1
|
Hudefe A, Álvarez A, Hernández D, Castillo C, Malave C, Parrilla P, Zerpa N. Venom characterization of Venezuelan scorpion Tityus caripitensis. Toxicon 2024; 252:108174. [PMID: 39547451 DOI: 10.1016/j.toxicon.2024.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Tityus caripitensis is an endemic scorpion species found in the northeastern region from Venezuela, being responsible for sting accidents in this area. This study describes for the first time a biological, biochemical and electrophysiological partial characterization of Tityus caripitensis scorpion venom. The venom is toxic to mice with a LD50 of 20.2 μg/gr mouse. Animals experimentally envenomed with Tityus caripitensis venom gradually manifested clinical signs in response to sublethal doses. SDS-PAGE of the venom resulted in 7 fractions ranging in size from ∼3.5 to ≥38 kDa. The 6-8 kDa proteins could correspond to neurotoxins. In addition, the components of Tityus caripitensis venom were similar to those obtained in the electrophoretic profile of Tityus discrepans. The commercial anti- Tityus discrepans IgG showed reactivity against Tityus caripitensis venom. Tityus caripitensis venom could induce hematological changes such as hyperamylasemia and hyperglycemia. The venom modified voltage dependent Na + v1.4 channels and blocked Kv + channels. Although Tityus caripitensis venom is less toxic than Tityus discrepans, they share molecular and antigenic components. This aspect should be considered in the application of antivenom treatment.
Collapse
Affiliation(s)
- Amini Hudefe
- Universidad de Oriente, Facultad de Medicina, Núcleo Bolívar, Ciudad Bolívar, Venezuela
| | - Aurora Álvarez
- Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Hoyo de la Puerta, Valle de Sartenejas, Baruta, Venezuela
| | - Deyanell Hernández
- Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Hoyo de la Puerta, Valle de Sartenejas, Baruta, Venezuela
| | - Cecilia Castillo
- Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Hoyo de la Puerta, Valle de Sartenejas, Baruta, Venezuela
| | - Caridad Malave
- Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Hoyo de la Puerta, Valle de Sartenejas, Baruta, Venezuela.
| | - Pedro Parrilla
- Universidad de Oriente, Facultad de Medicina, Núcleo Bolívar, Ciudad Bolívar, Venezuela
| | - Noraida Zerpa
- Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Hoyo de la Puerta, Valle de Sartenejas, Baruta, Venezuela
| |
Collapse
|
2
|
Baradaran M, Salabi F, Mahdavinia M, Mohammadi E, Vazirianzadeh B, Avella I, Kazemi SM, Lüddecke T. ScorpDb: A Novel Open-Access Database for Integrative Scorpion Toxinology. Toxins (Basel) 2024; 16:497. [PMID: 39591252 PMCID: PMC11598449 DOI: 10.3390/toxins16110497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Scorpion stings are a significant public health concern globally, particularly in tropical and subtropical regions. Scorpion venoms contain a diverse array of bioactive peptides, and different scorpion species around the world typically exhibit varying venom profiles, resulting in a wide range of envenomation symptoms. Despite their harmful effects, scorpion venom peptides hold immense potential for drug development due to their unique characteristics. Therefore, the establishment of a comprehensive database that catalogs scorpions along with their known venom peptides and proteins is imperative in furthering research efforts in this research area. We hereby present ScorpDb, a novel database that offers convenient access to data related to different scorpion species, the peptides and proteins found in their venoms, and the symptoms they can cause. To this end, the ScorpDb database has been primarily advanced to accommodate data on the Iranian scorpion fauna. From there, we propose future community efforts to include a larger diversity of scorpions and scorpion venom components. ScorpDb holds the promise to become a valuable resource for different professionals from a variety of research fields, like toxinologists, arachnologists, and pharmacologists. The database is available at https://www.scorpdb.com/.
Collapse
Affiliation(s)
- Masoumeh Baradaran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran; (M.M.); (E.M.)
| | - Fatemeh Salabi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz 31976-19751, Iran;
| | - Masoud Mahdavinia
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran; (M.M.); (E.M.)
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Elaheh Mohammadi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran; (M.M.); (E.M.)
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Babak Vazirianzadeh
- Social Determinant of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Ignazio Avella
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany;
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff Ring 26-32, 35392 Giessen, Germany
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Seyed Mahdi Kazemi
- Zagros Herpetological Institute, P.O. No 12, Somayyeh 14 Avenue, Qom 37156-88415, Iran;
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany;
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
3
|
Wiezel GA, Oliveira IS, Reis MB, Ferreira IG, Cordeiro KR, Bordon KCF, Arantes EC. The complex repertoire of Tityus spp. venoms: Advances on their composition and pharmacological potential of their toxins. Biochimie 2024; 220:144-166. [PMID: 38176606 DOI: 10.1016/j.biochi.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Animal venoms are a rich and complex source of components, including peptides (such as neurotoxins, anionic peptides and hypotensins), lipids, proteins (such as proteases, hyaluronidases and phospholipases) and inorganic compounds, which affect all biological systems of the envenoming victim. Their action may result in a wide range of clinical manifestations, including tachy/bradycardia, hyper/hypotension, disorders in blood coagulation, pain, edema, inflammation, fever, muscle paralysis, coma and even death. Scorpions are one of the most studied venomous animals in the world and interesting bioactive molecules have been isolated and identified from their venoms over the years. Tityus spp. are among the scorpions with high number of accidents reported in the Americas, especially in Brazil. Their venoms have demonstrated interesting results in the search for novel agents with antimicrobial, anti-viral, anti-parasitic, hypotensive, immunomodulation, anti-insect, antitumor and/or antinociceptive activities. Furthermore, other recent activities still under investigation include drug delivery action, design of anti-epileptic drugs, investigation of sodium channel function, treatment of erectile disfunction and priapism, improvement of scorpion antivenom and chelating molecules activity. In this scenario, this paper focuses on reviewing advances on Tityus venom components mainly through the modern omics technologies as well as addressing potential therapeutic agents from their venoms and highlighting this abundant source of pharmacologically active molecules with biotechnological application.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søtolfts Plads, Building 239 Room 006, Kongens Lyngby, 2800, Denmark.
| | - Mouzarllem B Reis
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Kalynka R Cordeiro
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Karla C F Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Kalapothakis Y, Miranda K, Aragão M, Larangote D, Braga-Pereira G, Noetzold M, Molina D, Langer R, Conceição IM, Guerra-Duarte C, Chávez-Olórtegui C, Kalapothakis E, Borges A. Divergence in toxin antigenicity and venom enzymes in Tityus melici, a medically important scorpion, despite transcriptomic and phylogenetic affinities with problematic Brazilian species. Int J Biol Macromol 2024; 263:130311. [PMID: 38403220 DOI: 10.1016/j.ijbiomac.2024.130311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/27/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
The Brazilian scorpion Tityus melici, native to Minas Gerais and Bahia, is morphologically related to Tityus serrulatus, the most medically significant species in Brazil. Despite inhabiting scorpion-envenomation endemic regions, T. melici venom remains unexplored. This work evaluates T. melici venom composition and function using transcriptomics, enzymatic activities, and in vivo and in vitro immunological analyses. Next-Generation Sequencing unveiled 86 components putatively involved in venom toxicity: 39 toxins, 28 metalloproteases, seven disulfide isomerases, six hyaluronidases, three phospholipases and three amidating enzymes. T. serrulatus showed the highest number of toxin matches with 80-100 % sequence similarity. T. melici is of medical importance as it has a venom LD50 of 0.85 mg/kg in mice. We demonstrated venom phospholipase A2 activity, and elevated hyaluronidase and metalloprotease activities compared to T. serrulatus, paralleling our transcriptomic findings. Comparison of transcriptional levels for T. serrulatus and T. melici venom metalloenzymes suggests species-specific expression patterns in Tityus. Despite close phylogenetic association with T. serrulatus inferred from COI sequences and toxin similarities, partial neutralization of T. melici venom toxicity was achieved when using the anti-T. serrulatus antivenom, implying antigenic divergence among their toxins. We suggest that the Brazilian therapeutic scorpion antivenom could be improved to effectively neutralize T. melici venom.
