenuated the significant toxic effects of BEA. In conclusion, our findings suggest that BEA-induced cytotoxicity in GHA cells involves oxidative stress-associated apoptosis. Furthermore, NAC demonstrates potential as a protective agent against BEA-induced oxidative damage.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan
| | - Yuan-Yi Chia
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Huai-Jhih Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan; Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114202, Taiwan.
| |
Collapse
|
9
|
Jeong DH, Jung DW, Kim JW, Lee HS. Beauvericin, produced by Fusarium oxysporum inhibits bisphenol A-induced proliferation of human breast cancer cell line by regulating ERα/p38 pathway. J Steroid Biochem Mol Biol 2024; 239:106483. [PMID: 38369033 DOI: 10.1016/j.jsbmb.2024.106483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/27/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Beauvericin (BEA) is a cyclic depsipeptide secondary metabolite of Fusarium species. It causes chemical hazards in food products and exists in an environment containing soil and various food types. On the other hand, the purified BEA has various biological activities and is regarded as a potential candidate for pharmaceutical research. This study was performed to assess the anti-proliferation activity of BEA against human breast cancer cells by regulating the estrogen receptor-alpha (ERα)/p38 pathway. TA and BA assays verified that BEA is a completed ER antagonist. Additionally, BEA suppressed cell proliferation in the anti-proliferation assay involving ER-positive human breast cancer cells co-treated with BPA and BEA. In respect to an anti-proliferation activity, the BPA-induced phosphorylation of p38 protein was inhibited in the presence of BEA. These results suggested that BEA exerts inhibitory potentials on endocrine disrupting effect and possibly acts as a natural therapeutic material for human estrogen hormonal health.
Collapse
Affiliation(s)
- Da-Hyun Jeong
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Da-Woon Jung
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ji-Won Kim
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hee-Seok Lee
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
10
|
Hasuda AL, Bracarense APFRL. Toxicity of the emerging mycotoxins beauvericin and enniatins: A mini-review. Toxicon 2024; 239:107534. [PMID: 38013058 DOI: 10.1016/j.toxicon.2023.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Beauvericin and enniatins, emerging mycotoxins produced mainly by Fusarium species, are natural contaminants of cereals and cereal products. These mycotoxins are cyclic hexadepsipeptides with ionophore properties and their toxicity mechanism is related to their ability to transport cations across the cell membrane. Beauvericin and enniatins are cytotoxic, as they decrease cell viability, promote cell cycle arrest, and increase apoptosis and the generation of reactive oxygen species in several cell lines. They also cause changes at the transcriptomic level and have immunomodulatory effects in vitro and in vivo. Toxicokinetic results are scarce, and, despite its proven toxic effects in vitro, no regulation or risk assessment has yet been performed due to a lack of in vivo data. This mini-review aims to report the information available in the literature on studies of in vitro and in vivo toxic effects with beauvericin and enniatins, which are mycotoxins of increasing interest to animal and human health.
Collapse
Affiliation(s)
- Amanda Lopes Hasuda
- Laboratory of Animal Pathology, Londrina State University, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil.
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, Londrina State University, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil.
| |
Collapse
|
11
|
Cai J, Yuan X, Sun Y, Chen J, Li P, Yang S, Long M. Bacillus velezensis A2 Can Protect against Damage to IPEC-J2 Cells Induced by Zearalenone via the Wnt/FRZB/β-Catenin Signaling Pathway. Toxins (Basel) 2024; 16:44. [PMID: 38251260 PMCID: PMC10818814 DOI: 10.3390/toxins16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Zearalenone (ZEA) has adverse effects on human and animal health, and finding effective strategies to combat its toxicity is essential. The probiotic Bacillus velezensis A2 shows various beneficial physiological functions, including the potential to combat fungal toxins. However, the detailed mechanism by which the Bacillus velezensis A2 strain achieves this protective effect is not yet fully revealed. This experiment was based on transcriptome data to study the protective mechanism of Bacillus velezensis A2 against ZEA-induced damage to IPEC-J2 cells. The experiment was divided into CON, A2, ZEA, and A2+ZEA groups. This research used an oxidation kit to measure oxidative damage indicators, the terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) method to detect cell apoptosis, flow cytometry to determine the cell cycle, and transcriptome sequencing to screen and identify differentially expressed genes. In addition, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were adopted to screen out relevant signaling pathways. Finally, to determine whether A2 can alleviate the damage caused by ZEA to cells, the genes and proteins involved in inflammation, cell apoptosis, cell cycles, and related pathways were validated using a quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot methods. Compared with the CON group, the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in the ZEA group increased significantly (p < 0.01), while the levels of antioxidant enzyme activity, total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX), total antioxidant capacity (T-AOC), and catalase (CAT) decreased significantly (p < 0.01). Compared with the ZEA group, the A2+ZEA group showed a significant decrease in ROS and MDA levels (p < 0.01), while the levels of T-SOD, GSH-PX, T-AOC, and CAT increased significantly (p < 0.01). TUNEL and cell cycle results indicated that compared with the ZEA group, the A2+ZEA group demonstrated a significant decrease in the cell apoptosis rate (p < 0.01), and the cell cycle was restored. Combining transcriptome data, qRT-PCR, and Western blot, the results showed that compared with the CON group, the mRNA and protein expression levels of Wnt10 and β-catenin increased significantly (p < 0.01), while the expression level of FRZB decreased significantly (p < 0.01); compared with the ZEA group, the expression levels of these mRNA and proteins were reversed. Bacillus velezensis A2 can increase the antioxidant level, reduce inflammatory damage, decrease cell apoptosis, and correct the cell cycle when that damage is being caused by ZEA. The protective mechanism may be related to the regulation of the Wnt/FRZB cell/β-catenin signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.C.); (X.Y.); (Y.S.); (J.C.); (P.L.); (S.Y.)
| |
Collapse
|
12
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
13
|
Hu Y, Zhao M, Wang H, Guo Y, Cheng X, Zhao T, Wang H, Zhang Y, Ma Y, Tao W. Exosome-sheathed ROS-responsive nanogel to improve targeted therapy in perimenopausal depression. J Nanobiotechnology 2023; 21:261. [PMID: 37553718 PMCID: PMC10408189 DOI: 10.1186/s12951-023-02005-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
The development of natural membranes as coatings for nanoparticles to traverse the blood-brain barrier (BBB) presents an effective approach for treating central nervous system (CNS) disorders. In this study, we have designed a nanogel loaded with PACAP and estrogen (E2), sheathed with exosomes and responsive to reactive oxygen species (ROS), denoted as HA NGs@exosomes. The objective of this novel design is to serve as a potent drug carrier for the targeted treatment of perimenopausal depression. The efficient cellular uptake and BBB penetration of HA NGs@exosomes has been demonstrated in vitro and in vivo. Following intranasal intervention with HA NGs@exosomes, ovariectomized mice under chronic unpredictable mild stress (CUMS) have shown improved behavioral performance, indicating that HA NGs@exosomes produced a rapid-onset antidepressant effect. Moreover, HA NGs@exosomes exhibit notable antioxidant and anti-inflammatory properties and may regulate the expression of pivotal proteins in the PACAP/PAC1 pathway to promote synaptic plasticity. Our results serve as a proof-of-concept for the utility of exosome-sheathed ROS-responsive nanogel as a promising drug carrier for the treatment of perimenopausal depression.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Min Zhao
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Hui Wang
- School of pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Yang Guo
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Xiaolan Cheng
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Tong Zhao
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Hanqing Wang
- School of pharmacology, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan, China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China.
| | - Yong Ma
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China.
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Weiwei Tao
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 8 Zhongnan West Road, Wuxi, 214071, China.
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
14
|
Giorgini M, Taroncher M, Tolosa J, Ruiz MJ, Rodríguez-Carrasco Y. Amitraz and Its Metabolites: Oxidative Stress-Mediated Cytotoxicity in HepG2 Cells and Study of Their Stability and Characterization in Honey. Antioxidants (Basel) 2023; 12:antiox12040885. [PMID: 37107260 PMCID: PMC10135312 DOI: 10.3390/antiox12040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
The population decrease of bees that has been observed in recent years due to the Varroa destructor parasite may endanger the production of bee-products whose demand is on the rise. To minimize the negative effects caused by this parasite, the pesticide amitraz is commonly used by beekeepers. Based on these, the objectives of this work are to determine the toxic effects caused by amitraz and its metabolites in HepG2 cells, as well as its determination in honey samples and the study of its stability with different heat treatments commonly used in the honey industry and its relationship with the amount of 5-hydroxymethylfurfural (HMF) produced. Amitraz significantly decreased cell viability by MTT assay and total protein content (PC) assay, being more cytotoxic than its metabolites. Amitraz and its metabolites caused oxidative stress by Lipid Peroxidation (LPO) production and Reactive Oxygen Species (ROS) generation. Residues of amitraz and/or its metabolites were found in analyzed honey samples, with 2,4-Dimethylaniline (2,4-DMA) being the main metabolite confirmed by high-performance liquid chromatography-high resolution mass spectrometry (HPLC-QTOF HRMS). Amitraz and its metabolites resulted as unstable even at moderate heat treatments. Additionally, a positive correlation in terms of HMF concentration in samples and the severity of heat treatment was also observed. However, quantified amitraz and HMF were within the levels set in the regulation.
