1
|
Owumi S, Oluwawibe BJ, Agbarogi H, Otunla MT, Owoeye O, Arunsi UO. Integrated In-silico and In-vivo Assessments of Betaine's Effect on the Hypothalamic-Pituitary-Testicular (HPT) Axis in Fluoride-Treated Rats. Biol Trace Elem Res 2025:10.1007/s12011-025-04519-y. [PMID: 39907888 DOI: 10.1007/s12011-025-04519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025]
Abstract
Toxicity is associated with undue sodium fluoride (NaF) exposure, and Betaine (BET) is recognised for its nutraceutical benefits. Although it is necessary to reduce toxic level exposure to fluoride, the literature lacks information on the role of BET in mitigating fluoride-induced reproductive toxicity. Therefore, this study assesses the impact of BET on NaF-induced reproductive perturbation in male rats. Wistar rats were treated with NaF (9 mg/kg) alone or co-treated with BET (50 or 100 mg/kg) for 28 d. Our findings indicate that BET significantly mitigated alterations in sperm functionality indices caused by NaF treatment. BET substantially increased reproductive hormone levels and averted NaF-induced increases in oxidative stress biomarkers and testicular enzymes. NaF-induced increases in inflammatory markers in the testis, epididymis, and hypothalamus were effectively reversed upon BET co-treatment. Also, co-treatment with BET protected genome integrity, as evidenced by p53 and apoptotic markers Bax and Bcl-2 levels, abating damages in the testes, epididymis, and hypothalamus of NaF-treated rats. Also, our findings from in-silico studies revealed that BET moderately inhibits the molecular activation of the inhibitor of nuclear factor-κB kinase, hypoxia-inducible factor -1 alpha, and proviral integration for the Moloney murine leukaemia virus-1 kinase. While it is preferable to reduce fluoride exposure, the relevant findings here indicate that BET exhibits anti-inflammatory, antioxidant, and anti-apoptotic properties that ameliorate inadvertent NaF-mediated toxicities in experimental rats exposed to NaF.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria.
| | - Bayode J Oluwawibe
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria
| | - Harieme Agbarogi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria
| | - Moses T Otunla
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, ChangeLab-Changing Lives; Rm NB 302, Ibadan, Oyo State, 200005, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Uche O Arunsi
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| |
Collapse
|
2
|
Fishta A, Thakur R, Sharma KC, Thakur N, Patial B. Effects of Fluoride Toxicity on Female Reproductive System of Mammals: A Meta-Analysis. Biol Trace Elem Res 2025; 203:646-669. [PMID: 38709367 DOI: 10.1007/s12011-024-04203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Considerable integrative efforts have been made to investigate the effects of fluoride on female reproductive organs since the last years. The ingestion of fluoride causes adverse effects on human health like causing skeletal fluorosis, dental fluorosis, bone fractures, kidney problems, decrease birth rates, weakening of thyroid functionality, and impair intelligence, particularly in children. In this review, we discuss the adverse effects of fluoride on female reproductive organs and presented certain remedies. A total of 53 papers on the effect of fluoride on female reproductive organs, including 6 population surveys were examined. Google Scholar, Google, Research Gate, PubMed, and the International Journal of Fluoride have all been searched for fluoride research papers. Various doses and pathological effects have been described in this review article.
Collapse
Affiliation(s)
- Aditi Fishta
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| | - Ruhi Thakur
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India.
| | | | - Neha Thakur
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| | - Bhavna Patial
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| |
Collapse
|
3
|
Patial B, Khan I, Thakur R, Fishta A. Effects of fluoride toxicity on the male reproductive system: A review. J Trace Elem Med Biol 2024; 86:127522. [PMID: 39276446 DOI: 10.1016/j.jtemb.2024.127522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/27/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Fluoride toxicity and fluorosis is an emerging global problem. Fluoride has long been added to water for dental caries prevention; however, it has a variety of damaging consequences on human bodies. The aim of this paper is to analyse all the literature available on the effects of fluoride toxicity on male reproductive system. METHODS Research papers were collected using various methods of data collection like Pubmed, Scopus, and Google Scholar from 1980 to 2024, and then reviewed thoroughly. RESULTS Fluoride is known to cause various histopathological and biochemical alterations in the male reproductive system. It also affects fertility, semen quality, sperm number and quality,the process of spermatogenesis and spermiogenesis. Key changes caused by fluoride in male reproductive system include structural defects in the flagellum, acrosome, and nucleus of spermatids and epididymal spermatozoa. Degenerative changes in Leydig cells result in reduced testosterone production, causing regression of seminiferous tubules and structural damage to the epididymis, ultimately terminating spermatogenesis which leads to infertility. Decrease in levels of testosterone and activities of various antioxidant enzymes resulting in greater oxidative stress was also seen. CONCLUSIONS Fluoride has various detrimental effects on male reproductive system and overall reproductive health. This type of study is important for understanding the effects of fluoride toxicity so that health officials can guide public about safe fluoride exposure limits and the damages it can cause in higher concentrations. Studies using various natural and synthetic ameliorative substances mentioned in the text later can prove to be helpful for development of various therapeutic approaches to mitigate the effects of fluoride toxicity.
Collapse
Affiliation(s)
- Bhavna Patial
- Zoology Laboratory II, School of Biological and Environmental Sciences, Shoolini University, Solan, India.
| | - Imtiaza Khan
- Department of Zoology, Khalsa College, Patiala, India.
| | - Ruhi Thakur
- Zoology Laboratory II, School of Biological and Environmental Sciences, Shoolini University, Solan, India.
| | - Aditi Fishta
- Zoology Laboratory II, School of Biological and Environmental Sciences, Shoolini University, Solan, India.
| |
Collapse
|
4
|
Meenakshi S, Bahekar T, Narapaka PK, Pal B, Prakash V, Dhingra S, Kumar N, Murti K. Impact of fluorosis on molecular predictors in pathogenesis of type 2 diabetes associated microvascular complications. J Trace Elem Med Biol 2024; 86:127506. [PMID: 39128255 DOI: 10.1016/j.jtemb.2024.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
AIM This review presents specific insights on the molecular underpinnings of the connection between fluorosis, type 2 diabetes, and microvascular complications, along with the novel biomarkers that are available for early detection. SUMMARY Fluoride is an essential trace element for the mineralization of teeth and bones in humans. Exposure to higher concentrations of fluoride has harmful effects that significantly outweigh its advantageous ones. Dental fluorosis and skeletal fluorosis are the common side effects of exposure to fluoride, which affect millions of individuals globally. Alongside, it also causes non-skeletal fluorosis, which affects the population suffering from non-communicable diseases like diabetes by impacting the soft tissues and causing diabetic microvascular complications. Previous studies reported the prevalence range of these diabetic complications of neuropathy (3-65 %), nephropathy (1-63 %), and retinopathy (2-33 %). Fluoride contributes to the development of these complications by causing oxidative stress, cellular damage, degrading the functioning capability of mitochondria, and thickening the retinal vein basement. CONCLUSION Early diagnosis is a prompt way of prevention, and for that, biomarkers have emerged as an innovative and useful technique. This allows healthcare practitioners and policymakers in endemic areas to comprehend the molecular complexities involved in the advancement of diabetic microvascular problems in the context of high fluoride exposure.
Collapse
Affiliation(s)
- Sarasa Meenakshi
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Triveni Bahekar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Pavan Kumar Narapaka
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Biplab Pal
- Department of Pharmacology, Lovely Professional University, Phagwara, Punjab 144402 India.
| | - Ved Prakash
- Department of Endocrinology, Indira Gandhi institute of medical sciences (IGIMS), Bailey Road, Sheikhpura, Patna, Bihar 800014, India.
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar 844102, India.
| |
Collapse
|
5
|
Rana S, Thakur N, Thakur R. Fluoride-Induced Alterations in the Pancreas of Mammals: A Meta-analysis. Biol Trace Elem Res 2024:10.1007/s12011-024-04344-9. [PMID: 39162920 DOI: 10.1007/s12011-024-04344-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
This review explores the diverse effects of fluoride on pancreatic function, encompassing both in vitro and in vivo studies. Fluoride exposure induces notable alterations at the cellular and molecular levels, affecting pancreatic morphology, histology, and enzymatic activity. In vitro studies demonstrate significant inhibition of pancreatic α-amylase activity and apoptosis in pancreatic beta cells. In vivo investigations reveal structural abnormalities in pancreatic cells, including mitochondrial damage, vacuolation, and nuclear damage. Moreover, fluoride exposure disrupts antioxidant enzyme activity, exacerbating oxidative stress and lipid peroxidation. Changes in digestive enzyme activity, such as the inhibition of pancreatic lipase and α-amylase, further contribute to pancreatic dysfunction. Additionally, alterations in hormone secretion, notably insulin levels and disturbed glucose homeostasis, highlight the complex effects of fluoride on the pancreatic endocrine system. These findings underscore fluoride-induced pancreatic toxicity and highlight the need for a comprehensive understanding and mitigation strategies to safeguard pancreatic health.
Collapse
Affiliation(s)
- Srishti Rana
- School of Biological and Environmental Sciences, Shoolini University, Solan, India, 173229
| | - Neha Thakur
- School of Biological and Environmental Sciences, Shoolini University, Solan, India, 173229
| | - Ruhi Thakur
- School of Biological and Environmental Sciences, Shoolini University, Solan, India, 173229.
| |
Collapse
|
6
|
Zhou J, Sun D, Wei W. Necessity to Pay Attention to the Effects of Low Fluoride on Human Health: an Overview of Skeletal and Non-skeletal Damages in Epidemiologic Investigations and Laboratory Studies. Biol Trace Elem Res 2023; 201:1627-1638. [PMID: 35661326 DOI: 10.1007/s12011-022-03302-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Due to the implementation of water improvement and fluoride reduction plans supported by central and local governments in recent years, areas with high fluoride exposure are being gradually decreased. Therefore, it is of practical importance to study the effect of low fluoride on human health. Epidemiologic investigations and in vivo and in vitro studies based on low fluoride have also confirmed that fluoride not only causes skeletal damage, such as dental fluorosis, but also causes non-skeletal damage involving the cardiovascular system, nervous system, hepatic and renal function, reproductive system, thyroid function, blood glucose homeostasis, and the immune system. This article summarizes the effects of low fluoride on human and animal skeletal and non-skeletal systems. A preliminary exploration of corresponding mechanisms that will help to fully understand the harm of low fluoride on human health was undertaken to provide the basis for establishing new water fluoride standards and help to implement individual guidance.