Collapse
Affiliation(s)
- Yan Kalapothakis
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Kelton Miranda
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Matheus Aragão
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Débora Larangote
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Gracielle Braga-Pereira
- Departamento de Zoologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Marina Noetzold
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Denis Molina
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Langer
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Mamede Conceição
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Serviço de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Adolfo Borges
- Instituto de Medicina Experimental, Universidad Central de Venezuela, Caracas, Venezuela; Centro para el Desarrollo de la Investigación Científica, CEDIC, Asunción 1255, Paraguay.
| |
Collapse
|
5
|
Mendoza-Tobar LL, Clement H, Arenas I, Sepulveda-Arias JC, Vargas JAG, Corzo G. An overview of some enzymes from buthid scorpion venoms from Colombia: Centruroides margaritatus, Tityus pachyurus, and Tityus n. sp. aff. metuendus. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230063. [PMID: 38505508 PMCID: PMC10950367 DOI: 10.1590/1678-9199-jvatitd-2023-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 03/21/2024] Open
Abstract
Background In Colombia, several species of Buthidae scorpions belonging to the genera Centruroides and Tityus coexist, and their stings are considered life-threatening to humans because of their venom neurotoxins. Despite previous studies focusing on neurotoxins from these scorpion genera, little is known about the enzymes present in their venoms and their relationship with whole venom toxicity. Methods Here, using proteomic and biochemical protocols the enzymatic activities of the venoms of three Colombian scorpion species, C. margaritatus, T. pachyurus, and T. n. sp. aff. metuendus, were compared to establish the presence and absence of enzymes such as phospholipases, hyaluronidases, and proteases that could be related to venom toxicity. Results: C. margaritatus was positive for hyaluronidases, T. n. sp. aff. metuendus for proteases, and T. pachyurus exhibited activity for all three mentioned enzymes. Conclusion This information provides valuable insights into the specific enzyme diversity of each species' venom and their potential role in venom toxicity, which could contribute to the development of better treatments and prevention strategies for scorpion envenomation.
Collapse
Affiliation(s)
- Leydy Lorena Mendoza-Tobar
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Facultad de
Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán,
Colombia
| | - Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de
Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos,
México
| | - Iván Arenas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de
Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos,
México
| | - Juan Carlos Sepulveda-Arias
- Grupo de Infección e Inmunidad, Facultad Ciencias de la Salud,
Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Jimmy Alexander Guerrero Vargas
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Facultad de
Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán,
Colombia
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de
Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos,
México
| |
Collapse
|
6
|
García-Villalvazo PE, Jiménez-Vargas JM, Lino-López GJ, Meneses EP, Bermúdez-Guzmán MDJ, Barajas-Saucedo CE, Delgado Enciso I, Possani LD, Valdez-Velazquez LL. Unveiling the Protein Components of the Secretory-Venom Gland and Venom of the Scorpion Centruroides possanii (Buthidae) through Omic Technologies. Toxins (Basel) 2023; 15:498. [PMID: 37624255 PMCID: PMC10467079 DOI: 10.3390/toxins15080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Centruroides possanii is a recently discovered species of "striped scorpion" found in Mexico. Certain species of Centruroides are known to be toxic to mammals, leading to numerous cases of human intoxications in the country. Venom components are thought to possess therapeutic potential and/or biotechnological applications. Hence, obtaining and analyzing the secretory gland transcriptome and venom proteome of C. possanii is relevant, and that is what is described in this communication. Since this is a newly described species, first, its LD50 to mice was determined and estimated to be 659 ng/g mouse weight. Using RNA extracted from this species and preparing their corresponding cDNA fragments, a transcriptome analysis was obtained on a Genome Analyzer (Illumina) using the 76-base pair-end sequencing protocol. Via high-throughput sequencing, 19,158,736 reads were obtained and ensembled in 835,204 sequences. Of them, 28,399 transcripts were annotated with Pfam. A total of 244 complete transcripts were identified in the transcriptome of C. possanii. Of these, 109 sequences showed identity to toxins that act on ion channels, 47 enzymes, 17 protease inhibitors (PINs), 11 defense peptides (HDPs), and 60 in other components. In addition, a sample of the soluble venom obtained from this scorpion was analyzed using an Orbitrap Velos apparatus, which allowed for identification by liquid chromatography followed by mass spectrometry (LC-MS/MS) of 70 peptides and proteins: 23 toxins, 27 enzymes, 6 PINs, 3 HDPs, and 11 other components. Until now, this work has the highest number of scorpion venom components identified through omics technologies. The main novel findings described here were analyzed in comparison with the known data from the literature, and this process permitted some new insights in this field.
Collapse
Affiliation(s)
| | - Juana María Jiménez-Vargas
- Facultad de Ciencias Químicas, Universidad de Colima, Colima 28400, Mexico; (P.E.G.-V.); (J.M.J.-V.); (C.E.B.-S.)
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Mexico City 03940, Mexico
| | - Gisela Jareth Lino-López
- Centro Nacional de Referencia de Control Biológico, Dirección General de Sanidad Vegetal SENASICASADER, Colima 28110, Mexico;
| | - Erika Patricia Meneses
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | | | | | | | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | | |
Collapse
|
7
|
Beraldo-Neto E, Vigerelli H, Coelho GR, da Silva DL, Nencioni ALA, Pimenta DC. Unraveling and profiling Tityus bahiensis venom: Biochemical analyses of the major toxins. J Proteomics 2023; 274:104824. [PMID: 36646272 DOI: 10.1016/j.jprot.2023.104824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Among the scorpions found in Brazil, Tityus bahiensis is one of the species that causes most of the reported human accidents. In spite of this important constatation, the venom composition description is not available in the literature. Thus, this venom remains not properly studied, segregating this particular species into an abandoned, forgotten condition. In the present study, chromatographic separation (RP-HPLC-C18) and proteomic analyses were employed to unravel the diversity, complexity, and proportional distribution of the main peptides and proteins found in the scorpion venom. Moreover, sequence analyses and the presence of new isoforms and toxins are discussed based on a database comparison with other Tityus toxins. Our results show the presence of a wide diversity of potassium and sodium channel toxins and enzymes, such as metallopeptidases and hyaluronidases, as previously described for other species. However, the current work also describes for the first time, at the protein level, phospholipase, angiotensin-converting enzyme, cysteine-rich proteins, serine peptidase inhibitors peptides, and antimicrobial peptides. Finally, thorough data analyses allowed the description of the venom toxins distribution regarding their diversity and relative quantity. SIGNIFICANCE: The work presents the first Tityus bahiensis proteome. We have focused on describing the neurotoxin variability in terms of their isoforms/amino acid substitutions. Understanding the natural variations in the toxins' sequences is essential, once the affinity of these peptides to their respective receptors/ionic channels will vary depending on the specific peptide sequences. Moreover, the current study describes some proteins present in the venom, including enzymes being described for the first time in scorpion venoms, such as PLA2 and ACE. Moreover, we describe the individual relative quantity distribution for the different protein classes identified, as well as their variability in the T.bahiensis venom. Finally, this study also reports the development of a simple straightforward chromatographic method for scorpion venom fractionation.