Collapse
Affiliation(s)
- Marialuce Giorgini
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Mercedes Taroncher
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Josefa Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - María-José Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Yelko Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
15
|
Zhang C, Li C, Shao Q, Meng S, Wang X, Kong T, Li Y. Antioxidant monoammonium glycyrrhizinate alleviates damage from oxidative stress in perinatal cows. J Anim Physiol Anim Nutr (Berl) 2023; 107:475-484. [PMID: 35989475 DOI: 10.1111/jpn.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/17/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
This study was conducted to evaluate the antioxidant capability of dietary supplementation with monoammonium glycyrrhizinate (MAG) in perinatal cows. Glycyrrhizic acid has been shown to have strong antioxidant activity and we hypothesised that the aglycone of glycyrrhizin and MAG, could reduce damage from oxidative stress in perinatal cows by enhancing antioxidant capacity. Blood and milk samples were collected from three groups of healthy perinatal cows that were similar in body weight, parity, milk yield in the last milk cycle, etc., receiving dietary MAG supplementation ([Day 0 = parturition]: 0 g/day, [n = 13)] 3 g/day [n = 13] or 6 g/day [n = 11]) from -28 to 56 day (0 day = parturition). Compared with 0 g/day controls (CON), milk fat was significantly decreased in cows fed with MAG, and 3 g/day had the greatest effect. A diet containing 3 g/day MAG decreased the serum alanine aminotransferase (ALT) level compared with CON at -7 day post-partum. ALT was also lower at 5 day post-partum in cows fed with 3 g/day MAG compared to 6 g/day. The administration of 3 g/day and 6 g/day MAG decreased serum aspartate transaminase (AST) at 3 day post-partum. Supplementation of MAG in cows increased total antioxidant capacity (T-AOC) in serum, and cows given 3 g MAG per day had higher T-AOC than controls on post-partum 7 day. At the end of the experiment, we isolated and cultured primary hepatocytes to determine the effect of MAG on oxidative stress caused by incubation with the sodium oleate (SO). SO increased lipid synthesis, but pre-treatment with MAG prevented the fatty buildup. SO treatment increased AST and ALT levels and malondialdehyde concentration, but decreased T-AOC and superoxide dismutase (SOD). Incubation with MAG increased antioxidant capacity and inhibited oxidant damage in bovine hepatocytes. SO stimulated expression of the antioxidant genes, NAD(P)H quinone dehydrogenase 1 (NQO1) and SOD1, in the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, and catalase 1 (CAT1); this increase was accentuated by MAG pre-treatment. The results suggest that MAG can alleviate the damage caused by oxidative stress in perinatal cows by enhancing antioxidant activity.
Collapse
Affiliation(s)
- Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Chenxu Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Tao Kong
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Heifei, China
| |
Collapse
|
16
|
Fludioxonil, a phenylpyrrol pesticide, induces Cytoskeleton disruption, DNA damage and apoptosis via oxidative stress on rat glioma cells. Food Chem Toxicol 2022; 170:113464. [DOI: 10.1016/j.fct.2022.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
17
|
Spicer LJ, Schütz LF. Effects of grape phenolics, myricetin and piceatannol, on bovine granulosa and theca cell proliferation and steroid production in vitro. Food Chem Toxicol 2022; 167:113288. [PMID: 35820639 DOI: 10.1016/j.fct.2022.113288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022]
Abstract
Myricetin (a flavonol) and piceatannol (a stilbenoid) are naturally occurring phenolic compounds in red wine with cardio-protective and anti-carcinogenic effects, but their potential reproductive effects have not been investigated. Thus, the present study was designed to determine if myricetin and piceatannol can directly affect ovarian function using bovine granulosa cells (GC) and theca cells (TC) as in vitro model systems to evaluate effects on cell proliferation and steroid production. In Experiment 1 and 2, myricetin and piceatannol at 30 μM blocked insulin-like growth factor 1 (IGF1)-induced progesterone production by GC without affecting GC numbers. In contrast, myricetin stimulated IGF1-induced estradiol production, whereas piceatannol at 30 μM inhibited IGF1-induced estradiol production by 90% in GC. In Experiment 3 and 4, TC androstenedione and progesterone production and TC proliferation was inhibited by myricetin and piceatannol at 30 μM. In Experiment 5, piceatannol (30 μM) reduced the Fusarium mycotoxin, beauvericin (6 μM)-induced inhibition on progesterone production and cell proliferation. Myricetin (30 μM) reduced the inhibitory effect of beauvericin on estradiol but not progesterone production or cell proliferation. In conclusion, the red wine phenols, myricetin and piceatannol, directly affected GC and TC steroidogenesis, and were able to reduce some of the inhibitory effects of beauvericin on GC function.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Luis F Schütz
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
18
|
Effects of Sodium Pyruvate on Vanadyl Sulphate-Induced Reactive Species Generation and Mitochondrial Destabilisation in CHO-K1 Cells. Antioxidants (Basel) 2022; 11:antiox11050909. [PMID: 35624773 PMCID: PMC9137755 DOI: 10.3390/antiox11050909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Vanadium is ranked as one of the world’s critical metals considered important for economic growth with wide use in the steel industry. However, its production, applications, and emissions related to the combustion of vanadium-containing fuels are known to cause harm to the environment and human health. Pyruvate, i.e., a glucose metabolite, has been postulated as a compound with multiple cytoprotective properties, including antioxidant and anti-inflammatory effects. The aim of the present study was to examine the antioxidant potential of sodium pyruvate (4.5 mM) in vanadyl sulphate (VOSO4)-exposed CHO-K1 cells. Dichloro-dihydro-fluorescein diacetate and dihydrorhodamine 123 staining were performed to measure total and mitochondrial generation of reactive oxygen species (ROS), respectively. Furthermore, mitochondrial damage was investigated using MitoTell orange and JC-10 staining assays. We demonstrated that VOSO4 alone induced a significant rise in ROS starting from 1 h to 3 h after the treatment. Additionally, after 24 and 48 h of exposure, VOSO4 elicited both extensive hyperpolarisation and depolarisation of the mitochondrial membrane potential (MMP). The two-way ANOVA analysis of the results showed that, through antagonistic interaction, pyruvate prevented VOSO4-induced total ROS generation, which could be observed at the 3 h time point. In addition, through the independent action and antagonistic interaction with VOSO4, pyruvate provided a pronounced protective effect against VOSO4-mediated mitochondrial toxicity at 24-h exposure, i.e., prevention of VOSO4-induced hyperpolarisation and depolarisation of MMP. In conclusion, we found that pyruvate exerted cytoprotective effects against vanadium-induced toxicity at least in part by decreasing ROS generation and preserving mitochondrial functions
Collapse
|
19
|
Yang X, Ali S, Zhao M, Richter L, Schäfer V, Schliehe-Diecks J, Frank M, Qi J, Larsen PK, Skerra J, Islam H, Wachtmeister T, Alter C, Huang A, Bhatia S, Köhrer K, Kirschning C, Weighardt H, Kalinke U, Kalscheuer R, Uhrberg M, Scheu S. The Mycotoxin Beauvericin Exhibits Immunostimulatory Effects on Dendritic Cells via Activating the TLR4 Signaling Pathway. Front Immunol 2022; 13:856230. [PMID: 35464417 PMCID: PMC9024221 DOI: 10.3389/fimmu.2022.856230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
Beauvericin (BEA), a mycotoxin of the enniatin family produced by various toxigenic fungi, has been attributed multiple biological activities such as anti-cancer, anti-inflammatory, and anti-microbial functions. However, effects of BEA on dendritic cells remain unknown so far. Here, we identified effects of BEA on murine granulocyte–macrophage colony-stimulating factor (GM-CSF)-cultured bone marrow derived dendritic cells (BMDCs) and the underlying molecular mechanisms. BEA potently activates BMDCs as signified by elevated IL-12 and CD86 expression. Multiplex immunoassays performed on myeloid differentiation primary response 88 (MyD88) and toll/interleukin-1 receptor (TIR) domain containing adaptor inducing interferon beta (TRIF) single or double deficient BMDCs indicate that BEA induces inflammatory cytokine and chemokine production in a MyD88/TRIF dependent manner. Furthermore, we found that BEA was not able to induce IL-12 or IFNβ production in Toll-like receptor 4 (Tlr4)-deficient BMDCs, whereas induction of these cytokines was not compromised in Tlr3/7/9 deficient BMDCs. This suggests that TLR4 might be the functional target of BEA on BMDCs. Consistently, in luciferase reporter assays BEA stimulation significantly promotes NF-κB activation in mTLR4/CD14/MD2 overexpressing but not control HEK-293 cells. RNA-sequencing analyses further confirmed that BEA induces transcriptional changes associated with the TLR4 signaling pathway. Together, these results identify TLR4 as a cellular BEA sensor and define BEA as a potent activator of BMDCs, implying that this compound can be exploited as a promising candidate structure for vaccine adjuvants or cancer immunotherapies.
