1
|
Anush Sheikh KH, Haokip SW, Hazarika BN, Devi OB, Lian HN, Yumkhaibam T, Ningombam L, Singh YD. Phyto-chemistry and Therapeutic Potential of Natural Flavonoid Naringin: A Consolidated Review. Chin J Integr Med 2025:10.1007/s11655-025-3826-9. [PMID: 39994136 DOI: 10.1007/s11655-025-3826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 02/26/2025]
Affiliation(s)
- K H Anush Sheikh
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Songthat William Haokip
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - B N Hazarika
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Oinam Bidyalaxmi Devi
- Department of Vegetable Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Hau Ngaih Lian
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Tabalique Yumkhaibam
- Department of Vegetable Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Linthoingambi Ningombam
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India.
| |
Collapse
|
2
|
Vo QV, Hoa NT, Mechler A. Carboxymethylnaringenin: a promising antioxidant in the aqueous physiological environment. Free Radic Res 2025; 59:183-189. [PMID: 39936616 DOI: 10.1080/10715762.2025.2466685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
The synthetic naringenin derivative (2S)-8-carboxymethylnaringenin (CMN) was developed for the treatment of bacterial and viral respiratory infections. There are indications that CMN may act as an antioxidant, however, no studies have been conducted in this regard. This work is aimed at assessing the antiradical capacity of CMN against various physiologically relevant species in physiological environments by using thermodynamic and kinetic calculations. According to the results, CMN only exhibits modest HOO• antiradical activity in lipid medium, modeled here as pentyl ethanoate solvent, with an overall rate constant (koverall) of 2.01 × 102 M-1 s-1. However, significant antiradical activity is predicted for the aqueous medium (koverall = 2.60 × 105 M-1s-1) that is equivalent to the activity of the reference antioxidant Trolox. In a screen performed on a range of radicals, HO•, NO2, SO4•-, N3•, CH3O•, CCl3O•, CH3OO•, and CCl3OO• were also successfully scavenged by CMN in water at physiological pH. Therefore, other than a potent drug, CMN is also a good antioxidant in polar environments.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang - University of Technology and Education, Danang, Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang, Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University, Victoria, Australia
| |
Collapse
|
3
|
Fotouhi S, Yavari A, Bagheri AR, Askari VR, Gholami Y, Baradaran Rahimi V. Exploring the promising impacts of naringin and its aglycone constituent naringenin as major citrus flavonoids on diabetes and its complications. J Funct Foods 2025; 124:106643. [DOI: 10.1016/j.jff.2024.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
4
|
Priya K, Roy AC, Prasad A, Kumar P, Ghosh I. Naringenin Against Cadmium Toxicity in Fibroblast Cells: An Integrated Network Pharmacology and In Vitro Metabolomics Approach. ENVIRONMENTAL TOXICOLOGY 2024; 39:5124-5139. [PMID: 39105392 DOI: 10.1002/tox.24388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Cadmium, a heavy metal, disrupts cellular homeostasis and is highly toxic, with no effective treatments currently available against its toxicity. According to studies, phytochemicals provide a promising strategy for mitigating cadmium toxicity. Naringenin (NG), a potent antioxidant found primarily in citrus fruits, showed protective properties against cadmium toxicity in rats. Nonetheless, the precise mechanism of cadmium cytotoxicity in fibroblasts remains unknown. This study evaluated NG against cadmium (CdCl2) toxicity utilizing network pharmacology and in silico molecular docking, and was further validated experimentally in rat fibroblast F111 cells. Using network pharmacology, 25 possible targets, including the top 10 targets of NG against cadmium, were identified. Molecular docking of interleukin 6 (IL6), the top potential target with NG, showed robust binding with an inhibition constant (Ki) of 58.76 μM, supporting its potential therapeutic potential. Pathway enrichment analysis suggested that "response to reactive oxygen species" and "negative regulation of small molecules metabolic process" were the topmost pathways targeted by NG against cadmium. In vitro analysis showed that NG (10 μM) attenuated CdCl2-induced oxidative stress by reducing altered intracellular ROS, mitochondrial mass, and membrane potential. Also, NG reversed CdCl2-mediated nuclear damage, G2/M phase arrest, and apoptosis. GC/MS-based metabolomics of F111 cells revealed CdCl2 reduced cholesterol levels, which led to alterations in primary bile acid, steroid and steroid hormone biosynthesis pathways, whereas, NG restored these alterations. In summary, combined in silico and in vitro analysis suggested that NG protected cells from CdCl2 toxicity by mitigating oxidative stress and metabolic pathway alterations, providing a comprehensive understanding of its protective mechanisms against cadmium-induced toxicity.
Collapse
Affiliation(s)
- Komal Priya
- Biochemistry and Environmental Toxicology Laboratory, Lab. #103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashim Chandra Roy
- Biochemistry and Environmental Toxicology Laboratory, Lab. #103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Prasad
- Biochemistry and Environmental Toxicology Laboratory, Lab. #103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Prabhat Kumar
- Biochemistry and Environmental Toxicology Laboratory, Lab. #103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology Laboratory, Lab. #103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
Serquiz AC, Barros Gomes JDADC, Farias NBDS, Mafra D, Pereira de Lima PM, de Oliveira Coutinho D, Ribeiro FPB, Rocha HADO, de Brito Alves JL. Protective Effects of Annona Atemoya Extracts on Inflammation, Oxidative Stress, and Renal Function in Cadmium-Induced Nephrotoxicity in Wistar Rats. Pharmaceuticals (Basel) 2024; 17:1393. [PMID: 39459032 PMCID: PMC11510283 DOI: 10.3390/ph17101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cadmium (Cd), a highly toxic heavy metal from agricultural activities, and its exposure can lead to impaired renal function by increasing reactive oxygen species. The atemoya fruit is known for its high phenolic and antioxidant compounds. This study aimed to evaluate the effects of atemoya extracts on renal function, oxidative stress parameters, and inflammatory biomarkers in a cadmium-induced nephrotoxicity model. METHODS Three aqueous extracts were prepared from different parts of the atemoya fruit: seeds, peel, and pulp. Twenty-five male Wistar rats were allocated into four groups: control, seed, peel, and pulp extracts at 2 g/kg for 25 days. All treatment groups administered intraperitoneal injections of cadmium chloride (CdCl2) (2 mg/kg) to induce renal damage. RESULTS The cadmium-treated groups showed decreased creatinine clearance, SOD, CAT, and GPx activities (p < 0.05) and increased serum levels of TNF-α and IL-6 compared to the control group (p < 0.05). The treatment with seed, peel, and pulp extracts increased creatinine clearance (p < 0.05), increased SOD, CAT, and GPx activities (p < 0.05), and reduced serum levels of TNF-α and IL-6 compared to the Cd group (p < 0.05). CONCLUSIONS This study supports the use of atemoya as a promising candidate for mitigating nephrotoxicity and highlights the importance of its antioxidant and anti-inflammatory properties in renal health.
Collapse
Affiliation(s)
- Alexandre Coelho Serquiz
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| | - Joana de Angelis da Costa Barros Gomes
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Graduate Program of Biochemistry and Molecular Biology, Bioscience Center, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, RN, Brazil; (J.d.A.d.C.B.G.); (N.B.d.S.F.); (H.A.d.O.R.)
| | - Naisandra Bezerra da Silva Farias
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Graduate Program of Biochemistry and Molecular Biology, Bioscience Center, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, RN, Brazil; (J.d.A.d.C.B.G.); (N.B.d.S.F.); (H.A.d.O.R.)
| | - Denise Mafra
- Graduate Program in Biological Sciences—Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil;
| | - Pietra Maria Pereira de Lima
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| | - Daniella de Oliveira Coutinho
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| | - Fernanda Priscila Barbosa Ribeiro
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| | - Hugo Alexandre de Oliveira Rocha
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Graduate Program of Biochemistry and Molecular Biology, Bioscience Center, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, RN, Brazil; (J.d.A.d.C.B.G.); (N.B.d.S.F.); (H.A.d.O.R.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| |
Collapse
|
6
|
Karaboduk H, Adiguzel C, Apaydin FG, Kalender S, Kalender Y. Investigating the impact of different routes of nano and micro nickel oxide administration on rat kidney architecture, apoptosis markers, oxidative stress, and histopathology. J Mol Histol 2024; 55:675-686. [PMID: 38990468 DOI: 10.1007/s10735-024-10221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Although the production and use of nickel oxide nanoparticles (NiONP) are widespread, environmental and public health problems are associated with it. The kidney is the primary organ in excretion and is among the target organs in nanoparticle toxicity. This study aimed to compare the renal toxicity of nickel oxide (NiO) microparticles and nickel oxide nanoparticles by different routes of administration, such as oral, intraperitoneal (IP), and intravenous (IV). Seven groups were formed, with 42 male rats and six animals in each group. NiO oral (150 mg/kg), NiO IP (20 mg/kg), NiO IV (1 mg/kg), NiONP oral (150 mg/kg), NiONP IP (20 mg/kg), and NiONP IV (1 mg/kg) was administered for 21 days. After NiO and NiONP administration, a decrease in antioxidant activities and an increase in lipid peroxidation occurred in the kidney tissue of rats. Increased kidney urea, uric acid, and creatinine levels were observed. Inhibition of acetylcholinesterase activity and an increase in interleukin 1 beta were detected. Apoptotic markers, Bax, caspase-3, and p53 up-regulation and Bcl-2 down-regulation were observed. In addition, histopathological changes occurred in the kidney tissue. In general, it was observed that nickel oxide microparticles and nickel oxide nanoparticles cause inflammation by causing oxidative stress in the kidney tissue, and NiONP IV administration is more effective in renal toxicity.
Collapse
Affiliation(s)
- Hatice Karaboduk
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye.
| | - Caglar Adiguzel
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| | | | - Suna Kalender
- Department of Science, Faculty of Gazi Education, Gazi University, Ankara, Türkiye
| | - Yusuf Kalender
- Department of Biology, Faculty of Science, Gazi University, Ankara, Türkiye
| |
Collapse
|
7
|
Karaboduk H, Adiguzel C, Apaydin FG, Uzunhisarcikli M, Kalender S, Kalender Y. The ameliorative effect of Naringenin on fenamiphos induced hepatotoxicity and nephrotoxicity in a rat model: Oxidative stress, inflammatory markers, biochemical, histopathological, immunohistochemical and electron microscopy study. Food Chem Toxicol 2024; 192:114911. [PMID: 39134134 DOI: 10.1016/j.fct.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Fenamiphos (FNP) is an organophospate pesticide that causes many potential toxicities in non-target organisms. Naringenin (NAR) has protective properties against oxidative stress. In this study, FNP (0.76 mg/kg bw) toxicity and the effect of NAR (50 mg/kg bw) on the liver and kidney of rats were investigated via biochemical, oxidative stress, immunohistochemical, cytopathological and histopathologically. As a result of biochemical studies, FNP caused oxidative stress in tissues with a change in total antioxidant/oxidant status. After treatment with FNP, hepatic and renal levels of AChE were significantly reduced while 8-OHdG and IL-17 levels, caspase-3 and TNF-α immunoreactivity increased compared to the control group. It also changed in serum biochemical markers such as ALT, AST, BUN, creatinine. Exposure to FNP significantly induced cytopathological, histopathological and immunohistochemical changes through tissue damage. NAR treatment restored biochemical parameters, renal/hepatic AChE, ultrastructural, histopathological and immunohistochemical changes modulated and blocked the increasing effect of FNP on tissues caspase-3 and TNF-α expressions, 8-OHdG and IL-17 levels. In electron microscopy studies, swelling was observed in the mitochondria of the cells in both tissues of the FNP-treated rats, while less ultrastructural changes in the FNP plus NAR-treated rats.