Collapse
Affiliation(s)
- Emidio Beraldo-Neto
- Programa de Pós-graduação em Toxinologia do Instituto Butantan, São Paulo, Brazil; Laboratório de Bioquímica, Instituto Butantan, São Paulo, Brazil
| | - Hugo Vigerelli
- Laboratório de Genética, Instituto Butantan, São Paulo, Brazil
| | | | - Daiane Laise da Silva
- Programa de Pós-graduação em Toxinologia do Instituto Butantan, São Paulo, Brazil; Laboratório de Bioquímica, Instituto Butantan, São Paulo, Brazil
| | | | | |
Collapse
|
8
|
Guerra-Duarte C, Saavedra-Langer R, Matavel A, Oliveira-Mendes BBR, Chavez-Olortegui C, Paiva ALB. Scorpion envenomation in Brazil: Current scenario and perspectives for containing an increasing health problem. PLoS Negl Trop Dis 2023; 17:e0011069. [PMID: 36757916 PMCID: PMC9910716 DOI: 10.1371/journal.pntd.0011069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Opportunistic scorpion species can colonize urban environments, establishing high-density communities that enhance the chances of human accidents. This scenario has been taking place in Brazil, in which some Tityus species have taken city centers, causing an explosion in the number of scorpion envenoming cases. The characteristics of this scorpionism epidemic in Brazil is discussed in the present work. The number of Brazilian scorpion stings has surpassed 120,000 cases in 2017, and has been maintained above this number ever since, representing a more than 3-fold increase in 10 years, which was higher than the number of cases for most of the neglected tropical diseases in the country. The escalation in scorpionism cases is even higher in some regions of Brazil. Fortunately, the proportion of mild cases has also increased in the analyzed period, as well as the number of victims seeking for medical attention within the first hour after the accident. The species Tityus serrulatus, Tityus stigmurus, Tityus bahiensis, and Tityus obscurus are traditionally accountable for most of the scorpion accidents in different regions of Brazil, but other species deserve to be closely watched. Despite scorpionism being a notable health problem in Brazil, accident prevention and pest control regarding this venomous animal have not been properly addressed by the scientific community nor by policy makers. Therefore, this review also aims to point possible fields of research that could help to contain the aggravation of the current scorpionism landscape in Brazil.
Collapse
Affiliation(s)
- Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Saavedra-Langer
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Matavel
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | | | - Carlos Chavez-Olortegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
9
|
Yang Y, Zhu Y, Luo Y, Liu Q, Hua X, Li J, Gao F, Hofer J, Gao X, Xiao L, Song X, Gao S, Hao R. Transcriptome analysis of Mesobuthus martensii revealed the differences of their toxins between females and males. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2143584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Y. Yang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, TaiGu, China
| | - Y. Zhu
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Y. Luo
- Central Medical District of Chinese PLA General Hospital, Beijing, China
| | - Q. Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, TaiGu, China
| | - X. Hua
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - J. Li
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - F. Gao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - J. Hofer
- Instituto de Ciencias Marinas Y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - X. Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, TaiGu, China
| | - L. Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - X. Song
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - S. Gao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - R. Hao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, TaiGu, China
| |
Collapse
|
10
|
Venomics of the Scorpion Tityus ocelote (Scorpiones, Buthidae): Understanding Venom Evolution in the Subgenus Archaeotityus. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Zhang Q, Xu J, Zhou X, Liu Z. CAP superfamily proteins from venomous animals: Who we are and what to do? Int J Biol Macromol 2022; 221:691-702. [PMID: 36099994 DOI: 10.1016/j.ijbiomac.2022.09.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Cysteine-rich secretory proteins (CRISPs), antigen 5 (Ag5), and pathogenesis-related (PR-1) superfamily proteins (CAP superfamily proteins) are found in diverse species across the bacterial, fungal, plant, mammalian, and venomous animal kingdoms. Notably, CAP proteins are found in a remarkable range of species across the venomous animal kingdom and are present almost ubiquitously in venoms, even when venoms are produced in very small quantities. Meanwhile, in comparison to mammals, venomous animals are underappreciated and easy to ignore. Overwhelming evidence suggests that CAP proteins derived from venomous animals exhibit diverse activities, including ion channel, inflammatory, proteolysis, and immune regulatory activities. To understand the potential biological functions of CAP proteins in venom more effectively, we need to examine the significance of the evolution of venomous animals in the animal kingdom, for their survival. In this article, we will review the current status of research on CAP proteins in venomous animals, including their isolation, characterization, known biological activities, and sequence alignments. We will also discuss the rapid evolution of CAP proteins with varied subtypes in venomous animals. A treasure trove of information can be obtained by studying the CAP proteins in venomous animals; hence, it is necessary to explore these proteins further.
Collapse
Affiliation(s)
- Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
12
|
Salabi F, Jafari H. Differential venom gland gene expression analysis of juvenile and adult scorpions Androctonus crassicauda. BMC Genomics 2022; 23:636. [PMID: 36076177 PMCID: PMC9454214 DOI: 10.1186/s12864-022-08866-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Androctonus crassicauda, belonging to the genus Androctonus of the family Buthidae, is the most venomous scorpion in Middle East countries. However, the venom gland transcriptome profile of A. crassicauda scorpion has not yet been studied. In this study, we elucidated and compared the venom gland gene expression profiles of adult and juvenile male scorpion A. crassicauda using high-throughput transcriptome sequencing. This is the first report of transcriptional analysis of the venom glands of scorpions in different growth stages, with insights into the identification of the key genes during venom gland development. RESULTS A total of 209,951 mRNA transcripts were identified from total RNA-seq data, of which 963 transcripts were differentially expressed (DE) in adult and juvenile scorpions (p < 0.01). Overall, we identified 558 up-regulated and 405 down-regulated transcripts in the adult compared to the juvenile scorpions, of which 397 and 269 unique unigenes were annotated, respectively. GO and KEGG enrichment analyses indicated that the metabolic, thermogenesis, cytoskeleton, estrogen signaling, GnRH signaling, growth hormone signaling, and melanogenesis pathways were affected by two different growth conditions and the results suggested that the DE genes related to those pathways are important genes associated with scorpion venom gland development, in which they may be important in future studies, including Chs, Elovl, MYH, RDX, ACTN, VCL, PIP5K, PP1C, FGFR, GNAS, EGFR, CREB, CoA, PLCB, CALM, CACNA, PKA and CAMK genes. CONCLUSIONS These findings broadened our knowledge of the differences between adult and juvenile scorpion venom and opened new perspectives on the application of comparative transcriptome analysis to identify the special key genes.
Collapse
Affiliation(s)
- Fatemeh Salabi
- Department of Venomous Animals and Anti-Venom Production, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Ahvaz, Iran.