Collapse
Affiliation(s)
- Xiaoli Yang
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Manman Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vanessa Schäfer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jing Qi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Pia-Katharina Larsen
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Jennifer Skerra
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Heba Islam
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christina Alter
- Institute of Molecular Cardiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anfei Huang
- Institute for Systems Immunology, Julius-Maximilians-Universität of Würzburg (JMU), Würzburg, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Carsten Kirschning
- Institute of Medical Microbiology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Heike Weighardt
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Stefanie Scheu,
| |
Collapse
|
20
|
Agahi F, Penalva-Olcina R, Font G, Juan-García A, Juan C. Effects of Voghiera garlic extracts in neuronal human cell line against zearalenone's derivates and beauvericin. Food Chem Toxicol 2022; 162:112905. [PMID: 35257812 DOI: 10.1016/j.fct.2022.112905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
The Fusarium toxins constitute one of the largest groups of mycotoxins produced by Fusarium species, which are major pathogens of cereal plants. In the present study neuroprotection effect of Allium sativum L garlic extract which is known as Voghiera garlic, from a local garlic ecotype of Ferrara (Italy) was examined on an undifferentiated SH-SY5Y neuronal cells against ZEA's metabolites (α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL)) and beauvericin (BEA) mycotoxins which are considered as the most reported Fusarium mycotoxins, via MTT (3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, over 24 h and 48 h through direct treatment, simultaneous treatment and pre-treatment strategies. The results demonstrated remarkable improvement in cells viability in simultaneous and pre-treatment strategy with Voghiera garlic extract (VGE); specifically, for simultaneous treatment of VGE with β-ZEL which viability increased significantly up to 56%, and subsequently with α-ZEL and BEA by up to 38% and 37% respectively, compared to each mycotoxin tested alone for their highest concentrations assayed, while direct treatments for each mycotoxins individually decreased significantly (for α-ZEL up to 69%, for β-ZEL 82% and for BEA up to 43%). It is proposed by the present study that VGE extract found to be effective in reducing the cytotoxicity/neurotoxicity of α-ZEL, β-ZEL and BEA mycotoxins encountered in food and feed commodity.
Collapse
Affiliation(s)
- Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
21
|
Cytotoxicity of Mycotoxins and Their Combinations on Different Cell Lines: A Review. Toxins (Basel) 2022; 14:toxins14040244. [PMID: 35448853 PMCID: PMC9031280 DOI: 10.3390/toxins14040244] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are secondary metabolites of molds and mainly produced by species of the genera Aspergillus, Penicillium and Fusarium. They can be synthesized on the field, during harvest as well as during storage. They are fairly stable compounds and difficult to remove. Among several hundreds of mycotoxins, according to the WHO, ochratoxin A, aflatoxins, zearalenone, deoxynivalenol, patulin, fumonisins as well as T-2 and HT-2 toxins deserve special attention. Cytotoxicity is one of the most important adverse properties of mycotoxins and is generally assessed via the MTT assay, the neutral red assay, the LDH assay, the CCK-8 assay and the ATP test in different cell lines. The apoptotic cell ratio is mainly assessed via flow cytometry. Aside from the assessment of the toxicity of individual mycotoxins, it is important to determine the cytotoxicity of mycotoxin combinations. Such combinations often exhibit stronger cytotoxicity than individual mycotoxins. The cytotoxicity of different mycotoxins often depends on the cell line used in the experiment and is frequently time- and dose-dependent. A major drawback of assessing mycotoxin cytotoxicity in cell lines is the lack of interaction typical for complex organisms (for example, immune responses).
Collapse
|
22
|
Søderstrøm S, Lie KK, Lundebye AK, Søfteland L. Beauvericin (BEA) and enniatin B (ENNB)-induced impairment of mitochondria and lysosomes - Potential sources of intracellular reactive iron triggering ferroptosis in Atlantic salmon primary hepatocytes. Food Chem Toxicol 2022; 161:112819. [PMID: 35038498 DOI: 10.1016/j.fct.2022.112819] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
Beauvericin (BEA) and enniatin B (ENNB) are emerging mycotoxins frequently detected in plant-based fish feed. With ionophoric properties, they have shown cytotoxic potential in mammalian models. Sensitivity in fish is still largely unknown. Primary hepatocytes isolated from Atlantic salmon (Salmo salar) were used as a model and exposed to BEA and ENNB (0.05-10 μM) for 48 h. Microscopy, evaluation of cell viability, total ATP, total H2O2, total iron content, total Gpx enzyme activity, and RNA sequencing were used to characterize the toxicodynamics of BEA and ENNB. Both mycotoxins became cytotoxic at ≥ 5 μM, causing condensation of the hepatocytes followed by formation of blister-like protrusions on the cell's membrane. RNA sequencing analysis at sub-cytotoxic levels indicated BEA and ENNB exposed hepatocytes to experience increased energy expenditure, elevated oxidative stress, and iron homeostasis disturbances sensitizing the hepatocytes to ferroptosis. The present study provides valuable knowledge disclosing the toxic action of these mycotoxins in Atlantic salmon primary hepatocytes.
Collapse
Affiliation(s)
| | - Kai K Lie
- Institute of Marine Research (IMR), Bergen, Norway
| | | | | |
Collapse
|
23
|
Pal S, Singh N, Dev I, Sharma V, Jagdale PR, Ayanur A, Ansari KM. TGF-β/Smad signaling pathway plays a crucial role in patulin-induced pro-fibrotic changes in rat kidney via modulation of slug and snail expression. Toxicol Appl Pharmacol 2022; 434:115819. [PMID: 34896196 DOI: 10.1016/j.taap.2021.115819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023]
Abstract
Patulin (PAT) is a mycotoxin that contaminates a variety of food and foodstuffs. Earlier in vitro and in vivo findings have indicated that kidney is one of the target organs for PAT-induced toxicity. However, no study has evaluated the chronic effects of PAT exposure at environmentally relevant doses or elucidated the detailed mechanism(s) involved. Here, using in vitro and in vivo experimental approaches, we delineated the mechanism/s involved in pro-fibrotic changes in the kidney after low-dose chronic exposure to PAT. We found that non-toxic concentrations (50 nM and 100 nM) of PAT to normal rat kidney cells (NRK52E) caused a higher generation of reactive oxygen species (ROS) (mainly hydroxyl (•OH), peroxynitrite (ONOO-), and hypochlorite radical (ClO-). PAT exposure caused the activation of mitogen-activated protein kinases (MAPKs) and its downstream c-Jun/Fos signaling pathways. Moreover, our chromatin immunoprecipitation (ChIP) analysis suggested that c-Jun/Fos binds to the promoter region of Transforming growth factor beta (TGF-β1) and possibly induces its expression. Results showed that PAT-induced TGF-β1 further activates the TGF-β1/smad signaling pathways. Higher activation of slug and snail transcription factors further modulates the regulation of pro-fibrotic molecules. Similarly, in vivo results showed that PAT exposure to rats through gavage at 25 and 100 μg/kg b. wt had higher levels of kidney injury/toxicity markers namely vascular endothelial growth factor (VEGF), kidney Injury Molecule-1 (Kim-1), tissue inhibitor of metalloproteinase-1 (Timp-1), and clusterin (CLU). Additionally, histopathological analysis indicated significant alterations in renal tubules and glomeruli along with collagen deposition in PAT-treated rat kidneys. Overall, our data provide evidence of the involvement of ROS mediated MAPKs and TGF-β1/smad pathways in PAT-induced pro-fibrotic changes in the kidney via modulation of slug and snail expression.