Collapse
Affiliation(s)
- Jing Zhou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- National Health Commission, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, Heilongjiang Province, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, 150081, Harbin, Heilongjiang Province, China.
| |
Collapse
|
7
|
Ding L, Yang Q, Sun Z, Liu L, Meng Z, Zhao X, Tao N, Liu J. Association between dietary intake of one-carbon metabolism nutrients and hyperglycemia in coal-burning fluorosis areas of Guizhou, China. Front Nutr 2022; 9:1002044. [PMID: 36299987 PMCID: PMC9589113 DOI: 10.3389/fnut.2022.1002044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims There are limited studies describing the association between dietary intake of one-carbon metabolism nutrients and hyperglycemia. The present study aimed to investigate the association of habitual dietary intake of one-carbon metabolism nutrients with hyperglycemia in a fluorosis area in China, and explored the interaction between these nutrients and fluorosis related to hyperglycemia. Method In a cross-sectional study, we recruited 901 villagers, ages ranging from 18–75, in Guizhou Province. Dietary data and other covariate data were obtained through an interviewer-administered questionnaire. We collected venous blood samples from participants who had fasted for one night to obtain fasting blood glucose levels and we categorized dietary intake of betaine, total choline, methionine, folate, vitamins B6 and B12, and choline subclasses into quartiles (Q1–Q4). The lowest quartile (Q1) served as the reference group. An unconditional logistic regression model was used to evaluate the protective effects of a dietary intake of one-carbon nutrients against hyperglycemia. We calculated Odds Ratios (ORs) with 95% confidence intervals (CIs). A presence or absence of fluorosis subgroup analysis was performed to determine the potential effect of fluorosis on hyperglycemia. Result After adjusting for potential confounding factors, we found that a greater intake of dietary vitamin B6, total choline and methyl-donor index was inversely associated with the occurrence of hyperglycemia (P-trend <0.05). However, there were no significant associations between hyperglycemia and the dietary intake of folate, vitamin B12, methionine, and betaine. As for the choline subgroups, it showed that the dietary intake of free choline, phosphatidylcholine, and glycerol phosphatidylcholine was negatively correlated with the occurrence of hyperglycemia (P < 0.05). In contrast, there was no statistical association between dietary phosphatidylcholine and sphingomyelin and hyperglycemia (all P > 0.05). The results of subgroup analysis showed that dietary intake of folate, vitamin B6, total choline, free choline, glycerol phosphorylcholine, and phosphocholine had a protective effect against the occurrence of hyperglycemia in the non-fluorosis subgroup, although no effects were observed in the fluorosis subgroup. There were significant interactions between these nutrients and fluorosis (P = 0.010–0.048). Conclusion The study demonstrated that higher dietary intake of vitamin B6, total choline, methyl-donor index, free choline, glycerol phosphorylcholine, and phosphocholine in choline compounds were associated with a lower incidence of hyperglycemia. Moreover, the associations were modified by the presence or absence of fluorosis. Further investigation is needed to test the association in large-scale follow-up studies.
Collapse
Affiliation(s)
- Li Ding
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China,Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Qinglin Yang
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zhongming Sun
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Lu Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zeyu Meng
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xun Zhao
- Department of Chronic Disease, Center of Disease Control and Prevention of Zhijin County, Bijie, China
| | - Na Tao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China,*Correspondence: Na Tao
| | - Jun Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China,Jun Liu
| |
Collapse
|
8
|
Chen G, Peng Y, Huang Y, Xie M, Dai Z, Cai H, Dong W, Xu W, Xie Z, Chen D, Fan X, Zhou W, Kan X, Yang T, Chen C, Sun Y, Zeng X, Liu Z. Fluoride induced leaky gut and bloom of Erysipelatoclostridium ramosum mediate the exacerbation of obesity in high-fat-diet fed mice. J Adv Res 2022:S2090-1232(22)00239-9. [PMID: 36341987 PMCID: PMC10403698 DOI: 10.1016/j.jare.2022.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/18/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Fluoride is widely presented in drinking water and foods. A strong relation between fluoride exposure and obesity has been reported. However, the potential mechanisms on fluoride-induced obesity remain unexplored. Objectives and methods The effects of fluoride on the obesity were investigated using mice model. Furthermore, the role of gut homeostasis in exacerbation of the obesity induced by fluoride was evaluated. Results The results showed that fluoride alone did not induce obesity in normal diet (ND) fed mice, whereas, it could trigger exacerbation of obesity in high-fat diet (HFD) fed mice. Fluoride impaired intestinal barrier and activated Toll-like receptor 4 (TLR4) signaling to induce obesity, which was further verified in TLR4-/- mice. Furthermore, fluoride could deteriorate the gut microbiota in HFD mice. The fecal microbiota transplantation from fluoride-induced mice was sufficient to induce obesity, while the exacerbation of obesity by fluoride was blocked upon gut microbiota depletion. The fluoride-induced bloom of Erysipelatoclostridium ramosum was responsible for exacerbation of obesity. In addition, a potential strategy for prevention of fluoride-induced obesity was proposed by intervention with polysaccharides from Fuzhuan brick tea. Conclusion Overall, these results provide the first evidence of a comprehensive cross-talk mechanism between fluoride and obesity in HFD fed mice, which is mediated by gut microbiota and intestinal barrier. E. ramosum was identified as a crucial mediator of fluoride induced obesity, which could be explored as potential target for prevention and treatment of obesity with exciting translational value.
Collapse
|
9
|
Wang D, Cao L, Zhou X, Wang G, Ma Y, Hao X, Fan H. Mitigation of honokiol on fluoride-induced mitochondrial oxidative stress, mitochondrial dysfunction, and cognitive deficits through activating AMPK/PGC-1α/Sirt3. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129381. [PMID: 35752048 DOI: 10.1016/j.jhazmat.2022.129381] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress and mitochondrial dysfunction contribute greatly to fluoride-induced cognitive impairment and behavioural disorders. Honokiol, a natural biphenolic compound, possesses antioxidant and mitochondrial protective properties. The present study investigated the protective actions of honokiol on NaF-elicited cognitive deficits and elucidated the possible mechanism of honokiol-mediated protection. The results demonstrated that honokiol administration markedly attenuated fluoride-induced cognitive impairments and neural/synaptic injury in mice. Moreover, honokiol elevated the activity and expression of SOD2 and promoted mtROS scavenging through Sirt3 activation in NaF-treated mice and SH-SY5Y cell lines. Meanwhile, honokiol substantially lowered mtROS production by enhancing Sirt3-mediated mitochondrial DNA (mtDNA) transcription, thereby leading to significant increases in ATP synthesis and complex I activity. Further studies revealed that honokiol activated AMPK and upregulated the PGC-1α and Sirt3 protein expression in vivo and in vitro. Intriguingly, the protective actions of honokiol on oxidative stress and mitochondrial dysfunction were abolished by AMPK shRNA or Sirt3 shRNA. Notably, AMPK knockdown prevented the increase in PGC-1α and Sirt3 expression induced by honokiol, while Sirt3 shRNA suppressed Sirt3 signaling without significant effects on p-AMPK and PGC-1α expression. In conclusion, our findings indicate that honokiol mitigates NaF-induced oxidative stress and mitochondrial dysfunction by regulating mtROS homeostasis, partly via the AMPK/PGC-1α/Sirt3 pathway, which ultimately contributes to neuronal/synaptic injury and cognitive deficits.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China.
| | - Luyang Cao
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Xiang Zhou
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Gang Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yilu Ma
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- Department of Neurology, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
10
|
Mathur P, Choudhary S, Bhatnagar P. Aloe vera protects against fluoride-induced teratogenic effects during pre- and postnatal development in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63577-63587. [PMID: 35460489 DOI: 10.1007/s11356-022-20225-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Pregnancy and feto-gestational toxicities on exposure to fluoride and its possible amelioration on co-administration with aloe vera were studied in pregnant Swiss albino mice. Once the confirmed pregnancy was tested, animals were equally divided into four groups as follows: group I was given no treatment and served as control, and groups II and III were administered with 100 and 300 ppm sodium fluoride, respectively, while group IV was co- administered aloe vera (300 mg/kg bw) along with sodium fluoride (300 ppm) daily for 14 days prior to gestation and continued till the 18th day of gestation. Animals were sacrificed on the 19th day of gestation for prenatal observations. Maternal body weight, the gravid uterine weight, number of corpora lutea in both the ovaries, number of implantations and resorptions, number of live (mature and immature) fetuses, and number of dead fetuses were examined in each dam. The treatment continued in another set of animals till the completion of the weaning period to observe postnatal changes due to test substances on the mother and pups. Sodium fluoride-treated animals showed morphometric and skeletal changes which were more pronounced in the high-dose group showing significantly decreased body weight gain in pregnant mothers and dead/immature fetuses. Morphometric changes included open eyelids, limb defects, wrinkles on the whole body, anophthalmia, pulmonary edema, enlarged esophagus, and decreased body weight of fetuses and pups. Alizarin-prepared skeletal structures of fetuses of such female mice showed delayed ossification or bending in the number of bones of skull, thoracic, and limb regions. However, concomitant exposure to sodium fluoride and aloe vera in treated animals led to a marked improvement in all the prenatal and postnatal variables. The study suggests that sodium fluoride at high concentrations may be teratogenic while co-administration of aloe vera during fluoride exposure might be beneficial in reducing these toxic effects. The use of aloe vera as a preventive agent or as a complimentary agent is thus recommended following fluoride exposure through the oral route.
Collapse
Affiliation(s)
- Priyanka Mathur
- Department of Environmental and Life Sciences, IIS (deemed to be University) Jaipur, Jaipur, 302020, Rajasthan, India.
| | - Shilpa Choudhary
- Department of Environmental and Life Sciences, IIS (deemed to be University) Jaipur, Jaipur, 302020, Rajasthan, India
| | - Pradeep Bhatnagar
- Department of Environmental and Life Sciences, IIS (deemed to be University) Jaipur, Jaipur, 302020, Rajasthan, India
| |
Collapse
|
11
|
Babu S, Manoharan S, Ottappilakkil H, Perumal E. Role of oxidative stress-mediated cell death and signaling pathways in experimental fluorosis. Chem Biol Interact 2022; 365:110106. [PMID: 35985521 DOI: 10.1016/j.cbi.2022.110106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Free radicals and other oxidants have enticed the interest of researchers in the fields of biology and medicine, owing to their role in several pathophysiological conditions, including fluorosis (Fluoride toxicity). Radical species affect cellular biomolecules such as nucleic acids, proteins, and lipids, resulting in oxidative stress. Reactive oxygen species-mediated oxidative stress is a common denominator in fluoride toxicity. Fluorosis is a global health concern caused by excessive fluoride consumption over time. Fluoride alters the cellular redox homeostasis, and its toxicity leads to the activation of cell death mechanisms like apoptosis, autophagy, and necroptosis. Even though a surfeit of signaling pathways is involved in fluorosis, their toxicity mechanisms are not fully understood. Thus, this review aims to understand the role of reactive species in fluoride toxicity with an outlook on the effects of fluoride in vitro and in vivo models. Also, we emphasized the signal transduction pathways and the mechanism of cell death implicated in fluoride-induced oxidative stress.