| | - Hedieh Jafari
- Department of Venomous Animals and Anti-Venom Production, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Ahvaz, Iran
| |
Collapse
|
13
|
de Melo MMA, Oliveira VDS, de Queiroz Neto MF, Paiva WDS, Torres-Rêgo M, Silva SRB, Pontes DDL, Rocha HAO, de Souza MÂF, da Silva-Júnior AA, Fernandes-Pedrosa MDF. TanP: A Multifunctional Anionic Peptide From Tityus stigmurus Scorpion Venom. Front Mol Biosci 2022; 8:785316. [PMID: 35111812 PMCID: PMC8802776 DOI: 10.3389/fmolb.2021.785316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
Anionic peptides of scorpions are molecules rich in aspartic and/or glutamic acid residues and correspond to a class of peptides without disulfide bonds that are still little explored. TanP is a linear anionic peptide (50 amino acid residues and net charge -20) present in the venom gland of the scorpion, Tityus stigmurus, with chelating properties for Cu2+ ion and immunomodulatory properties. The therapeutic application of chelating molecules is related to cases of acute or chronic intoxication by metals, neurodegenerative diseases, hematological diseases, healing of skin wounds, cardiovascular diseases, and cancer. In this approach, the chelating activity of TanP was evaluated in relation to new metal ions (Fe2+ and Zn2+) of biological importance, as well as its antioxidant, hemostatic, immunomodulatory, and healing potential, aiming to expand the biological and biotechnological potential of this peptide. TanP (25 µM) was able to form stable complexes with Fe2+ in a ratio of 1:5 (TanP: Fe2+). Theoretical results suggest that TanP can work as a sensor to identify and quantify Fe2+ ions. The fluorescence intensity of TanP (1.12 µM) decreased significantly after the addition of Fe2+, obtaining the highest ratio 1: 7.4 (TanP: Fe2+) that led to the lowest fluorescence intensity. For Zn2+, no relevant spectral change was noted. TanP (50 µM) showed a maximum of 3% of hemolytic activity, demonstrating biocompatibility, as well as exhibiting a 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity of above 70% at all the concentrations tested (1-25 μM), and 89.7% iron-chelating activity at 25 μM and 96% hydroxyl radical-scavenging activity at 73.6 μM. In addition, TanP (12.5 and 25 µM) revealed an anticoagulant effect, prolonging the clotting time in prothrombin time and activated partial thromboplastin time assays, with no fibrinogenolytic activity. TanP (12.5 and 25 µM) induced the release of TNF-α by murine macrophages, in the absence of lipopolysaccharides, with a concentration-dependent increase and also stimulated the migration of 3T3 cells in the in vitro healing assay. Thus, TanP revealed a multifunctional potential, being useful as a prototype for the development of new therapeutic and biotechnological agents.
Collapse
Affiliation(s)
- Menilla Maria Alves de Melo
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Verônica da Silva Oliveira
- Laboratory of Coordination Chemistry and Polymers, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Moacir Fernandes de Queiroz Neto
- Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Weslley de Souza Paiva
- Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Manoela Torres-Rêgo
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
- Laboratory of Synthesis and Isolation of Organic Compounds, Chemistry Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Daniel de Lima Pontes
- Laboratory of Coordination Chemistry and Polymers, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
14
|
So WL, Leung TCN, Nong W, Bendena WG, Ngai SM, Hui JHL. Transcriptomic and proteomic analyses of venom glands from scorpions Liocheles australasiae, Mesobuthus martensii, and Scorpio maurus palmatus. Peptides 2021; 146:170643. [PMID: 34461138 DOI: 10.1016/j.peptides.2021.170643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022]
Abstract
Scorpion venom contains a cocktail of differing peptides and proteins. Previous studies focused on the identification of species-specific components in scorpion venoms, and whether there could be peptides and/or proteins conserved in the venom gland of a scorpion ancestor has been rarely investigated. Here, using a combination of transcriptomic and proteomic approaches, putative conserved toxins from the venom glands of scorpions Liocheles australasiae, Mesobuthus martensii, and Scorpio maurus palmatus were identified and compared. Similar to other studies, more than half of the conserved toxins are predominantly proteins including proteases. On the other hand, unique venom peptides, including ion channel toxins were revealed specifically in the M. martensii. The sodium channel toxin peptides revealed in M. martensii consolidated that scorpions in the Buthidae are able to envenomate their prey wih highly neurotoxic venom. This study suggested that these conserved proteins had already formed part of the arsenal in the venom gland of the common ancestor of scorpions, and likely perform important functional roles in envenomation during scorpion evolution.
Collapse
Affiliation(s)
- Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas C N Leung
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Sai Ming Ngai
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Vonk FJ, Bittenbinder MA, Kerkkamp HMI, Grashof DGB, Archer JP, Afonso S, Richardson MK, Kool J, van der Meijden A. A non-lethal method for studying scorpion venom gland transcriptomes, with a review of potentially suitable taxa to which it can be applied. PLoS One 2021; 16:e0258712. [PMID: 34793470 PMCID: PMC8601437 DOI: 10.1371/journal.pone.0258712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Scorpion venoms are mixtures of proteins, peptides and small molecular compounds with high specificity for ion channels and are therefore considered to be promising candidates in the venoms-to-drugs pipeline. Transcriptomes are important tools for studying the composition and expression of scorpion venom. Unfortunately, studying the venom gland transcriptome traditionally requires sacrificing the animal and therefore is always a single snapshot in time. This paper describes a new way of generating a scorpion venom gland transcriptome without sacrificing the animal, thereby allowing the study of the transcriptome at various time points within a single individual. By comparing these venom-derived transcriptomes to the traditional whole-telson transcriptomes we show that the relative expression levels of the major toxin classes are similar. We further performed a multi-day extraction using our proposed method to show the possibility of doing a multiple time point transcriptome analysis. This allows for the study of patterns of toxin gene activation over time a single individual, and allows assessment of the effects of diet, season and other factors that are known or likely to influence intraindividual venom composition. We discuss the gland characteristics that may allow this method to be successful in scorpions and provide a review of other venomous taxa to which this method may potentially be successfully applied.
Collapse
Affiliation(s)
- Freek J. Vonk
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Faculty of Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Mátyás A. Bittenbinder
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Faculty of Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harald M. I. Kerkkamp
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - John P. Archer
- CIBIO-InBIO, Biopolis, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO-InBIO, Biopolis, Universidade do Porto, Porto, Portugal
| | - Michael K. Richardson
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jeroen Kool
- Faculty of Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
16
|
Estrada-Gómez S, Vargas-Muñoz LJ, Saldarriaga-Córdoba MM, van der Meijden A. MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200173. [PMID: 34290759 PMCID: PMC8277192 DOI: 10.1590/1678-9199-jvatitd-2020-0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Background Scorpions are widely known for the neurotoxic effects of their venoms, which contain peptides affecting ionic channels. Although Colombia is recognized for its scorpion diversity, only a few studies are available describing the venom content. Methods In this descriptive study, we analyzed the MS/MS sequence, electrophoretic and chromatographic profile linked to a bioinformatics analysis of the scorpions Chactas reticulatus (Chactidae), Opisthacanthus elatus (Hormuridae), Centruroides edwardsii (Buthidae) and Tityus asthenes (Buthidae) from Colombia. Results Each scorpion showed a specific electrophoretic and chromatographic profile. The electrophoretic profiles indicate the presence of high molecular mass compounds in all venoms, with a predominance of low molecular mass compounds in the Buthidae species. Chromatographic profiles showed a similar pattern as the electrophoretic profiles. From the MS/MS analysis of the chromatographic collected fractions, we obtained internal peptide sequences corresponding to proteins reported in scorpions from the respective family of the analyzed samples. Some of these proteins correspond to neurotoxins affecting ionic channels, antimicrobial peptides and metalloproteinase-like fragments. In the venom of Tityus asthenes, the MSn analysis allowed the detection of two toxins affecting sodium channels covering 50% and 84% of the sequence respectively, showing 100% sequence similarity. Two sequences from Tityus asthenes showed sequence similarity with a phospholipase from Opisthacanthus cayaporum indicating the presence of this type of toxin in this species for the first time. One sequence matching a hypothetical secreted protein from Hottentotta judaicus was found in three of the studied venoms. We found that this protein is common in the Buthidae family whereas it has been reported in other families - such as Scorpionidae - and may be part of the evolutionary puzzle of venoms in these arachnids. Conclusion Buthidae venoms from Colombia can be considered an important source of peptides similar to toxins affecting ionic channels. An interesting predicted antimicrobial peptide was detected in three of the analyzed venoms.
