1
|
Gu S, Lu F, Gao Z, Zhou Y, Xiao Y, Bao W, Wang H. Transcriptomics and metabolomics analyses of graphene oxide toxicity on porcine alveolar macrophages. Toxicology 2024; 509:153953. [PMID: 39265697 DOI: 10.1016/j.tox.2024.153953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Graphene oxide (GO) is a type of nanomaterial widely used in tissue engineering, photocatalysis, and biomedicine. GO has been found to produce adverse effects on a broad range of cells and tissues. However, the molecular mechanisms underlying GO toxicity still remain to be explored. In this study, using porcine alveolar macrophages as a study model, we explored the toxic effects of GO and performed genome-wide detection of genes and metabolites associated with GO exposure using RNA-seq and liquid chromatograph mass spectrometer techniques. GO exposure significantly inhibited cell viability and induced apoptosis and oxidative stress in porcine alveolar macrophages. Further, GO exposure promoted cellular inflammation by upregulating the expression of pro-inflammatory cytokines (IL-6, IL-8, and IL-12). Transcriptomic analysis of GO-exposed cells revealed 424 differentially expressed genes. Functional enrichment analysis showed that the differentially expressed genes were significantly enriched in the pathways of Ribosome and oxidative phosphorylation (OXPHOS). In addition, metabolic analysis identified 203 differential metabolites, and these metabolites were significantly enriched in biosynthesis of cofactors, purine metabolism, and nucleotide metabolism. Integrative analyses of transcriptome and metabolome showed that OXPHOS was the most significantly enriched pathway and the involved genes were downregulated. This study revealed the toxic effects of GO on porcine alveolar macrophages and provided global insights to the metabolomic and transcriptomic alterations related to GO exposure. The results contributed to our understanding of the molecular mechanism of GO, and may further promote the detection of biomarkers for the prediction and control of GO toxicity.
Collapse
Affiliation(s)
- Shanshen Gu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fan Lu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhongcheng Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yajing Zhou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yeyi Xiao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Piyush G, Kalyan SS, Aparna UP, Khyati G, Basawaraj B. Effects of novel additives on the mechanical and Biological properties of glass ionomer cement: An in vitro study. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:503-507. [PMID: 38939535 PMCID: PMC11205172 DOI: 10.4103/jcde.jcde_81_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 06/29/2024]
Abstract
Aim To evaluate the efficacy of incorporated novel additives in Glass Ionomer Cement to ameliorate biocompatibility and mechanical properties. Introduction Though Glass Ionomer Cement (GIC) has multiple advantages, it is not strong enough for medical applications, and its biocompatibility is questionable. To improve biocompatibility and its mechanical properties, a study was performed to investigate the potential benefits of adding graphene, carbon nanotubes, hydroxyapatite, and bioactive glass to GIC. The objective was to enhance both the mechanical properties and biocompatibility of GIC. Material and Method Modified Glass Ionomer Cement was prepared by creating five groups. Hydroxyapatite, multi-walled carbon nanotubes, graphene, and bioactive glass were incorporated in a 10:1 weight ratio, respectively. Group 5 was designated as the control group and used Fuji Type II GIC. After preparing 90 samples, they were kept in deionized water for a day and then evaluated their compressive strength, microhardness, and diametral tensile strength, and also checked their in vitro cytotoxicity by direct contact with L929 mammalian fibroblast cells. Statistical Analysis The data were examined using mean and standard deviation descriptive statistics. The comparative evaluation was done via Tukey HSD test and one-way ANOVA using S.P.S.S. software. Result It showed that Group 3 had better results in compressive strength (144.478+- 3.989), diametral tensile strength (20.29+- 0.8601), and microhardness (131+-3.536) when compared with other groups while in the biocompatibility (viability %) Group 1 [82.55], Group 3 [76.49], Group 4 [87.63], while Group 2[58.02]. Conclusion Group 3 has better physical properties in microhardness, diametral tensile strength, and compressive strength, than the other groups. In Biocompatibility, Group 1, Group 3, Group 4, and Group 5 were noncytotoxic at the same time multi-walled carbon nanotubes group (Group 2) had cytotoxic potential.
Collapse
Affiliation(s)
- Gupta Piyush
- Department of Conservative Dentistry and Endodontics, BhaBha Dental College, Bhopal, Madhya Pradesh, India
| | - S. Sai Kalyan
- Director, Prevest Research Institute, Prevest Denpro Limited, Jammu, India
| | - U. Palekar Aparna
- Department of Conservative Dentistry and Endodontics, Rural Dental College, PIMS loni, Wardha, Maharashtra, India
| | - Gupta Khyati
- Department of Orthodontics and Dentofacial Orthopedics, Sharad Pawar Dental College, DMIHER, Wardha, Maharashtra, India
| | - Biradar Basawaraj
- Department of Conservative Dentistry and Endodontics, Rural Dental College, PIMS loni, Wardha, Maharashtra, India
| |
Collapse
|
3
|
Ahamed M, Akhtar MJ, Alhadlaq HA. Combined effect of single-walled carbon nanotubes and cadmium on human lung cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87844-87857. [PMID: 35821329 DOI: 10.1007/s11356-022-21933-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Co-exposure of widely used single-walled carbon nanotubes (SWCNTs) and ubiquitous cadmium (Cd) to humans through ambient air is unavoidable. Studies on joint toxicity of SWCNTs and Cd in human cells are scarce. We aimed to investigate the joint effects of SWCNTs and Cd in human lung epithelial (A549) cells. Results showed that SWCNTs were safe while Cd induce significant toxicity to A549 cells. Remarkably, Cd-induced cell viability reduction, lactate dehydrogenase leakage, cell cycle arrest, dysregulation of apoptotic gene (p53, bax, bcl-2, casp3, and casp9), and mitochondrial membrane potential depletion were significantly mitigated following SWCNTs co-exposure. Cd-induced intracellular level of reactive oxygen species, hydrogen peroxide, and lipid peroxidation were significantly attenuated by SWCNT co-exposure. Moreover, glutathione depletion and lower activity of antioxidant enzymes after Cd exposure were also effectively abrogated by co-exposure of SWCNTs. Inductively coupled plasma-mass spectrometry study indicated that higher adsorption of Cd on SCWNTs might decreased cellular uptake and the toxic potential of Cd in A549 cells. Our work warranted further research to explore the potential mechanism of joint effects of SWCNTs and Cd at in vivo levels.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Ince Yardimci A, Istifli ES, Acikbas Y, Liman R, Yagmucukardes N, Yilmaz S, Ciğerci İH. Synthesis and characterization of single-walled carbon nanotube: Cyto-genotoxicity in Allium cepa root tips and molecular docking studies. Microsc Res Tech 2022; 85:3193-3206. [PMID: 35678501 DOI: 10.1002/jemt.24177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/11/2022]
Abstract