Collapse
Affiliation(s)
- Hatice Karaboduk
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey.
| | - Caglar Adiguzel
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | | | | | - Suna Kalender
- Department of Science Education, Gazi Education Faculty, Gazi University, Ankara, Turkey
| | - Yusuf Kalender
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| |
Collapse
|
8
|
Buranasudja V, Sanookpan K, Vimolmangkang S, Binalee A, Mika K, Krobthong S, Kerdsomboon K, Kumkate S, Poolpak T, Kidhakarn S, Yang KM, Limcharoensuk T, Auesukaree C. Pretreatment with aqueous Moringa oleifera Lam. leaf extract prevents cadmium-induced hepatotoxicity by improving cellular antioxidant machinery and reducing cadmium accumulation. Heliyon 2024; 10:e37424. [PMID: 39309955 PMCID: PMC11416483 DOI: 10.1016/j.heliyon.2024.e37424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Cadmium (Cd) is a highly harmful pollutant that poses a serious threat to human health. The liver is the primary organ for Cd accumulation, and Cd-induced hepatotoxicity has been shown to be strongly correlated with an oxidative imbalance in hepatocytes. Our previous studies in the eukaryotic model organism Saccharomyces cerevisiae revealed that not only co-treatment but also pretreatment with aqueous Moringa oleifera Lam. leaf extract (AMOLE) effectively mitigated Cd toxicity by reducing intracellular Cd accumulation and Cd-mediated oxidative stress. In this study, we therefore investigated the preventive effect of AMOLE against Cd toxicity in human HepG2 hepatocytes. The results showed that, similar to the case of the yeast model, pretreatment with AMOLE prior to Cd exposure also significantly inhibited Cd-induced oxidative stress in HepG2 cells. Untargeted LC-MS/MS-based metabolomic analysis of AMOLE revealed that its major phytochemical constituents were organic acids, particularly phenolic acids and carboxylic acids. Additionally, DPPH-HPTLC fingerprints suggested that quercetin and other flavonoids possibly contribute to the antioxidant activities of AMOLE. Based on our findings, it appears that pretreatment with AMOLE prevented Cd-induced hepatotoxicity via three possible mechanisms: i) direct elimination of free radicals by AMOLE antioxidant compounds; ii) upregulation of antioxidant defensive machinery (GPx1, and HO-1) via Nrf2 signaling cascade to improve cellular antioxidant capacity; and iii) reduction of intracellular Cd accumulation, probably by suppressing Cd uptake. These data strongly suggest the high potential of AMOLE for clinical utility in the prevention of Cd toxicity.
Collapse
Affiliation(s)
- Visarut Buranasudja
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittipong Sanookpan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Nabsolute Co., Ltd., Bangkok, 10330, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asma Binalee
- HPTLC Center, Chula PharTech Co., Ltd., Bangkok, 10330, Thailand
| | - Kamil Mika
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, Krakow, PL, 30-688, Poland
| | - Sucheewin Krobthong
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Kerdsomboon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Toemthip Poolpak
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, OPS, MHESI, Bangkok, 10400, Thailand
| | - Siraprapa Kidhakarn
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kwang Mo Yang
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE, OPS, MHESI, Bangkok, 10400, Thailand
| | - Tossapol Limcharoensuk
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Choowong Auesukaree
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
9
|
Akhigbe RE, Akhigbe TM, Oyedokun PA, Famurewa AC. Molecular mechanisms underpinning the protection against antiretroviral drug-induced sperm-endocrine aberrations and testicular toxicity: A review. Reprod Toxicol 2024; 128:108629. [PMID: 38825169 DOI: 10.1016/j.reprotox.2024.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The introduction of highly active antiretroviral therapy (HAART) has revolutionized the treatment of HIV/AIDS worldwide. The HAART approach is the combination of two or more antiretroviral drugs of different classes and are responsible for patient's survival and declining death rates from HIV/AIDS and AIDS-related events. However, the severe and persistent reproductive side effect toxicity of HAART regimens is of great concern to patients within the reproductive age. Till date, the underlying pathophysiology of the HAART-induced reproductive toxicity remains unraveled. Nevertheless, preclinical studies show that oxidative stress and inflammation may be involved in HAART-induced sperm-endocrine deficit and reproductive aberrations. Studies are emerging demonstrating the efficacy of plant-based and non-plant products against the molecular alterations and testicular toxicity of HAART. The testicular mechanisms of mitigation by these products are associated with enhancement of testicular steroidogenesis, spermatogenesis, inhibition of oxidative stress and inflammation. This review presents the toxic effects of HAART on spermatogenesis, reproductive hormones and testis integrity. It also provides insights on the molecular mechanisms underlying the mitigation of HAART testicular toxicity by plant-based and non-plant agents. However, effect of repurposing clinical drugs to combat HAART toxicity is unknown, and more mechanistic studies are evidently needed. Altogether, plant-based and non-plant products are potential agents for prevention of rampant endocrine dysfunction and testicular toxicity of HAART.
Collapse
Affiliation(s)
- Roland E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Tunmise M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Breeding and Genetics Unit, Department of Agronomy, Osun State University, Ejigbo Campus, Osun State, Nigeria
| | - Precious A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria.
| |
Collapse
|
10
|
Chowdhury A, Mitra Mazumder P. Unlocking the potential of flavonoid-infused drug delivery systems for diabetic wound healing with a mechanistic exploration. Inflammopharmacology 2024:10.1007/s10787-024-01561-5. [PMID: 39217278 DOI: 10.1007/s10787-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is one of the common endocrine disorders generally characterized by elevated levels of blood sugar. It can originate either from the inability of the pancreas to synthesize insulin, which is considered as an autoimmune disorder, or the reduced production of insulin, considered as insulin resistivity. A wound can be defined as a condition of damage to living tissues including skin, mucous membrane and other organs as well. Wounds get complicated with respect to time based on specific processes like diabetes mellitus, obesity and immunocompromised conditions. Proper growth and functionality of the epidermis gets sustained due to impaired diabetic wound healing which shows a sign of dysregulated wound healing process. In comparison with synthetic medications, phytochemicals like flavonoids, tannins, alkaloids and glycosides have gained enormous importance relying on their distinct potential to heal diabetic wounds. Flavonoids are one of the most promising and important groups of natural compounds which can be used to treat acute as well as chronic wounds. Flavonoids show excellent properties due to the presence of hydroxyl groups in their chemical structure, which makes this class of compounds different from others. Based on the novel principles of nanotechnology via utilizing suitable drug delivery systems, the delivery of bioactive constituents from plant source amplifies the wound-healing mechanism, minimizes complexities and enhances bioavailability. Hence, the encapsulation and applicability of flavonoids with an emphasis on mechanistic route and wound-healing therapeutics have been highlighted in the subsequent study with focus on multiple drug delivery systems.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
11
|
Yuan B, Mao J, Wang J, Luo S, Luo B. Naringenin mitigates cadmium-induced cell death, oxidative stress, mitochondrial dysfunction, and inflammation in KGN cells by regulating the expression of sirtuin-1. Drug Chem Toxicol 2024; 47:445-456. [PMID: 38647073 DOI: 10.1080/01480545.2023.2288798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/05/2023] [Indexed: 04/25/2024]
Abstract
The objective of this study was to examine the potential protective role of naringenin against the harmful effects induced by cadmium in KGN cell line. Cell viability was evaluated by cell counting kit-8 assay. Caspase-3/-9 activities were determined by caspase-3/-9 activity assay kits, respectively. Intracellular reactive oxygen species (ROS) level was detected by ROS-Glo™ H2O2 Assay, antioxidant capacity was determined by a total antioxidant capacity assay kit. Mitochondrial membrane potential (MMP), ATP level, and ATP synthase activity were determined by JC-1, ATP assay kit, and ATP synthase activity assay kit, respectively. The mRNA expression was determined by qRT-PCR. Cadmium reduced cell viability and increased caspase-3/-9 activities in a concentration-dependent manner. Naringenin improved cell viability and reduced caspase-3/-9 activities in cadmium-stimulated KGN cells in a concentration-dependent manner. Cadmium diminished the antioxidant capacity, increased ROS production, and induced mitochondrial dysfunction in KGN cells. These effects were ameliorated by naringenin treatment in a concentration-dependent manner. Furthermore, naringenin reduced the levels of pro-inflammatory cytokines in KGN cells exposed to cadmium. SIRT1 knockdown downregulated its expression in KGN cells and compromised the protective effects of naringenin on cell viability and caspase-3/-9 activities in cadmium-stimulated KGN cells. Naringenin prevented the reduction of MMP, ATP levels, and ATP synthase activity in cadmium-stimulated KGN cells in a concentration-dependent manner. However, these protective effects were significantly reversed by SIRT1 knockdown. In conclusion, this study suggests that naringenin protects against cadmium-induced damage by regulating oxidative stress, mitochondrial function, and inflammation in KGN cells, with SIRT1 playing a potential mediating role.
Collapse
Affiliation(s)
- Ben Yuan
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
| | - Junbiao Mao
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
| | - Junling Wang
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Shuhong Luo
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
| | - Bingbing Luo
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
| |
Collapse
|
12
|
Atoki AV, Aja PM, Shinkafi TS, Ondari EN, Awuchi CG. Naringenin: its chemistry and roles in neuroprotection. Nutr Neurosci 2024; 27:637-666. [PMID: 37585716 DOI: 10.1080/1028415x.2023.2243089] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
According to epidemiological research, as the population ages, neurological illnesses are becoming a bigger issue. Despite improvements in the treatment of these diseases, there are still widespread worries about how to find a long-lasting remedy. Several neurological diseases can be successfully treated with natural substances. As a result, current research has been concentrated on finding effective neuroprotective drugs with improved efficacy and fewer side effects. Naringenin is one potential treatment for neurodegenerative diseases. Many citrus fruits, tomatoes, bergamots, and other fruits are rich in naringenin, a flavonoid. This phytochemical is linked to a variety of biological functions. Naringenin has attracted a lot of interest for its ability to exhibit neuroprotection through several mechanisms. In the current article, we present evidence from the literature that naringenin reduces neurotoxicity and oxidative stress in brain tissues. Also, the literatures that are currently accessible shows that naringenin reduces neuroinflammation and other neurological anomalies. Additionally, we found several studies that touted naringenin as a promising anti-amyloidogenic, antidepressant, and neurotrophic treatment option. This review's major goal is to reflect on advancements in knowledge of the molecular processes that underlie naringenin's possible neuroprotective effects. Furthermore, this article also provides highlights of Naringenin with respect to its chemistry and pharmacokinetics.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
13
|
Kahramanoğullari M, Erişir M, Yaman M, Parlak Ak T. Effects of naringenin on oxidative damage and apoptosis in liver and kidney in rats subjected to chronic mercury chloride. ENVIRONMENTAL TOXICOLOGY 2024; 39:2937-2947. [PMID: 38308452 DOI: 10.1002/tox.24164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Mercury chloride is a type of heavy metal that causes the formation of free radicals, causing hepatotoxicity, nephrotoxicity and apoptosis. In this study, the effects of naringenin on oxidative stress and apoptosis in the liver and kidney of rats exposed to mercury chloride were investigated. In the study, 41 2-month-old male Wistar-Albino rats were divided into five groups. Accordingly, group 1 was set as control group, group 2 as naringenin-100, group 3 as mercury chloride, group 4 as mercury chloride + naringenin-50, and group 5 as mercury chloride + naringenin-100. For the interventions, 1 mL/kg saline was administered to the control, 0.4 mg/kg/day mercury (II) chloride to the mercury chloride groups by i.p., and 50 and 100 mg/kg/day naringenin prepared in corn oil to the naringenin groups by gavage. All the interventions lasted for 20 days. Mercury chloride administration was initiated 1 h following the administration of naringenin. When mercury chloride and the control group were compared, a significant increase in plasma urea, liver and kidney malondialdehyde (MDA) levels, in kidney superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST) activities (p < .001), and a significant decrease in liver and kidney glutathione (GSH) levels (p < .001), in liver catalase (CAT) activity (p < .01) were observed. In addition, histopathological changes and a significant increase in caspase-3 levels were detected (p < .05). When mercury chloride and treatment groups were compared, the administration of naringenin caused a decrease aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) (p < .01), urea, creatinine levels (p < .001) in plasma, MDA levels in liver and kidney, SOD, GSH-Px, GST activities in kidney (p < .001), and increased GSH levels in liver and kidney. The addition of naringenin-100 increased GSH levels above the control (p < .001). The administration of naringenin was also decreased histopathological changes and caspase-3 levels (p < .05). Accordingly, it was determined that naringenin is protective and therapeutic against mercury chloride-induced oxidative damage and apoptosis in the liver and kidney, and 100 mg/kg naringenin is more effective in preventing histopathological changes and apoptosis.