Collapse
Affiliation(s)
- Sebastian Estrada-Gómez
- Toxinology Research Group - Serpentarium, University of Antioquia (UdeA), Medellín, Antioquia, Colombia.,School of Pharmaceutical and Food Sciences, University of Antioquia (UdeA), Medellín, Antioquia, Colombia
| | | | | | - Arie van der Meijden
- Research Center in Biodiversity and Genetic Resources (CIBIO), University of Porto, Vila do Conde, Portugal
| |
Collapse
|
17
|
Ferraz CR, Manchope MF, Andrade KC, Saraiva-Santos T, Franciosi A, Zaninelli TH, Bagatim-Souza J, Borghi SM, Cândido DM, Knysak I, Casagrande R, Kwasniewski FH, Verri WA. Peripheral mechanisms involved in Tityus bahiensis venom-induced pain. Toxicon 2021; 200:3-12. [PMID: 34153310 DOI: 10.1016/j.toxicon.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Scorpionism is a public health burden in Brazil. Tityus bahiensis is responsible for most accidents in the Southeastern region of Brazil. Here, the hyperalgesic mechanisms of Tityus bahiensis venom were investigated, focusing on the role of pro-inflammatory cytokines (tumor necrosis factor alpha [TNF-α] and interleukin 1 beta [IL-1β]) and activation of the transcription factor NFκB. Intraplantar (i.pl.) administration of Tityus bahiensis venom (0.2, 0.6, 1.2 and 2.4 μg/20 μL i.pl.) induced mechanical hyperalgesia and thermal hyperalgesia. The 2.4 μg dose of Tityus bahiensis venom induced overt pain-like behavior and increased myeloperoxidase (MPO) and N-acetyl-beta-D-glucosaminidase (NAG) activities, TNF-α and IL-1β levels in the paw tissue. Systemic pre-treatment with etanercept (soluble TNF-α receptor; 10 mg/kg), IL-1ra (IL-1 receptor antagonist; 30 mg/kg) and pyrrolidine dithiocarbamate (PDTC, nuclear factor kappa B [NFκB] inhibitor; 100 mg/kg) inhibited Tityus bahiensis venom-induced mechanical and thermal hyperalgesia, MPO and NAG activity and overt pain-like behavior. These data demonstrate the involvement of TNF-α and IL-1β signaling as well as NFκB activation in Tityus bahiensis venom-induced mechanical and thermal hyperalgesia, overt pain-like behavior, and MPO activity and NAG activity, indicating thus, that targeting these mechanisms might contribute to reducing the pain in this scorpionism.
Collapse
Affiliation(s)
- Camila R Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Marília F Manchope
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Ketlem C Andrade
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Anelise Franciosi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Julia Bagatim-Souza
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil; Center for Research in Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Denise M Cândido
- Arthropod Laboratory, Butantan Institute, São Paulo, São Paulo, Brazil
| | - Irene Knysak
- Arthropod Laboratory, Butantan Institute, São Paulo, São Paulo, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Fábio H Kwasniewski
- Department of Pathology, Londrina State University, Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil; Department of Pathology, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
18
|
Identification of Novel Toxin Genes from the Stinging Nettle Caterpillar Parasa lepida (Cramer, 1799): Insights into the Evolution of Lepidoptera Toxins. INSECTS 2021; 12:insects12050396. [PMID: 33946702 PMCID: PMC8145965 DOI: 10.3390/insects12050396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Many caterpillar species can produce toxins that cause harmful reactions to humans, varying from mild irritation to death. Currently, there is very limited knowledge about caterpillar toxin diversity, because only a few species have been investigated. We used the transcriptome technique to identify candidate toxin genes from the nettle caterpillar Parasa lepida (Cramer, 1799). It is a common pest of oil palm, coconut, and mango in South and South-East Asia, which can cause severe pain and allergic responses to those in contact with them. We reported 168 candidate toxin genes. Most of them are members of the toxin genes families commonly recruited in animal venoms such as serine protease and serine protease inhibitors. However, we identified 21 novel genes encoding knottin-like peptides expressed at a high level in the transcriptome. Their predicted 3D structures are similar to neurotoxins in scorpion and tarantula. Our study suggests that P. lepida venom contains diverse toxin proteins that potentially cause allergic reactions and pain. This study sheds light on the hidden diversity of toxin proteins in caterpillar lineage, which could be future fruitful new drug sources. Abstract Many animal species can produce venom for defense, predation, and competition. The venom usually contains diverse peptide and protein toxins, including neurotoxins, proteolytic enzymes, protease inhibitors, and allergens. Some drugs for cancer, neurological disorders, and analgesics were developed based on animal toxin structures and functions. Several caterpillar species possess venoms that cause varying effects on humans both locally and systemically. However, toxins from only a few species have been investigated, limiting the full understanding of the Lepidoptera toxin diversity and evolution. We used the RNA-seq technique to identify toxin genes from the stinging nettle caterpillar, Parasa lepida (Cramer, 1799). We constructed a transcriptome from caterpillar urticating hairs and reported 34,968 unique transcripts. Using our toxin gene annotation pipeline, we identified 168 candidate toxin genes, including protease inhibitors, proteolytic enzymes, and allergens. The 21 P. lepida novel Knottin-like peptides, which do not show sequence similarity to any known peptide, have predicted 3D structures similar to tarantula, scorpion, and cone snail neurotoxins. We highlighted the importance of convergent evolution in the Lepidoptera toxin evolution and the possible mechanisms. This study opens a new path to understanding the hidden diversity of Lepidoptera toxins, which could be a fruitful source for developing new drugs.
Collapse
|
19
|
Systematic and computational identification of Androctonus crassicauda long non-coding RNAs. Sci Rep 2021; 11:4720. [PMID: 33633149 PMCID: PMC7907363 DOI: 10.1038/s41598-021-83815-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
The potential function of long non-coding RNAs in regulating neighbor protein-coding genes has attracted scientists' attention. Despite the important role of lncRNAs in biological processes, a limited number of studies focus on non-model animal lncRNAs. In this study, we used a stringent step-by-step filtering pipeline and machine learning-based tools to identify the specific Androctonus crassicauda lncRNAs and analyze the features of predicted scorpion lncRNAs. 13,401 lncRNAs were detected using pipeline in A. crassicauda transcriptome. The blast results indicated that the majority of these lncRNAs sequences (12,642) have no identifiable orthologs even in closely related species and those considered as novel lncRNAs. Compared to lncRNA prediction tools indicated that our pipeline is a helpful approach to distinguish protein-coding and non-coding transcripts from RNA sequencing data of species without reference genomes. Moreover, analyzing lncRNA characteristics in A. crassicauda uncovered that lower protein-coding potential, lower GC content, shorter transcript length, and less number of isoform per gene are outstanding features of A. crassicauda lncRNAs transcripts.
Collapse
|
20
|
Magalhães ACM, de Santana CJC, Melani RD, Domont GB, Castro MS, Fontes W, Roepstorff P, Júnior ORP. Exploring the biological activities and proteome of Brazilian scorpion Rhopalurus agamemnon venom. J Proteomics 2021; 237:104119. [PMID: 33540062 DOI: 10.1016/j.jprot.2021.104119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Scorpion venoms are formed by toxins harmful to various organisms, including humans. Several techniques have been developed to understand the role of proteins in animal venoms, including proteomics approach. Rhopalurus agamemnon (Koch, 1839) is the largest scorpion in the Buthidae family in the Brazilian Cerrado, measuring up to 110 mm in total length. The accident with R. agamemnon is painful and causes some systemic reactions, but the specie's venom remains uninvestigated. We explore the venom protein composition using a proteomic and a biological-directed approach identifying 230 protein compounds including enzymes like Hyaluronidase, metalloproteinase, L-amino acid oxidase and amylase, the last two are first reported for scorpion venoms. Some of those new reports are important to demonstrate how distant we are from a total comprehension of the diversity about venoms in general, due to their diversity in composition and function. BIOLOGICAL SIGNIFICANCE: In this study, we explored the composition of venom proteins from the scorpion Rhopalurus agamemnon. We identified 230 proteins from the venom including new enzyme reports. These data highlight the unique diversity of the venom proteins from the scorpion R. agamemnon, provide insights into new mechanisms of envenomation and enlarge the protein database of scorpion venoms. The discovery of new proteins provides a new scenario for the development of new drugs and suggests molecular targets to venom components.