Collapse
Affiliation(s)
- Srija Babu
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Harsheema Ottappilakkil
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
12
|
Komuroglu AU, Seckin H, Ertaş M, Meydan I. Metagenomic Analysis of Intestinal Microbiota in Florated Rats. Biol Trace Elem Res 2022; 200:3275-3283. [PMID: 34786660 DOI: 10.1007/s12011-021-03003-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Changes in gut microbiota have shown that it plays an important role in animal health and metabolic diseases. The intestinal microbiota is a complex structure that functions as an organ system with the presence of trillions of microorganisms. In this study, changes in the intestinal microbiota of Wistar rats with high fluorine were evaluated. Water containing 100 ppm NaF was given to 14 male Wistar albino rats as drinking water for 12 weeks. Fluorine is known to be an inducer of protein oxidation, lipid peroxidation, modulation of intracellular redox homeostasis, and oxidative stress. In this study, it was determined that the level of MDA (molandialdehyde), one of the oxidative stress parameters, increased significantly in the intestinal tissue after fluorine intoxication. The decrease in CAT (catalase) and SOD (superoxide dismutase) enzyme activities was found to be statistically significant. Intestinal tissues were taken under aseptic conditions and microorganisms found in flora were replicated by V3-V4 16S rRNA gene-specific primers. As a result of the sequence analysis, a statistical comparison of the control group and the fluorine applied group was made. The study we have done showed that there was a significant difference in species diversity in the intestinal microbiota of mice treated with fluorine. As a result, the composition of the intestinal microflora, especially Lactobacillus species, was significantly changed in rats with high fluorine.
Collapse
Affiliation(s)
- Ahmet Ufuk Komuroglu
- Health Services Vocational High School, Yuzuncu Yil University, Tuşba, Van, Turkey
| | - Hamdullah Seckin
- Health Services Vocational High School, Yuzuncu Yil University, Tuşba, Van, Turkey
| | - Metin Ertaş
- Department of Plant and Animal Production, Hakkari University, Hakkari, Turkey.
- Hakkari University Biological Diversity Application and Research Center, Hakkari, Turkey.
| | - Ismet Meydan
- Health Services Vocational High School, Yuzuncu Yil University, Tuşba, Van, Turkey
| |
Collapse
|
13
|
Xi W, Guo L, Liu D, Zhou R, Wang Z, Wang W, Liu Z, Wang X, Ostrikov KK, Rong M. Upcycle hazard against other hazard: Toxic fluorides from plasma fluoropolymer etching turn novel microbial disinfectants. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127658. [PMID: 34802825 DOI: 10.1016/j.jhazmat.2021.127658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The release of toxic fluoride byproducts is a seemingly unavoidable artifact of surface engineering, causing severe environmental and human health problems. Here we propose and implement a new "upcycle hazard against other hazard" concept in the case study of cold atmospheric plasma surface modification of fluoropolymers such as polytetrafluorethylene (PTFE). Capitalizing on the excellent controllability, precision and energy efficiency of the plasma surface processing, complemented with the recently discovered ability of plasmas to activate water to produce a potent electrochemical disinfectant, referred to as the plasma-activated water (PAW), we demonstrate a radically new solution to capture the hazardous gaseous fluorides into the PAW and use the as-fluorinated PAW (F-PAW) as a very effective antimicrobial disinfectant. A customized surface discharge reactor is developed to evaluate the effects of fluorides released from the plasma etching of PTFE on the chemistries in gas-phase plasmas and F-PAW, as well as the antibacterial effect of F-PAW. The results show that gaseous fluorides, including COF2, CF3COF, and SiF4 are produced in gas-phase plasmas, and the dissolution of thus-generated fluorides into PAW has a strong effect on inactivating catalase and destroying the oxidation resistance of bacterial cells. As a result, the antibacterial effect of PAW-fluorides against the methicillin-resistant Staphylococcus aureus (MRSA) is enhanced by > 5 log reductions, suggesting that otherwise hazardous fluorides from the plasma processing of PTFE can be used to enhance the microbial disinfection efficiency of PAW. The demonstrated approach opens new avenues for sustainable hazard valorization exemplified by converting toxic fluoride-etching products into potent antimicrobial and potentially anti-viral disinfectants.
Collapse
Affiliation(s)
- Wang Xi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China; School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Wei Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhijie Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, Centre for Clean Energy Technologies and Practices, and Centre for a Waste-free World, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
14
|
Effects of SNPs in SOD2 and SOD3 interacted with fluoride exposure on the susceptibility of dental fluorosis. Int J Hyg Environ Health 2021; 239:113879. [PMID: 34758947 DOI: 10.1016/j.ijheh.2021.113879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022]
Abstract
A total of 649 children aged 7-13 years of age were recruited in a cross-sectional study in Tongxu County, China (2017) to assess the effects of interaction between single nucleotide polymorphisms (SNPs) in SOD2 and SOD3 gene and fluoride exposure on dental fluorosis (DF) status. Associations between biomarkers and DF status were evaluated. Logistic regression suggested that the risk of DF in children with rs10370 GG genotype and rs5746136 TT genotype was 1.89-fold and 1.72-fold than that in children with TT/CC genotype, respectively. Increased T-SOD activity was associated with a lower risk of DF (OR = 0.99). The rs2855262*rs10370*UF model was regarded as the optimal interaction model in generalized multifactor dimensionality reduction analyses. Our findings suggested that rs4880 and rs10370 might be useful genetic markers for DF, and there might be interactions among rs10370 in SOD2, rs2855262 in SOD3, and fluoride exposure on DF status.
Collapse
|
15
|
Recent advances in cellular effects of fluoride: an update on its signalling pathway and targeted therapeutic approaches. Mol Biol Rep 2021; 48:5661-5673. [PMID: 34254226 DOI: 10.1007/s11033-021-06523-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022]
Abstract
Fluoride is a natural element essential in minute quantities in human's to maintain dental and skeletal health. However, the disease fluorosis manifests itself due to excessive fluoride intake mostly through drinking water and sometimes through food. At the cellular energetics level, fluoride is a known inhibitor of glycolysis. At the tissue level, the effect of fluoride has been more pronounced in the musculoskeletal systems due to its ability to retain fluoride. Fluoride alters dentinogenesis, thereby affecting the tooth enamel formation. In bones, fluoride alters the osteogenesis by replacing calcium, thus resulting in bone deformities. In skeletal muscles, high concentration and long term exposure to fluoride causes loss of muscle proteins leading to atrophy. Although fluorosis is quite a familiar problem, the exact molecular pathway is not yet clear. Extensive research on the effects of fluoride on various organs and its toxicity was reported. Indeed, it is clear that high and chronic exposure to fluoride causes cellular apoptosis. Accordingly, in this review, we have highlighted fluoride-mediated apoptosis via two vital pathways, mitochondrial-mediated and endoplasmic reticulum stress pathways. This review also elaborates on new cellular energetic, apoptotic pathways and therapeutic strategies targeted to treat fluorosis.
Collapse
|
16
|
Revelo-Mejía IA, Hardisson A, Rubio C, Gutiérrez ÁJ, Paz S. Dental Fluorosis: the Risk of Misdiagnosis-a Review. Biol Trace Elem Res 2021; 199:1762-1770. [PMID: 32705431 DOI: 10.1007/s12011-020-02296-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/19/2020] [Indexed: 11/25/2022]
Abstract
Fluoride has been considered as the single factor most frequently responsible for causing enamel mottling. However, in humans, either endogenous and/or exogenous factors not related to fluoride exposure may also cause enamel mottling. In this sense, various studies in the international literature have reported severe mottling of the teeth that could not be attributed to fluoride exposure. Thus, misdiagnosis of non-fluoride-induced enamel defects may occur frequently. Reports of unexpectedly high population prevalence and individual cases of fluorosis, where such diagnoses are irreconcilable with the identified fluoride history, highlight the necessity for a more precise definition and diagnosis of dental fluorosis. Also, a more discriminating diagnostic procedure is suggested. Particularly, positive identification of environmental fluoride levels to which the communities and individuals are exposed shall be developed before the confirmation of a diagnosis of fluorosis. It is considered that a more critical methodology for the diagnosis of fluorosis will be helpful in the rational use and control of fluorides for dental health, and in the identification of factors that may induce enamel defects.
Collapse
Affiliation(s)
- Inés A Revelo-Mejía
- Faculty of Odontology, Universidad Antonio Nariño, Popayán, Bogotá D.C., Colombia
| | - Arturo Hardisson
- Department of Toxicology, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Carmen Rubio
- Department of Toxicology, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Ángel J Gutiérrez
- Department of Toxicology, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | - Soraya Paz
- Department of Toxicology, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
17
|
Tkachenko H, Kurhaluk N, Skaletska N, Maksin V, Osadowski Z. Elemental Status and Lipid Peroxidation in the Blood of Children with Endemic Fluorosis. Biol Trace Elem Res 2021; 199:1237-1245. [PMID: 32557098 PMCID: PMC7886736 DOI: 10.1007/s12011-020-02243-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/08/2020] [Indexed: 11/29/2022]
Abstract
The study aimed to assess the levels of trace elements, minerals, and toxic elements as well as lipid peroxidation biomarkers (lipid acyl hydroperoxides, 2-thiobarbituric acid reactive substances (TBARS)) in the blood of children with chronic fluorosis from endemic fluorosis areas (Sosnivka village, Lviv region, western Ukraine). The results were compared with healthy children from Staryi Sambir (Lviv region, western Ukraine), whose drinking water contained permissible levels (< 1 ppm) of fluoride. Thirty-one children from the Sosnivka village in the Lviv region, including 16 females and 15 males aged 7-10 years, with clinically diagnosed fluorosis, were recruited for the study. The children had been exposed to fluoride (> 1.5 ppm) through drinking water for more than 5 years. In the blood, eight macro- and microelements (calcium, zinc, potassium, iron, copper, selenium, manganese, chromium), five additional elements (sulfur, bromine, chlorine, nickel, strontium), and four toxic elements (lead, mercury, cadmium, mercury) were assessed with the X-ray fluorescence method. The results of our study demonstrated a 14-fold decrease in the copper level, a 2.5-fold decrease in the calcium and zinc levels, and a 2-fold decrease in the selenium level in the blood of children with chronic fluorosis compared with the healthy children from the non-fluorosis area. In turn, a 1.7- and 1.4-fold increase in the strontium and lead content, respectively, was noted. The sulfur, chlorine, potassium, calcium, copper, zinc, and selenium levels in the blood samples of children with chronic fluorosis were lower than the reference value. The children had higher blood TBARS levels, while the acyl hydroperoxide levels were non-significantly increased in comparison with healthy children living in the non-fluorosis area. Additionally, the bromine level was correlated positively with the selenium level and acyl hydroperoxides. However, more studies are needed to clarify the relationship between blood mineral status, oxidative stress biomarkers, and chronic fluorosis.