Collapse
Affiliation(s)
- Merve Kahramanoğullari
- Department of Biochemistry, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Mine Erişir
- Department of Biochemistry, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Mine Yaman
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Tuba Parlak Ak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Munzur University, Tunceli, Turkey
| |
Collapse
|
14
|
Saleh SM, El-Tawil OS, Mahmoud MB, Abd El-Rahman SS, El-Saied EM, Noshy PA. Do Nanoparticles of Calcium Disodium EDTA Minimize the Toxic Effects of Cadmium in Female Rats? Biol Trace Elem Res 2024; 202:2228-2240. [PMID: 37721680 PMCID: PMC10955038 DOI: 10.1007/s12011-023-03842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
The present study aims to investigate the ability of CaNa2EDTA (ethylenediaminetetraacetic acid) macroparticles and nanoparticles to treat cadmium-induced toxicity in female rats and to compare their efficacies. Forty rats were divided into 4 equal groups: control, cadmium, cadmium + CaNa2EDTA macroparticles and Cd + CaNa2EDTA nanoparticles. Cadmium was added to the drinking water in a concentration of 30 ppm for 10 weeks. CaNa2EDTA macroparticles and nanoparticles (50 mg/kg) were intraperitoneally injected during the last 4 weeks of the exposure period. Every two weeks, blood and urine samples were collected for determination of urea, creatinine, metallothionein and cadmium concentrations. At the end of the experiment, the skeleton of rats was examined by X-ray and tissue samples from the kidney and femur bone were collected and subjected to histopathological examination. Exposure to cadmium increased the concentrations of urea and creatinine in the serum and the concentrations of metallothionein and cadmium in serum and urine of rats. A decrease in bone mineralization by X-ray examination in addition to various histopathological alterations in the kidney and femur bone of Cd-intoxicated rats were also observed. Treatment with both CaNa2EDTA macroparticles and nanoparticles ameliorated the toxic effects induced by cadmium on the kidney and bone. However, CaNa2EDTA nanoparticles showed a superior efficacy compared to the macroparticles and therefore can be used as an effective chelating antidote for treatment of cadmium toxicity.
Collapse
Affiliation(s)
- Safa M Saleh
- Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Osama S El-Tawil
- Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Manal B Mahmoud
- Immune Section, Research Institute for Animal Reproduction, Giza, Egypt
| | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eiman M El-Saied
- Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Peter A Noshy
- Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
15
|
Heimfarth L, Dos Santos KS, Monteiro BS, de Souza Oliveira AK, Coutinho HDM, Menezes IRA, Dos Santos MRV, de Souza Araújo AA, Picot L, de Oliveira Júnior RG, Grougnet R, de Souza Siqueira Quintans J, Quintans-Júnior LJ. The protective effects of naringenin, a citrus flavonoid, non-complexed or complexed with hydroxypropyl-β-cyclodextrin against multiorgan damage caused by neonatal endotoxemia. Int J Biol Macromol 2024; 264:130500. [PMID: 38428770 DOI: 10.1016/j.ijbiomac.2024.130500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Endotoxemia is a severe and dangerous clinical syndrome that results in elevated morbidity, especially in intensive care units. Neonates are particularly susceptible to endotoxemia due to their immature immune systems. There are few effective treatments for neonatal endotoxemia. One group of compounds with potential in the treatment of neonatal inflammatory diseases such as endotoxemia is the flavonoids, mainly due to their antioxidant and anti-inflammatory properties. Among these, naringenin (NGN) is a citrus flavonoid which has already been reported to have anti-inflammatory, antioxidant, anti-nociceptive and anti-cancer effects. Unfortunately, its clinical application is limited by its low solubility and bioavailability. However, cyclodextrins (CDs) have been widely used to improve the solubility of nonpolar drugs and enhance the bioavailability of these natural products. OBJECTIVE We, therefore, aimed to investigate the effects of NGN non-complexed and complexed with hydroxypropyl-β-cyclodextrin (HPβCD) on neonatal endotoxemia injuries in a rodent model and describe the probable molecular mechanisms involved in NGN activities. METHOD We used exposure to a bacterial lipopolysaccharide (LPS) to induce neonatal endotoxemia in the mice. RESULTS It was found that NGN (100 mg/kg i.p.) exposure during the neonatal period reduced leukocyte migration and decreased pro-inflammatory cytokine (TNF-α, IL-1β and IL-6) levels in the lungs, heart, kidneys or cerebral cortex. In addition, NGN upregulated IL-10 production in the lungs and kidneys of neonate mice. The administration of NGN also enhanced antioxidant enzyme catalase and SOD activity, reduced lipid peroxidation and protein carbonylation and increased the reduced sulfhydryl groups in an organ-dependent manner, attenuating the oxidative damage caused by LPS exposure. NGN decreased ERK1/2, p38MAPK and COX-2 activation in the lungs of neonate mice. Moreover, NGN complexed with HPβCD was able to increase the animal survival rate. CONCLUSION NGN attenuated inflammatory and oxidative damage in the lungs, heart and kidneys caused by neonatal endotoxemia through the MAPK signaling pathways regulation. Our results show that NGN has beneficial effects against neonatal endotoxemia and could be useful in the treatment of neonatal inflammatory injuries.
Collapse
Affiliation(s)
- Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Katielen Silvana Dos Santos
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Brenda Souza Monteiro
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Anne Karoline de Souza Oliveira
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | | | - Irwin R A Menezes
- Universidade Regional do Cariri - URCA, Departmento de Química Biológica, Crato, CE, Brazil
| | | | | | - Laurent Picot
- UMR CNRS 7266 LIENSs, La Rochelle Université, 17042 La Rochelle, France
| | - Raimundo Gonçalves de Oliveira Júnior
- Laboratoire de Pharmacognosie-UMR CNRS 8638, Faculté de Pharmacie, Université Paris Cité, Paris, France; CiTCoM UMR 8038 CNRS, Faculté Pharmacie, Université Paris Cité, 75006, Paris, France
| | - Raphaël Grougnet
- Laboratoire de Pharmacognosie-UMR CNRS 8638, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Jullyana de Souza Siqueira Quintans
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil; Graduate Program of Health Sciences, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-025, Brazil
| | - Lucindo José Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil; Graduate Program of Health Sciences, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-025, Brazil
| |
Collapse
|
16
|
Chen J, Qin X, Chen M, Chen T, Chen Z, He B. Biological activities, Molecular mechanisms, and Clinical application of Naringin in Metabolic syndrome. Pharmacol Res 2024; 202:107124. [PMID: 38428704 DOI: 10.1016/j.phrs.2024.107124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Metabolic syndrome has become major health problems in recent decades, and natural compounds receive considerable attention in the management of metabolic syndrome. Among them, naringin is abundant in citrus fruits and tomatoes. Many studies have investigated the therapeutic effects of naringin in metabolic syndrome. This review discusses in vitro and in vivo studies on naringin and implications for clinical trials on metabolic syndrome such as diabetes mellitus, obesity, nonalcoholic fatty liver disease, dyslipidemia, and hypertension over the past decades, overviews the molecular mechanisms by which naringin targets metabolic syndrome, and analyzes possible correlations between the different mechanisms. This review provides a theoretical basis for the further application of naringin in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Jie Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Xiang Qin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Mengyao Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Tianzhu Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Zheng Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
17
|
Wen S, Wang L. Cadmium neurotoxicity and therapeutic strategies. J Biochem Mol Toxicol 2024; 38:e23670. [PMID: 38432689 DOI: 10.1002/jbt.23670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) is a multitarget, carcinogenic, nonessential environmental pollutant. Due to its toxic effects at very low concentrations, lengthy biological half-life, and low excretion rate, exposure to Cd carries a concern. Prolonged exposure to Cd causes severe injury to the nervous system of both humans and animals. Nevertheless, the precise mechanisms responsible for the neurotoxic effects of Cd have yet to be fully elucidated. The accurate chemical mechanism potentially entails the destruction of metal-ion homeostasis, inducing oxidative stress, apoptosis, and autophagy. Here we review the evidence of the neurotoxic effects of Cd and corresponding strategies to protect against Cd-induced central nervous system injury.
Collapse
Affiliation(s)
- Shuangquan Wen
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
- Veterinarian Clinical Diagnosis Study Group, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Liang Wang
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
| |
Collapse
|
18
|
Islam MR, Jony MH, Thufa GK, Akash S, Dhar PS, Rahman MM, Afroz T, Ahmed M, Hemeg HA, Rauf A, Thiruvengadam M, Venkidasamy B. A clinical study and future prospects for bioactive compounds and semi-synthetic molecules in the therapies for Huntington's disease. Mol Neurobiol 2024; 61:1237-1270. [PMID: 37698833 DOI: 10.1007/s12035-023-03604-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Puja Sutra Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Tahmina Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pukhtanukha, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea.
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
19
|
Mejri H, Aidi Wannes W, Mahjoub FH, Hammami M, Dussault C, Legault J, Saidani-Tounsi M. Potential bio-functional properties of Citrus aurantium L. leaf: chemical composition, antiviral activity on herpes simplex virus type-1, antiproliferative effects on human lung and colon cancer cells and oxidative protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1113-1123. [PMID: 37029956 DOI: 10.1080/09603123.2023.2200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
This study examined the antioxidant, anticancer and antiviral properties of the methanolic extracts from bigarade (Citrus aurantium L.) leaves at two development stages. Ferulic acid, naringin and naringenin were the principal phenolic components of young and old leaves. The highest total antioxidant capacity was obtained in young leaf extracts (YLE). These latter also exhibited the highest antiradical DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) activities, while the highest iron chelating and reducing power activities were observed in old leaf extracts (OLE). The potent anticancer activity was observed in YLE for human lung carcinoma (A-549) and in OLE for colon adenocarcinoma (DLD-1) cells. YLE showed the highest virucidal effects as compared to OLE and the positive control acyclovir against herpes simplex virus type-1 (HSV-1) propagation in Vero cells during the absorption and replication periods. The young and old leaves might be a source of natural antioxidants and protective agents against oxidative damage.