Collapse
Affiliation(s)
- Ana Carolina Martins Magalhães
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil.
| | - Carlos José Correia de Santana
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Rafael D Melani
- Proteomic Laboratory, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomic Laboratory, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana S Castro
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Osmindo Rodrigues Pires Júnior
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| |
Collapse
|
21
|
Miyashita M, Mitani N, Kitanaka A, Yakio M, Chen M, Nishimoto S, Uchiyama H, Sue M, Hotta H, Nakagawa Y, Miyagawa H. Identification of an antiviral component from the venom of the scorpion Liocheles australasiae using transcriptomic and mass spectrometric analyses. Toxicon 2020; 191:25-37. [PMID: 33340503 DOI: 10.1016/j.toxicon.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 12/17/2022]
Abstract
Scorpion venom contains a variety of biologically active peptides. Among them, neurotoxins are major components in the venom, but it also contains peptides that show antimicrobial activity. Previously, we identified three insecticidal peptides from the venom of the Liocheles australasiae scorpion, but activities and structures of other venom components remained unknown. In this study, we performed a transcriptome analysis of the venom gland of the scorpion L. australasiae to gain a comprehensive understanding of its venom components. The result shows that potassium channel toxin-like peptides were the most diverse, whereas only a limited number of sodium channel toxin-like peptides were observed. In addition to these neurotoxin-like peptides, many non-disulfide-bridged peptides were identified, suggesting that these components have some critical roles in the L. australasiae venom. In this study, we also isolated a component with antiviral activity against hepatitis C virus using a bioassay-guided fractionation approach. By integrating mass spectrometric and transcriptomic data, we successfully identified LaPLA2-1 as an anti-HCV component. LaPLA2-1 is a phospholipase A2 having a heterodimeric structure that is N-glycosylated at the N-terminal region. Since the antiviral activity of LaPLA2-1 was inhibited by a PLA2 inhibitor, the enzymatic activity of LaPLA2-1 is likely to be involved in its antiviral activity.
Collapse
Affiliation(s)
- Masahiro Miyashita
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Naoya Mitani
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Atsushi Kitanaka
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Mao Yakio
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ming Chen
- Graduate School of Health Sciences, Kobe University, Kobe, 650-0047, Japan
| | - Sachiko Nishimoto
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Masayuki Sue
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Hak Hotta
- Graduate School of Health Sciences, Kobe University, Kobe, 650-0047, Japan; Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Yoshiaki Nakagawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hisashi Miyagawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
22
|
Borges A, Rojas de Arias A, de Almeida Lima S, Lomonte B, Díaz C, Chávez-Olórtegui C, Graham MR, Kalapothakis E, Coronel C, de Roodt AR. Genetic and toxinological divergence among populations of Tityus trivittatus Kraepelin, 1898 (Scorpiones: Buthidae) inhabiting Paraguay and Argentina. PLoS Negl Trop Dis 2020; 14:e0008899. [PMID: 33315884 PMCID: PMC7769620 DOI: 10.1371/journal.pntd.0008899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/28/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022] Open
Abstract
Envenoming by scorpions in genus Tityus is a public health problem in Tropical America. One of the most medically significant species is Tityus trivittatus, which is known to occur from southwest Brazil to central-northern and eastern Argentina. In this work, we studied the lethality, composition, antigenicity, and enzymatic activity of venom from a T. trivittatus population found further north in urban areas of eastern Paraguay, where it has caused serious envenomation of children. Our results indicate that the population is of medical importance as it produces a potently toxic venom with an LD50 around 1.19 mg/kg. Venom neutralization in preliminary mouse bioassays was complete when using Brazilian anti-T. serrulatus antivenom but only partial when using Argentinean anti-T. trivittatus antivenom. Venom competitive solid-phase enzyme immunoassays and immunoblotting from Argentinean and Paraguayan T. trivittatus populations indicated that antigenic differences exist across the species range. SDS-PAGE showed variations in type and relative amounts of venom proteins between T. trivitattus samples from Argentina and Paraguay. MALDI-TOF mass spectrometry indicated that while some sodium channel toxins are shared, including β-toxin Tt1g, others are population-specific. Proteolytic activity by zymography and peptide identification through nESI-MS/MS also point out that population-specific proteases may exist in T. trivitattus, which are postulated to be involved in the envenoming process. A time-calibrated molecular phylogeny of mitochondrial COI sequences revealed a significant (8.14%) genetic differentiation between the Argentinean and Paraguayan populations, which appeared to have diverged between the mid Miocene and early Pliocene. Altogether, toxinological and genetic evidence indicate that T. trivitattus populations from Paraguay and Argentina correspond to distinct, unique cryptic species, and suggest that further venom and taxonomic diversity exists in synanthropic southern South American Tityus than previously thought.
Collapse
Affiliation(s)
- Adolfo Borges
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
- Laboratorio de Biología Molecular de Toxinas y Receptores, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | - Sabrina de Almeida Lima
- Laboratorio de Inmunoquimica, Departamento de Bioquímica e Inmunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Cecilia Díaz
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Chávez-Olórtegui
- Laboratorio de Inmunoquimica, Departamento de Bioquímica e Inmunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Matthew R. Graham
- Department of Biology, Eastern Connecticut State University, Willimantic, Connecticut, United States of America
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Cathia Coronel
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
| | - Adolfo R. de Roodt
- Instituto Nacional de Producción de Biológicos “Carlos G. Malbrán”, Buenos Aires, Argentina
| |
Collapse
|
23
|
Kalapothakis Y, Miranda K, Pereira AH, Witt ASA, Marani C, Martins AP, Leal HG, Campos-Júnior E, Pimenta AMC, Borges A, Chávez-Olórtegui C, Kalapothakis E. Novel components of Tityus serrulatus venom: A transcriptomic approach. Toxicon 2020; 189:91-104. [PMID: 33181162 DOI: 10.1016/j.toxicon.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
Several research groups have studied the components produced by the venom gland of the scorpion Tityus serrulatus, which has one of the most lethal venoms in the world. Various methodologies have been employed to clarify the complex mechanisms of action of these components, especially neurotoxins and enzymes. Transcriptomes and proteomes have provided important information for pharmacological, biochemical, and immunological research. Next-generation sequencing (NGS) has allowed the description of new transcripts and completion of partial sequence descriptions for peptides, especially those with low expression levels. In the present work, after NGS sequencing, we searched for new putative venom components. We present a total of nine new transcripts with neurotoxic potential (Ts33-41) and describe the sequences of one hyaluronidase (TsHyal_4); three enzymes involved in amidation (peptidyl-glycine alpha-amidating monooxygenase A, peptidyl-alpha-hydroxyglycine alpha-amidating lyase, and peptidylglycine alpha-hydroxylating monooxygenase), which increases the lethal potential of neurotoxins; and also the enzyme Ts_Chitinase1, which may be involved in the venom's digestive action. In addition, we determined the level of transcription of five groups: toxins, metalloproteases, hyaluronidases, chitinases and amidation enzymes, including new components found in this study. Toxins are the predominant group with an expression level of 91.945%, followed by metalloproteases with only 7.790% and other groups representing 0.265%.