Collapse
Affiliation(s)
- Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences,, Pomeranian University in Słupsk, Arciszewski Str. 22b, 76-200, Słupsk, Poland
| | - Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences,, Pomeranian University in Słupsk, Arciszewski Str. 22b, 76-200, Słupsk, Poland.
| | | | - Viktor Maksin
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Zbigniew Osadowski
- Department of Biology, Institute of Biology and Earth Sciences,, Pomeranian University in Słupsk, Arciszewski Str. 22b, 76-200, Słupsk, Poland
| |
Collapse
|
18
|
Liu Y, Sun B, Zhang S, Li J, Qi J, Bai C, Zhang J, Liang S. Glycine alleviates fluoride-induced oxidative stress, apoptosis and senescence in a porcine testicular Sertoli cell line. Reprod Domest Anim 2021; 56:884-896. [PMID: 33738852 DOI: 10.1111/rda.13930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Glycine is a well-known free radical scavenger in the cellular antioxidant system that prevents oxidative damage and apoptosis. Excessive fluoride exposure is associated with multiple types of cellular damage in humans and animals. The objective of the present study was to investigate the protective effects of glycine on sodium fluoride (NaF) exposure and the possible underlying mechanisms in a porcine testicular Sertoli cell line model. Cellular viability and proliferation were examined following NaF exposure and glycine supplementation, and glycine dramatically ameliorated the decreases in NaF-induced porcine testicular Sertoli cell viability and proliferation. Further investigations revealed that glycine decreased NaF-induced intracellular reactive oxygen species production, DNA fragment accumulation and the apoptosis incidence in the porcine testicular Sertoli cell line; in addition, glycine improved mitochondrial function and ATP production. Notably, results of the SPiDER-β-Gal analysis suggested that glycine alleviated NaF-induced cellular senescence and downregulated P53, P21, HMGA2 and P16INK4a gene expression in the porcine testicular Sertoli cell line. Collectively, the beneficial effects of glycine alleviate NaF-induced oxidative stress, apoptosis and senescence, and together with our previous findings, support the hypothesis that glycine plays an important role in protecting against NaF exposure-induced impairments in the porcine testicular Sertoli cell line.
Collapse
Affiliation(s)
- Ying Liu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Boxing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shaoxuan Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jing Li
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jiajia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Chunyan Bai
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jiabao Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
19
|
Skórka-Majewicz M, Goschorska M, Żwierełło W, Baranowska-Bosiacka I, Styburski D, Kapczuk P, Gutowska I. Effect of fluoride on endocrine tissues and their secretory functions -- review. CHEMOSPHERE 2020; 260:127565. [PMID: 32758781 DOI: 10.1016/j.chemosphere.2020.127565] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/20/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
The effects of fluoride on endocrine tissues has not been sufficiently explored to date. The current body of knowledge suggest significant effects of that mineral on reducing sex hormone levels, which may consequently impair fertility and disrupt puberty. The majority of studies confirm that sodium fluoride increases TSH levels and decreases the concentrations of T3 and T4 produced by the thyroid. Moreover, a correlation was observed between NaF and increased secretion of PTH by the parathyroid glands, without a significant impact on body calcium levels. Probably, fluoride may exert adverse effects on insulin levels, impairing pancreatic function and resulting in abnormal glucose tolerance. Observations also include decreased levels of cortisol secreted by the adrenal glands. In light of the few existing studies, the mechanism of fluoride toxicity on the endocrine system has been described.
Collapse
Affiliation(s)
- Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland
| | - Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland
| | - Daniel Styburski
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland
| | - Patrycja Kapczuk
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 71 street, 70-111, Szczecin, Poland.
| |
Collapse
|
20
|
Cao J, Feng C, Xie L, Li L, Chen J, Yun S, Guo W, Wang T, Wu Y, Meng R, Wang G, He X, Luo Y. Sesamin attenuates histological alterations, oxidative stress and expressions of immune-related genes in liver of zebrafish (Danio rerio) exposed to fluoride. FISH & SHELLFISH IMMUNOLOGY 2020; 106:715-723. [PMID: 32860904 DOI: 10.1016/j.fsi.2020.08.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Sesamin is the main lignan in sesame and is reported to have many benefits and medicinal properties. However, its protective effects against fluoride-induced damage in the liver of zebrafish have not been elucidated. Our previous studies found that fluoride exposure caused damage to the liver of zebrafish. In the study, the effects of sesamin on oxidative stress and immune damage in liver of zebrafish exposed to fluoride were measured. The results indicated that fluoride exposure damaged the microstructures of liver, increased significantly the oxidative stress, decreased remarkably the activities of ACP, AKP, and LZM, and affected obviously the expressions of immune-related genes. Treatment with sesamin remarkably attenuated fluoride-induced liver damage in a dose-dependent manner, indicated by the histopathological observation. Furthermore, sesamin treatment also significantly inhibited the production of ROS and oxidative stress, such as the decrease of lipid peroxidation level and the increase of CAT and SOD activities in liver. Sesamin treatment reversed the activities of immune-related enzymes and the expressions of immune-related genes in liver exposed to fluoride. These findings suggested that sesamin could protect the liver from fluoride-induced immune damage by oxidative stress downstream-mediated changes in reversing the activities of immune-related enzymes and the expressions of immune-related genes. Taken together, sesamin plays an important role in maintaining hepatic health and preventing liver from toxic damage caused by fluoride.
Collapse
Affiliation(s)
- Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Cuiping Feng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Lijuan Li
- College of Information, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shaojun Yun
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Wenjing Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Tianyu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yijie Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Rui Meng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Guodong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xinjing He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China.
| |
Collapse
|
21
|
Guth S, Hüser S, Roth A, Degen G, Diel P, Edlund K, Eisenbrand G, Engel KH, Epe B, Grune T, Heinz V, Henle T, Humpf HU, Jäger H, Joost HG, Kulling SE, Lampen A, Mally A, Marchan R, Marko D, Mühle E, Nitsche MA, Röhrdanz E, Stadler R, van Thriel C, Vieths S, Vogel RF, Wascher E, Watzl C, Nöthlings U, Hengstler JG. Toxicity of fluoride: critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Arch Toxicol 2020; 94:1375-1415. [PMID: 32382957 PMCID: PMC7261729 DOI: 10.1007/s00204-020-02725-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/26/2020] [Indexed: 12/29/2022]
Abstract
Recently, epidemiological studies have suggested that fluoride is a human developmental neurotoxicant that reduces measures of intelligence in children, placing it into the same category as toxic metals (lead, methylmercury, arsenic) and polychlorinated biphenyls. If true, this assessment would be highly relevant considering the widespread fluoridation of drinking water and the worldwide use of fluoride in oral hygiene products such as toothpaste. To gain a deeper understanding of these assertions, we reviewed the levels of human exposure, as well as results from animal experiments, particularly focusing on developmental toxicity, and the molecular mechanisms by which fluoride can cause adverse effects. Moreover, in vitro studies investigating fluoride in neuronal cells and precursor/stem cells were analyzed, and 23 epidemiological studies published since 2012 were considered. The results show that the margin of exposure (MoE) between no observed adverse effect levels (NOAELs) in animal studies and the current adequate intake (AI) of fluoride (50 µg/kg b.w./day) in humans ranges between 50 and 210, depending on the specific animal experiment used as reference. Even for unusually high fluoride exposure levels, an MoE of at least ten was obtained. Furthermore, concentrations of fluoride in human plasma are much lower than fluoride concentrations, causing effects in cell cultures. In contrast, 21 of 23 recent epidemiological studies report an association between high fluoride exposure and reduced intelligence. The discrepancy between experimental and epidemiological evidence may be reconciled with deficiencies inherent in most of these epidemiological studies on a putative association between fluoride and intelligence, especially with respect to adequate consideration of potential confounding factors, e.g., socioeconomic status, residence, breast feeding, low birth weight, maternal intelligence, and exposure to other neurotoxic chemicals. In conclusion, based on the totality of currently available scientific evidence, the present review does not support the presumption that fluoride should be assessed as a human developmental neurotoxicant at the current exposure levels in Europe.
Collapse
Affiliation(s)
- Sabine Guth
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Stephanie Hüser
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Angelika Roth
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Gisela Degen
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Karolina Edlund
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Karl-Heinz Engel
- Department of General Food Technology, School of Life Sciences, TU Munich, Freising, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Volker Heinz
- German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Thomas Henle
- Department of Food Chemistry, TU Dresden, Dresden, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, Bundesinstitut für Risikobewertung (BfR), Berlin, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Rosemarie Marchan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Eva Mühle
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr-University, Bochum, Germany
| | - Elke Röhrdanz
- Department of Experimental Pharmacology and Toxicology, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Richard Stadler
- Institute of Food Safety and Analytic Sciences, Nestlé Research Centre, Lausanne, Switzerland
| | - Christoph van Thriel
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, TU Munich, Freising, Germany
| | - Edmund Wascher
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Carsten Watzl
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany.
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany.
| |
Collapse
|
22
|
Altered β-Cell Calcium Dynamics via Electric Field Exposure. Ann Biomed Eng 2020; 49:106-114. [PMID: 32323041 DOI: 10.1007/s10439-020-02517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Electric field stimulation has long been investigated with results supporting its therapeutic potential; however, its effects on insulin secreting cells has yet to be fully elucidated. Herein we explored the effects of physiological direct current (DC) electric field stimulation on the intracellular calcium dynamics of mouse derived βTC-6 insulinoma cells. This electrical stimulation resulted in an elevation in intracellular calcium along with a rise in calcium spiking activity. Further investigation indicated that the rise in intracellular calcium was mediated by an influx of calcium via L-type voltage gated calcium channels. Additionally, the effects of the electric field stimulation were able to induce insulin secretion in the absence of glucose stimulation. Given these results, DC electric field stimulation could be used as a non-invasive tool to modulate intracellular calcium dynamics and insulin secretion of β-cells for therapeutic application.
Collapse
|
23
|
Ni J, Zhong Z, Zhang W, Liu B, Shu R, Li Y. Fluoride resistance in fibroblasts is conferred via reduced susceptibility to oxidative stress and apoptosis. FEBS Open Bio 2020; 10:362-370. [PMID: 31930721 PMCID: PMC7050260 DOI: 10.1002/2211-5463.12786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 01/08/2019] [Indexed: 11/12/2022] Open
Abstract
Chronic fluoride exposure from drinking water may result in endemic fluorosis. To better understand the mechanisms by which some people are resistant to fluorosis, here we investigated the effect of treatment with NaF (sodium fluoride) on production of reactive oxygen species (ROS), morphological changes in mitochondria, the mRNA expression of Fas ligand (Fas‐L), and the protein expression of cleaved caspase‐3 in regular L‐929 cells and fluoride‐resistant (FR) L‐929 cells. While morphological changes indicative of apoptosis and a network of fragmented mitochondria were observed in regular L‐929 cells after NaF treatment, there were no morphological changes in FR L‐929 cells after NaF treatment. Treatment with 10 mm NaF induced a significant difference in the production of ROS, triggered the expression of cleaved caspase‐3, and upregulated the mRNA expression of Fas‐L in regular L‐929 cells. However, there was no significant production of ROS in FR L‐929 cells. Additionally, cleaved caspase‐3 and upregulated Fas‐L were not detected in FR L‐929 cells. These results suggest that FR fibroblasts are resistant to oxidative stress and apoptosis induced by fluoride.