Collapse
Affiliation(s)
- Houda Mejri
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center in Borj-Cedria Technopole, Hammam-lif, Tunisia
- Laboratoire LASEVE, Université du Québec a Chicoutimi, Université du Québec a Chicoutimi, Chicoutimi, GH, Canada
| | - Wissem Aidi Wannes
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center in Borj-Cedria Technopole, Hammam-lif, Tunisia
| | | | - Majdi Hammami
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center in Borj-Cedria Technopole, Hammam-lif, Tunisia
| | - Catherine Dussault
- Laboratoire LASEVE, Université du Québec a Chicoutimi, Université du Québec a Chicoutimi, Chicoutimi, GH, Canada
| | - Jean Legault
- Laboratoire LASEVE, Université du Québec a Chicoutimi, Université du Québec a Chicoutimi, Chicoutimi, GH, Canada
| | - Moufida Saidani-Tounsi
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center in Borj-Cedria Technopole, Hammam-lif, Tunisia
| |
Collapse
|
20
|
Rath D, Kar B, Pattnaik G, Bhukta P. Synergistic Effect of Naringin and Glimepiride in Streptozotocin-induced Diabetic Rats. Curr Diabetes Rev 2024; 20:e170823219938. [PMID: 37592777 DOI: 10.2174/1573399820666230817154835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Evaluation of the synergistic effect of Naringin and Glimepiride in streptozotocin (STZ)-induced diabetic rats. METHODS Wistar rats were chosen and divided into five groups (n=6). STZ was used for the induction of diabetes. The combination of naringin and glimepiride was administered to diabetic rats. The changes in fasting blood sugar, body weight, Hb, HbA1c, and creatinine were evaluated, and urine was collected and the volume was observed. The lipid profiles like TC, HDL, LDL, and TG were measured. The biochemical parameters SGOT, SGPT, and ALP were analysed. Besides, endogenous antioxidant parameters like SOD, GSH, and catalase were also assessed. Lastly, the histopathological study of the beta cells in islets of the pancreas, glomerulus, and tubules of kidney and liver cells was conducted in all groups. RESULTS The result shows significant reduction (p<0.001) of blood sugar in the naringin and glimepiride-treated group when compared with the control group (diabetes). Additionally, the combination of Naringin (100 mg/kg) and Glimepiride (0.1 mg/kg) significantly restores the creatinine levels and urine volumes, SGOT, SGPT, and ALP when compared to a single dose of administration. Further, the abnormal lipid profile levels (TC, LDL, TG, and HDL), and endogenous antioxidant enzymes (SOD, GSH, catalase) in diabetic control rats were restored to normal levels in a significant manner. The histopathological result reveals significant alterations, including hypertrophy of islets and mild degeneration, renal necrosis, and inflammation of hepatocytes. CONCLUSION A synergistic effect of Naringin and glimepiride was observed during the estimation of various biochemical parameters like body weight, fasting blood sugar, creatinine, urine level, TG, total cholesterol, SGOT, SGPT, ALP, Insulin, HbA1c, antioxidant parameters like SOD, GSH, and catalase in STZ-induced diabetic rats. Further, the combination of therapy improves the protective effect of the pancreas, kidney, and liver, suggesting a potential antidiabetic effect.
Collapse
Affiliation(s)
- Deepankar Rath
- Department of Pharmacology, School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, 752050, India
| | - Biswakanth Kar
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, Odisha, India
| | - Gurudutta Pattnaik
- Department of Pharmaceutics, School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, 752050, India
| | - Pallishree Bhukta
- Department of Pharmacology, School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, 752050, India
| |
Collapse
|
21
|
Mehranfard N, Ghasemi M, Rajabian A, Ansari L. Protective potential of naringenin and its nanoformulations in redox mechanisms of injury and disease. Heliyon 2023; 9:e22820. [PMID: 38058425 PMCID: PMC10696200 DOI: 10.1016/j.heliyon.2023.e22820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Increasing evidence suggests that elevated intracellular levels of reactive oxygen species (ROS) play a significant role in the pathogenesis of many diseases. Increased intracellular levels of ROS can lead to the oxidation of lipids, DNA, and proteins, contributing to cellular damage. Hence, the maintenance of redox hemostasis is essential. Naringenin (NAR) is a flavonoid included in the flavanones subcategory. Various pharmacological actions have been ascribable to this phytochemical composition, including antioxidant, anti-inflammatory, antibacterial, antiviral, antitumor, antiadipogenic, neuro-, and cardio-protective activities. This review focused on the underlying mechanism responsible for the antioxidative stress properties of NAR and its' nanoformulations. Several lines of in vitro and in vivo investigations suggest the effects of NAR and its nanoformulation on their target cells via modulating signaling pathways. These nanoformulations include nanoemulsion, nanocarriers, solid lipid nanoparticles (SLN), and nanomicelle. This review also highlights several beneficial health effects of NAR nanoformulations on human diseases including brain disorders, cancer, rheumatoid arthritis, and small intestine injuries. Employing nanoformulation can improve the pharmacokinetic properties of NAR and consequently efficiency by reducing its limitations, such as low bioavailability. The protective effects of NAR and its' nanoformulations against oxidative stress may be linked to the modulation of Nrf2-heme oxygenase-1, NO/cGMP/potassium channel, COX-2, NF-κB, AMPK/SIRT3, PI3K/Akt/mTOR, BDNF, NOX, and LOX-1 pathways. Understanding the mechanism behind the protective effects of NAR can facilitate drug development for the treatment of oxidative stress-related disorders.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Legha Ansari
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
22
|
Wang J, Rani N, Jakhar S, Redhu R, Kumar S, Kumar S, Kumar S, Devi B, Simal-Gandara J, Shen B, Singla RK. Opuntia ficus-indica (L.) Mill. - anticancer properties and phytochemicals: current trends and future perspectives. FRONTIERS IN PLANT SCIENCE 2023; 14:1236123. [PMID: 37860248 PMCID: PMC10582960 DOI: 10.3389/fpls.2023.1236123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
Cancer is a leading cause of mortality worldwide, and conventional cancer therapies such as chemotherapy and radiotherapy often result in undesirable and adverse effects. Natural products have emerged as a promising alternative for cancer treatment, with comparatively fewer side effects reported. Opuntia ficus-indica (L.) Mill., a member of the Cactaceae family, contains a diverse array of phytochemicals, including flavonoids, polyphenols, betalains, and tannins, which have been shown to exhibit potent anticancer properties. Various parts of the Opuntia plant, including the fruits, stems/cladodes, and roots, have demonstrated cytotoxic effects against malignant cell lines in numerous studies. This review comprehensively summarizes the anticancer attributes of the phytochemicals found in Opuntia ficus-indica (L.) Mill., highlighting their potential as natural cancer prevention and treatment agents. Bibliometric metric analysis of PubMed and Scopus-retrieved data using VOSviewer as well as QDA analysis provide further insights and niche to be explored. Most anticancer studies on Opuntia ficus-indica and its purified metabolites are related to colorectal/colon cancer, followed by melanoma and breast cancer. Very little attention has been paid to leukemia, thyroid, endometrial, liver, and prostate cancer, and it could be considered an opportunity for researchers to explore O. ficus-indica and its metabolites against these cancers. The most notable mechanisms expressed and validated in those studies are apoptosis, cell cycle arrest (G0/G1 and G2/M), Bcl-2 modulation, antiproliferative, oxidative stress-mediated mechanisms, and cytochrome c. We have also observed that cladodes and fruits of O. ficus-indica have been more studied than other plant parts, which again opens the opportunity for the researchers to explore. Further, cell line-based studies dominated, and very few studies were related to animal-based experiments. The Zebrafish model is another platform to explore. However, it seems like more in-depth studies are required to ascertain clinical utility of this biosustainable resource O. ficus-indica.
Collapse
Affiliation(s)
- Jiao Wang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Neeraj Rani
- Shri Baba Mastnath Institute of Pharmaceutical Science and Research, Baba Mastnath University, Asthal Bohar Rohtak, Haryana, India
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Seema Jakhar
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Rakesh Redhu
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Sanjiv Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Sachin Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Sanjeev Kumar
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Bhagwati Devi
- Shri Baba Mastnath Institute of Pharmaceutical Science and Research, Baba Mastnath University, Asthal Bohar Rohtak, Haryana, India
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
23
|
KORKMAZ Y, GUNGOR H, DEMIRBAS A, DIK B. Pomegranate peel extract, N-Acetylcysteine and their combination with Ornipural alleviate Cadmium-induced toxicity in rats. J Vet Med Sci 2023; 85:990-997. [PMID: 37495528 PMCID: PMC10539821 DOI: 10.1292/jvms.22-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
Cadmium is a major environmental pollutant and a highly toxic metal. It was aimed to determine the effects of pomegranate peel extract (PPE), N-acetylcysteine (NAC) alone and along with Ornipural on cadmium-induced toxicity. Forty-six Wistar Albino male rats were divided into 6 groups and the groups were formed into healthy control, Cadmium group (5 mg/kg/day, oral), Cadmium + Pomegranate peel extract (500 mg/kg, oral), Cadmium + N-acetylcysteine (100 mg/kg, oral), Cadmium + Pomegranate peel extract (500 mg/kg, oral) + Ornipural (1 mL/kg, subcutaneous) and Cadmium + N-acetylcysteine (100 mg/kg, oral) + Ornipural (1 mL/kg, subcutaneous). Cadmium accumulated heavily in both liver and kidney tissue. The administration of N-acetylcysteine and pomegranate peel extract alone reduced cadmium levels in both tissues. N-acetylcysteine treatment prevented the increase in ALT and MDA levels by cadmium damage. N-acetylcysteine + Ornipural treatment inhibited the increase in liver 8-OHdG level in the liver. N-acetylcysteine and N-acetylcysteine + Ornipural treatments prevented the reduced serum MMP2 level. N-acetylcysteine and Pomegranate peel extract + Ornipural treatments significantly reduced the increased liver iNOS level in the liver. In conclusion, NAC therapy may be a successful treatment option for cadmium toxicity. However, further research is needed on the effects of PPE and Ornipural combinations for the treatment of cadmium toxicity. In future studies, various doses of these treatment options (with chelators) should be investigated for cadmium toxicity.
Collapse
Affiliation(s)
- Yasemin KORKMAZ
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Hüseyin GUNGOR
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ahmet DEMIRBAS
- Department of Plant and Animal Production, Sivas Vocational School, Sivas Cumhuriyet University, Sivas, Turkey
| | - Burak DIK
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
24
|
Oriyomi VO, Fagbohun OF, Akinola FT, Adekola MB, Oyedeji TT. Assessment of Colocasia esculenta leaf extract as a natural alternative for Sitophilus zeamais control: Toxicological, biochemical, and mechanistic insights. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105545. [PMID: 37666616 DOI: 10.1016/j.pestbp.2023.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 09/06/2023]
Abstract
The present study assessed the toxicological, biochemical, and mechanism of action of Colocasia esculenta leaf extract (CELE) on Wistar albino rat and on cholinergic, antioxidant, and antiinflammatory enzymes in Sitophilus zeamais. This was with a view to assessing the potential benefits and safety profile of CELE as a natural alternative for insect control. The bioactivity of the fraction was evaluated using insecticidal and repellent activities against colonies of Sitophilus zeamais to obtain a VLC-chromatographed fraction which was spectroscopically characterized and investigated for enzyme inhibition. The results revealed the ethyl acetate fraction (EAF) as the most potent one with LC50 6.198 μg/ml and 6.6 ± 0.5 repellency. The EAF had an LD50 > 5000 mg/kg but repeated dose >800 mg/kgbw po administration caused significant (p < 0.05) increase in liver and kidney function biomarkers accompanied with elevated atherogenic and coronary indices. Also, renal and hepatomorphological lesions increased in a dose-dependent manner. The High-Performance Liquid Chromatography analysis profiled 7 unknown compounds while the GC-qMS revealed 103 compounds in the CC6 fraction allowing for their identification, quantification, and providing insights into the biological activities and its potentials application. The CC6 fraction inhibited glutathione S-transferase (IC50 = 2265.260.60 mg/ml), superoxide dismutase (IC50 = 1485.300.78 mg/ml), catalase (IC50 = 574.471.57 mg/ml), acetyl cholinesterase (IC50 = 838.280.51 mg/ml), butyryl cholinesterase (IC50 = 1641.76 ± 1.14 mg/ml) and upregulated cyclooxygenase-2 (IC50 = 37.89 ± 0.15 mg/ml). Based on the result of the study, it could be inferred that the unidentified compounds present in the EAF exhibit strong insecticidal properties. The study concluded that the acute toxicity of the potent fraction showed no abnormal clinical toxic symptoms while a repeated dose of the extract in sub-acute studies showed a toxic effect that is dose-dependent. The mechanism of action of the purified fraction could be said to be by inhibition of cholinergic and antioxidant enzymes. However, the potent fraction also upregulated the activity of anti-inflammatory enzymes. Hence, regulated amount of CELE at a repeated dose <800 mg/kgbw could be considered for use as an anti-pest agent in Integrated Pest Management of Sitophilus zeamais.