Herein, single-walled carbon nanotubes (SWCNTs) were synthesized by the thermal chemical vapor deposition (CVD) method, and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), Raman spectroscopy, dynamic light scattering (DLS), and thermo-gravimetric analysis (TGA). The results indicated that obtained nanotubes were SWCNTs with high crystallinity and their average diameter was 10.15 ± 3 nm. Allium cepa ana-telophase and comet assays on the root meristem were employed to evaluate the cytotoxic and genotoxic effects of SWCNTs by examining mitotic phases, mitotic index (MI), chromosomal aberrations (CAs), and DNA damage. A. cepa root tip cells were exposed to SWCNTs at concentrations of 12.5, 25, 50, and 100 μg/ml for 4 h. Distilled water and methyl methanesulfonate (MMS, 10 μg/ml) were used as the negative and positive control groups, respectively. It was observed that MIs decreased statistically significantly for all applied doses. Besides, CAs such as chromosome laggards, disturbed anaphase-telophase, stickiness and bridges and also DNA damage increased in the presence of SWCNTs in a concentration-dependent manner. In the molecular docking study, the SWCNT were found to be a strong DNA major groove binder showing an energetically very favorable binding free energy of -21.27 kcal/mol. Furthermore, the SWCNT interacted effectively with the nucleotides on both strands of DNA primarily via hydrophobic π and electrostatic interactions. As a result, cytotoxic and genotoxic effects of SWCNTs in A. cepa root meristematic cells which is a reliable system for assessment of nanoparticle toxicology were demonstrated in this study.
Collapse
Affiliation(s)
| | - Erman Salih Istifli
- Department of Biology, Faculty of Science and Literature, Cukurova University, Adana, Turkey
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Usak University, Usak, Turkey
| | - Recep Liman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Usak University, Usak, Turkey
| | - Nesli Yagmucukardes
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Usak University, Usak, Turkey
| | - Selahattin Yilmaz
- Department of Chemical Engineering, Izmir Institute of Technology, Izmir, Turkey
| | - İbrahim Hakkı Ciğerci
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
5
|
Amin F, Rahman S, Khurshid Z, Zafar MS, Sefat F, Kumar N. Effect of Nanostructures on the Properties of Glass Ionomer Dental Restoratives/Cements: A Comprehensive Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6260. [PMID: 34771787 PMCID: PMC8584882 DOI: 10.3390/ma14216260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022]
Abstract
Overall perspective of nanotechnology and reinforcement of dental biomaterials by nanoparticles has been reported in the literature. However, the literature regarding the reinforcement of dental biomaterials after incorporating various nanostructures is sparse. The present review addresses current developments of glass ionomer cements (GICs) after incorporating various metallic, polymeric, inorganic and carbon-based nanostructures. In addition, types, applications, and implications of various nanostructures incorporated in GICs are discussed. Most of the attempts by researchers are based on the laboratory-based studies; hence, it warrants long-term clinical trials to aid the development of suitable materials for the load bearing posterior dentition. Nevertheless, a few meaningful conclusions are drawn from this substantial piece of work; they are as follows: (1) most of the nanostructures are likely to enhance the mechanical strength of GICs; (2) certain nanostructures improve the antibacterial activity of GICs against the cariogenic bacteria; (3) clinical translation of these promising outcomes are completely missing, and (4) the nanostructured modified GICs could perform better than their conventional counterparts in the load bearing posterior dentition.
Collapse
Affiliation(s)
- Faiza Amin
- Science of Dental Materials Department, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Sehrish Rahman
- Science of Dental Materials Department, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan; (S.R.); (N.K.)
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK;
| | - Naresh Kumar
- Science of Dental Materials Department, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan; (S.R.); (N.K.)
| |
Collapse
|
6
|
Saleemi MA, Hosseini Fouladi M, Yong PVC, Chinna K, Palanisamy NK, Wong EH. Toxicity of Carbon Nanotubes: Molecular Mechanisms, Signaling Cascades, and Remedies in Biomedical Applications. Chem Res Toxicol 2020; 34:24-46. [PMID: 33319996 DOI: 10.1021/acs.chemrestox.0c00172] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbon nanotubes (CNTs) are the most studied allotropic form of carbon. They can be used in various biomedical applications due to their novel physicochemical properties. In particular, the small size of CNTs, with a large surface area per unit volume, has a considerable impact on their toxicity. Despite of the use of CNTs in various applications, toxicity is a big problem that requires more research. In this Review, we discuss the toxicity of CNTs and the associated mechanisms. Physicochemical factors, such as metal impurities, length, size, solubilizing agents, CNTs functionalization, and agglomeration, that may lead to oxidative stress, toxic signaling pathways, and potential ways to control these mechanisms are also discussed. Moreover, with the latest mechanistic evidence described in this Review, we expect to give new insights into CNTs' toxicological effects at the molecular level and provide new clues for the mitigation of harmful effects emerging from exposure to CNTs.
Collapse
Affiliation(s)
- Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Mohammad Hosseini Fouladi
- School of Engineering, Faculty of Innovation and Technology, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Phelim Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Karuthan Chinna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Navindra Kumari Palanisamy
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000 Sungai Buloh, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
7
|
Ahamed M, Akhtar MJ, Khan MAM. Single-Walled Carbon Nanotubes Attenuate Cytotoxic and Oxidative Stress Response of Pb in Human Lung Epithelial (A549) Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8221. [PMID: 33172159 PMCID: PMC7664418 DOI: 10.3390/ijerph17218221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Combined exposure of single-walled carbon nanotubes (SWCNTs) and trace metal lead (Pb) in ambient air is unavoidable. Most of the previous studies on the toxicity of SWCNTs and Pb have been conducted individually. There is a scarcity of information on the combined toxicity of SWCNTs and Pb in human cells. This work was designed to explore the combined effects of SWCNTs and Pb in human lung epithelial (A549) cells. SWCNTs were prepared through the plasma-enhanced vapor deposition technique. Prepared SWCNTs were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, and dynamic light scattering. We observed that SWCNTs up to a concentration of 100 µg/mL was safe, while Pb induced dose-dependent (5-100 µg/mL) cytotoxicity in A549 cells. Importantly, cytotoxicity, cell cycle arrest, mitochondrial membrane potential depletion, lipid peroxidation, and induction of caspase-3 and -9 enzymes following Pb exposure (50 µg/mL for 24 h) were efficiently attenuated by the co-exposure of SWCNTs (10 µg/mL for 24 h). Furthermore, generation of Pb-induced pro-oxidants (reactive oxygen species and hydrogen peroxide) and the reduction of antioxidants (antioxidant enzymes and glutathione) were also mitigated by the co-exposure of SWCNTs. Inductively coupled plasma-mass spectrometry results suggest that the adsorption of Pb on the surface of SWCNTs could attenuate the bioavailability and toxicity of Pb in A549 cells. Our data warrant further research on the combined effects of SWCNTs and Pb in animal models.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.)