Collapse
Affiliation(s)
- Saurabh Pal
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Neha Singh
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Indra Dev
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Vineeta Sharma
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pankaj Ramji Jagdale
- Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 M. G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 M. G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Kausar Mahmood Ansari
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
24
|
Zhang B, Huang C, Lu Q, Liang H, Li J, Xu D. Involvement of caspase in patulin-induced hepatotoxicity in vitro and in vivo. Toxicon 2021; 206:64-73. [PMID: 34968565 DOI: 10.1016/j.toxicon.2021.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022]
Abstract
Patulin (PAT) a kind of mycotoxin, is a widely disseminated mycotoxin found in agricultural products and could cause liver damage. However, evidence on the underlying mechanisms of patulin is still lacking. In the present study, Human liver cancer cells (HepG2) together with a mouse model were used to explore the possible effect and mechanism. The results demonstrated that PAT treatment inhibited cell proliferation and caused liver toxicity in mice. In vitro, PAT inhibited the growth of HepG2 cells in a dose-dependent manner and a time-dependent manner; lipid peroxidation, malondialdehyde (MDA) production increased and the level of SOD and GSH in cells changed significantly. In vivo, Kunming mice were treated with PAT(2.5-15 μM), We indicated that liver damage are observed. The activity of serum alanine transaminase (ALT) and aspartate transaminase (AST) were increased significantly, the hepatocyte nucleus stained with Hematoxylin and Eosin (HE) was blurred and deformed. we also explored the lipid peroxidation and enzymes related to redox and found that the activities of SOD in animals do not change significantly, not like that in cells, while GSHpx played a major role. In addition, we measured the caspase activity of cells and the expression of caspase in mice. PAT-induced the caspase cascade was confirmed with the elevation of the activity and expression of caspase. These data suggest that PAT treatment altered both the redox systems in cells and animals. involvement of caspase in patulin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Baigang Zhang
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China.
| | - Chenghui Huang
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China.
| | - Qikun Lu
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Hairong Liang
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Jinliang Li
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| | - Dongmei Xu
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, China
| |
Collapse
|
25
|
Fuentes C, Fuentes A, Byrne HJ, Barat JM, Ruiz MJ. In vitro toxicological evaluation of mesoporous silica microparticles functionalised with carvacrol and thymol. Food Chem Toxicol 2021; 160:112778. [PMID: 34958804 DOI: 10.1016/j.fct.2021.112778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
The cytotoxicity of carvacrol- and thymol-functionalised mesoporous silica microparticles (MCM-41) was assessed in the human hepatocarcinoma cell line (HepG2). Cell viability, lactate dehydrogenase (LDH) activity, reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm), lipid peroxidation (LPO) and apoptosis/necrosis analyses were used as endpoints. The results showed that both materials induced cytotoxicity in a time- and concentration-dependent manner, and were more cytotoxic than free essential oil components and bare MCM-41. This effect was caused by cell-particle interactions and not by degradation products released to the culture media, as demonstrated in the extract dilution assays. LDH release was a less sensitive endpoint than the MTT (thiazolyl blue tetrazolium bromide) assay, which suggests the impairment of the mitochondrial function as the primary cytotoxic mechanism. In vitro tests on specialised cell functions showed that exposure to sublethal concentrations of these materials did not induce ROS formation during 2 h of exposure, but produced LPO and ΔΨm alterations in a concentration-dependent manner when cells were exposed for 24 h. The obtained results generally support the hypothesis that the carvacrol- and thymol-functionalised MCM-41 microparticles induced toxicity in HepG2 cells by an oxidative stress-related mechanism that resulted in apoptosis through the mitochondrial pathway.
Collapse
Affiliation(s)
- Cristina Fuentes
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Ana Fuentes
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Hugh J Byrne
- FOCAS Research Institute, City Campus, Technological University Dublin, Dublin 8, Ireland
| | - José Manuel Barat
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
26
|
Bechynska K, Kosek V, Fenclova M, Muchova L, Smid V, Suk J, Chalupsky K, Sticova E, Hurkova K, Hajslova J, Vitek L, Stranska M. The Effect of Mycotoxins and Silymarin on Liver Lipidome of Mice with Non-Alcoholic Fatty Liver Disease. Biomolecules 2021; 11:1723. [PMID: 34827721 PMCID: PMC8615755 DOI: 10.3390/biom11111723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Milk thistle-based dietary supplements have become increasingly popular. The extract from milk thistle (Silybum marianum) is often used for the treatment of liver diseases because of the presence of its active component, silymarin. However, the co-occurrence of toxic mycotoxins in these preparations is quite frequent as well. The objective of this study was to investigate the changes in composition of liver lipidome and other clinical characteristics of experimental mice fed by a high-fat methionine-choline deficient diet inducing non-alcoholic fatty liver disease. The mice were exposed to (i) silymarin, (ii) mycotoxins (trichothecenes, enniatins, beauvericin, and altertoxins) and (iii) both silymarin and mycotoxins, and results were compared to the controls. The liver tissue extracts were analyzed by ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry. Using tools of univariate and multivariate statistical analysis, we were able to identify 48 lipid species from the classes of diacylglycerols, triacylglycerols, free fatty acids, fatty acid esters of hydroxy fatty acids and phospholipids clearly reflecting the dysregulation of lipid metabolism upon exposure to mycotoxin and/or silymarin.
Collapse
Affiliation(s)
- Kamila Bechynska
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Vit Kosek
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Marie Fenclova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Lucie Muchova
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
| | - Vaclav Smid
- 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
| | - Jakub Suk
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
| | - Karel Chalupsky
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic;
| | - Eva Sticova
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic;
| | - Kamila Hurkova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Jana Hajslova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
- 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
| | - Milena Stranska
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| |
Collapse
|
27
|
Serra V, Salvatori G, Pastorelli G. Pilot Study: Does Contamination with Enniatin B and Beauvericin Affect the Antioxidant Capacity of Cereals Commonly Used in Animal Feeding? PLANTS (BASEL, SWITZERLAND) 2021; 10:1835. [PMID: 34579368 PMCID: PMC8469406 DOI: 10.3390/plants10091835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
Increasing consumption of cereals has been associated with reduced risk of several chronic diseases, as they contain phytochemicals that combat oxidative stress. Cereal contamination by the "emerging mycotoxins" beauvericin (BEA) and enniatins (ENs) is a worldwide health problem that has not yet received adequate scientific attention. Their presence in feeds represents a risk for animals and a potential risk for humans because of their carry-over to animal-derived products. This preliminary study aimed to investigate if the total antioxidant capacity (TAC) of corn, barley, and wheat flours could be influenced by contamination with increasing levels of BEA and ENN B. The highest TAC value was observed in barley compared with wheat and corn (p < 0.001) before and after contamination. No effect of mycotoxin or mycotoxin level was found, whereas cereal x mycotoxin exhibited a significant effect (p < 0.001), showing a lower TAC value in wheat contaminated by ENN B and in barley contaminated by BEA. In conclusion, barley is confirmed as a source of natural antioxidants with antiradical potentials. Additional studies with a larger sample size are necessary to confirm the obtained results, and investigations of the toxic effects of these emergent mycotoxins on animals and humans should be deepened.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Giancarlo Salvatori
- Department of Medicine and Science for Health “V. Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy;
| | - Grazia Pastorelli
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy
| |
Collapse
|
28
|
Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb Pathog 2021; 159:105122. [PMID: 34352375 DOI: 10.1016/j.micpath.2021.105122] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Global food security is threatened by insect pests of economically important crops. Chemical pesticides have been used frequently for the last few decades to manage insect pests throughout the world. However, these chemicals are hazardous for human health as well as the ecosystem. In addition, several pests have evolved resistance to many chemicals. Finding environment friendly alternatives lead the researchers to introduce biocontrol agents such as entomopathogenic fungi (EPF). These fungi include various genera that can infect and kill insects efficiently. Moreover, EPFs have considerable host specificity with a mild effect on non-target organisms and can be produced in bulk quantity quickly. However, insights into the biology of EPF and mechanism of action are of prime significance for their efficient utilization as a biocontrol agent. This review focuses on EPF-mediated insect management by explaining particular EPF strains and their general mode of action. We have comprehensively discussed which criteria should be used for the selection of pertinent EPF, and which aspects can impact the EPF efficiency. Finally, we have outlined various advantages of EPF and their limitations. The article summarizes the prospects related to EPF utilization as biocontrol agents. We hope that future strategies for the management of insects will be safer for our planet.