Collapse
Affiliation(s)
- V O Oriyomi
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Oyo State, Nigeria.
| | - O F Fagbohun
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, USA.
| | - F T Akinola
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - M B Adekola
- Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta Nigeria.
| | - T T Oyedeji
- National Biotechnology Development Agency, Department of Cell Tissue and Culture, National Center for Genetics Resources and Biotechnology, Moor Plantation, Ibadan, Nigeria
| |
Collapse
|
25
|
Farag MR, Alagawany M, Mahdy EAA, El-Hady E, Abou-Zeid SM, Mawed SA, Azzam MM, Crescenzo G, Abo-Elmaaty AMA. Benefits of Chlorella vulgaris against Cadmium Chloride-Induced Hepatic and Renal Toxicities via Restoring the Cellular Redox Homeostasis and Modulating Nrf2 and NF-KB Pathways in Male Rats. Biomedicines 2023; 11:2414. [PMID: 37760855 PMCID: PMC10525457 DOI: 10.3390/biomedicines11092414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
In our life scenarios, we are involuntarily exposed to many heavy metals that are well-distributed in water, food, and air and have adverse health effects on animals and humans. Cadmium (Cd) is one of the most toxic 10 chemicals reported by The World Health Organization (WHO), affecting organ structure and function. In our present study, we use one of the green microalga Chlorella vulgaris (ChV, 500 mg/kg body weight) to investigate the beneficial effects against CdCl2-induced hepato-renal toxicity (Cd, 2 mg/kg body weight for 10 days) on adult male Sprague-Dawley rats. In brief, 40 adult male rats were divided into four groups (n = 10); Control, ChV, Cd, and Cd + ChV. Cadmium alters liver and kidney architecture and disturbs the cellular signaling cascade, resulting in loss of body weight, alteration of the hematological picture, and increased ALT, AST, ALP, and urea in the blood serum. Moreover, cadmium puts hepatic and renal cells under oxidative stress due to the up-regulation of lipid peroxidation resulting in a significant increase in the IgG level as an innate immunity protection and induction of the pro-inflammatory cytokines (IL-1β and TNF-α) that causes hepatic hemorrhage, irregular hepatocytes in the liver and focal glomeruli swelling and proximal tubular degeneration in the kidney. ChV additive to CdCl2, could organize the protein translation process via NF-kB/Nrf2 pathways to prevent oxidative damage by maintaining cellular redox homeostasis and improving the survival of and tolerance of cells against oxidative damage caused by cadmium. The present study shed light on the anti-inflammatory and antioxidative properties of Chlorella vulgaris that suppress the toxicity influence of CdCl2.
Collapse
Affiliation(s)
- Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Eman A. A. Mahdy
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt; (E.A.A.M.); (E.E.-H.)
| | - Enas El-Hady
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt; (E.A.A.M.); (E.E.-H.)
| | - Shimaa M. Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 6012201, Egypt;
| | - Suzan A. Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud M. Azzam
- Department of Animal Production, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Valenzano, 70010 Bari, Italy;
| | - Azza M. A. Abo-Elmaaty
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
26
|
Khaled SS, Soliman HA, Abdel-Gabbar M, Ahmed NA, El-Nahass ES, Ahmed OM. Naringin and naringenin counteract taxol-induced liver injury in Wistar rats via suppression of oxidative stress, apoptosis and inflammation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90892-90905. [PMID: 37466839 PMCID: PMC10439847 DOI: 10.1007/s11356-023-28454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
This research aimed to evaluate the preventing effects of naringin, naringenin, and their combination on liver injury induced by Taxol (paclitaxel) in Wistar rats. Male Wistar rats received 2 mg/kg Taxol intraperitoneal injections twice weekly on the second and fifth days of each week for 6 weeks. During the same period as Taxol administration, rats were given naringin, naringenin, or a combination of the two (10 mg/kg b.wt) every other day. Treatment with naringin and/or naringenin reduced the abnormally high serum levels of total bilirubin, aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, and gamma-glutamyl transferase in Taxol-treated rats. It also significantly increased the level of serum albumin, indicating an improvement in the liver. The perturbed histological liver changes were markedly improved due to the naringin and/or naringenin treatment in Taxol-administered rats. Additionally, the treatments reduced high hepatic lipid peroxidation and increased liver glutathione content as well as the activities of superoxide dismutase and glutathione peroxidase. Furthermore, the treatments reduced the levels of alpha-fetoprotein and caspase-3, a pro-apoptotic mediator. The naringin and naringenin mixture appeared more effective in improving organ function and structural integrity. In conclusion, naringin and naringenin are suggested to employ their hepatoprotective benefits via boosting the body's antioxidant defense system, reducing inflammation, and suppressing apoptosis.
Collapse
Affiliation(s)
- Shimaa S. Khaled
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohammed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
27
|
Shilpa VS, Shams R, Dash KK, Pandey VK, Dar AH, Ayaz Mukarram S, Harsányi E, Kovács B. Phytochemical Properties, Extraction, and Pharmacological Benefits of Naringin: A Review. Molecules 2023; 28:5623. [PMID: 37570594 PMCID: PMC10419872 DOI: 10.3390/molecules28155623] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
This review describes the various innovative approaches implemented for naringin extraction as well as the recent developments in the field. Naringin was assessed in terms of its structure, chemical composition, and potential food sources. How naringin works pharmacologically was discussed, including its potential as an anti-diabetic, anti-inflammatory, and hepatoprotective substance. Citrus flavonoids are crucial herbal additives that have a huge spectrum of organic activities. Naringin is a nutritional flavanone glycoside that has been shown to be effective in the treatment of a few chronic disorders associated with ageing. Citrus fruits contain a common flavone glycoside that has specific pharmacological and biological properties. Naringin, a flavone glycoside with a range of intriguing characteristics, is abundant in citrus fruits. Naringin has been shown to have a variety of biological, medicinal, and pharmacological effects. Naringin is hydrolyzed into rhamnose and prunin by the naringinase, which also possesses l-rhamnosidase activity. D-glucosidase subsequently catalyzes the hydrolysis of prunin into glucose and naringenin. Naringin is known for having anti-inflammatory, antioxidant, and tumor-fighting effects. Numerous test animals and cell lines have been used to correlate naringin exposure to asthma, hyperlipidemia, diabetes, cancer, hyperthyroidism, and osteoporosis. This study focused on the many documented actions of naringin in in-vitro and in-vivo experimental and preclinical investigations, as well as its prospective therapeutic advantages, utilizing the information that is presently accessible in the literature. In addition to its pharmacokinetic characteristics, naringin's structure, distribution, different extraction methods, and potential use in the cosmetic, food, pharmaceutical, and animal feed sectors were discussed.
Collapse
Affiliation(s)
- VS Shilpa
- Department of Food Technology & Nutrition, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Rafeeya Shams
- Department of Food Technology & Nutrition, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, Malda 732141, West Bengal, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow 226026, Uttar Pradesh, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur 209402, Uttar Pradesh, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Kashmir, India
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Endre Harsányi
- Faculty of Agriculture, Food Science and Environmental Management, Institute of Land Utilization, Engineering and Precision Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
28
|
Yu Y, Meng W, Kuang H, Chen X, Zhu X, Wang L, Tan H, Xu Y, Ding P, Xiang M, Hu G, Zhou Y, Dong GH. Association of urinary exposure to multiple metal(loid)s with kidney function from a national cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163100. [PMID: 37023822 DOI: 10.1016/j.scitotenv.2023.163100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Arsenic (As), cadmium (Cd) and copper (Cu) are hazardous for kidney function, while the effects of selenium (Se) and zinc (Zn) were unexplored for the narrow safe range of intake. Interactions exists between these multiple metal/metalloid exposures, but few studies have investigated the effects. METHODS A cross-sectional survey was performed among 2210 adults across twelve provinces in China between 2020 and 2021. Urinary As, Cd, Cu, Se and Zn were measured using inductively coupled plasma-mass spectrometry (ICP-MS). Serum creatinine (Scr) and N-acetyl-beta-D glucosaminidases (urine NAG) were quantified in serum and urine, respectively. Kidney function was evaluated by the estimated glomerular filtration rate (eGFR). We employed logistic regression and Bayesian kernel machine regression (BKMR) models to explore the individual and joint effects of urinary metals/metalloids on the risk of impaired renal function (IRF) or chronic kidney disease (CKD), respectively. RESULTS Association was found between As (OR = 1.24, 95 % CI: 1.03, 1.48), Cd (OR = 1.65, 95 % CI: 1.35, 2.02), Cu (OR = 1.90, 95 % CI: 1.59, 2.29), Se (OR = 1.51, 95 % CI: 1.24, 1.85) and Zn (OR = 1.33, 95 % CI: 1.09, 1.64) and the risk of CKD. Moreover, we observed association between As (OR = 1.18, 95 % CI: 1.07, 1.29), Cu (OR = 1.14, 95 % CI: 1.04, 1.25), Se (OR = 1.15, 95 % CI: 1.06, 1.26) and Zn (OR = 1.12, 95 % CI: 1.02, 1.22) and the risk of IRF. Additionally, it was found that Se exposure may strength the association of urinary As, Cd and Cu with IRF. Furthermore, it is worth noting that Se and Cu contributed greatest to the inverse association in IRF and CKD, respectively. CONCLUSION Our findings suggested that metal/metalloid mixtures were associated with kidney dysfunction, Se and Cu were inverse factors. Additionally, interactions between them may affect the association. Further studies are needed to assess the potential risks for metal/metalloid exposures.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China.
| | - Wenjie Meng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Hongxuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Xiaohui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Lebing Wang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Haiping Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Yujie Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
29
|
Marini HR, Bellone F, Catalano A, Squadrito G, Micali A, Puzzolo D, Freni J, Pallio G, Minutoli L. Nutraceuticals as Alternative Approach against Cadmium-Induced Kidney Damage: A Narrative Review. Metabolites 2023; 13:722. [PMID: 37367879 PMCID: PMC10303146 DOI: 10.3390/metabo13060722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is the kidney, where it accumulates. In the present narrative review, we assessed experimental and clinical data dealing with the mechanisms of kidney morphological and functional damage caused by Cd and the state of the art about possible therapeutic managements. Intriguingly, skeleton fragility related to Cd exposure has been demonstrated to be induced both by a direct Cd toxic effect on bone mineralization and by renal failure. Our team and other research groups studied the possible pathophysiological molecular pathways induced by Cd, such as lipid peroxidation, inflammation, programmed cell death, and hormonal kidney discrepancy, that, through further molecular crosstalk, trigger serious glomerular and tubular injury, leading to chronic kidney disease (CKD). Moreover, CKD is associated with the presence of dysbiosis, and the results of recent studies have confirmed the altered composition and functions of the gut microbial communities in CKD. Therefore, as recent knowledge demonstrates a strong connection between diet, food components, and CKD management, and also taking into account that gut microbiota are very sensitive to these biological factors and environmental pollutants, nutraceuticals, mainly present in foods typical of the Mediterranean diet, can be considered a safe therapeutic strategy in Cd-induced kidney damage and, accordingly, could help in the prevention and treatment of CKD.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Antonio Micali
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy;
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (D.P.); (J.F.)