| | | | | |
Collapse
|
8
|
Saltepe B, Bozkurt EU, Hacıosmanoğlu N, Şeker UÖŞ. Genetic Circuits To Detect Nanomaterial Triggered Toxicity through Engineered Heat Shock Response Mechanism. ACS Synth Biol 2019; 8:2404-2417. [PMID: 31536326 DOI: 10.1021/acssynbio.9b00291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biocompatibility assessment of nanomaterials has been of great interest due to their potential toxicity. However, conventional biocompatibility tests fall short of providing a fast toxicity report. We developed a whole cell based biosensor to track biocompatibility of nanomaterials with the aim of providing fast feedback to engineer them with lower toxicity levels. We engineered promoters of four heat shock response (HSR) proteins utilizing synthetic biology approaches. As an initial design, a reporter coding gene was cloned downstream of the selected promoter regions. Initial results indicated that native heat shock protein (HSP) promoter regions were not very promising to generate signals with low background signals. Introducing riboregulators to native promoters eliminated unwanted background signals almost entirely. Yet, this approach also led to a decrease in expected sensor signal upon stress treatment. Thus, a repression based genetic circuit, inspired by the HSR mechanism of Mycobacterium tuberculosis, was constructed. These genetic circuits could report the toxicity of quantum dot nanoparticles in 1 h. Our designed nanoparticle toxicity sensors can provide quick reports, which can lower the demand for additional experiments with more complex organisms.
Collapse
Affiliation(s)
- Behide Saltepe
- UNAM−Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Eray Ulaş Bozkurt
- UNAM−Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Nedim Hacıosmanoğlu
- UNAM−Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM−Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
9
|
Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A, Farabaugh CS, Kenny J, Manjanatha M, Mahadevan B, Moore MM, Ouédraogo G, Stankowski LF, Tanir JY. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol Sci 2019; 164:391-416. [PMID: 29701824 DOI: 10.1093/toxsci/kfy100] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.
Collapse
Affiliation(s)
- Rosalie Elespuru
- Division of Biology, Chemistry and Materials Science, US Food and Drug Administration, CDRH/OSEL, Silver Spring, Maryland 20993
| | - Stefan Pfuhler
- The Procter & Gamble Company, Mason Business Centre, Mason, Ohio 45040
| | | | - Tao Chen
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Ann Doherty
- Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca Genetic Toxicology, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Julia Kenny
- Genetic Toxicology & Photosafety, David Jack Centre for Research & Development, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, UK
| | - Mugimane Manjanatha
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Brinda Mahadevan
- Global Pre-clinical Development Innovation & Development, Established Pharmaceuticals, Abbott, Mumbai 400072, India
| | | | | | | | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute (HESI), Washington, District of Columbia 20005
| |
Collapse
|
10
|
Nahle S, Safar R, Grandemange S, Foliguet B, Lovera-Leroux M, Doumandji Z, Le Faou A, Joubert O, Rihn B, Ferrari L. Single wall and multiwall carbon nanotubes induce different toxicological responses in rat alveolar macrophages. J Appl Toxicol 2019; 39:764-772. [PMID: 30605223 PMCID: PMC6590492 DOI: 10.1002/jat.3765] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023]
Abstract
Human exposure to airborne carbon nanotubes (CNT) is increasing because of their applications in different sectors; therefore, they constitute a biological hazard. Consequently, developing studies on CNT toxicity become a necessity. CNTs can have different properties in term of length, size and charge. Here, we compared the cellular effect of multiwall (MWCNTs) and single wall CNTs (SWCNTs). MWCNTs consist of multiple layers of graphene, while SWCNTs are monolayers. The effects of MWCNTs and SWCNTs were evaluated by the water-soluble tetrazolium salt cell proliferation assay on NR8383 cells, rat alveolar macrophage cell line (NR8383). After 24 hours of exposure, MWCNTs showed higher toxicity (50% inhibitory concentration [IC50 ] = 3.2 cm2 /cm2 ) than SWCNTs (IC50 = 44 cm2 /cm2 ). Only SWCNTs have induced NR8383 cells apoptosis as assayed by flow cytometry using the annexin V/IP staining test. The expression of genes involved in oxidative burst (Ncf1), inflammation (Nfκb, Tnf-α, Il-6 and Il-1β), mitochondrial damage (Opa) and apoptotic balance (Pdcd4, Bcl-2 and Casp-8) was determined. We found that MWCNT exposure predominantly induce inflammation, while SWCNTs induce apoptosis and impaired mitochondrial function. Our results clearly suggest that MWCNTs are ideal candidates for acute inflammation induction. In vivo studies are required to confirm this hypothesis. However, we conclude that toxicity of CNTs is dependent on their physical and chemical characteristics.