Collapse
|
29
|
Cytoprotective Effects of Fish Protein Hydrolysates against H 2O 2-Induced Oxidative Stress and Mycotoxins in Caco-2/TC7 Cells. Antioxidants (Basel) 2021; 10:antiox10060975. [PMID: 34207334 PMCID: PMC8234493 DOI: 10.3390/antiox10060975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Many studies report the potent antioxidant capacity for fish protein hydrolysates, including radical scavenging activity and inhibition ability on lipid peroxidation (LPO). In this study, the in vitro cytotoxicity of protein hydrolysates from different salmon, mackerel, and herring side streams fractions was evaluated in the concentration range from 1 to 1:32 dilution, using cloned human colon adenocarcinoma cells TC7 (Caco-2/TC7) by MTT and PT assays. The protein hydrolysates' antioxidant capacity and oxidative stress effects were evaluated by LPO and reactive oxygen species (ROS) generation, respectively. The antioxidant capacity for pure and bioavailable hydrolysate fraction was also evaluated and compared. Additionally, mycotoxin levels were determined in the fish protein hydrolysates, and their cytoprotective effect against T-2 toxin was evaluated. Both hydrolysates and their bioavailable fraction induced similar cell viability rates. The highest cytoprotective effect was obtained for the salmon viscera protein hydrolysate (HSV), which increased the cell viability by 51.2%. ROS accumulation induced by H2O2 and LPO was suppressed by all pure hydrolysates. The cytoprotective effect of hydrolysates was observed against T-2. Moreover, the different fish fraction protein hydrolysates contain variable nutrients and unique bioactive peptide composition showing variable bioactivity, which could be a useful tool in developing dietary supplements with different target functional properties.
Collapse
|
30
|
Alonso-Garrido M, Frangiamone M, Font G, Cimbalo A, Manyes L. In vitro blood brain barrier exposure to mycotoxins and carotenoids pumpkin extract alters mitochondrial gene expression and oxidative stress. Food Chem Toxicol 2021; 153:112261. [PMID: 34015425 DOI: 10.1016/j.fct.2021.112261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 12/22/2022]
Abstract
Food and feed are daily exposed to mycotoxin contamination which effects may be counteracted by antioxidants like carotenoids. Some mycotoxins as well as carotenoids penetrate the blood brain barrier (BBB) inducing alterations related to redox balance in the mitochondria. Therefore, the in vitro BBB model ECV304 was subcultured for 7 days and exposed to beauvericine, enniatins, ochratoxin A, zearalenone (100 nM each), individually and combined, and pumpkin extract (500 nM). Reactive oxygen species were measured by fluorescence using the dichlorofluorescein diacetate probe at 0 h, 2 h and 4 h. Intracellular ROS generation reported was condition dependent. RNA extraction was performed and gene expression was analyzed by qPCR after 2 h exposure. The selected genes were related to the Electron Transport Chain (ETC) and mitochondrial activity. Gene expression reported upregulation for exposures including mycotoxins plus pumpkin extract versus individual mycotoxins. Beauvericin and Beauvericin-Enniatins exposure significantly downregulated Complex I and pumpkin addition reverted the effect upregulating Complex I. Complex IV was the most downregulated structure of the ETC. Thioredoxin Interacting Protein was the most upregulated gene. These data confirm that mitochondrial processes in the BBB could be compromised by mycotoxin exposure and damage could be modulated by dietary antioxidants like carotenoids.
Collapse
Affiliation(s)
- M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - M Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - A Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain.
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avenue Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| |
Collapse
|
31
|
Othmène YB, Salem IB, Hamdi H, Annabi E, Abid-Essefi S. Tebuconazole induced cytotoxic and genotoxic effects in HCT116 cells through ROS generation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104797. [PMID: 33838701 DOI: 10.1016/j.pestbp.2021.104797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Tebuconazole (TEB) is a common triazole fungicide that has been widely used for the control of plant pathogenic fungi, suggesting that mammal exposure occurs regularly. Several studies demonstrated that TEB exposure has been linked to a variety of toxic effects, including neurotoxicity, immunotoxicity, reprotoxicity and carcinogenicity. However, there is a few available data regarding the molecular mechanism involved in TEB-induced toxicity. The current study was undertaken to investigate the toxic effects of TEB in HCT116 cells. Our results showed that TEB caused cytotoxicity by inhibiting cell viability as assessed by the MTT assay. Furthermore, we have demonstrated that TEB induced a significant increase in the reactive oxygen species (ROS) production leading to the induction of lipid peroxidation and DNA fragmentation and increased superoxide dismutase (SOD) and catalase (CAT) activities. Moreover, TEB exposure induced mitochondrial membrane potential loss and caspase-9/-3 activation. Treatment with general caspases inhibitor (Z-VAD-fmk) significantly prevented the TEB-induced cell death, indicating that TEB induced caspases-dependent cell death. These findings suggest the involvement of oxidative stress and apoptosis in TEB-induced toxicity in HCT116.
Collapse
Affiliation(s)
- Yosra Ben Othmène
- University of Monastir, Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Avicenne Street, 5000 Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Taher Haddad Street, 5000, Monastie, Tunisia
| | - Intidhar Ben Salem
- University of Monastir, Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Avicenne Street, 5000 Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Taher Haddad Street, 5000, Monastie, Tunisia; University of Sousse, Faculty of Medicine of Sousse, 4000, Tunisia
| | - Hiba Hamdi
- University of Monastir, Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Avicenne Street, 5000 Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Taher Haddad Street, 5000, Monastie, Tunisia
| | - Emna Annabi
- University of Monastir, Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Avicenne Street, 5000 Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Taher Haddad Street, 5000, Monastie, Tunisia
| | - Salwa Abid-Essefi
- University of Monastir, Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Avicenne Street, 5000 Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Taher Haddad Street, 5000, Monastie, Tunisia.
| |
Collapse
|
32
|
Awapak D, Petchkongkaew A, Sulyok M, Krska R. Co-occurrence and toxicological relevance of secondary metabolites in dairy cow feed from Thailand. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1013-1027. [PMID: 33861173 DOI: 10.1080/19440049.2021.1905186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The occurrence of secondary metabolites and co-contaminants in dairy cow feed samples (n = 115), concentrate, roughage, and mixed feed, collected from Ratchaburi and Kanjanaburi provinces, Thailand, between August 2018 and March 2019 were investigated using LC-MS/MS based multi-toxin method. A total of 113 metabolites were found in the samples. Fungal metabolites were the predominant compounds, followed by plant metabolites. Among major mycotoxins, zearalenone and fumonisins were most frequently detected in concentrate and mixed feed samples, while deoxynivalenol and aflatoxin B1 were found at the frequency lower than 50%. Other metabolites, produced by Aspergillus, Fusarium, Penicillium, and Alternaria species, occurred in the samples. Flavoglaucin, 3-nitropropionic acid, averufin, and sterigmatocystin were the most prevalent Aspergillus metabolites. Common Fusarium metabolites occurring in the samples included moniliformin, beauvericin, and enniatins. For Penicillium metabolites, mycophenolic acid, questiomycin A, quinolactacin A, oxaline, citrinin, and dihydrocitrinone were frequently detected. The toxic Alternaria metabolites, alternariol, and alternariol monomethyl ether showed the high incidence in the samples. Plant metabolites were commonly found, mainly cyanogenic compounds and isoflavones, from cassava and soybean meal used as feed ingredients. Overall, 96.6% of feed samples contained at least two metabolites, in a range from 2 to 69. According to co-contamination of mycotoxins found in feed samples, zearalenone were mostly found in combination with fumonisin B1, deoxynivalenol, and aflatoxin B1. Fumonisin B1 co-occurred with aflatoxin B1 and deoxynivalenol. The mixtures of deoxynivalenol and aflatoxin B1, and of zearalenone, fumonisin B1 and deoxynivalenol were also found. Due to known individual toxicity of fungal and plant metabolites and possible additive or synergistic toxic effects of multi-mycotoxins, the occurrence of these metabolites and co-contaminants should be monitored continuously to ensure food safety through the dairy supply chain.