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (D.P.); (J.F.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (A.C.); (G.S.); (G.P.); (L.M.)
| |
Collapse
|
30
|
Alaqeel NK, Al-Hariri MT. Naringenin ameliorates Cyclophosphamide-induced nephrotoxicity in experimental model. Saudi J Biol Sci 2023; 30:103674. [PMID: 37213700 PMCID: PMC10196705 DOI: 10.1016/j.sjbs.2023.103674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/23/2023] Open
Abstract
Cyclophosphamide (CP) is widely described in the management of several nonneoplastic and neoplastic disorders. Renal damage is the most reported toxic effect of CP in clinical practice. Our study aimed to evaluate the effect of Naringenin (NG) in attenuating renal damage induced by CP in an experimental model. A total of 32 rats were divided into four groups (n = 8): negative control: rats fed on a basal diet, positive control: rats injected intraperitoneally with CP 50 mg/kg of body weight/day, NG 100: rats treated with NG 100 mg/kg/day body orally with concomitant administration of CP as described before, and NG 200: rats treated with NG 200 mg/kg/day body orally daily + CP. At the end of the experimental protocol (21 days), blood creatinine and urea levels were measured. The antioxidant activities and lipid peroxidation products were measured in the renal tissues as indicators of oxidative damage. Histopathological examination and immunohistochemistry staining were also performed on renal tissues. Coadministration of NG along with CP significantly (p < 0.001) improved the renal function and antioxidant capacities compared with positive control animals. Furthermore, histopathological, and immunological examination of renal tissue confirmed the protective effect of NG against CP-induced nephrotoxicity. The current study showed that NG has the potential to protect CP-induced renal damage, which may be beneficial for further studies and the design of NG analogs to be useful in clinical practice against CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Nouf K. Alaqeel
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohammed T. Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34719, Saudi Arabi
- Corresponding author.
| |
Collapse
|
31
|
Mansour LAH, Elshopakey GE, Abdelhamid FM, Albukhari TA, Almehmadi SJ, Refaat B, El-Boshy M, Risha EF. Hepatoprotective and Neuroprotective Effects of Naringenin against Lead-Induced Oxidative Stress, Inflammation, and Apoptosis in Rats. Biomedicines 2023; 11:biomedicines11041080. [PMID: 37189698 DOI: 10.3390/biomedicines11041080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Naringenin (NRG) is one of the most important naturally occurring flavonoids, predominantly found in some edible fruits, such as citrus species and tomatoes. It has several biological activities, such as antioxidant, antitumor, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The heavy metal lead is toxic and triggers oxidative stress, which causes toxicity in many organs, including the liver and brain. This study explored the potential protective role of NRG in hepato- and neurotoxicity caused by lead acetate in rats. Four groups of ten male albino rats were included: group 1 was a control, group 2 was orally treated with lead acetate (LA) at a dose of 500 mg/kg BW, group 3 was treated with naringenin (NRG) at a dose of 50 mg/kg BW, and group 4 was treated with 500 mg/kg LA and 50 mg/kg NRG for 4 weeks. Then, blood was taken, the rats were euthanized, and liver and brain tissues were collected. The findings revealed that LA exposure induced hepatotoxicity with a significant increase in liver function markers (p < 0.05). In addition, albumin and total protein (TP) and the albumin/globulin ratio (A/G ratio) (p < 0.05) were markedly lowered, whereas the serum globulin level (p > 0.05) was unaltered. LA also induced oxidative damage, demonstrated by a significant increase in malonaldehyde (MDA) (p < 0.05), together with a pronounced antioxidant system reduction (SOD, CAT, and GSH) (p < 0.05) in both liver and brain tissues. Inflammation of the liver and brain caused by LA was indicated by increased levels of nuclear factor kappa beta (NF-κβ) and caspase-3, (p < 0.05), and the levels of B-cell lymphocyte-2 (BCL-2) and interleukin-10 (IL-10) (p < 0.05) were decreased. Brain tissue damage induced by LA toxicity was demonstrated by the downregulation of the neurotransmitters norepinephrine (NE), dopamine (DA), serotonin (5-HT), and creatine kinase (CK-BB) (p < 0.05). Additionally, the liver and brain of LA-treated rats displayed notable histopathological damage. In conclusion, NRG has potential hepato- and neuroprotective effects against lead acetate toxicity. However, additional research is needed in order to propose naringenin as a potential protective agent against renal and cardiac toxicity mediated by lead acetate.
Collapse
Affiliation(s)
- Lubna A. H. Mansour
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Fatma M. Abdelhamid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Talat A. Albukhari
- Department of Immunology and Hematology, Faculty of Medicine, Umm Al-Qura University, Makkah P.O. Box 6165, Saudi Arabia
| | - Samah J. Almehmadi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Mohamed El-Boshy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Engy F. Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
32
|
Karami E, Goodarzi Z, Ghanbari A, Dehdashti A, Bandegi AR, Yosefi S. Atorvastatin prevents cadmium-induced renal toxicity in a rat model. Toxicol Ind Health 2023; 39:218-228. [PMID: 36802990 DOI: 10.1177/07482337231157150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In many industrial processes, worker exposure to cadmium causes kidney damage; thus, protection against cadmium toxicity is important in workplace health. Cadmium toxicity involves oxidative stress by increasing the levels of reactive oxygen species. Statins have shown antioxidant effects that might prevent this increase in oxidative stress. We investigated the potential effects of atorvastatin pretreatment in protecting experimental rats against kidney toxicity caused by cadmium. Experiments were performed on 56 adult male Wistar rats (200 ± 20 g), randomly assigned to eight groups. Atorvastatin was administered by oral gavage for 15 days at 20 mg/kg/day, starting 7 days before cadmium chloride intra-peritoneal administration (at 1, 2, and 3 mg/kg) for 8 days. On day 16, blood samples were collected, and kidneys were excised to evaluate the biochemical and histopathological changes. Cadmium chloride significantly increased malondialdehyde, serum creatinine, blood urea nitrogen, and decreased superoxide dismutase, glutathione, and glutathione peroxidase levels. Pre-administration of rats with atorvastatin at a dose of 20 mg/kg decreased blood urea nitrogen, creatinine, and lipid peroxidation, increased the activities of antioxidant enzymes, and prevented changes in physiological variables compared with animals that were not pretreated. Atorvastatin pretreatment prevented kidney damage following exposure to toxic doses of cadmium. In conclusion, atorvastatin pretreatment in rats with cadmium chloride-induced kidney toxicity could reduce oxidative stress by changing biochemical functions and thereby decreasing damage to kidney tissue.
Collapse
Affiliation(s)
- Esmaeil Karami
- Department of Occupational Health, School of Health, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Goodarzi
- Department of Occupational Health, School of Health, 154203Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Department of Physiology and Pharmacology, 89245Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Dehdashti
- Department of Occupational Health, School of Health, 154203Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Health Sciences and Technologies, Department of Occupational Health, 154203Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Reza Bandegi
- Department of Physiology and Pharmacology, 89245Pasteur Institute of Iran, Tehran, Iran
| | - Sedighe Yosefi
- Department of Biochemistry, Faculty of Medicine, 154203Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
33
|
Shaban NS, Radi AM, Abdelgawad MA, Ghoneim MM, Al-Serwi RH, Hassan RM, Mohammed ET, Radi RA, Halfaya FM. Targeting Some Key Metalloproteinases by Nano-Naringenin and Amphora coffeaeformis as a Novel Strategy for Treatment of Osteoarthritis in Rats. Pharmaceuticals (Basel) 2023; 16:260. [PMID: 37259405 PMCID: PMC9959020 DOI: 10.3390/ph16020260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2024] Open
Abstract
Osteoarthritis (OA) represents the highest degenerative disorder. Because cartilage erosion is a common pathological alteration in OA, targeting some key metalloproteinases such as MMP-3, ADAMTS-5 besides their inhibitor TIMP-3 by natural products, could be an effective strategy to protect against osteoarthritis. Forty female Wister rats were categorized into five equal groups. Control, osteoarthritic (OA) (monosodium iodoacetate (MIA) 2 mg/50 µL saline, single intra-articular injection), OA+ indomethacin (2 mg/kg/daily/orally), OA+ nano-naringenin (25 mg/kg/daily/orally), and OA+ Amphora coffeaeformis (772 mg/kg/daily/orally). Treatments were initiated on the 8th day after osteoarthritis induction and continued for 28 days thereafter. Finally, blood and knee joint samples were collected from all rats for biochemical and histopathological evaluations. The current study showed that MIA induced oxidative stress, which resulted in changes in the inflammatory joint markers associated with increased right knee diameter and higher clinical scores for lameness. Amphora coffeaeformis followed by nano-naringenin exhibited a potential anti-arthritic activity by reducing the concentrations of serum MMP-3, ADAMTS-5, and joint MDA and increasing the levels of serum TIMP-3 and joint GSH, similar to indomethacin. The histopathological results confirmed these outcomes. In conclusion, Amphora coffeaeformis and nano-naringenin can be considered as natural therapeutic agents for osteoarthritis owing to their antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Nema S Shaban
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abeer M Radi
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Randa M Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Eman T Mohammed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Rania A Radi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma M Halfaya
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
34
|
Ravikumar Y, Madhuri D, Lakshman M, Gopalareddy A, Kalakumar B, Anilkumar B. Cadmium and Chlorpyrifos Induced Lipid Peroxidation in Brain, Liver and Kidney of Wistar Rats. Toxicol Int 2023. [DOI: 10.18311/ti/2022/v29i4/30251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The work was designed with 4 groups for 28 days. 1: Control. 2: CdCl2 @ 22.5mg/ kg b.wt / oral. 3: CPF @ 25 mg/ kg b.wt /per oral. 4: CdCl2@22.5 mg + CPF @ 25 mg/ kg b.wt /per oral. Higher mean values of liver, kidney and brain TBARS were observed in G-2, 3 and 4 on 15th and 29th day. Liver section in group 2 revealed mild degenerative changes in group 3; in group 4 mild to moderate peri portal fibrosis. Kidney section in group 2 showed shrunken glomeruli, necrosis; kidney section showed degeneration and necrosis of tubular epithelium with casts in the lumen in group 3 and necrosis with casts in the lumen in group 4. Brain section in group 2 showed mild perivascular cuffing, mild to moderate degeneration of Purkinji cells in group 3 and in group 4 degeneration of Purkinje cells. Effects in G-4 were severe than individual groups due to synergistic action of the combined pollutants than the individual effects.
Collapse
|
35
|
Sahu N, Rakshit S, Nirala SK, Bhadauria M. Naringenin protects hepato-renal tissues against antituberculosis drugs induced toxic manifestations by modulating interleukin-6, insulin like growth factor-1, biochemical and ultra-structural integrity. Mol Biol Rep 2023; 50:1019-1031. [PMID: 36383336 DOI: 10.1007/s11033-022-07799-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND The antituberculosis drugs (ATDs), isoniazid, rifampicin, pyrazinamide and ethambutol prompt extreme hepatic and renal damage during treatment of tuberculosis. The present study aimed to investigate protective potential of naringenin against ATDs induced hepato-renal injury. METHODS Rats were administered with ATDs (pyrazinamide; 210, ethambutol; 170, isoniazid; 85, rifampicin; 65 mg/kg b.wt) orally for 8 weeks (3 days/week) followed by naringenin at three different doses (10, 20 and 40 mg/kg b.wt) conjointly for 8 weeks (3 days/week alternately to ATDs administration) and silymarin (50 mg/kg b.wt) as positive control. RESULTS Exposure to ATDs caused significant increase in interleukin-6 (IL-6), triglycerides, cholesterol, bilirubin whereas depletion in insulin like growth factor-1 (IGF-1), albumin and glucose in serum. Endogenous antioxidant enzymes glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate-dehydrogenase (G-6-PDH) were diminished in liver and kidney tissues with parallel increase in triglycerides, cholesterol, microsomal LPO and aniline hydroxylase (CYP2E1 enzyme). Ultra-structural observations of liver and kidney showed marked deviation in plasma membranes of various cellular and sub-cellular organelles after 8 weeks of exposure to ATDs. CONCLUSIONS Conjoint treatment of naringenin counteracted ATDs induced toxic manifestations by regulating IL-6, IGF-1, CYP2E1, biochemical and ultra-structural integrity in a dose dependent manner. Naringenin has excellent potential to protect ATDs induced hepato-renal injury by altering oxidative stress, modulation of antioxidant enzymes, serum cytokines and ultra-structural changes.