Collapse
Affiliation(s)
- Jing Ni
- Department of Periodontology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhe Zhong
- Center for Dental Research, Loma Linda University School of Dentistry, CA, USA
| | - Wu Zhang
- Center for Dental Research, Loma Linda University School of Dentistry, CA, USA
| | - Bin Liu
- Department of Periodontology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Rong Shu
- Department of Periodontology, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yiming Li
- Center for Dental Research, Loma Linda University School of Dentistry, CA, USA
| |
Collapse
|
24
|
Exposure of Fluoride with Streptozotocin-Induced Diabetes Aggravates Testicular Damage and Spermatozoa Parameters in Mice. J Toxicol 2019; 2019:5269380. [PMID: 31885555 PMCID: PMC6915027 DOI: 10.1155/2019/5269380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is the most common chronic disease worldwide that causes numerous complications, including male infertility. The prevalence of DM is 451 million people and estimated that would increase to 693 million in 2045. Fluorosis caused by drinking water contaminated with inorganic fluoride is a public health problem in many areas around the world. Previous studies have shown that fluoride exposure damages the male reproductive function. This study aimed to evaluate the fluoride sub-chronic exposure on the spermatozoa function in streptozotocin (STZ)-induced diabetic mice. After confirming diabetes by measuring blood glucose levels, the male mice received 45.2 ppm of fluoride added or deionized water. We evaluated several parameters in diabetic mice exposed to fluoride: standard quality analysis, the mitochondrial transmembrane potential (ψm), the caspase activity in spermatozoa, urinary fluoride excretion, and histological evaluation in the testes. After 60 days of fluoride-exposure, diabetic mice, significantly decreased sperm quality (motility, viability, and concentration). Spermatozoa from fluoride-exposure in diabetic mice presented a significant decrease in ψm and a significant increase in activity caspase 3/7. Urinary fluoride excretion was decreased in diabetic mice exposed to fluoride. Subchronic fluoride exposure of mice with STZ-induced diabetes aggravated testicular damage and the spermatozoa function.
Collapse
|
25
|
Liu L, Wang M, Li Y, Liu H, Hou C, Zeng Q, Li P, Zhao Q, Dong L, Yu X, Liu L, Zhang S, Wang A. Low-to-moderate fluoride exposure in relation to overweight and obesity among school-age children in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109558. [PMID: 31509932 DOI: 10.1016/j.ecoenv.2019.109558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/27/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
High fluoride exposure has been related to harmful health effects, but the impacts of low-to-moderate fluoride on child growth and obesity-related outcomes remain unclear. We performed a large-scale cross-sectional study to examine the association between low-to-moderate fluoride in drinking water and anthropometric measures among Chinese school-age children. We recruited 2430 resident children 7-13 years of age, randomly from low-to-moderate fluorosis areas of Baodi District in Tianjin, China. We analyzed the fluoride contents in drinking water and urine samples using the national standardized ion selective electrode method. Multivariable linear and logistic analyses were used to assess the relationships between fluoride exposure and age- and sex-standardized height, weight and body mass index (BMI) z-scores, and childhood overweight/obesity (BMI z-score > 1). In adjusted models, each log unit (roughly 10-fold) increase in urinary fluoride concentration was associated with a 0.136 unit increase in weight z-score (95% CI: 0.039, 0.233), a 0.186 unit increase in BMI z-score (95% CI: 0.058, 0.314), and a 1.304-fold increased odds of overweight/obesity (95% CI: 1.062, 1.602). These associations were stronger in girls than in boys (Pinteraction = 0.016), and children of fathers with lower education levels were more vulnerable to fluoride (Pinteraction = 0.056). Each log unit (roughly 10-fold) increase in water fluoride concentration was associated with a 0.129 unit increase in height z-score (95% CI: 0.005, 0.254), but not with other anthropometric measures. Our results suggest low-to-moderate fluoride exposure is associated with overweight and obesity in children. Gender and paternal education level may modify the relationship.
Collapse
Affiliation(s)
- Ling Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Mengwei Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yonggang Li
- Tianjin Baodi District Centers for Disease Control and Prevention, Tianjin, PR China
| | - Hongliang Liu
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Changchun Hou
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Qiang Zeng
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Pei Li
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qian Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lixin Dong
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xingchen Yu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shun Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Aiguo Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
26
|
Yadav KK, Kumar S, Pham QB, Gupta N, Rezania S, Kamyab H, Yadav S, Vymazal J, Kumar V, Tri DQ, Talaiekhozani A, Prasad S, Reece LM, Singh N, Maurya PK, Cho J. Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109362. [PMID: 31254856 DOI: 10.1016/j.ecoenv.2019.06.045] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 05/21/2023]
Abstract
In low concentration, fluoride is considered a necessary compound for human health. Exposure to high concentrations of fluoride is the reason for a serious disease called fluorosis. Fluorosis is categorized as Skeletal and Dental fluorosis. Several Asian countries, such as India, face contamination of water resources with fluoride. In this study, a comprehensive overview on fluoride contamination in Asian water resources has been presented. Since water contamination with fluoride in India is higher than other Asian countries, a separate section was dedicated to review published articles on fluoride contamination in this country. The status of health effects in Asian countries was another topic that was reviewed in this study. The effects of fluoride on human organs/systems such as urinary, renal, endocrine, gastrointestinal, cardiovascular, brain, and reproductive systems were another topic that was reviewed in this study. Different methods to remove fluoride from water such as reverse osmosis, electrocoagulation, nanofiltration, adsorption, ion-exchange and precipitation/coagulation were introduced in this study. Although several studies have been carried out on contamination of water resources with fluoride, the situation of water contamination with fluoride and newly developed technology to remove fluoride from water in Asian countries has not been reviewed. Therefore, this review is focused on these issues: 1) The status of fluoride contamination in Asian countries, 2) health effects of fluoride contamination in drinking water in Asia, and 3) the existing current technologies for defluoridation in Asia.
Collapse
Affiliation(s)
- Krishna Kumar Yadav
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi, 284128, India
| | - Sandeep Kumar
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Quoc Bao Pham
- Department of Hydraulic and Ocean Engineering, National Cheng-Kung University, Tainan 701, Taiwan
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi, 284128, India
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Hesam Kamyab
- UTM Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, Malaysia
| | - Shalini Yadav
- Department of Civil Engineering Rabindranath Tagore University Raisen, Madhya Prades, India
| | - Jan Vymazal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Vinit Kumar
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi, 284128, India
| | - Doan Quang Tri
- Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | | | - Shiv Prasad
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Lisa M Reece
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Neeraja Singh
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Pradip Kumar Maurya
- Department of Zoology and Environmental Science, Gurukula Kangari Vishwavidyalaya, Haridwar, Uttarakhand, India
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| |
Collapse
|
27
|
Mukherjee I, Singh UK, Patra PK. Exploring a multi-exposure-pathway approach to assess human health risk associated with groundwater fluoride exposure in the semi-arid region of east India. CHEMOSPHERE 2019; 233:164-173. [PMID: 31173954 DOI: 10.1016/j.chemosphere.2019.05.278] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Human health risks associated with groundwater fluoride have been assessed using USEPA method in few parts of India, but those assessments were conducted based on a single value for each parameter, which may lead to certain inaccuracy and uncertainties in results. In this study, a higher degree of accuracy in health risk assessment was achieved through Monte Carlo simulations, sensitivity analysis and uncertainty analysis. As fluoride hazards to human health are chronic, a total of 4560 water samples (N = 4560) were collected during consecutive four seasons (2 pre-monsoon and 2 post-monsoon seasons; 1140 samples/season) from the entire Birbhum district, covering all the blocks and geological settings to obtain the spatiotemporal variation of fluoride level. The Empirical Bayesian Kriging geostatistical model was employed to determine fluoride endemic areas. Amongst all blocks, Nalhati-1 had exhibited the highest fluoride level (18.25 mg/L). The study revealed that most of the blocks are vulnerable to groundwater fluoride due to its occurrences in excess level. The average and 95th percentile values of total hazard index indicate that the infants and children populations of the district are more susceptible than the adults and teens. The sensitivity analysis revealed that water ingestion rate and fluoride concentration are the most influential parameters for higher risk of fluoride-related health hazards. Health risks were evaluated through ingestion and dermal exposure routes for infants, children, teens, and adult residents. The exposure was much higher through ingestion than dermal contacts. Ingestion of defluoridated water will reduce the health risks associated with groundwater fluoride exposure.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Integrated Science Education and Research Centre (ISERC), Institute of Science, Visva-Bharati, Santiniketan-731235, Birbhum, West Bengal, India
| | - Umesh Kumar Singh
- Integrated Science Education and Research Centre (ISERC), Institute of Science, Visva-Bharati, Santiniketan-731235, Birbhum, West Bengal, India.
| | - Pulak Kumar Patra
- Department of Environmental Studies, Institute of Science, Visva-Bharati, Santiniketan-731235, Birbhum, West Bengal, India
| |
Collapse
|
28
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium-and Potassium-Activated Adenosine Triphosphatase (Na +, K +-ATPase) Enzyme Activity: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1427. [PMID: 31010095 PMCID: PMC6518254 DOI: 10.3390/ijerph16081427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
In this study, several lines of evidence are provided to show that Na + , K + -ATPase activity exerts vital roles in normal brain development and function and that loss of enzyme activity is implicated in neurodevelopmental, neuropsychiatric and neurodegenerative disorders, as well as increased risk of cancer, metabolic, pulmonary and cardiovascular disease. Evidence is presented to show that fluoride (F) inhibits Na + , K + -ATPase activity by altering biological pathways through modifying the expression of genes and the activity of glycolytic enzymes, metalloenzymes, hormones, proteins, neuropeptides and cytokines, as well as biological interface interactions that rely on the bioavailability of chemical elements magnesium and manganese to modulate ATP and Na + , K + -ATPase enzyme activity. Taken together, the findings of this study provide unprecedented insights into the molecular mechanisms and biological pathways by which F inhibits Na + , K + -ATPase activity and contributes to the etiology and pathophysiology of diseases associated with impairment of this essential enzyme. Moreover, the findings of this study further suggest that there are windows of susceptibility over the life course where chronic F exposure in pregnancy and early infancy may impair Na + , K + -ATPase activity with both short- and long-term implications for disease and inequalities in health. These findings would warrant considerable attention and potential intervention, not to mention additional research on the potential effects of F intake in contributing to chronic disease.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, P72 YF10 Bandon, Co. Cork, Ireland.