Collapse
Affiliation(s)
- Darika Awapak
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Khong Luang, Thailand
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Khong Luang, Thailand
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| |
Collapse
|
33
|
Wei K, Sun J, Gao Q, Yang X, Ye Y, Ji J, Sun X. 3D "honeycomb" cell/carbon nanofiber/gelatin methacryloyl (GelMA) modified screen-printed electrode for electrochemical assessment of the combined toxicity of deoxynivalenol family mycotoxins. Bioelectrochemistry 2021; 139:107743. [PMID: 33524655 DOI: 10.1016/j.bioelechem.2021.107743] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
A "honeycomb" electrochemical biosensor based on 3D printing was developed to noninvasively monitor the viability of 3D cells and evaluate the individual or combined toxicity of deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), and 15-acetyldeoxynivalenol (15-ADON). Carbon nanofiber (CN)/gelatin methacryloyl (GelMA) conductive composite hydrogel with strong processability was printed on 8-channel screen-printed carbon electrodes (SPCEs) to maintain cell viability and form tight cell-to-cell contacts. A "3D honeycomb" printing infill pattern was selected in the construction of the biosensors to improve conductivity. Based on 3D printing technology, the electrochemical biosensor can prevent manual error and provide for high-throughput detection. Electrochemical impedance spectroscopy (EIS) was used to evaluate mycotoxin toxicity. The EIS response decreased with the concentration of DON, 3-ADON and 15-ADON in the range of 0.1-10, 0.05-100, and 0.1-10 μg/mL, respectively, with a limit of detection of 0.07, 0.10 and 0.06 μg/mL, respectively. Mycotoxin interactions were analyzed using the isobologram-combination index (CI) method. The electrochemical cytotoxicity evaluation result was confirmed by biological assays. Therefore, a novel method for evaluating the combined toxicity of mycotoxins is proposed, which exhibits potential for application to food safety and evaluation.
Collapse
Affiliation(s)
- Kaimin Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xingxing Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
34
|
Na J, Song J, Achar JC, Jung J. Synergistic effect of microplastic fragments and benzophenone-3 additives on lethal and sublethal Daphnia magna toxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123845. [PMID: 33254817 DOI: 10.1016/j.jhazmat.2020.123845] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
The interactive effect of polyethylene microplastic (MP) fragments and benzophenone-3 (BP-3) additives on Daphnia magna was assessed in the present study. The 48 h median effective concentration (EC50) revealed that MP fragments (37.24 ± 11.76 μm; 3.90 mg L-1) were over 80 times more acutely toxic than polyethylene microbeads (37.05 ± 3.96 μm; 323 mg L-1), possibly because of their irregular shape and high specific surface area. Moreover, the addition of BP-3 (10.27 ± 0.40 % w/w) to MP fragments (MP + BP-3) resulted in greater acute toxicity to D. magna (EC50 = 0.99 mg L-1) compared to MP fragments (EC50 = 3.90 mg L-1) or BP-3 (EC50 = 2.29 mg L-1) alone. Additionally, MP + BP-3 exposure induced a synergistic increase in reactive oxygen species, total antioxidant capacity, and lipid peroxidation in D. magna. These synergistic effects can be attributed to enhanced bioconcentrations of BP-3 in D. magna caused by MP fragments. These findings suggest that MP fragments containing chemical additives represent a synergistic ecological risk and have the potential to harm aquatic organisms.
Collapse
Affiliation(s)
- Joorim Na
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinyoung Song
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jerry Collince Achar
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
35
|
Effect of Gamma-Radiation on Zearalenone-Degradation, Cytotoxicity and Estrogenicity. Foods 2020; 9:foods9111687. [PMID: 33218048 PMCID: PMC7698921 DOI: 10.3390/foods9111687] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEA) is produced in cereals by different species of Fusarium, being a non-steroidal estrogenic mycotoxin. Despite having a low acute toxicity, ZEA strongly interferes with estrogen receptors. Gamma-radiation has been investigated to eliminate mycotoxins from food and feed, showing promising results. The present study aims to investigate the gamma-radiation effect on ZEA at different moisture conditions and to evaluate the cytotoxicity and estrogenicity of the irradiated ZEA. Different concentrations of dehydrated ZEA and aqueous solutions of ZEA were exposed to gamma-radiation doses ranging from 0.4 to 8.6 kGy and the mycotoxin concentration determined after exposure by high performance liquid chromatography (HPLC) with fluorescence detection. Following this, the cytotoxicity of irradiated samples was assessed in HepG2 cells, by measuring alterations of metabolic activity, plasma membrane integrity and lysosomal function, and their estrogenicity by measuring luciferase activity in HeLa 9903 cells. Gamma-radiation was found to be effective in reducing ZEA, with significant increases in degradation with increased moisture content. Furthermore, a reduction of cytotoxicity with irradiation was observed. ZEA estrogenicity was also increasingly reduced with increasing radiation doses, but mainly in aqueous solutions. These results suggest reduction of ZEA levels and of its toxicity in food and feed commodities may be achieved by irradiation.
Collapse
|
36
|
Estimated 24-hour urinary sodium excretion as a risk factor for oxidative stress in Zambian adults: A cross-sectional study. PLoS One 2020; 15:e0242144. [PMID: 33180810 PMCID: PMC7660463 DOI: 10.1371/journal.pone.0242144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
Introduction Persistent oxidative stress predisposes to various non-communicable diseases (NCDs), whose occurrence is increasing in sub-Saharan Africa. The aim of this study was to evaluate the link between markers of oxidative stress and some risk factors for NCDs in a Zambian cohort. Methods We assessed oxidative stress by measuring 8-isoprostane (lipid oxidative stress) and 8-hydroxydeoxyguanosine (DNA oxidative stress). In addition, we measured mycotoxins (aflatoxin M1 and ochratoxin A), salt intake estimated from 24-hour sodium excretion calculated using the Tanaka and Kawaski formulae, and 1-hydroxypyrene (a metabolite of polycyclic aromatic hydrocarbons). Data on lifestyle risk factors were collected using questionnaires. Results Included were 244 participants; 128 (52%) were female and the median age was 48 years (IQR 39–58). The median level of 8-isoprostane was 0.13 ng/mg creatinine (IQR 0.08–0.23) while that of 8-hydroxydeoxyguanosine (8-OHdG) was 4 ng/mg creatinine (IQR 2–10). The median 24-hour sodium excretion was 21 g (IQR 16–25 g), with none being less than the 5 g recommended by WHO. Unadjusted urinary levels of 8-isoprostane were moderately correlated with 1-hydroxypyrene (Spearman r = 0.30, p<0.001) and estimated 24-hour urine sodium (Spearman r = 0.38, p<0.001). Urinary levels of 8-OHdG were not correlated with 1-hydroxypyrene, estimated 24-hour urine sodium, aflatoxin M1 or ochratoxin A (all p-values >0.05). Using logistic regression, adjusted and unadjusted 8-isoprostanes levels were associated with 1-hydroxypyrene (p = 0.02 and p = 0.001 respectively) and estimated 24-hour urine sodium method (p = 0.003 and p<0.001 respectively). However, only unadjusted 8-OHdG was associated with 1-hydroxypyrene (p = 0.03) and age (p = 0.007). Conclusions Estimated 24-hour urinary sodium is high among Zambians and it is associated with lipid but not DNA oxidative stress. High exposure to polycyclic aromatic hydrocarbons is also associated with oxidative stress.
Collapse
|
37
|
Agahi F, Álvarez-Ortega N, Font G, Juan-García A, Juan C. Oxidative stress, glutathione, and gene expression as key indicators in SH-SY5Y cells exposed to zearalenone metabolites and beauvericin. Toxicol Lett 2020; 334:44-52. [DOI: 10.1016/j.toxlet.2020.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
|
38
|
Beauvericin and Enniatins: In Vitro Intestinal Effects. Toxins (Basel) 2020; 12:toxins12110686. [PMID: 33138307 PMCID: PMC7693699 DOI: 10.3390/toxins12110686] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Food and feed contamination by emerging mycotoxins beauvericin and enniatins is a worldwide health problem and a matter of great concern nowadays, and data on their toxicological behavior are still scarce. As ingestion is the major route of exposure to mycotoxins in food and feed, the gastrointestinal tract represents the first barrier encountered by these natural contaminants and the first structure that could be affected by their potential detrimental effects. In order to perform a complete and reliable toxicological evaluation, this fundamental site cannot be disregarded. Several in vitro intestinal models able to recreate the different traits of the intestinal environment have been applied to investigate the various aspects related to the intestinal toxicity of emerging mycotoxins. This review aims to depict an overall and comprehensive representation of the in vitro intestinal effects of beauvericin and enniatins in humans from a species-specific perspective. Moreover, information on the occurrence in food and feed and notions on the regulatory aspects will be provided.