Collapse
Affiliation(s)
- Sara Nahle
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Ramia Safar
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Stéphanie Grandemange
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Bernard Foliguet
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Mélanie Lovera-Leroux
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Zahra Doumandji
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Alain Le Faou
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Olivier Joubert
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Bertrand Rihn
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Luc Ferrari
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| |
Collapse
|
11
|
Kuempel ED, Jaurand MC, Møller P, Morimoto Y, Kobayashi N, Pinkerton KE, Sargent LM, Vermeulen RCH, Fubini B, Kane AB. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol 2017; 47:1-58. [PMID: 27537422 PMCID: PMC5555643 DOI: 10.1080/10408444.2016.1206061] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based on the animal data. In this paper, we provide an extended, in-depth examination of the in vivo and in vitro experimental studies according to current hypotheses on the carcinogenicity of inhaled particles and fibers. We cite additional studies of CNTs that were not available at the time of the IARC meeting in October 2014, and extend our evaluation to include carbon nanofibers (CNFs). Finally, we identify key data gaps and suggest research needs to reduce uncertainty. The focus of this review is on the cancer risk to workers exposed to airborne CNT or CNF during the production and use of these materials. The findings of this review, in general, affirm those of the original evaluation on the inadequate or limited evidence of carcinogenicity for most types of CNTs and CNFs at this time, and possible carcinogenicity of one type of CNT (MWCNT-7). The key evidence gaps to be filled by research include: investigation of possible associations between in vitro and early-stage in vivo events that may be predictive of lung cancer or mesothelioma, and systematic analysis of dose-response relationships across materials, including evaluation of the influence of physico-chemical properties and experimental factors on the observation of nonmalignant and malignant endpoints.
Collapse
Affiliation(s)
- Eileen D Kuempel
- a National Institute for Occupational Safety and Health , Cincinnati , OH , USA
| | - Marie-Claude Jaurand
- b Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche , UMR 1162 , Paris , France
- c Labex Immuno-Oncology, Sorbonne Paris Cité, University of Paris Descartes , Paris , France
- d University Institute of Hematology, Sorbonne Paris Cité, University of Paris Diderot , Paris , France
- e University of Paris 13, Sorbonne Paris Cité , Saint-Denis , France
| | - Peter Møller
- f Department of Public Health , University of Copenhagen , Copenhagen , Denmark
| | - Yasuo Morimoto
- g Department of Occupational Pneumology , University of Occupational and Environmental Health , Kitakyushu City , Japan
| | | | - Kent E Pinkerton
- i Center for Health and the Environment, University of California , Davis , California , USA
| | - Linda M Sargent
- j National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Roel C H Vermeulen
- k Institute for Risk Assessment Sciences, Utrecht University , Utrecht , The Netherlands
| | - Bice Fubini
- l Department of Chemistry and "G.Scansetti" Interdepartmental Center , Università degli Studi di Torino , Torino , Italy
| | - Agnes B Kane
- m Department of Pathology and Laboratory Medicine , Brown University , Providence , RI , USA
| |
Collapse
|
12
|
Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines. Int J Mol Sci 2016; 17:ijms17121995. [PMID: 27916824 PMCID: PMC5187795 DOI: 10.3390/ijms17121995] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/11/2016] [Accepted: 11/23/2016] [Indexed: 01/11/2023] Open
Abstract
Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.
Collapse
|
13
|
Patlolla AK, Patra PK, Flountan M, Tchounwou PB. Cytogenetic evaluation of functionalized single-walled carbon nanotube in mice bone marrow cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1091-102. [PMID: 25689286 PMCID: PMC4539296 DOI: 10.1002/tox.22118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/13/2015] [Accepted: 01/24/2015] [Indexed: 05/11/2023]
Abstract
With their unique structure and physicochemical properties, single\-walled carbon nanotubes (SWCNTs) have many potential new applications in medicine and industry. However, there is lack of detailed information concerning their impact on human health and the environment. The aim of this study was to assess the effects, after intraperitoneal injection of functionalized SWCNTs (f-SWCNT) on the induction of reactive oxygen species (ROS), frequency of structural chromosomal aberrations (SCA), frequency of micronuclei induction, mitotic index, and DNA damage in Swiss-Webster mice. Three doses of f-SWCNTs (0.25, 0.5, and 0.75 mg/kg) and two controls (negative and positive) were administered to mice, once a day for 5 days. Bone marrow and peripheral blood samples were collected 24 h after the last treatment following standard protocols. F-SWCNT exposure significantly enhanced ROS, increased (p < 0.05) the number of SCA and the frequency of micronucleated cells, increased DNA damage, and decreased the mitotic index in exposed groups compared to negative control. The scientific findings reported here suggest that purified f-SWCNT have the potential to induce oxidative stress mediated genotoxicity in Swiss-Webster mice at higher level of exposure. Further characterization of their systemic toxicity, genotoxicity, and carcinogenicity is also essential. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1091-1102, 2016.
Collapse
Affiliation(s)
- Anita K. Patlolla
- Department of Biology College of Science Engineering and
Technology, Jackson State University, Jackson, MS, USA
- NIH-RCMI Center for Environmental Health, College of Science
Engineering and Technology, Jackson State University, Jackson, MS, USA
- Author to whom correspondence should be addressed;
; Tel.: +1-601-979-0210; Fax:
+1-601-979-5853
| | - Prabir K. Patra
- Department of Biomedical Engineering, School of Engineering,
University of Bridgeport, 126 Park Avenue, Bridgeport, CT 06604
- Department of Mechanical Engineering, School of Engineering,
University of Bridgeport, 126 Park Avenue, Bridgeport, CT 06604
| | - Moyesha Flountan
- Department of Biology College of Science Engineering and
Technology, Jackson State University, Jackson, MS, USA
| | - Paul B. Tchounwou
- Department of Biology College of Science Engineering and
Technology, Jackson State University, Jackson, MS, USA
- NIH-RCMI Center for Environmental Health, College of Science
Engineering and Technology, Jackson State University, Jackson, MS, USA
| |
Collapse
|
14
|
Dönmez Güngüneş Ç, Şeker Ş, Elçin AE, Elçin YM. A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles. Drug Chem Toxicol 2016; 40:215-227. [PMID: 27424666 DOI: 10.1080/01480545.2016.1199563] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present study was designed to evaluate and compare the time- and dose-dependent cellular response of human periodontal ligament fibroblasts (hPDLFs), and mouse dermal fibroblasts (mDFs) to three different types of nanoparticles (NPs); fullerenes (C60), single walled carbon nanotubes (SWCNTs) and iron (II,III) oxide (Fe3O4) nanoparticles via in vitro toxicity methods, and impedance based biosensor system. NPs were characterized according to their morphology, structure, surface area, particle size distribution and zeta potential by using transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, dynamic light scattering and zeta sizer analyses. The Mössbauer spectroscopy was used in order to magnetically characterize the Fe3O4 NPs. The hPDLFs and mDFs were exposed to different concentrations of the NPs (0.1, 1, 10, 50 and 100 μg/mL) for predetermined time intervals (6, 24 and 48 h) under controlled conditions. Subsequently, NP exposed cells were tested for viability, membrane leakage and generation of intracellular reactive oxygen species. Additional to in vitro cytotoxicity assays, the cellular responses to selected NPs were determined in real time using an impedance based biosensor system. Taken together, information obtained from all experiments suggests that toxicity of the selected NPs is cell type, concentration and time dependent.