| |
Collapse
|
29
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium/Iodide Symporter (NIS) Contributing to Impaired Iodine Absorption and Iodine Deficiency: Molecular Mechanisms of Inhibition and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1086. [PMID: 30917615 PMCID: PMC6466022 DOI: 10.3390/ijerph16061086] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
The sodium iodide symporter (NIS) is the plasma membrane glycoprotein that mediates active iodide transport in the thyroid and other tissues, such as the salivary, gastric mucosa, rectal mucosa, bronchial mucosa, placenta and mammary glands. In the thyroid, NIS mediates the uptake and accumulation of iodine and its activity is crucial for the development of the central nervous system and disease prevention. Since the discovery of NIS in 1996, research has further shown that NIS functionality and iodine transport is dependent on the activity of the sodium potassium activated adenosine 5'-triphosphatase pump (Na+, K+-ATPase). In this article, I review the molecular mechanisms by which F inhibits NIS expression and functionality which in turn contributes to impaired iodide absorption, diminished iodide-concentrating ability and iodine deficiency disorders. I discuss how NIS expression and activity is inhibited by thyroglobulin (Tg), tumour necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-β1), interleukin 6 (IL-6) and Interleukin 1 beta (IL-1β), interferon-γ (IFN-γ), insulin like growth factor 1 (IGF-1) and phosphoinositide 3-kinase (PI3K) and how fluoride upregulates expression and activity of these biomarkers. I further describe the crucial role of prolactin and megalin in regulation of NIS expression and iodine homeostasis and the effect of fluoride in down regulating prolactin and megalin expression. Among many other issues, I discuss the potential conflict between public health policies such as water fluoridation and its contribution to iodine deficiency, neurodevelopmental and pathological disorders. Further studies are warranted to examine these associations.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, Bandon, Co. Cork, P72 YF10, Ireland.
| |
Collapse
|
30
|
Malvezzi MAPN, Pereira HABS, Dionizio A, Araujo TT, Buzalaf NR, Sabino-Arias IT, Fernandes MS, Grizzo LT, Magalhães AC, Buzalaf MAR. Low-level fluoride exposure reduces glycemia in NOD mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:198-204. [PMID: 30388537 DOI: 10.1016/j.ecoenv.2018.10.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED Water fluoridation is the most widespread measure to prevent dental caries but its relationship with the development of type-1 diabetes (T1D), which has been increasing by 2-5% worldwide, is not quite well understood. AIM This study evaluated if fluoride (F) administered in the drinking water can prevent or reduce the development of T1D in non-obese diabetic (NOD) mice, as well as to explore the underlying mechanisms. MATERIALS AND METHODS Twenty-four weaning NOD mice received water containing 0, 10 or 50 ppm F for 21 days. Plasma glucose and insulin were analyzed. Quantitative proteomic analysis was conducted in the liver and gastrocnemius muscle. RESULTS Animals treated with 10 ppm F had significantly lower glucose levels than the control group, but there was no significant difference among the groups in relation to insulin. The % of β-cell function was significantly higher in the 10 ppm F group. Changes in the proteomic profile of muscle and liver were seen among the groups. In the muscle, the 10 ppm F group presented, when compared with control, increased expression of proteins involved in energy metabolism. The 50 ppm F group, compared with control, presented increased expression of proteins related to muscle contraction, differentiation of brown adipose tissue and apoptosis. For the liver, the 10 ppm F group had increase in proteins involved in energy metabolism and protein synthesis, in respect to control. There was also an increase in isoforms of Glutathione S transferase, which was confirmed by Western blotting. In the group treated with 50 ppm F, proteins related to ROS metabolism and energetic metabolism were altered. CONCLUSION Increased expression of antioxidant proteins by treatment with low F concentration may possibly help to explain protection against the development of T1D, which should be better explored in future mechanistic studies.
Collapse
Affiliation(s)
- Maria Aparecida Pereira Nunes Malvezzi
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Heloisa Aparecida Barbosa Silva Pereira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Nathalia Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Isabela Tomazini Sabino-Arias
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Mileni Silva Fernandes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Larissa Tercilia Grizzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Marilia Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil.
| |
Collapse
|
31
|
Wang Y, Xiao X, Zhan X. Antagonistic effects of different selenium sources on growth inhibition, oxidative damage, and apoptosis induced by fluorine in broilers. Poult Sci 2018; 97:3207-3217. [DOI: 10.3382/ps/pey192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
|
32
|
Vitamin E and lycopene reduce coal burning fluorosis-induced spermatogenic cell apoptosis via oxidative stress-mediated JNK and ERK signaling pathways. Biosci Rep 2018; 38:BSR20171003. [PMID: 29273675 PMCID: PMC6066653 DOI: 10.1042/bsr20171003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
Although fluoride has been widely used in toothpaste, mouthwash, and drinking water to prevent dental caries, the excessive intake of fluoride can cause fluorosis which is associated with dental, skeletal, and soft tissue fluorosis. Recent evidences have drawn the attention to its adverse effects on male reproductive system that include spermatogenesis defect, sperm count loss, and sperm maturation impairment. Fluoride induces oxidative stress through the activation of mitogen activated protein kinase (MAPK) cascade which can lead to cell apoptosis. Vitamin E (VE) and lycopene are two common antioxidants, being protective to reactive oxygen species (ROS)-induced toxic effects. However, whether and how these two antioxidants prevent fluoride-induced spermatogenic cell apoptosis are largely unknown. In the present study, a male rat model for coal burning fluorosis was established and the histological lesions and spermatogenic cell apoptosis in rat testes were observed. The decreased expression of clusterin, a heterodimeric glycoprotein reported to regulate spermatogenic cell apoptosis, was detected in fluoride-treated rat testes. Interestingly, the co-administration with VE or lycopene reduced fluorosis-mediated testicular toxicity and rescued clusterin expression. Further, fluoride caused the enhanced Jun N-terminal kinase (JNK, c-Jun) and extracellular signal-regulated protein kinase (ERK) phosphorylation, which was reduced by VE or lycopene. Thus, VE and lycopene prevent coal burning fluorosis-induced spermatogenic cell apoptosis through the suppression of oxidative stress-mediated JNK and ERK signaling pathway, which could be an alternative therapeutic strategy for the treatment of fluorosis.
Collapse
|
33
|
Sun Z, Li S, Guo Z, Li R, Wang J, Niu R, Wang J. Effects of Fluoride on SOD and CAT in Testis and Epididymis of Mice. Biol Trace Elem Res 2018; 184:148-153. [PMID: 28990137 DOI: 10.1007/s12011-017-1181-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022]
Abstract
Oxidative damage has been implicated to be one of main mechanisms by which fluoride (F) induces toxic effects. Previous studies reported that F destroyed the epididymal structure of mouse and rabbit. Epididymis is the important place for sperm maturation. However, little is known about the effect of F on the oxidative stress status of epididymis. Therefore, the aim of the present study was to explore the changes in the activities and transcriptional levels of CuZn superoxide dismutase (CuZn-SOD, SOD1) and catalase (CAT), as well as the ultrastructure, in testis and epididymis of mice administrated with F. Sixty health Kunming mice were randomly divided into four groups. With one group untreated as controls, the others were treated with 25, 50, and 100 mg NaF/L in drinking water. After 10 weeks administration, mitochondrial ultrastructural changes in testis and epididymis were observed, including the incomplete membrane and the dissolved or disappeared cristae. Compared to the control group, the activities of both SOD1 and CAT in testis and epididymis were significantly reduced by 50 or 100 mg NaF exposure. In addition, the mRNA expressions of testicular SOD1 and CAT were also decreased significantly in 100 mg NaF/L group, while the SOD1 and CAT mRNA expressions in epididymides were significantly reduced in all F treatment groups. The above results suggest that in the presence of F, similar to testis, epididymis also loses the balance between oxidative stress and antioxidative defense, and perhaps more sensitive to F.
Collapse
Affiliation(s)
- Zilong Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China.
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Taigu, Shanxi, China.
| | - Sujuan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhenzhen Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Rui Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jixiang Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ruiyan Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Taigu, Shanxi, China
| | - Jundong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Taigu, Shanxi, China
| |
Collapse
|
34
|
Quadri JA, Sarwar S, Pinky, Kar P, Singh S, Mallick SR, Arava S, Nag TC, Roy TS, Shariff A. Fluoride induced tissue hypercalcemia, IL-17 mediated inflammation and apoptosis lead to cardiomyopathy: Ultrastructural and biochemical findings. Toxicology 2018; 406-407:44-57. [PMID: 29800585 DOI: 10.1016/j.tox.2018.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 02/09/2023]
Abstract
An increased prevalence of cardiac complications has been observed in residents of fluorosis endemic areas chronically exposed to fluoride. Fluoride induces soft tissue injury due to oxidative stress, lipid peroxidation (LPO) and mitochondriopathy. It was hypothesized that chronic fluoride exposure induces apoptosis in cardiomyocytes due to inflammation, lysis of extra cellular matrix and altered calcium metabolism. This study was planned to evaluate the effects of chronic fluoride exposure and the mechanism of action in the cardiac muscle. Fifteen week old male Wistar rats were administered a human equivalent dose of fluoride (50 and 100 ppm ad-libitum, HED = 5 & 10 ppm in human) for 75-days. After 75-days of fluoride exposure, the animals were euthanized and fluoride, oxidative stress (SOD, GPX, Catalase activities) and LPO were measured. Histopathological and ultrastructural pathological examinations were conducted on the cardiac tissues using light, atomic force and electron microscopies. The cardiac tissues were also assessed for apoptosis (TUNEL/Caspase assays), and tissue calcium levels (Alizarin-assay and SEM-EDX). Tissue inflammation and expression of IL-17, MMP-9, Caspase-3 and Bcl-2 were evaluated. In the fluoride exposed groups, a significant (≤0.05) increase in levels of oxidative stress, LPO and apoptosis were observed. The IL-17, MMP-9 and Caspase-3 were significantly (≤0.05) higher in the cardiac muscle after chronic fluoride exposure. The fluoride seems to have induced inflammation in the cardiac tissues, as well as an increase in tissue calcium (≤0.05). There was significant damage to cardiac muscle fibres including, thinning, distortion and neo-vasculogenesis following chronic fluoride exposure. Mitochondriopathy, lysis of ground substance, oedema, and hyper-vacuolation was seen in fluoride treated groups. Remarkable levels of distortion and bending in Z band were observed under the AFM. Many of these observed changes mimic those occurring in cardiomegaly, cardiac hypertrophy and cardiomyopathies.