Collapse
Affiliation(s)
- Nisha Sahu
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, 495009, Bilaspur, CG, India
| | - Samrat Rakshit
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, 495009, Bilaspur, CG, India
| | - Satendra Kumar Nirala
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, 495009, Bilaspur, CG, India
| | - Monika Bhadauria
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, 495009, Bilaspur, CG, India.
| |
Collapse
|
36
|
Gallic acid abates cadmium chloride toxicity via alteration of neurotransmitters and modulation of inflammatory markers in Wistar rats. Sci Rep 2023; 13:1577. [PMID: 36709339 PMCID: PMC9884205 DOI: 10.1038/s41598-023-28893-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 01/29/2023] Open
Abstract
Cadmium is a highly neurotoxic heavy metal that disrupts membranes and causes oxidative stress in the brain. The study aimed to investigate the neuroprotective effect of gallic acid on oxidative damage in the brains of Wistar rats exposed to cadmium chloride (CdCl2). Male Wistar rats were divided into four groups of five rats each. Group 1 was administered distilled water only throughout the study. Throughout the study, Group 2 received CdCl2 alone (5 mg/kg b.w./day), Group 3 received gallic acid (20 mg/kg b.w./day), and Group 4 received CdCl2 + gallic acid (20 mg/kg). Treatments were oral with distilled water as a vehicle. The study lasted 21 days. In the brain, the activities of cholinesterase and antioxidant enzymes were evaluated, as well as the levels of reduced glutathione, malondialdehyde, neurotransmitters, Na+/K+ ATPase, myeloperoxidase activity, nitric oxide, and interleukin-6. CdCl2-induced brain impairments in experimental animals and gallic acid prevents the following CdCl2-induced activities: inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), elevated neurotransmitters (serotonin and dopamine), decreased antioxidant enzymes (superoxide dismutase, catalase), decreased glutathione, Na+/K+ ATPases, and increased MDA and neuroinflammatory markers (myeloperoxidase (MPO), nitric oxide, and interleukin-6 in the brain of experimental rats exposed to CdCl2 (p < 0.05). Taken together, the neuroprotective effects of gallic acid on CdCl2-induced toxicity in the brains of rats suggest its potent antioxidant and neurotherapeutic properties.
Collapse
|
37
|
Karami E, Goodarzi Z, Ghanbari A, Bandegi AR, Yosefi S, Dehdashti A. In vivo antioxidant and kidney protective potential of Atorvastatin against cadmium chloride-induced kidney injury in male Wistar rat. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2126900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Esmaeil Karami
- Department of Occupational Health, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Goodarzi
- Department of Occupational Health, School of Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Al Ghanbari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Reza Bandegi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Sedighe Yosefi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Dehdashti
- Department of Occupational Health, School of Health, Semnan University of Medical Sciences, Semnan, Iran
- Department of Occupational Health, Research Center of Health Sciences and Technologies, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
38
|
Emran TB, Islam F, Nath N, Sutradhar H, Das R, Mitra S, Alshahrani MM, Alhasaniah AH, Sharma R. Naringin and Naringenin Polyphenols in Neurological Diseases: Understandings from a Therapeutic Viewpoint. Life (Basel) 2022; 13:99. [PMID: 36676048 PMCID: PMC9867091 DOI: 10.3390/life13010099] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
The glycosides of two flavonoids, naringin and naringenin, are found in various citrus fruits, bergamots, tomatoes, and other fruits. These phytochemicals are associated with multiple biological functions, including neuroprotective, antioxidant, anticancer, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The higher glutathione/oxidized glutathione ratio in 3-NP-induced rats is attributed to the ability of naringin to reduce hydroxyl radical, hydroperoxide, and nitrite. However, although progress has been made in treating these diseases, there are still global concerns about how to obtain a solution. Thus, natural compounds can provide a promising strategy for treating many neurological conditions. Possible therapeutics for neurodegenerative disorders include naringin and naringenin polyphenols. New experimental evidence shows that these polyphenols exert a wide range of pharmacological activity; particular attention was paid to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, as well as other neurological conditions such as anxiety, depression, schizophrenia, and chronic hyperglycemic peripheral neuropathy. Several preliminary investigations have shown promising evidence of neuroprotection. The main objective of this review was to reflect on developments in understanding the molecular mechanisms underlying the development of naringin and naringenin as potential neuroprotective medications. Furthermore, the configuration relationships between naringin and naringenin are discussed, as well as their plant sources and extraction methods.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Hriday Sutradhar
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
39
|
Marrelli M, Argentieri MP, Alexa E, Meleleo D, Statti G, Avato P, Conforti F, Mallamaci R. Antioxidant activity and protective effect of the outer scales hydroalcoholic extract of Allium cepa L. var. Tropea on toxicity damage induced by Cadmium in Caco-2 cells. Food Chem Toxicol 2022; 170:113495. [DOI: 10.1016/j.fct.2022.113495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
|
40
|
Nor Muhamad ML, Ekeuku SO, Wong SK, Chin KY. A Scoping Review of the Skeletal Effects of Naringenin. Nutrients 2022; 14:4851. [PMID: 36432535 PMCID: PMC9699132 DOI: 10.3390/nu14224851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Osteoporosis is caused by the deterioration of bone density and microstructure, resulting in increased fracture risk. It transpires due to an imbalanced skeletal remodelling process favouring bone resorption. Various natural compounds can positively influence the skeletal remodelling process, of which naringenin is a candidate. Naringenin is an anti-inflammatory and antioxidant compound found in citrus fruits and grapefruit. This systematic review aims to present an overview of the available evidence on the skeletal protective effects of naringenin. METHOD A systematic literature search was conducted using the PubMed and Scopus databases in August 2022. Original research articles using cells, animals, or humans to investigate the bone protective effects of naringenin were included. RESULTS Sixteen eligible articles were included in this review. The existing evidence suggested that naringenin enhanced osteoblastogenesis and bone formation through BMP-2/p38MAPK/Runx2/Osx, SDF-1/CXCR4, and PI3K/Akt/c-Fos/c-Jun/AP-1 signalling pathways. Naringenin also inhibited osteoclastogenesis and bone resorption by inhibiting inflammation and the RANKL pathway. CONCLUSIONS Naringenin enhances bone formation while suppressing bone resorption, thus achieving its skeletal protective effects. It could be incorporated into the diet through fruit intake or supplements to prevent bone loss.
Collapse
Affiliation(s)
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
41
|
Salama SA, Abd-Allah GM, Gad HS, Kabel AM. Galangin attenuates cadmium-evoked nephrotoxicity: Targeting nucleotide-binding domain-like receptor pyrin domain containing 3 inflammasome, nuclear factor erythroid 2-related factor 2, and nuclear factor kappa B signaling. J Biochem Mol Toxicol 2022; 36:e23059. [PMID: 35384154 DOI: 10.1002/jbt.23059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/09/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
The kidney is highly vulnerable to cadmium-evoked oxidative injury. Galangin is a natural flavone with reported antioxidant properties. This study investigated the potential modulating activity of galangin against cadmium-induced nephrotoxicity and explored the underlining mechanisms. Western blot analysis, spectrophotometric, ELISA, and histopathological techniques were employed. The results revealed that galangin suppressed tubular injury and improved glomerular function in the cadmium-intoxicated rats as evidenced by downregulation of kidney injury molecule-1, serum creatinine, and blood urea nitrogen. Galangin reduced cadmium-evoked inflammatory response and oxidative stress as indicated by reduced levels of interleukin-1 beta and TNF-α, decreased DNA damage, and improved antioxidant potential of the renal tissues. Mechanistically, galangin suppressed the nucleotide-binding domain-like receptor pyrin domain containing 3 inflammasome and efficiently decreased caspase-1 activity in the cadmium-intoxicated rats. Equally important, it inhibited the cadmium-induced nuclear translocation of nuclear factor kappa B and upregulated nuclear factor erythroid 2-related factor 2 signaling. The results highlight the ability of galangin to attenuate cadmium-evoked nephrotoxicity and support its therapeutic implementation although clinical investigations are warranted.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Gamil M Abd-Allah
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr, Egypt
| | - Hesham S Gad
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
42
|
Varnasseri M, Xu Y, Goodacre R. Rapid detection and quantification of the adulteration of orange juice with grapefruit juice using handheld Raman spectroscopy and multivariate analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1663-1670. [PMID: 35322833 DOI: 10.1039/d2ay00219a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detecting food adulteration has always been an important task for food safety, especially when grapefruit is the adulterant as components in the juice have undesired interactions with many medicines. In this study we employed a handheld Raman device to detect adulteration of orange juices with grapefruit juices. Fresh fruits of orange and grapefruit were purchased from five different sources and fruit juices were made using a handheld juicer. The extracted juices were then mixed in a way that concentrations of grapefruit juices varied from 0% to 100% in 5% increments. In order to study the impact of the different sources of the fruits, three different sets of mixtures were prepared based on their spectral similarity and dissimilarity. Raman spectra were collected using a handheld instrument with an excitation laser at 785 nm and data analysed using principal component analysis (PCA), principal component-discriminant function analysis (PC-DFA) and partial least squares regression (PLS-R). PLS-R models were trained and validated on: (i) the full data set from the three different mixture sets, and (ii) each set of the three mixtures separately. The results showed that a good calibration model was obtained using full data which had a coefficient of determination (Q2) of 0.81 and a root mean square error of prediction (RMSEP) of 12.5%. Such results were improved when the PLS-R model was trained and validated on the three separate mixture combinations, where the Q2 varied from 0.85 to 0.89 and RMSEP varied from 9.9% to 11.6%. Finally, we adopted a two step approach in which a partial least squares for discriminant analysis (PLS-DA) was trained first to classify the three sample sources and then three different PLS-R models were subsequently trained on samples from the same source. This resulted in a Q2 of 0.83 and RMSEP of 12.0%. In conclusion, we have demonstrated that Raman spectroscopy can be used as a portable and rapid analytical tool for detecting adulteration of grapefruit juice added to orange juice.
Collapse
Affiliation(s)
- Mehrvash Varnasseri
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, UK.
| | - Yun Xu
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, UK.