Collapse
Affiliation(s)
- Çiğdem Dönmez Güngüneş
- a Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara University Stem Cell Institute , Ankara , Turkey and.,b Faculty of Arts and Sciences , Chemistry Department, Hitit University , Çorum , Turkey
| | - Şükran Şeker
- a Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara University Stem Cell Institute , Ankara , Turkey and
| | - Ayşe Eser Elçin
- a Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara University Stem Cell Institute , Ankara , Turkey and
| | - Yaşar Murat Elçin
- a Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara University Stem Cell Institute , Ankara , Turkey and
| |
Collapse
|
15
|
Biocompatibility assessment of fibrous nanomaterials in mammalian embryos. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1151-9. [DOI: 10.1016/j.nano.2016.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/04/2015] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
|
16
|
Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. J Med Chem 2016; 59:8149-67. [DOI: 10.1021/acs.jmedchem.5b01770] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Reem Alshehri
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Asad Muhammad Ilyas
- Center of Excellence in Genomic Medical Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Engineering and Department of Mechanical Engineering,
Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
- Biomaterials
Innovation Research Center, Division of Biomedical Engineering, Department
of Medicine, Brigham and Women’s Hospital, Harvard Medical
School, Boston Massachusetts 02115, United States
| | - Adnan Arnaout
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Farid Ahmed
- Center of Excellence in Genomic Medical Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
17
|
Eldridge BN, Bernish BW, Fahrenholtz CD, Singh R. Photothermal therapy of glioblastoma multiforme using multiwalled carbon nanotubes optimized for diffusion in extracellular space. ACS Biomater Sci Eng 2016; 2:963-976. [PMID: 27795996 DOI: 10.1021/acsbiomaterials.6b00052] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and most lethal primary brain tumor with a 5 year overall survival rate of approximately 5%. Currently, no therapy is curative and all have significant side effects. Focal thermal ablative therapies are being investigated as a new therapeutic approach. Such therapies can be enhanced using nanotechnology. Carbon nanotube mediated thermal therapy (CNMTT) uses lasers that emit near infrared radiation to excite carbon nanotubes (CNTs) localized to the tumor to generate heat needed for thermal ablation. Clinical translation of CNMTT for GBM will require development of effective strategies to deliver CNTs to tumors, clear structure-activity and structure-toxicity evaluation, and an understanding of the effects of inherent and acquired thermotolerance on the efficacy of treatment. In our studies, we show that a dense coating of phospholipid-poly(ethylene glycol) on multiwalled CNTs (MWCNTS) allows for better diffusion through brain phantoms, while maintaining the ability to achieve ablative temperatures after laser exposure. Phospholipid-poly(ethylene glycol) coated MWCNTs do not induce a heat shock response (HSR) in GBM cell lines. Activation of the HSR in GBM cells via exposure to sub-ablative temperatures or short term treatment with an inhibitor of heat shock protein 90 (17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG)), induces a protective heat shock response that results in thermotolerance and protects against CNMTT. Finally, we evaluate the potential for CNMTT to treat GBM multicellular spheroids. These data provide pre-clinical insight into key parameters needed for translation of CNMTT including nanoparticle delivery, cytotoxicity, and efficacy for treatment of thermotolerant GBM.
Collapse
Affiliation(s)
- Brittany N Eldridge
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC, 27157, USA
| | - Brian W Bernish
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC, 27157, USA
| | - Cale D Fahrenholtz
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC, 27157, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center of Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA
| |
Collapse
|
18
|
Sinha M, Gollavelli G, Ling YC. Exploring the photothermal hot spots of graphene in the first and second biological window to inactivate cancer cells and pathogens. RSC Adv 2016. [DOI: 10.1039/c6ra10685d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Study of the photothermal capability and inactivation of cancer cells and pathogens by biocompatible RGOPAA under the first and second biological window.
Collapse
Affiliation(s)
- Madhulika Sinha
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Ganesh Gollavelli
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Yong-Chien Ling
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
- Institute of NanoEngineering and MicroSystems
| |
Collapse
|
19
|
Simkó M, Tischler S, Mattsson MO. Pooling and Analysis of Published in Vitro Data: A Proof of Concept Study for the Grouping of Nanoparticles. Int J Mol Sci 2015; 16:26211-36. [PMID: 26540047 PMCID: PMC4661813 DOI: 10.3390/ijms161125954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/23/2015] [Accepted: 10/20/2015] [Indexed: 12/20/2022] Open
Abstract
The study aim was to test the applicability of pooling of nanomaterials-induced in vitro data for identifying the toxic capacity of specific (SiO₂, TiO₂, ZnO, CuO, CeO₂ and carbon nanotubes, [CNT]) nanoparticles (NP) and to test the usefulness for grouping purposes. Publication selection was based on specific criteria regarding experimental conditions. Two relevant biological endpoints were selected; generation of intracellular reactive oxygen species (ROS) and viability above 90%. The correlations of the ROS ratios with the NP parameters' size, concentration, and exposure time were analysed. The obtained data sets were then analysed with multiple regression analysis of variance (ANOVA) and the Tukey post-hoc test. The results show that this method is applicable for the selected metal oxide NP, but might need reconsideration and a larger data set for CNT. Several statistically significant correlations and results were obtained, thus validating the method. Furthermore, the relevance of the combination of ROS release with a cell viability test was shown. The data also show that it is advisable to compare ROS production of professional phagocytic with non-phagocytic cells. In conclusion, this is the first systematic analysis showing that pooling of available data into groups is a useful method for evaluation of data regarding NP induced toxicity in vitro.