Collapse
Affiliation(s)
| | - Saba Sarwar
- Department of Anatomy, AIIMS, New Delhi, India
| | - Pinky
- Department of Anatomy, AIIMS, New Delhi, India
| | - Parmita Kar
- Department of Endocrinology and Metabolism, AIIMS, New Delhi, India
| | - Seema Singh
- Department of Anatomy, AIIMS, New Delhi, India
| | | | | | | | | | - A Shariff
- Department of Anatomy, AIIMS, New Delhi, India
| |
Collapse
|
35
|
Toxic effects of fluoride on organisms. Life Sci 2018; 198:18-24. [DOI: 10.1016/j.lfs.2018.02.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022]
|
36
|
Gao J, Liu C, Zhang J, Zhu S, Shen Y, Zhang R. Effect of fluoride on photosynthetic pigment content and antioxidant system of Hydrilla verticillata. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:1257-1263. [PMID: 28604070 DOI: 10.1080/15226514.2017.1319328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fluoride can either inhibit or enhance the growth of aquatic macrophytes, depending upon fluoride concentration and exposure time. To investigate fluoride toxicity, the submerged plant Hydrilla verticillata was treated with various concentrations of fluoride (F) (0, 10, 20, and 40 mg/L) for different lengths of time (7, 14, 21, and 28 days). At exposure to 10 mg/L F, the content of chlorophyll, protein, and carbohydrates content increased in leaves of H. verticillata, and the activity of guaiacol peroxidase (POD) and superoxide dismutase (SOD) slightly increased in plants compared with the control. When fluoride concentration increased to 20 mg/L, the toxic effect generated by fluoride led to a reduction of chlorophyll, protein, and carbohydrates in H. verticillata, but the activity of guaiacol peroxidase and SOD and the amount of ascorbic acid (AsA) and glutathione (GSH) were enhanced significantly. After exposure to fluoride at 40 mg/L for a long period, these physiological parameters showed a sharp decrease, and inactivation was observed in H. verticillata. These results suggested that a certain concentration of fluoride induced antioxidant response, and excess fluoride induced metabolism imbalance and oxidative damage in H. verticillata.
Collapse
Affiliation(s)
- Jingqing Gao
- a School of Water Conservancy and Environment, Zhengzhou University , Zhengzhou , China
| | - Chun Liu
- b Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou , China
| | - Jingshen Zhang
- b Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou , China
| | - Songfeng Zhu
- b Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou , China
| | - Yu Shen
- b Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou , China
| | - Ruiqin Zhang
- b Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou , China
| |
Collapse
|
37
|
Azab AE, Albasha MO, Jbireal JM, Adwas AA. Sodium Fluoride Induces Hepato-Renal Oxidative Stress and Pathophysiological Changes in Experimental Animals. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ojapo.2018.71001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Song C, Fu B, Zhang J, Zhao J, Yuan M, Peng W, Zhang Y, Wu H. Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway. Sci Rep 2017; 7:672. [PMID: 28386112 PMCID: PMC5429606 DOI: 10.1038/s41598-017-00796-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/13/2017] [Indexed: 12/24/2022] Open
Abstract
Accumulation of mitochondrial reactive oxygen species (mROS) has been implicated in the pathogenesis of fluorosis. As the main mitochondrial deacetylase, SIRT3 is closely associated with oxidative stress. To investigate the role of SIRT3 in response to sodium fluoride (NaF)-induced nephrotoxicity. Our results showed that NaF treatment impaired mitochondrial ultrastructure, decreased cell viability and increased apoptosis in TCMK-1 cells. Oxidative stress, detected by mROS and 8-Hydroxy-2’-deoxyguanosine (8-OHdG) were higher in NaF-treated cells, accompanied by decreased level of reduced glutathione (GSH). NaF reduces manganese superoxide dismutase (SOD2) expression through SIRT3-mediated DNA-binding activity of FoxO3a and decrease SOD2 activity by inhibiting SIRT3-mediated deacetylation. These effects were ameliorated by overexpression of SIRT3. Peroxisome proliferator-activated receptor-coactivator 1a (PGC-1α) interacted with nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) that bound to SIRT3 promoter to regulate SIRT3 expression. The study provides new insights into a critical NRF2/PGC-1α-SIRT3 pathway in response to NaF-induced nephritic oxidative injury. In vivo treatment of SIRT3-expressing adenovirus protects against NaF-induced nephritic injury in mice. Moreover, mechanistic study revealed that ERK1/2 activation was associated with increased apoptosis induced by NaF. In conclusion, these data shedding light on new approaches for treatment of NaF-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Beibei Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiamin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengke Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Haibo Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
39
|
Rogalska A, Kuter K, Żelazko A, Głogowska-Gruszka A, Świętochowska E, Nowak P. Fluoride Alteration of [ 3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues. Neurotox Res 2017; 31:436-443. [PMID: 28243943 PMCID: PMC5360833 DOI: 10.1007/s12640-017-9709-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 01/08/2023]
Abstract
The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.
Collapse
Affiliation(s)
- Anna Rogalska
- Department of Toxicology and Health Protection, School of Public Health in Bytom, Medical University of Silesia, Piekarska 18, 41-902, Bytom, Poland
| | - Katarzyna Kuter
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland
| | - Aleksandra Żelazko
- Department of Toxicology and Health Protection, School of Public Health in Bytom, Medical University of Silesia, Piekarska 18, 41-902, Bytom, Poland
| | - Anna Głogowska-Gruszka
- Department of Communal Hygiene and Sanitary Supervision, School of Public Health in Bytom, Medical University of Silesia, Piekarska 18, 41-902, Bytom, Poland
| | - Elżbieta Świętochowska
- Department of Biochemistry, Clinical Biochemistry Division, Medical University of Silesia, Jordana 19, 41-808, Zabrze, Poland
| | - Przemysław Nowak
- Department of Toxicology and Health Protection, School of Public Health in Bytom, Medical University of Silesia, Piekarska 18, 41-902, Bytom, Poland.
| |
Collapse
|
40
|
Bin G, Liu H, Zhao C, Zhou G, Ding X, Zhang N, Xu Y, Qi Y. Refractive Errors in Northern China Between the Residents with Drinking Water Containing Excessive Fluorine and Normal Drinking Water. Biol Trace Elem Res 2016; 173:259-67. [PMID: 26920734 DOI: 10.1007/s12011-016-0647-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to evaluate the refractive errors and the demographic associations between drinking water with excessive fluoride and normal drinking water among residents in Northern China. Of the 1843 residents, 1415 (aged ≥40 years) were divided into drinking-water-excessive fluoride (DWEF) group (>1.20 mg/L) and control group (≤1.20 mg/L) on the basis of the fluoride concentrations in drinking water. Of the 221 subjects in the DWEF group, with 1.47 ± 0.25 mg/L (fluoride concentrations in drinking water), the prevalence rates of myopia, hyperopia, and astigmatism were 38.5 % (95 % confidence interval [CI] = 32.1-45.3), 19.9 % (95 % CI = 15-26), and 41.6 % (95 % CI = 35.1-48.4), respectively. Of the 1194 subjects in the control group with 0.20 ± 0.18 mg/L, the prevalence of myopia, hyperopia, and astigmatism were 31.5 % (95 % CI = 28.9-34.2), 27.6 % (95 % CI = 25.1-30.3), and 45.6 % (95 % CI = 42.8-48.5), respectively. A statistically significant difference was not observed in the association of spherical equivalent and fluoride concentrations in drinking water (P = 0.84 > 0.05). This report provides the data of the refractive state of the residents consuming drinking water with excess amounts of fluoride in northern China. The refractive errors did not result from ingestion of mild excess amounts of fluoride in the drinking water.
Collapse
Affiliation(s)
- Ge Bin
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Haifeng Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Chunyuan Zhao
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Guangkai Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Xuchen Ding
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Na Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Yongfang Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China
| | - Yanhua Qi
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Harbin, China.
| |
Collapse
|
41
|
Role of IL-17 Pathways in Immune Privilege: A RNA Deep Sequencing Analysis of the Mice Testis Exposure to Fluoride. Sci Rep 2016; 6:32173. [PMID: 27572304 PMCID: PMC5004130 DOI: 10.1038/srep32173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/02/2016] [Indexed: 12/16/2022] Open
Abstract
We sequenced RNA transcripts from the testicles of healthy male mice, divided into a control group with distilled water and two experimental groups with 50 and 100 mg/l NaF in drinking water for 56 days. Bowtie/Tophat were used to align 50-bp paired-end reads into transcripts, Cufflinks to measure the relative abundance of each transcript and IPA to analyze RNA-Sequencing data. In the 100 mg/l NaF-treated group, four pathways related to IL-17, TGF-β and other cellular growth factor pathways were overexpressed. The mRNA expression of IL-17RA, IL-17RC, MAP2K1, MAP2K2, MAP2K3 and MAPKAPK2, monitored by qRT-PCR, increased remarkably in the 100 mg/L NaF group and coincided with the result of RNA-Sequencing. Fluoride exposure could disrupt spermatogenesis and testicles in male mice by influencing many signaling pathways and genes, which work on the immune signal transduction and cellular metabolism. The high expression of the IL-17 signal pathway was a response to the invasion of the testicular immune system due to extracellular fluoride. The PI3-kinase/AKT, MAPKs and the cytokines in TGF-β family were contributed to control the IL-17 pathway activation and maintain the immune privilege and spermatogenesis. All the findings provided new ideas for further molecular researches of fluorosis on the reproduction and immune response mechanism.
Collapse
|
42
|
Suzuki M, Bandoski C, Bartlett JD. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling. Free Radic Biol Med 2015; 89:369-78. [PMID: 26431905 PMCID: PMC4684823 DOI: 10.1016/j.freeradbiomed.2015.08.015] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/20/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023]
Abstract
Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These results suggest that fluoride-induced ROS generation causes mitochondrial damage and DNA damage, which may lead to impairment of ameloblast function. To counteract this impairment, SIRT1/autophagy is induced via JNK signaling to protect cells/ameloblasts from fluoride-induced oxidative damage that may cause dental fluorosis.
Collapse
Affiliation(s)
- Maiko Suzuki
- Department of Mineralized Tissue Biology, The Forsyth Institute & Harvard School of Dental Medicine, 245 First Street, Cambridge, MA
| | - Cheryl Bandoski
- Department of Mineralized Tissue Biology, The Forsyth Institute & Harvard School of Dental Medicine, 245 First Street, Cambridge, MA
| | - John D Bartlett
- Department of Mineralized Tissue Biology, The Forsyth Institute & Harvard School of Dental Medicine, 245 First Street, Cambridge, MA.
| |
Collapse
|
43
|
Cao J, Chen J, Xie L, Wang J, Feng C, Song J. Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:180-190. [PMID: 26340122 DOI: 10.1016/j.aquatox.2015.08.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/09/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
Sesamin, a major lignan derived from sesame seeds, has been reported to have many benefits and medicinal properties. However, its protective effects against fluoride-induced injury in kidney of fish have not been clarified. Previously we found that fluoride exposure caused damage and apoptosis in the kidneys of the common carp, Cyprinus carpio. In this study, the effects of sesamin on renal oxidative stress and apoptosis in fluoride-exposed fish were determined. The results showed that sesamin alleviated significantly fluoride-induced renal damage and apoptosis of carp in a dose-dependent manner, indicated by the histopathological examination and ultrastructural observation. Moreover, treatment with sesamin also inhibited significantly fluoride-induced remarkable enhancement of reactive oxygen species (ROS) production and oxidative stress, such as the increase of lipid peroxidation level and the depletion of intracellular reduced glutathione (GSH) level in kidney. To explore the underlying mechanisms of sesamin action, we found that activities of caspase-3 were notably inhibited by treatment with sesamin in the kidney of fluoride-exposed fish. Sesamin decreased the levels of p-JNK protein in kidney, which in turn inactivated pro-apoptotic signaling events by restoring the balance between mitochondrial pro- and anti-apoptotic Bcl-2 and Bax proteins and by decreasing the release of mitochondrial cytochrome c in kidney of fluoride-exposed fish. JNK was also involved in the mitochondrial extrinsic apoptotic pathways of sesamin effects against fluoride-induced renal injury by regulating the levels of p-c-Jun, necrosis factor-alpha (TNF-α) and Bak proteins. These findings indicated that sesamin could protect kidney against fluoride-induced apoptosis by the oxidative stress downstream-mediated change in the inactivation of JNK signaling pathway. Taken together, sesamin plays an important role in maintaining renal health and preventing kidney from toxic damage induced by fluoride.