Collapse
|
39
|
Cytotoxic effects of individual and combined sterigmatocystin and nivalenol on liver hepatocellular carcinoma cells. Food Chem Toxicol 2020; 143:111473. [DOI: 10.1016/j.fct.2020.111473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022]
|
40
|
Othmène YB, Hamdi H, Salem IB, Annabi E, Amara I, Neffati F, Najjar MF, Abid-Essefi S. Oxidative stress, DNA damage and apoptosis induced by tebuconazole in the kidney of male Wistar rat. Chem Biol Interact 2020; 330:109114. [PMID: 32735800 DOI: 10.1016/j.cbi.2020.109114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Tebuconazole (TEB) is a broad-spectrum conazole fungicide that has been used in agriculture in the control of foliar and soil-borne diseases of many crops. The present study has investigated the adverse effects of subchronic exposure to TEB on the kidney of male rats. Animals were divided into four equal groups and treated with TEB at increasing doses 0.9, 9 and 27 mg/kg body weight for 28 consecutive days. The results showed that TEB induced oxidative stress in the kidney demonstrated by an increase in malondialdehyde (MDA), protein carbonyl (PC), advanced oxidation protein product (AOPP) levels and DNA damage, as compared to the controls. Furthermore, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities were increased in the renal tissue of treated rats. Moreover, significant decrease in reduced glutathione (GSH) content in TEB-treated rats was observed, while oxidized glutathione (GSSG) levels were increased, thus a marked fall in GSH/GSSG ratio was registered in the kidney. Glutathione reductase (GR) activity showed a significant increase after TEB exposure. Moreover, TEB down-regulated the expression of Bcl2 and up-regulated the expression of Bax and caspase 3, which triggered apoptosis via the Bax/Bcl2 and caspase pathway. Also, TEB administration resulted in altered biochemical indicators of renal function and varying lesions in the overall histo-architecture of renal tissues. Taken together, our findings brought into light the renal toxicity induced by TEB, which was found to be significant at low doses.
Collapse
Affiliation(s)
- Yosra Ben Othmène
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000, Monastir, Tunisia
| | - Hiba Hamdi
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000, Monastir, Tunisia
| | - Intidhar Ben Salem
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000, Monastir, Tunisia; University of Sousse, Faculty of Medicine of Sousse, Rue Mohamed Karoui, 4000, Tunisia
| | - Emna Annabi
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000, Monastir, Tunisia
| | - Ines Amara
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000, Monastir, Tunisia
| | - Fadwa Neffati
- Fattouma Bourguiba University Hospital, Laboratory of Biochemistry-Toxicology, Avenue 1 Juin 1955, 5000, Monastir, Tunisia
| | - Mohamed Fadhel Najjar
- Fattouma Bourguiba University Hospital, Laboratory of Biochemistry-Toxicology, Avenue 1 Juin 1955, 5000, Monastir, Tunisia
| | - Salwa Abid-Essefi
- University of Monastir, Faculty of Dental Medicine of Monastir, Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Rue Avicenne, 5000, Monastir, Tunisia.
| |
Collapse
|
41
|
Abdi M, Asadi A, Maleki F, Kouhsari E, Fattahi A, Ohadi E, Lotfali E, Ahmadi A, Ghafouri Z. Microbiological Detoxification of Mycotoxins: Focus on Mechanisms and Advances. Infect Disord Drug Targets 2020; 21:339-357. [PMID: 32543365 DOI: 10.2174/1871526520666200616145150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Some fungal species of the genera Aspergillus, Penicillium, and Fusarium secretes toxic metabolites known as mycotoxins, have become a global concern that is toxic to different species of animals and humans. Biological mycotoxins detoxification has been studied by researchers around the world as a new strategy for mycotoxin removal. Bacteria, fungi, yeast, molds, and protozoa are the main living organisms appropriate for the mycotoxin detoxification. Enzymatic and degradation sorptions are the main mechanisms involved in microbiological detoxification of mycotoxins. Regardless of the method used, proper management tools that consist of before-harvest prevention and after-harvest detoxification are required. Here, in this review, we focus on the microbiological detoxification and mechanisms involved in the decontamination of mycotoxins.
Collapse
Affiliation(s)
- Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azam Fattahi
- Center for Research and Training in Skin Disease and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
42
|
Montesano D, Juan-García A, Mañes J, Juan C. Chemoprotective effect of carotenoids from Lycium barbarum L. on SH-SY5Y neuroblastoma cells treated with beauvericin. Food Chem Toxicol 2020; 141:111414. [PMID: 32387444 DOI: 10.1016/j.fct.2020.111414] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Goji berry has recently been introduced in Mediterranean diet and its consumption is increasing. This study aims to determine cytoprotection of lutein (LUT), zeaxanthin (ZEAX) and goji berry extract (GBE) rich in carotenoids against Beauvericin (BEA)-induced cytotoxicity on SH-SY5Y neuroblastoma cells. Both carotenoids and GBE showed cytoprotective effects. Cytoprotection was evaluated by simultaneous combination of the two xanthophylls LUT and ZEAX with BEA, as well as using pre-treatment assays. The highest protective effect occurred in 16%, 24% and 12% respectively for LUT, ZEAX and LUT + ZEAX incubating simultaneously with BEA, while by pre-treatment assay LUT showed a cytoprotection effect over 30% and ZEAX alone or LUT + ZEAX promoted only a slight cytoprotection (<10%). Pre-treatment assays with GBE, showed a cytoprotection, between 3 and 20%, for BEA concentrations ranging from 0.1 to 6.25 μM, whereas no protective effect was observed when the cells were simultaneously incubated with GBE and BEA. Finally, by means of CI-isobologram method, the interaction between LUT, ZEAX and BEA were evaluated, and the results showed an synergism effect for almost all combinations tested. The data presented shows a option of using goji berries to potentially mitigate the toxicity of beauvericin eventually present in foods.
Collapse
Affiliation(s)
- Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, Via San Costanzo 1, 06126, Perugia, Italy.
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| |
Collapse
|
43
|
Taroncher M, Pigni MC, Diana MN, Juan-García A, Ruiz MJ. Does low concentration mycotoxin exposure induce toxicity in HepG2 cells through oxidative stress? Toxicol Mech Methods 2020; 30:417-426. [PMID: 32306886 DOI: 10.1080/15376516.2020.1757000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to determine whether exposure to low concentrations of deoxynivalenol (DON), T-2 toxin (T-2) and patulin (PAT) in a human hepatocellular carcinoma cell line (HepG2) exerts toxic effects through mechanisms related to oxidative stress, and how cells deal with such exposure. Cell viability was determined by the MTT and protein content (PC) assays over 24, 48 and 72 h. The IC50 values detected ranged from >10 to 2.53 ± 0.21 μM (DON), 0.050 ± 0.025 to 0.034 ± 0.007 μM (T-2) and 2.66 ± 0.66 to 1.17 ± 0.21 µM (PAT). The key players in oxidative stress are the generation of reactive oxygen species (ROS), lipid peroxidation (LPO) and mitochondrial membrane potential (MMP) dysfunction. The results obtained showed that PAT, DON and T-2 did not significantly increase LPO or ROS production with respect to the controls. Moreover, PAT and DON did not alter MMP, though T-2 increased MMP at the higher concentrations tested (17 and 34 nM). In conclusion, the exposure of HepG2 cells to nontoxic concentrations of T-2 condition them against subsequent cellular oxidative conditions induced by even higher concentrations of mycotoxin.
Collapse
Affiliation(s)
- Mercedes Taroncher
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-Chiari Pigni
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-Natalia Diana
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Ana Juan-García
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-Jose Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
44
|
Agahi F, Font G, Juan C, Juan-García A. Individual and Combined Effect of Zearalenone Derivates and Beauvericin Mycotoxins on SH-SY5Y Cells. Toxins (Basel) 2020; 12:E212. [PMID: 32230869 PMCID: PMC7232440 DOI: 10.3390/toxins12040212] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Beauvericin (BEA) and zearalenone derivatives, α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL), are produced by several Fusarium species. Considering the impact of various mycotoxins on human's health, this study determined and evaluated the cytotoxic effect of individual, binary, and tertiary mycotoxin treatments consisting of α-ZEL, β-ZEL, and BEA at different concentrations over 24, 48, and 72 h on SH-SY5Y neuronal cells, by using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazoliumbromide). Subsequently, the isobologram method was applied to elucidate if the mixtures produced synergism, antagonism, or additive effects. Ultimately, we determined the amount of mycotoxin recovered from the media after treatment using liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-qTOF-MS). The IC50 values detected at all assayed times ranged from 95 to 0.2 μM for the individual treatments. The result indicated that β-ZEL was the most cytotoxic mycotoxin when tested individually. The major effect detected for all combinations assayed was synergism. Among the combinations assayed, α-ZEL + β-ZEL + BEA and α-ZEL + BEA presented the highest cytotoxic potential with respect to the IC value. At all assayed times, BEA was the mycotoxin recovered at the highest concentration in individual form, and β-ZEL + BEA was the combination recovered at the highest concentration.