Collapse
Affiliation(s)
- Myrtill Simkó
- Health & Environment Department, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln 3430, Austria.
| | - Sonja Tischler
- Health & Environment Department, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln 3430, Austria.
| | - Mats-Olof Mattsson
- Health & Environment Department, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln 3430, Austria.
| |
Collapse
|
20
|
Srivastava V, Gusain D, Sharma YC. Critical Review on the Toxicity of Some Widely Used Engineered Nanoparticles. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01610] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Varsha Srivastava
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| | - Deepak Gusain
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| | - Yogesh Chandra Sharma
- Department of Chemistry,
Green Chemistry and Renewable Energy Laboratories, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi 221005, India
| |
Collapse
|
21
|
Araújo F, Shrestha N, Granja PL, Hirvonen J, Santos HA, Sarmento B. Safety and toxicity concerns of orally delivered nanoparticles as drug carriers. Expert Opin Drug Metab Toxicol 2014; 11:381-93. [PMID: 25495133 DOI: 10.1517/17425255.2015.992781] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The popularity of nanotechnology is increasing and revolutionizing extensively the drug delivery field. Nanoparticles, as carriers for oral delivery of drugs, have been claimed as the perfect candidates to overcome the poor bioavailability of most of the drugs by improving their solubility and/or permeability across biological barriers. However, this is still a promise to be fulfilled. AREAS COVERED In this review, several nanosystems used as oral drug carriers are described along with their toxicological profiles. A number of nanoparticles based on different types of materials such as polymers, lipids, silica, silicon, carbon and metals are reviewed. Both in vitro and in vivo-based toxicological studies are discussed in this paper. EXPERT OPINION Toxicological concerns have been raised in the past few years regarding the safety of the developed nanosystems. Assuming that most of the materials used are biocompatible and biodegradable, the toxicity caused by them when formulated into nanoparticles is usually neglected by the scientific community, existing only a few number of studies that approach the toxicity of the nanosystems. This is particularly important, because the materials that composed of the nanoparticles as well as their features such as size, charge and surface properties, will influence their pharmacokinetics after oral administration.
Collapse
Affiliation(s)
- Francisca Araújo
- Universidade do Porto, INEB - Instituto de Engenharia Biomédica, Biocarrier Group , Rua do Campo Alegre, 823, 4150-180 Porto , Portugal
| | | | | | | | | | | |
Collapse
|
22
|
Mrakovcic M, Meindl C, Leitinger G, Roblegg E, Fröhlich E. Carboxylated short single-walled carbon nanotubes but not plain and multi-walled short carbon nanotubes show in vitro genotoxicity. Toxicol Sci 2014; 144:114-27. [PMID: 25505129 DOI: 10.1093/toxsci/kfu260] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Long carbon nanotubes (CNTs) resemble asbestos fibers due to their high length to diameter ratio and they thus have genotoxic effects. Another parameter that might explain their genotoxic effects is contamination with heavy metal ions. On the other hand, short (1-2 µm) CNTs do not resemble asbestos fibers, and, once purified from contaminations, they might be suitable for medical applications. To identify the role of fiber thickness and surface properties on genotoxicity, well-characterized short pristine and carboxylated single-walled (SCNTs) and multi-walled (MCNTs) CNTs of different diameters were studied for cytotoxicity, the cell's response to oxidative stress (immunoreactivity against hemoxygenase 1 and glutathione levels), and in a hypoxanthine guanine phosphoribosyltransferase (HPRT) assay using V79 chinese hamster fibroblasts and human lung adenocarcinoma A549 cells. DNA repair was demonstrated by measuring immunoreactivity against activated histone H2AX protein. The number of micronuclei as well as the number of multinucleated cells was determined. CNTs acted more cytotoxic in V79 than in A549 cells. Plain and carboxylated thin (<8 nm) SCNTs and MCNTs showed greater cytotoxic potential and carboxylated CNTs showed indication for generating oxidative stress. Multi-walled CNTs did not cause HPRT mutation, micronucleus formation, DNA damage, interference with cell division, and oxidative stress. Carboxylated, but not plain, SCNTs showed indication for in vitro DNA damage according to increase of H2AX-immunoreactive cells and HPRT mutation. Although short CNTs presented a low in vitro genotoxicity, functionalization of short SCNTs can render these particles genotoxic.
Collapse
Affiliation(s)
- Maria Mrakovcic
- *Center for Medical Research, Medical University of Graz; Institute for Cell Biology, Histology and Embryology, Medical University of Graz; and Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, 8010 Graz, Austria
| | - Claudia Meindl
- *Center for Medical Research, Medical University of Graz; Institute for Cell Biology, Histology and Embryology, Medical University of Graz; and Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, 8010 Graz, Austria
| | - Gerd Leitinger
- *Center for Medical Research, Medical University of Graz; Institute for Cell Biology, Histology and Embryology, Medical University of Graz; and Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, 8010 Graz, Austria *Center for Medical Research, Medical University of Graz; Institute for Cell Biology, Histology and Embryology, Medical University of Graz; and Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, 8010 Graz, Austria
| | - Eva Roblegg
- *Center for Medical Research, Medical University of Graz; Institute for Cell Biology, Histology and Embryology, Medical University of Graz; and Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, 8010 Graz, Austria
| | - Eleonore Fröhlich
- *Center for Medical Research, Medical University of Graz; Institute for Cell Biology, Histology and Embryology, Medical University of Graz; and Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, 8010 Graz, Austria
| |
Collapse
|
23
|
Abstract
Carbon nanotubes (CNTs) are an important class of nanomaterials, which have numerous novel properties that make them useful in technology and industry. Generally, there are two types of CNTs: single-walled nanotubes (SWNTs) and multi-walled nanotubes. SWNTs, in particular, possess unique electrical, mechanical, and thermal properties, allowing for a wide range of applications in various fields, including the electronic, computer, aerospace, and biomedical industries. However, the use of SWNTs has come under scrutiny, not only due to their peculiar nanotoxicological profile, but also due to the forecasted increase in SWNT production in the near future. As such, the risk of human exposure is likely to be increased substantially. Yet, our understanding of the toxicological risk of SWNTs in human biology remains limited. This review seeks to examine representative data on the nanotoxicity of SWNTs by first considering how SWNTs are absorbed, distributed, accumulated and excreted in a biological system, and how SWNTs induce organ-specific toxicity in the body. The contradictory findings of numerous studies with regards to the potential hazards of SWNT exposure are discussed in this review. The possible mechanisms and molecular pathways associated with SWNT nanotoxicity in target organs and specific cell types are presented. We hope that this review will stimulate further research into the fundamental aspects of CNTs, especially the biological interactions which arise due to the unique intrinsic characteristics of CNTs.