Collapse
Affiliation(s)
- Yan Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Kelton Miranda
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adriana Heloísa Pereira
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Amanda S A Witt
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Camila Marani
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Ana Paula Martins
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Hortênsia Gomes Leal
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Edimar Campos-Júnior
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adolfo Borges
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 c/15 de Agosto, Asunción, Paraguay
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
24
|
Valdez-Velázquez LL, Cid-Uribe J, Romero-Gutierrez MT, Olamendi-Portugal T, Jimenez-Vargas JM, Possani LD. Transcriptomic and proteomic analyses of the venom and venom glands of Centruroides hirsutipalpus, a dangerous scorpion from Mexico. Toxicon 2020; 179:21-32. [PMID: 32126222 DOI: 10.1016/j.toxicon.2020.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Centruroides hirsutipalpus (Scorpiones: Buthidae) is related to the "striped scorpion" group inhabiting the western Pacific region of Mexico. Human accidents caused by this species are medically important due to the great number of people stung and the severity of the resulting intoxication. This communication reports an extensive venom characterization using high-throughput proteomic and Illumina transcriptomic sequencing performed with RNA purified from its venom glands. 2,553,529 reads were assembled into 44,579 transcripts. From these transcripts, 23,880 were successfully annoted using Trinotate. Using specialized databases and by performing bioinformatic searches, it was possible to identify 147 putative venom protein transcripts. These include α- and β-type sodium channel toxins (NaScTx), potassium channel toxins (KScTx) (α-, β-, δ-, γ- and λ-types), enzymes (metalloproteases, hyaluronidases, phospholipases, serine proteases, and monooxygenases), protease inhibitors, host defense peptides (HDPs) such as defensins, non-disulfide bridge peptides (NDBPs), anionic peptides, superfamily CAP proteins, insulin growth factor-binding proteins (IGFBPs), orphan peptides, and other venom components (La1 peptides). De novo tandem mass spectrometric sequencing of digested venom identificatied 50 peptides. The venom of C. hirsutipalpus contains the highest reported number (77) of transcripts encoding NaScTxs, which are the components responsible for human fatalities.
Collapse
Affiliation(s)
| | - Jimena Cid-Uribe
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - María Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, Guadalajara, Jalisco, 44430, Mexico
| | - Timoteo Olamendi-Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | | | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
25
|
Cid-Uribe JI, Veytia-Bucheli JI, Romero-Gutierrez T, Ortiz E, Possani LD. Scorpion venomics: a 2019 overview. Expert Rev Proteomics 2019; 17:67-83. [DOI: 10.1080/14789450.2020.1705158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jimena I. Cid-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
26
|
Scorpion venom increases acetylcholine release by prolonging the duration of somatic nerve action potentials. Neuropharmacology 2019; 153:41-52. [PMID: 30995441 DOI: 10.1016/j.neuropharm.2019.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/20/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Scorpionism is frequently accompanied by a massive release of catecholamines and acetylcholine from peripheral nerves caused by neurotoxic peptides present in these venoms, which have high specificity and affinity for ion channels. Tityus bahiensis is the second most medically important scorpion species in Brazil but, despite this, its venom remains scarcely studied, especially with regard to its pharmacology on the peripheral (somatic and autonomic) nervous system. Here, we evaluated the activity of T. bahiensis venom on somatic neurotransmission using myographic (chick and mouse neuromuscular preparations), electrophysiological (MEPP, EPP, resting membrane potentials, perineural waveforms, compound action potentials) and calcium imaging (on DRG neurons and muscle fibres) techniques. Our results show that the major toxic effects of T. bahiensis venom on neuromuscular function are presynaptically driven by the increase in evoked and spontaneous neurotransmitter release. Low venom concentrations prolong the axonal action potential, leading to a longer depolarization of the nerve terminals that enhances neurotransmitter release and facilitates nerve-evoked muscle contraction. The venom also stimulates the spontaneous release of neurotransmitters, probably through partial neuronal depolarization that allows calcium influx. Higher venom concentrations block the generation of action potentials and resulting muscle twitches. These effects of the venom were reversed by low concentrations of TTX, indicating voltage-gated sodium channels as the primary target of the venom toxins. These results suggest that the major neuromuscular toxicity of T. bahiensis venom is probably mediated mainly by α- and β-toxins interacting with presynaptic TTX-sensitive ion channels on both axons and nerve terminals.
Collapse
|
27
|
Determination of hyaluronidase activity in Tityus spp. Scorpion venoms and its inhibition by Brazilian antivenoms. Toxicon 2019; 167:134-143. [PMID: 31207348 DOI: 10.1016/j.toxicon.2019.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 01/29/2023]
Abstract
Hyaluronidases (HYALs) are enzymes ubiquitously found in venoms from diverse animals and seem to be related to venom spreading. HYAL activity might be important to Tityus spp. envenoming, since anti-Tityus serrulatus HYAL (TsHYAL) rabbit antibodies neutralize T. serrulatus venom (TsV) lethality. The present work aimed to verify and compare HYAL activity of venoms from other Brazilian Tityus spp. (Tityus bahiensis, Tityus stigmurus and Tityus obscurus) and to test whether anti-TsHYAL antibodies and Brazilian horse therapeutic scorpion antivenom (produced by Fundação Ezequiel Dias (FUNED), Butantan and Vital Brazil Institutes) can recognize and inhibit HYAL activity from these venoms. In ELISA assays, anti-TsHYAL and scorpion antivenoms recognized T. serrulatus, T. bahiensis and T. stigmurus venoms, however, they demonstrated weaker reaction with T. obscurus, which was also observed in Western blotting assay. Epitope mapping by SPOT assay revealed different binding patterns for each antivenom. The assay showed a weaker binding of scorpion antivenom produced by FUNED to peptides recognized by anti-TsHYAL antibodies. Anti-TsHYAL antibodies and antivenoms produced by Butantan and Vital Brazil institutes inhibited HYAL activity of all tested venoms in vitro, whereas FUNED antivenom did not show the same property. These results call attention to the importance of hyaluronidase inhibition, that can aid the improvement of antivenom production.
Collapse
|
28
|
Dissecting Toxicity: The Venom Gland Transcriptome and the Venom Proteome of the Highly Venomous Scorpion Centruroides limpidus (Karsch, 1879). Toxins (Basel) 2019; 11:toxins11050247. [PMID: 31052267 PMCID: PMC6563264 DOI: 10.3390/toxins11050247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
Venom glands and soluble venom from the Mexican scorpion Centruroides limpidus (Karsch, 1879) were used for transcriptomic and proteomic analyses, respectively. An RNA-seq was performed by high-throughput sequencing with the Illumina platform. Approximately 80 million reads were obtained and assembled into 198,662 putative transcripts, of which 11,058 were annotated by similarity to sequences from available databases. A total of 192 venom-related sequences were identified, including Na+ and K+ channel-acting toxins, enzymes, host defense peptides, and other venom components. The most diverse transcripts were those potentially coding for ion channel-acting toxins, mainly those active on Na+ channels (NaScTx). Sequences corresponding to β- scorpion toxins active of K+ channels (KScTx) and λ-KScTx are here reported for the first time for a scorpion of the genus Centruroides. Mass fingerprint corroborated that NaScTx are the most abundant components in this venom. Liquid chromatography coupled to mass spectometry (LC-MS/MS) allowed the identification of 46 peptides matching sequences encoded in the transcriptome, confirming their expression in the venom. This study corroborates that, in the venom of toxic buthid scorpions, the more abundant and diverse components are ion channel-acting toxins, mainly NaScTx, while they lack the HDP diversity previously demonstrated for the non-buthid scorpions. The highly abundant and diverse antareases explain the pancreatitis observed after envenomation by this species.