Collapse
Affiliation(s)
- Jinling Cao
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Jianjie Chen
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Lingtian Xie
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Jundong Wang
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jing Song
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| |
Collapse
|
44
|
Chen J, Cao J, Wang J, Jia R, Xue W, Xie L. Fluoride-induced apoptosis and expressions of caspase proteins in the kidney of carp (Cyprinus carpio). ENVIRONMENTAL TOXICOLOGY 2015; 30:769-781. [PMID: 24459041 DOI: 10.1002/tox.21956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/29/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
The study was conducted to investigate oxidative stress, apoptosis, and protein expressions of caspase-3, 8, and 9 in kidney of the carp juveniles exposed to 0, 40, 80, 120, and 160 mg L(-1) of fluoride (in the form of NaF) for 90 days. The results showed that dose- and time-dependent decrease of SOD and GSH and dose- and time-dependent increase of MDA were observed in the carp juveniles, which suggested that fluoride induced oxidative damage accompanied with morphological changes and significant apoptosis in fish exposed to fluoride, especially in the higher doses. Fluoride exposure also significantly elevated the protein expressions of caspase-3, 8, and 9. In conclusion, these results indicate that chronic exposure to fluoride causes oxidative stress, damages the kidney structure, and results in renal apoptosis by caspase-dependent pathway.
Collapse
Affiliation(s)
- Jianjie Chen
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinling Cao
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jundong Wang
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ruhui Jia
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Wenjuan Xue
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Lingtian Xie
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| |
Collapse
|
45
|
Liu G, Ye Q, Chen W, Zhao Z, Li L, Lin P. Study of the relationship between the lifestyle of residents residing in fluorosis endemic areas and adult skeletal fluorosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:326-332. [PMID: 26183810 DOI: 10.1016/j.etap.2015.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
The relationship between fluorosis and the lifestyle of adult residents of areas in which fluorosis is endemic was evaluated. A cross-sectional and case-control analysis was performed to study 289 villagers living in fluorosis endemic areas who drank the local water. Subjects were divided into skeletal fluorosis and non-skeletal fluorosis groups according to whether they were afflicted with skeletal fluorosis. A semi-quantitative food frequency questionnaire, homemade lifestyle questionnaires, and general characteristics were analyzed. The factors that affected the occurrence of skeletal fluorosis were determined by generalized estimating equations. Our results showed that protective factors against skeletal fluorosis included drinking boiled water, storing water in a ceramic tank, and ingesting fruits, vitamin A, thiamine, and folic acid. Risk factors for skeletal fluorosis were overweight status and obesity, drinking tea, drinking water without storage, and ingestion of oils, fats, and phosphorus. Our results demonstrate that skeletal fluorosis has a close relationship with lifestyle.
Collapse
Affiliation(s)
- GuoJie Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - QingFang Ye
- School of Nursing, Harbin Medical University of Daqing Campus, Daqing, PR China
| | - Wei Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - ZhenJuan Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Ling Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Ping Lin
- School of Nursing, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
46
|
González-Horta C, Ballinas-Casarrubias L, Sánchez-Ramírez B, Ishida MC, Barrera-Hernández A, Gutiérrez-Torres D, Zacarias OL, Saunders RJ, Drobná Z, Mendez MA, García-Vargas G, Loomis D, Stýblo M, Del Razo LM. A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:4587-601. [PMID: 25918912 PMCID: PMC4454927 DOI: 10.3390/ijerph120504587] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/11/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022]
Abstract
Inorganic arsenic (iAs) and fluoride (F-) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F- in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F- concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F-/L. Urinary arsenic (U-tAs) and urinary F- (U-F-) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F-/mL. A strong positive correlation was found between iAs and F- concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F- concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F-, raising questions about possible contribution of F- exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F- exposures and its related health risks deserves immediate attention.
Collapse
Affiliation(s)
- Carmen González-Horta
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico.
| | | | - Blanca Sánchez-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico.
| | - María C Ishida
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico.
| | - Angel Barrera-Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico D. F. 07360, Mexico.
| | | | - Olga L Zacarias
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico.
| | - R Jesse Saunders
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| | - Zuzana Drobná
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| | - Michelle A Mendez
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| | - Gonzalo García-Vargas
- Facultad de Medicina, Universidad Juárez del Estado de Durango (UJED), Gómez Palacio, Durango 35050, Mexico.
| | - Dana Loomis
- IARC Monographs Section, IARC/WHO, Lyon Cedex 69372, France.
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| | - Luz M Del Razo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico D. F. 07360, Mexico.
| |
Collapse
|
47
|
Chen L, Chen H, Yao C, Chang C, Xia H, Zhang C, Zhou Y, Yao Q, Chen K. The toxicity of NaF on BmN cells and a comparative proteomics approach to identify protein expression changes in cells under NaF-stress: impact of NaF on BmN cells. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:624-631. [PMID: 25661258 DOI: 10.1016/j.jhazmat.2014.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/29/2014] [Accepted: 12/27/2014] [Indexed: 06/04/2023]
Abstract
Fluorides negatively affect the development of organisms and are a threat to human health and environmental safety. In this study, Bombyx mori N cell line (BmN) were used to explore effects of NaF on insect cells. We found that 8h (hrs) culture with high concentration of NaF (≥ 1 mM) induced significantly morphological changes. Dose-response curves of 72 h continuously cultured BmN treated with NaF showed that the half inhibitory concentration (IC50) value was 56.60 μM. Treatment of BmN with 100 and 300 μM of NaF induced apoptosis and necrosis. 2-D electrophoresis of whole cell extracted from BmN showed that treatment with 300 μM NaF up-regulated 32 proteins and down-regulated 11 proteins when compared with controls. We identified 5 different proteins by MALDI-TOF MS, and 4 of them were identified for the first time, including 2 up-regulated proteins (mitochondrial aldehyde dehydrogenase ALDH2 and prohibitin protein WPH) and 2 down-regulated proteins (calreticulin precursor CRT and DNA supercoiling factor SCF). These observations were further confirmed by fluorescence quantitative PCR. Together, our data suggest that these target proteins could be regarded as targets influenced by NaF and also provide clues for studies on the response metabolism pathway under NaF stress.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Huiqing Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chun Yao
- Department of Stomatology, Zhenjiang First People's Hospital, Zhenjiang, Jiangsu 212013, PR China
| | - Cheng Chang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hengchuan Xia
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chunxia Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
48
|
Yang Y, Lin X, Huang H, Feng D, Ba Y, Cheng X, Cui L. Sodium fluoride induces apoptosis through reactive oxygen species-mediated endoplasmic reticulum stress pathway in Sertoli cells. J Environ Sci (China) 2015; 30:81-89. [PMID: 25872712 DOI: 10.1016/j.jes.2014.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 10/28/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Abstract
Excessive fluoride exposure is known to contribute to reproductive system dysfunction, ultimately leading to pathological damage and apoptosis in cells. Although both oxidative and endoplasmic reticulum (ER) stresses have been implicated in fluorosis, the signaling pathways and their roles in sodium fluoride (NaF)-induced apoptosis of Sertoli cells have been sparsely described. In this study, oxidative damage, ER stress, and apoptosis were analyzed after Sertoli cells were treated with varying doses of NaF for 24hr. Moreover, the antioxidant N-acetylcysteine (NAC) and pro-apoptotic transcription factor CHOP knockdown were used to clarify the precise interplay between reactive oxygen species (ROS), ER stress and their roles in NaF-induced apoptosis in Sertoli cells. The present study indicated that NaF significantly decreased cell viability and induced apoptosis in Sertoli cells. In addition, NaF exposure facilitated the accumulation of ROS and increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in Sertoli cells. Treatment with NAC caused remarkable recovery from these NaF-induced responses. Meanwhile, excessive NaF triggered ER stress as evidenced by up-regulated glucose-regulated protein 78 kDa (GRP78), PKR-like ER kinase (PERK), phosphorylation of eukaryotic translation initiation factor 2α (p-eIF2α) and CCAAT/enhancer-binding protein-homologous protein (CHOP), without affecting total eukaryotic translation initiation factor 2α (eIF2α). NAC effectively blocked the activation of ER stress, suggesting that NaF-induced ROS is an early event that triggers ER stress. Taken together, the results demonstrate that the ROS-mediated ER stress pathway is the crucial mechanistic event involved in NaF-induced apoptosis of Sertoli cells.
Collapse
Affiliation(s)
- Yang Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Xinwei Lin
- Department of Nephrology, 152 Hospital of PLA, Pingdingshan 467000, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Demin Feng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xuemin Cheng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Liuxin Cui
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
49
|
Feng M, Wang X, Wang C, Qin L, Wei Z, Wang Z. Antioxidant status and Na(+), K (+)-ATPase activity in freshwater fish Carassius auratus exposed to different combustion products of Nafion 117 membrane: an integrated biomarker approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3408-3418. [PMID: 25398218 DOI: 10.1007/s11356-014-3826-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Nafion 117 membrane (N117), an important polymer electrolyte membrane (PEM), has been widely applied in numerous chemical technologies. Its increasing production and utilization will inevitably lead to the problem of waste disposal, with incineration as an important method. However, toxicity data of its combustion products on aquatic organisms have been seldom reported. The present study was therefore conducted to investigate the antioxidant response and Na(+), K(+)-ATPase activity in liver of Carassius auratus exposed to different combustion products of N117 for 5, 15, and 30 days. The concentrations of fluorine ion (F(-)) in the aquaria among the exposure durations were analyzed using the ion chromatography system. The results showed that these treatments have the capability to induce oxidative stress and suppress Na(+), K(+)-ATPase activity, as indicated by some significant alterations on these measured toxicity end-points in fish liver. According to the integrated biomarker response (IBR) index, the toxicity intensity of these experimental treatments was tentatively ranked. Taken together, these observations provided some preliminary data on the potential toxicity of the combustion products of N117 on aquatic organisms and could fill the information gaps in the toxicity database of the current-use PEM.
Collapse
Affiliation(s)
- Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210046, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
|