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, UK.
| |
Collapse
|
43
|
Boldrini GG, Martín Molinero G, Pérez Chaca MV, Ciminari ME, Moyano F, Córdoba ME, Pennacchio G, Fanelli M, Álvarez SM, Gómez NN. Glycine max (soy) based diet improves antioxidant defenses and prevents cell death in cadmium intoxicated lungs. Biometals 2022; 35:229-244. [PMID: 35038064 DOI: 10.1007/s10534-022-00361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/04/2022] [Indexed: 11/02/2022]
Abstract
Cadmium (Cd) is a toxic metal and an important environmental contaminant. We analyzed its effects on oligoelements, oxidative stress, cell death, Hsp expression and the histoarchitecture of rat lung under different diets, using animal models of subchronic cadmium intoxication. We found that Cd lung content augmented in intoxicated groups: Zn, Mn and Se levels showed modifications among the different diets, while Cu showed no differences. Lipoperoxidation was higher in both intoxicated groups. Expression of Nrf-2 and SOD-2 increased only in SoCd. GPx levels showed a trend to increase in Cd groups. CAT activity was higher in intoxicated groups, and it was higher in Soy groups vs. Casein. LDH activity in BAL increased in CasCd and decreased in both soy-fed groups. BAX/Bcl-2 semiquantitative ratio showed similar results than LDH activity, confirmed by Caspase 3 immunofluorescence. The histological analysis revealed an infiltration process in CasCd lungs, with increased connective tissue, fused alveoli and capillary fragility. Histoarchitectural changes were less severe in soy groups. Hsp27 expression increased in both intoxicated groups, while Hsp70 only augmented in SoCd. This show that a soy-diet has a positive impact upon oxidative unbalance, cell death and morphological changes induced by Cd and it could be a good alternative strategy against Cd exposure.
Collapse
Affiliation(s)
- Gabriel Giezi Boldrini
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - Glenda Martín Molinero
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
- IMIBIO-SL CONICET, San Luis, Argentina
| | - María Verónica Pérez Chaca
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - María Eugenia Ciminari
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | | | | | | | - Mariel Fanelli
- Laboratory of Oncology, IMBECU (CCT), CONICET, Mendoza, Argentina
| | - Silvina Mónica Álvarez
- Laboratory of Nutrition and Environment, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina.
- IMIBIO-SL CONICET, San Luis, Argentina.
| | - Nidia Noemí Gómez
- IMIBIO-SL CONICET, San Luis, Argentina.
- Laboratory of Morphophysiology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina.
| |
Collapse
|
44
|
SALEM FE, YEHIA HM, KORANY SM, ALARJANI KM, AL-MASOUD AH, ELKHADRAGY MF. Neurotherapeutic effects of prodigiosin conjugated with silver-nanoparticles in rats exposed to cadmium chloride-induced neurotoxicity. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.97322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Zhang Y, Liu Z, He Q, Wu F, Xiao Y, Chen W, Jin Y, Yu D, Wang Q. Construction of Mode of Action for Cadmium-Induced Renal Tubular Dysfunction Based on a Toxicity Pathway-Oriented Approach. Front Genet 2021; 12:696892. [PMID: 34367254 PMCID: PMC8343180 DOI: 10.3389/fgene.2021.696892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
Although it is recognized that cadmium (Cd) causes renal tubular dysfunction, the mechanism of Cd-induced nephrotoxicity is not yet fully understood. Mode of action (MOA) is a developing tool for chemical risk assessment. To establish the mechanistic MOA of Cd-induced renal tubular dysfunction, the Comparative Toxicogenomics Database (CTD) was used to obtain genomics data of Cd-induced nephrotoxicity, and Ingenuity® Pathway Analysis (IPA) software was applied for bioinformatics analysis. Based on the perturbed toxicity pathways during the process of Cd-induced nephrotoxicity, we established the MOA of Cd-induced renal tubular dysfunction and assessed its confidence with the tailored Bradford Hill criteria. Bioinformatics analysis showed that oxidative stress, DNA damage, cell cycle arrest, and cell death were the probable key events (KEs). Assessment of the overall MOA of Cd-induced renal tubular dysfunction indicated a moderate confidence, and there are still some evidence gaps to be filled by rational experimental designs.
Collapse
Affiliation(s)
- Yangchun Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qianmei He
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fei Wu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Retraction Note to: Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats. Mol Biol Rep 2021; 48:5377. [PMID: 34235619 DOI: 10.1007/s11033-021-06475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Ghidoli M, Colombo F, Sangiorgio S, Landoni M, Giupponi L, Nielsen E, Pilu R. Food Containing Bioactive Flavonoids and Other Phenolic or Sulfur Phytochemicals With Antiviral Effect: Can We Design a Promising Diet Against COVID-19? Front Nutr 2021; 8:661331. [PMID: 34222300 PMCID: PMC8247467 DOI: 10.3389/fnut.2021.661331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Since in late 2019, when the coronavirus 2 (SARS-CoV-2) pathogen of coronavirus disease 2019 (COVID-19) started to spread all over the world, causing the awful global pandemic we are still experiencing, an impressive number of biologists, infectious disease scientists, virologists, pharmacologists, molecular biologists, immunologists, and other researchers working in laboratories of all the advanced countries focused their research on the setting up of biotechnological tools, namely vaccines and monoclonal antibodies, as well as of rational design of drugs for therapeutic approaches. While vaccines have been quickly obtained, no satisfactory anti-Covid-19 preventive, or therapeutic approach has so far been discovered and approved. However, among the possible ways to achieve the goal of COVID-19 prevention or mitigation, there is one route, i.e., the diet, which until now has had little consideration. In fact, in the edible parts of plants supplying our food, there are a fair number of secondary metabolites mainly belonging to the large class of the flavonoids, endowed with antiviral or other health beneficial activities such as immunostimulating or anti-inflammatory action that could play a role in contributing to some extent to prevent or alleviate the viral infection and/or counteract the development of SARS induced by the novel coronavirus. In this review, a number of bioactive phytochemicals, in particular flavonoids, proven to be capable of providing some degree of protection against COVID-19, are browsed, illustrating their beneficial properties and mechanisms of action as well as their distribution in cultivated plant species which supply food for the human diet. Furthermore, room is also given to information regarding the amount in food, the resistance to cooking processes and, as a very important feature, the degree of bioavailability of these compounds. Concluding, remarks and perspectives for future studies aimed at increasing and improving knowledge and the possibility of using this natural complementary therapy to counteract COVID-19 and other viral pathologies are discussed.
Collapse
Affiliation(s)
- Martina Ghidoli
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Federico Colombo
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Stefano Sangiorgio
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Michela Landoni
- Department of Bioscience, Università degli Studi di Milano, Milan, Italy
| | - Luca Giupponi
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas – CRC Ge.S.Di.Mont., Università degli Studi di Milano, Edolo, Italy
| | - Erik Nielsen
- Department of Biology and Biotechnology Università degli Studi di Pavia, Pavia, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences - Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas – CRC Ge.S.Di.Mont., Università degli Studi di Milano, Edolo, Italy
| |
Collapse
|
48
|
Naraki K, Rezaee R, Karimi G. A review on the protective effects of naringenin against natural and chemical toxic agents. Phytother Res 2021; 35:4075-4091. [PMID: 33724584 DOI: 10.1002/ptr.7071] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
Naringenin (NRG), as a flavanone from flavonoids family, is widely found in grapefruit, lemon tomato, and Citrus fruits. NRG has shown strong anti-inflammatory and antioxidant activities in body organs via mechanisms such as enhancement of glutathione S-transferase (GST), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activity, but reduction of serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and malondialdehyde (MDA). Furthermore, NRG anti-apoptotic potential was indicated to be mediated by regulating B-cell lymphoma (Bcl-2), Bcl-2-associated X protein (Bax) and caspase3/9. Overall, these properties make NRG a highly fascinating compound with beneficial pharmacological effects. Based on the literature, NRG-induced protective effects against toxicities produced by natural toxins, pharmaceuticals, heavy metals, and environmental chemicals, were mainly mediated via suppression of lipid peroxidation, oxidative stress (through boosting the antioxidant arsenal), and inflammatory factors (e.g., TNF-α, interleukin [IL]-6, IL-10, and IL-12), and activation of PI3K/Akt and MAPK survival signaling pathways. Despite considerable body of evidence on protective properties of NRG against a variety of toxic compounds, more well-designed experimental studies and particularly, clinical trials are required before reaching a concrete conclusion. The present review discusses how NRG protects against the above-noted toxic compounds.
Collapse
Affiliation(s)
- Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Gerçek E, Zengin H, Erdem Erişir F, Yılmaz Ö. Biochemical changes and antioxidant capacity of naringin and naringenin against malathion toxicity in Saccharomyces cerevisiae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108969. [PMID: 33412300 DOI: 10.1016/j.cbpc.2020.108969] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/18/2022]
Abstract
Flavonoids are rich in seeds, citrus fruits, olive oil, tea and red wine. Citrus flavonoids constitute an important type of flavonoids. Naringin and naringenin belong to flavonoids with known antioxidant and were found to display antioxidant activities. Malathion is an organophosphorus pesticide that has been broadly used throughout the world to control weeds and pests. It has also been used in public health for mosquito control and fruit fly eradication programs. Malathion, naringin, and naringenin were added to be in 40, 80, and 160 mg doses in Saccharomyces cerevisiae cultures mainly used to determine the antioxidant capacity, it is known that they have shown similar results to man. At the end of the experiment, total protein, malondialdehyde (MDA), reduced glutathione (GSH), oxidized glutathione (GSSG), vitamin K, vitamin E, vitamin D, ergosterol, stigmasterol, β-Sitosterol, and fatty acids were analyzed by HPLC (high performance liquid chromatography) and GC (gas chromatography) devices in the tested S. cerevisiae samples. The contents of the yeast cell of octanoic acid (C8:0), lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1n-7), heptadecanoic acid (C17:0), stearic acid (C18:0), oleic acid (C18:1n-9), and linoleic acid (C18:2n-6) were identified. There were statistically significant changes in total protein, MDA, GSH, GSSG, vitamin K, vitamin E, vitamin D, phytosterol and fatty acid levels. It was determined that naringin and naringenin showed statistically significant decreases against malathion toxicity on these parameters. From this study it is found that, the mitigating effect of naringin against DPPH stable free radical was higher than that of naringenin. Citrus flavonoid, naringin showed promising antioxidant activity which can be used as effective protecting agents against oxidative stress.
Collapse
Affiliation(s)
- Ezgi Gerçek
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey.
| | - Hatayi Zengin
- Department of Mathematics and Science Education, Faculty of Education, Cumhuriyet University, Sivas, Turkey
| | - Figen Erdem Erişir
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Ökkeş Yılmaz
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| |
Collapse
|
50
|
Banwo K, Alonge Z, Sanni AI. Binding Capacities and Antioxidant Activities of Lactobacillus plantarum and Pichia kudriavzevii Against Cadmium and Lead Toxicities. Biol Trace Elem Res 2021; 199:779-791. [PMID: 32436065 DOI: 10.1007/s12011-020-02164-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
The cadmium and lead binding capacities and antioxidant activities of Lactobacillus plantarum and Pichia kudriavzevii were evaluated in vitro and in vivo. Lactic acid bacteria and yeasts obtained from fermenting cassava mash and maize slurry were screened for tolerance to cadmium and lead at 500-1050 mg ml-1 screened for probiotic potentials and antioxidant activities such as 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant properties. The in vivo studies were carried out in male Wistar rats. The strains identified as Lactobacillus plantarum ML05 and Pichia kudriavzevii FY05 demonstrated the best probiotic potentials and antioxidant activities. Alterations in antioxidant capacities were positive in the treatment groups. The histopathology displayed positive changes in the renal tubules and glomeruli, hypertrophy, with normal capsular spaces without inflammation in the kidney, while the liver sinusoids appear normal in the rats administered with L. plantarum ML05 and P. kudriavzevii FY05 while the infected and not treated showed cell necrosis induced by toxicities. Our results provided new evidence that Lactobacillus plantarum and Pichia kudriavzevii have different biological actions on the heavy metals binding capacities and antioxidant activities in experimental animals. This study suggests that these microorganisms can be considered dietary therapeutics against cadmium and lead toxicities.
Collapse
Affiliation(s)
- Kolawole Banwo
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Zainab Alonge
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abiodun I Sanni
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|