Collapse
|
24
|
Møller P, Christophersen DV, Jensen DM, Kermanizadeh A, Roursgaard M, Jacobsen NR, Hemmingsen JG, Danielsen PH, Cao Y, Jantzen K, Klingberg H, Hersoug LG, Loft S. Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol 2014; 88:1939-64. [DOI: 10.1007/s00204-014-1356-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/28/2014] [Indexed: 01/19/2023]
|
25
|
Kim JS, Yu IJ. Single-wall carbon nanotubes (SWCNT) induce cytotoxicity and genotoxicity produced by reactive oxygen species (ROS) generation in phytohemagglutinin (PHA)-stimulated male human peripheral blood lymphocytes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:1141-1153. [PMID: 25119736 DOI: 10.1080/15287394.2014.917062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Single-wall carbon nanotubes (SWCNT) possess a small size, large surface area, and high reactivity, which enable them to permeate the cytoplasmic or nuclear membrane and attach to biological molecules. During medical applications, SWNCT are usually administered intravenously, which enhances interaction with blood components. Yet despite this exposure potential, safety evaluation studies of SWCNTs focused on human blood cells are still lacking. Therefore, this study was undertaken to examine cytotoxicity, genotoxicity, and proinflammatory responses following SWCNT treatment of phytohemagglutinin (PHA)-stimulated male human peripheral blood lymphocytes (PBL). SWCNT were found to inhibit cell growth, as well as to induce DNA breakage, and micronuclei (MN) formation via reactive oxygen species (ROS) generation. The addition of N-acetylcysteine (NAC) a cell-permeable antioxidant, decreased ROS generation, cytotoxicity, and genotoxicity produced by SWCNT treatment. In addition, SWCNT induced tumor necrosis factor (TNF)-α release after 24 h, yet this phenomenon was not related to ROS generation, as antioxidant NAC treatment did not affect increased proinflammatory cytokine levels in the phytohemagglutinin (PHA)-stimulated male human PBL.
Collapse
Affiliation(s)
- Jin Sik Kim
- a Bioconvergence Laboratory , Korea Conformity Laboratories , Incheon , Korea
| | | |
Collapse
|
26
|
Martinez DST, Franchi LP, Freria CM, Ferreira OP, Filho AGS, Alves OL, Takahashi CS. Carbon Nanotubes: From Synthesis to Genotoxicity. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review. Saf Health Work 2013; 4:177-86. [PMID: 24422173 PMCID: PMC3889076 DOI: 10.1016/j.shaw.2013.07.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022] Open
Abstract
The use of nanoparticles (NPs) in industry is increasing, bringing with it a number of adverse health effects on workers. Like other chemical carcinogens, NPs can cause cancer via oxidative DNA damage. Of all the molecules vulnerable to oxidative modification by NPs, DNA has received the greatest attention, and biomarkers of exposure and effect are nearing validation. This review concentrates on studies published between 2000 and 2012 that attempted to detect oxidative DNA damage in humans, laboratory animals, and cell lines. It is important to review these studies to improve the current understanding of the oxidative DNA damage caused by NP exposure in the workplace. In addition to examining studies on oxidative damage, this review briefly describes NPs, giving some examples of their adverse effects, and reviews occupational exposure assessments and approaches to minimizing exposure (e.g., personal protective equipment and engineering controls such as fume hoods). Current recommendations to minimize exposure are largely based on common sense, analogy to ultrafine material toxicity, and general health and safety recommendations.
Collapse
|
28
|
Bayat N, Rajapakse K, Marinsek-Logar R, Drobne D, Cristobal S. The effects of engineered nanoparticles on the cellular structure and growth of Saccharomyces cerevisiae. Nanotoxicology 2013; 8:363-73. [PMID: 23521755 DOI: 10.3109/17435390.2013.788748] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In order to study the effects of nanoparticles (NPs) with different physicochemical properties on cellular viability and structure, Saccharomyces cerevisiae were exposed to different concentrations of TiO2-NPs (1-3 nm), ZnO-NPs (<100 nm), CuO-NPs (<50 nm), their bulk forms, Ag-NPs (10 nm) and single-walled carbon nanotubes (SWCNTs). The GreenScreen assay was used to measure cyto- and genotoxicity, and transmission electron microscopy (TEM) used to assess ultrastructure. CuO-NPs were highly cytotoxic, reducing the cell density by 80% at 9 cm(2)/ml, and inducing lipid droplet formation. Cells exposed to Ag-NPs (19 cm(2)/ml) and TiO2-NPs (147 cm(2)/ml) contained dark deposits in intracellular vacuoles, the cell wall and vesicles, and reduced cell density (40 and 30%, respectively). ZnO-NPs (8 cm(2)/ml) caused an increase in the size of intracellular vacuoles, despite not being cytotoxic. SWCNTs did not cause cytotoxicity or significant alterations in ultrastructure, despite high oxidative potential. Two genotoxicity assays, GreenScreen and the comet assay, produced different results and the authors discuss the reasons for this discrepancy. Classical assays of toxicity may not be the most suitable for studying the effects of NPs in cellular systems, and the simultaneous assessment of other measures of the state of cells, such as TEM are highly recommended.
Collapse
Affiliation(s)
- Narges Bayat
- Department of Biochemistry and Biophysics, Stockholm University , Stockholm , Sweden
| | | | | | | | | |
Collapse
|
29
|
Kim JS, Song KS, Yu IJ. Evaluation of in vitro and in vivo genotoxicity of single-walled carbon nanotubes. Toxicol Ind Health 2013; 31:747-57. [DOI: 10.1177/0748233713483201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) have extensive potential industrial applications due to their unique physical and chemical properties; yet this also increases the chance of human and environment exposure to SWCNTs. Due to the current lack of hazardous effect information on SWNCTs, a standardized genotoxicity battery test was conducted to clarify the genetic toxicity potential of SWCNTs (diameter: 1–1.2 nm, length: ∼20 μm) according to Organization for Economic Cooperation and Development test guidelines 471 (bacterial reverse mutation test), 473 ( in vitro chromosome aberration test), and 474 ( in vivo micronuclei test) with a good laboratory practice system. The test results showed that the SWCNTs did not induce significant bacterial reverse mutations at 31.3–500 μg/plate in Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537 or in Escherichia coli strain WP2uvrA, with and without a metabolic activation system. Furthermore, the in vitro chromosome aberration test showed no significant increase in structural or numerical chromosome aberration frequencies at SWCNT dose levels of 12.5–50 μg/ml in the presence and absence of metabolic activation. However, dose-dependent cell growth inhibition was found at all the SWCNT dose levels and statistically significant cytotoxic effects observed at certain concentrations in the presence and absence of metabolic activation. Finally, the SWCNTs did not evoke significant in vivo micronuclei frequencies in the polychromatic erythrocytes of an imprinting control region mice at 25–100 mg/kg. Thus, according to the results of the present study, the SWCNTs were not found to have a genotoxic effect on the in vitro and in vivo test systems.