Collapse
Affiliation(s)
| | | | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain; (F.A.); (G.F.); (A.J.-G.)
| | | |
Collapse
|
45
|
Juan-García A, Carbone S, Ben-Mahmoud M, Sagratini G, Mañes J. Beauvericin and ochratoxin A mycotoxins individually and combined in HepG2 cells alter lipid peroxidation, levels of reactive oxygen species and glutathione. Food Chem Toxicol 2020; 139:111247. [PMID: 32165234 DOI: 10.1016/j.fct.2020.111247] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 03/04/2020] [Indexed: 01/22/2023]
Abstract
The co-presence of more than one mycotoxin in food is being evidenced in last food surveys as reported in the literature. Beauvericin (BEA) is a non-legislated emergent mycotoxin while Ochratoxin A (OTA) has been widely studied and legislated. Concentration range individually studied was from 2.5 to 0.3 μM for BEA and from 25 to 3.1 μM for OTA; binary mixture [BEA + OTA] comprised concentrations of 1:10 ratio from [2.5 + 25] to [3.1 + 0.3] μM. Potential of toxicity of BEA in HepG2 cells was the highest at all times assayed (24, 48 and 72h). LPO was performed through malondyaldehyde (MDA) detection denoting in the binary mixture for [1.25 + 12.5] μM and at 24 and 72h the highest disturbance values. ROS denoted differences respect to the control at different times specially for OTA, while in binary combination only for few point times was denoted. Effects detected for ROS and LPO were connected with alterations detected for glutathione levels of oxidized and reduced form. A real scenario of consumers chronically exposed to different mycotoxins and their mixtures is here presented highlighting the good methodology to assess the risk from exposure to combinations of chemicals in food.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain.
| | - Saverio Carbone
- Laboratory of Food Chemistry, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Maissa Ben-Mahmoud
- Laboratoire Matériaux, Molécules et Applications, Institut Préparatoire Aux Etudes Scientifiques et Techniques, Tunisia Polytechnic School BP 51, La Marsa, 2070, Tunisia
| | - Gianni Sagratini
- Laboratory of Food Chemistry, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain
| |
Collapse
|
46
|
Rossi F, Gallo A, Bertuzzi T. Emerging mycotoxins in the food chain. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2020. [DOI: 10.3233/mnm-190345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Filippo Rossi
- Università Cattolica del Sacro Cuore, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Dipartimento DiANA, Sezione Scienze degli Alimenti e della Nutrizione, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Antonio Gallo
- Università Cattolica del Sacro Cuore, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Dipartimento DiANA, Sezione Scienze degli Alimenti e della Nutrizione, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Terenzio Bertuzzi
- Università Cattolica del Sacro Cuore, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Dipartimento DiANA, Sezione Scienze degli Alimenti e della Nutrizione, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
47
|
Tran VN, Viktorova J, Augustynkova K, Jelenova N, Dobiasova S, Rehorova K, Fenclova M, Stranska-Zachariasova M, Vitek L, Hajslova J, Ruml T. In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment. Toxins (Basel) 2020; 12:E148. [PMID: 32121188 PMCID: PMC7150870 DOI: 10.3390/toxins12030148] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins found in randomly selected commercial milk thistle dietary supplement were evaluated for their toxicity in silico and in vitro. Using in silico methods, the basic physicochemical, pharmacological, and toxicological properties of the mycotoxins were predicted using ACD/Percepta. The in vitro cytotoxicity of individual mycotoxins was determined in mouse macrophage (RAW 264.7), human hepatoblastoma (HepG2), and human embryonic kidney (HEK 293T) cells. In addition, we studied the bioavailability potential of mycotoxins and silibinin utilizing an in vitro transwell system with differentiated human colon adenocarcinoma cells (Caco-2) simulating mycotoxin transfer through the intestinal epithelial barrier. The IC50 values for individual mycotoxins in studied cells were in the biologically relevant ranges as follows: 3.57-13.37 nM (T-2 toxin), 5.07-47.44 nM (HT-2 toxin), 3.66-17.74 nM (diacetoxyscirpenol). Furthermore, no acute toxicity was obtained for deoxynivalenol, beauvericin, zearalenone, enniatinENN-A, enniatin-A1, enniatin-B, enniatin-B1, alternariol, alternariol-9-methyl ether, tentoxin, and mycophenolic acid up to the 50 nM concentration. The acute toxicity of these mycotoxins in binary combinations exhibited antagonistic effects in the combinations of T-2 with DON, ENN-A1, or ENN-B, while the rest showed synergistic or additive effects. Silibinin had a significant protective effect against both the cytotoxicity of three mycotoxins (T-2 toxin, HT-2 toxin, DAS) and genotoxicity of AME, AOH, DON, and ENNs on HEK 293T. The bioavailability results confirmed that AME, DAS, ENN-B, TEN, T-2, and silibinin are transported through the epithelial cell layer and further metabolized. The bioavailability of silibinin is very similar to mycotoxins poor penetration.
Collapse
Affiliation(s)
- Van Nguyen Tran
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Augustynkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Nikola Jelenova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Simona Dobiasova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Rehorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Libor Vitek
- First Faculty of Medicine, Charles University, Katerinska 32, 12108 Prague 2, Czech Republic;
- Faculty General Hospital, U Nemocnice 2, 12808 Praha 2, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| |
Collapse
|
48
|
Evaluation of cytotoxicity of nanolipid carriers with structured Buriti oil in the Caco-2 and HepG2 cell lines. Bioprocess Biosyst Eng 2020; 43:1105-1118. [PMID: 32076836 DOI: 10.1007/s00449-020-02308-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/04/2020] [Indexed: 01/27/2023]
Abstract
Buriti oil is rich in monounsaturated fatty acids, carotenoids and tocopherols and it is used for the treatment of various diseases. One strategy to restructure the triglycerides is enzymatic interesterification and nanocarriers have been employed to improve the solubility, bioavailability and stability of active compounds. This work aims to investigate the in vitro cytotoxicity of this structured oil in nanoemulsions and nanostructured lipid carriers to expand the applicability of the crude oil. None of the samples had a cytotoxic effect on Caco-2 and HepG2 cell lines at the concentrations tested. Structured lipids acted protecting against oxidative stress and lipid peroxidation. Additionally, no consumption of glutathione has been observed in both cells, and the compounds present in buriti oil are possibly acting as antioxidants. Thus, nanoparticles prepared with interesterified buriti oil had low cytotoxicity and high oxidative stability, with great potential for future applications.
Collapse
|
49
|
Deoxynivalenol-induced alterations in the redox status of HepG2 cells: identification of lipid hydroperoxides, the role of Nrf2-Keap1 signaling, and protective effects of zinc. Mycotoxin Res 2020; 36:287-299. [PMID: 32076947 DOI: 10.1007/s12550-020-00392-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/20/2023]
Abstract
Deoxynivalenol (DON) is a type B trichothecenes that is widely contaminating human and animal foods, leading to several toxicological implications if ingested. Induction of oxidative stress and production of lipid peroxides were suggested to be the reasons for DON-induced cytotoxicity. However, detailed and comprehensive profiling of DON-related lipid hydroperoxides was not identified. Furthermore, the mechanisms behind DON-induced cytotoxicity and oxidative stress have received less attention. Zinc (Zn) is an essential element that has antioxidant activities; however, the protective effects of Zn against DON-induced adverse effects were not examined. Therefore, this study was undertaken to investigate DON-induced cytotoxicity and oxidative damage to human HepG2 cell lines. Furthermore, a quantitative estimation for the formed lipid hydroperoxides was conducted using LC-MS/MS. In addition, DON-induced transcriptomic changes on the inflammatory markers and antioxidant enzymes were quantitatively examined using qPCR. The protective effects of Zn against DON-induced cytotoxicity and oxidative stress, the formation of lipid hydroperoxides (LPOOH), and antioxidant status in HepG2 cells were investigated. Finally, the effects of DON and Zn on the Nrf2-Keap1 pathway were further explored. The achieved results indicated that DON caused significant cytotoxicity in HepG2 cells accompanied by significant oxidative damage and induction of the inflammatory markers. Identification of DON-related LPOOH revealed the formation of 22 LPOOH species including 14 phosphatidylcholine hydroperoxides, 5 triacylglycerol hydroperoxides, and 3 cholesteryl ester hydroperoxides. DON caused significant downregulation of Nrf2-regulated antioxidant enzymes. Zn administration led to significant protection of HepG2 cells against DON-induced adverse effects, probably via activation of the Nrf2-Keap1 pathway.
Collapse
|
50
|
Sterigmatocystin-induced cytotoxicity via oxidative stress induction in human neuroblastoma cells. Food Chem Toxicol 2020; 136:110956. [DOI: 10.1016/j.fct.2019.110956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 11/22/2022]
|