Collapse
Affiliation(s)
- Jin Sik Kim
- Toxicity Evaluation Center, Korea Conformity Laboratories, Incheon, Republic of Korea
| | - Kyung Seuk Song
- Toxicity Evaluation Center, Korea Conformity Laboratories, Incheon, Republic of Korea
| | - Il Je Yu
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
30
|
Pereira MM, Raposo NRB, Brayner R, Teixeira EM, Oliveira V, Quintão CCR, Camargo LSA, Mattoso LHC, Brandão HM. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. NANOTECHNOLOGY 2013; 24:075103. [PMID: 23358497 DOI: 10.1088/0957-4484/24/7/075103] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cellulose nanofibers (CNF) have mechanical properties that make them very attractive for applications in the construction of polymeric matrices, drug delivery and tissue engineering. However, little is known about their impact on mammalian cells. The objective of this study was to evaluate the cytotoxicity of CNF and their effect on gene expression of fibroblasts cultured in vitro. The morphology of CNF was analyzed by transmission electron microscopy and the surface charge by Zeta potential. Cell viability was analyzed by flow cytometry assay and gene expression of biomarkers focused on cell stress response such as Heat shock protein 70.1 (HSP70.1) and Peroxiredoxin 1 (PRDX1) and apoptosis as B-cell leukemia (BCL-2) and BCL-2 associated X protein (BAX) by RT-PCR assay. Low concentrations of CNF (0.02-100 μg ml(-1)) did not cause cell death; however, at concentrations above 200 μg ml(-1), the nanofibers significantly decreased cell viability (86.41 ± 5.37%). The exposure to high concentrations of CNF (2000 and 5000 μg ml(-1)) resulted in increased HSP70.1, PRDX1 and BAX gene expression. The current study concludes that, under the conditions tested, high concentrations (2000 and 5000 μg ml(-1)) of CNF cause decreased cell viability and affect the expression of stress- and apoptosis-associated molecular markers.
Collapse
Affiliation(s)
- M M Pereira
- Nucleus of Analytical Identification and Quantification (NIQUA), Department of Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lindberg HK, Falck GCM, Singh R, Suhonen S, Järventaus H, Vanhala E, Catalán J, Farmer PB, Savolainen KM, Norppa H. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Toxicology 2012; 313:24-37. [PMID: 23266321 DOI: 10.1016/j.tox.2012.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 12/11/2022]
Abstract
Although some types of carbon nanotubes (CNTs) have been described to induce mesothelioma in rodents and genotoxic effects in various cell systems, there are few previous studies on the genotoxicity of CNTs in mesothelial cells. Here, we examined in vitro DNA damage induction by short multi-wall CNTs (MWCNTs; 10-30 nm × 1-2 μm) and single-wall CNTs (SWCNTs; >50% SWCNTs, ~40% other CNTs; <2 nm × 1-5 μm) in human mesothelial (MeT-5A) cells and bronchial epithelial (BEAS 2B) cells, using the single cell gel electrophoresis (comet) assay and the immunoslot blot assay for the detection of malondialdehyde (M1dG) DNA adducts. In BEAS 2B cells, we also studied the induction of micronuclei (MN) by the CNTs using the cytokinesis-block method. The cells were exposed to the CNTs (5-200 μg/cm(2), corresponding to 19-760 μg/ml) for 24 and 48h in the comet assay and for 48 and 72 h in the MN and M1dG assays. Transmission electron microscopy (TEM) showed more MWCNT fibres and SWCNT clusters in BEAS 2B than MeT-5A cells, but no significant differences were seen in intracellular dose expressed as area of SWCNT clusters between TEM sections of the cell lines. In MeT-5A cells, both CNTs caused a dose-dependent induction of DNA damage (% DNA in comet tail) in the 48-h treatment and SWCNTs additionally in the 24-h treatment, with a statistically significant increase at 40 μg/cm(2) of SWCNTs and (after 48 h) 80 μg/cm(2) of both CNTs. SWCNTs also elevated the level of M1dG DNA adducts at 1, 5, 10 and 40 μg/cm(2) after the 48-h treatment, but both CNTs decreased M1dG adduct level at several doses after the 72-h treatment. In BEAS 2B cells, SWCNTs induced a statistically significant increase in DNA damage at 80 and 120 μg/cm(2) after the 24-h treatment and in M1dG adduct level at 5 μg/cm(2) after 48 h and 10 and 40 μg/cm(2) after 72 h; MWCNTs did not affect the level of DNA damage but produced a decrease in M1dG adducts in the 72-h treatment. The CNTs did not affect the level of MN. In conclusion, MWCNTs and SWCNTs induced DNA damage in MeT-5A cells but showed a lower (SWCNTs) or no (MWCNTs) effect in BEAS 2B cells, suggesting that MeT-5A cells were more sensitive to the DNA-damaging effect of CNTs than BEAS 2B cells, despite the fact that more CNT fibres or clusters were seen in BEAS 2B than MeT-5A cells. M1dG DNA adducts were induced by SWCNTs but decreased after a 3-day exposure to MWCNTs and (in MeT-5A cells) SWCNTs, indicating that CNTs may lead to alterations in oxidative effects within the cells. Neither of the CNTs was able to produce chromosomal damage (MN).
Collapse
Affiliation(s)
- Hanna K Lindberg
- Nanosafety Research Center, Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland; Safe New Technologies, Work Environment Development, Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Carbon nanostructured materials for applications in nano-medicine, cultural heritage, and electrochemical biosensors. Anal Bioanal Chem 2012; 405:451-65. [DOI: 10.1007/s00216-012-6351-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/28/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
|
33
|
Pichardo S, Gutiérrez-Praena D, Puerto M, Sánchez E, Grilo A, Cameán AM, Jos Á. Oxidative stress responses to carboxylic acid functionalized single wall carbon nanotubes on the human intestinal cell line Caco-2. Toxicol In Vitro 2012; 26:672-7. [DOI: 10.1016/j.tiv.2012.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 02/02/2012] [Accepted: 03/07/2012] [Indexed: 02/07/2023]
|