Collapse
|
29
|
Purification and Biochemical Characterization of TsMS 3 and TsMS 4: Neuropeptide-Degrading Metallopeptidases in the Tityus serrulatus Venom. Toxins (Basel) 2019; 11:toxins11040194. [PMID: 30935107 PMCID: PMC6520902 DOI: 10.3390/toxins11040194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Although omics studies have indicated presence of proteases on the Tityus serrulatus venom (TsV), little is known about the function of these molecules. The TsV contains metalloproteases that cleave a series of human neuropeptides, including the dynorphin A (1-13) and the members of neuropeptide Y family. Aiming to isolate the proteases responsible for this activity, the metalloserrulase 3 and 4 (TsMS 3 and TsMS 4) were purified after two chromatographic steps and identified by mass spectrometry analysis. The biochemical parameters (pH, temperature and cation effects) were determined for both proteases, and the catalytic parameters (Km, kcat, cleavage sites) of TsMS 4 over fluorescent substrate were obtained. The metalloserrulases have a high preference for cleaving neuropeptides but presented different primary specificities. For example, the Leu-enkephalin released from dynorphin A (1-13) hydrolysis was exclusively performed by TsMS 3. Neutralization assays using Butantan Institute antivenoms show that both metalloserrulases were well blocked. Although TsMS 3 and TsMS 4 were previously described through cDNA library studies using the venom gland, this is the first time that both these toxins were purified. Thus, this study represents a step further in understanding the mechanism of scorpion venom metalloproteases, which may act as possible neuropeptidases in the envenomation process.
Collapse
|
30
|
Paiva ALB, Mudadu MA, Pereira EHT, Marri CA, Guerra-Duarte C, Diniz MRV. Transcriptome analysis of the spider Phoneutria pertyi venom glands reveals novel venom components for the genus Phoneutria. Toxicon 2019; 163:59-69. [PMID: 30902682 DOI: 10.1016/j.toxicon.2019.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/24/2022]
Abstract
Phoneutria nigriventer spider venom has been studied for more than 40 years and several components with pharmacological potential have been described in it. However, studies on venoms from other species of the Phoneutria genus are scarce. In this work, a conventional cDNA library from the species Phoneutria pertyi venom glands was constructed, aiming to identify novel putative cysteine-rich peptide toxins for the genus Phoneutria. 296 unique sequences were identified and 51 sequences corresponded to putative cysteine-rich peptide toxins. Besides cysteine-rich peptide toxins, other putative venom components such as protease inhibitors, defensins and serine proteinases were identified. Furthermore, by manual curation of the sequences with no match at UniProt, we were able to identify glycine-rich proteins (GRP), a class of venom component never described in Phoneutria genus. This work describes the first complete sequences of toxins from the venom of P. pertyi and reveals that, despite most of the retrieved toxins show a high identity to toxins identified in Phoneutria genus, novel putative toxins remains to be described.
Collapse
Affiliation(s)
- Ana L B Paiva
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil.
| | - Mauricio A Mudadu
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine H T Pereira
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Camila A Marri
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo R V Diniz
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
31
|
Romero-Gutiérrez MT, Santibáñez-López CE, Jiménez-Vargas JM, Batista CVF, Ortiz E, Possani LD. Transcriptomic and Proteomic Analyses Reveal the Diversity of Venom Components from the Vaejovid Scorpion Serradigitus gertschi. Toxins (Basel) 2018; 10:E359. [PMID: 30189638 PMCID: PMC6162517 DOI: 10.3390/toxins10090359] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/22/2022] Open
Abstract
To understand the diversity of scorpion venom, RNA from venomous glands from a sawfinger scorpion, Serradigitus gertschi, of the family Vaejovidae, was extracted and used for transcriptomic analysis. A total of 84,835 transcripts were assembled after Illumina sequencing. From those, 119 transcripts were annotated and found to putatively code for peptides or proteins that share sequence similarities with the previously reported venom components of other species. In accordance with sequence similarity, the transcripts were classified as potentially coding for 37 ion channel toxins; 17 host defense peptides; 28 enzymes, including phospholipases, hyaluronidases, metalloproteases, and serine proteases; nine protease inhibitor-like peptides; 10 peptides of the cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein superfamily; seven La1-like peptides; and 11 sequences classified as "other venom components". A mass fingerprint performed by mass spectrometry identified 204 components with molecular masses varying from 444.26 Da to 12,432.80 Da, plus several higher molecular weight proteins whose precise masses were not determined. The LC-MS/MS analysis of a tryptic digestion of the soluble venom resulted in the de novo determination of 16,840 peptide sequences, 24 of which matched sequences predicted from the translated transcriptome. The database presented here increases our general knowledge of the biodiversity of venom components from neglected non-buthid scorpions.
Collapse
Affiliation(s)
- Maria Teresa Romero-Gutiérrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Carlos Eduardo Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
- Department of Integrative Biology, University of Wisconsin⁻Madison, Madison, WI 53706, USA.
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Cesar Vicente Ferreira Batista
- Laboratorio Universitario de Proteómica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
32
|
The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses. Toxicon 2018; 151:47-62. [DOI: 10.1016/j.toxicon.2018.06.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
|
33
|
Ward MJ, Ellsworth SA, Nystrom GS. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon 2018; 151:137-155. [DOI: 10.1016/j.toxicon.2018.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 01/18/2023]
|
34
|
Diniz MRV, Paiva ALB, Guerra-Duarte C, Nishiyama MY, Mudadu MA, de Oliveira U, Borges MH, Yates JR, Junqueira-de-Azevedo IDL. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS One 2018; 13:e0200628. [PMID: 30067761 PMCID: PMC6070231 DOI: 10.1371/journal.pone.0200628] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/29/2018] [Indexed: 01/23/2023] Open
Abstract
Phoneutria nigriventer is one of the largest existing true spiders and one of the few considered medically relevant. Its venom contains several neurotoxic peptides that act on different ion channels and chemical receptors of vertebrates and invertebrates. Some of these venom toxins have been shown as promising models for pharmaceutical or biotechnological use. However, the large diversity and the predominance of low molecular weight toxins in this venom have hampered the identification and deep investigation of the less abundant toxins and the proteins with high molecular weight. Here, we combined conventional and next-generation cDNA sequencing with Multidimensional Protein Identification Technology (MudPIT), to obtain an in-depth panorama of the composition of P. nigriventer spider venom. The results from these three approaches showed that cysteine-rich peptide toxins are the most abundant components in this venom and most of them contain the Inhibitor Cysteine Knot (ICK) structural motif. Ninety-eight sequences corresponding to cysteine-rich peptide toxins were identified by the three methodologies and many of them were considered as putative novel toxins, due to the low similarity to previously described toxins. Furthermore, using next-generation sequencing we identified families of several other classes of toxins, including CAPs (Cysteine Rich Secretory Protein-CRiSP, antigen 5 and Pathogenesis-Related 1-PR-1), serine proteinases, TCTPs (translationally controlled tumor proteins), proteinase inhibitors, metalloproteinases and hyaluronidases, which have been poorly described for this venom. This study provides an overview of the molecular diversity of P. nigriventer venom, revealing several novel components and providing a better basis to understand its toxicity and pharmacological activities.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- High-Throughput Nucleotide Sequencing
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Peptides/metabolism
- Proteomics
- Sequence Alignment
- Sequence Analysis, DNA
- Spider Venoms/metabolism
- Spiders/genetics
- Spiders/metabolism
- Toxins, Biological/genetics
- Toxins, Biological/metabolism
- Transcriptome
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Marcelo R. V. Diniz
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Ana L. B. Paiva
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Milton Y. Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Ursula de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Márcia H. Borges
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - John R. Yates
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | | |
Collapse
|
35
|
Tb II-I, a Fraction Isolated from Tityus bahiensis Scorpion Venom, Alters Cytokines': Level and Induces Seizures When Intrahippocampally Injected in Rats. Toxins (Basel) 2018; 10:toxins10060250. [PMID: 29921762 PMCID: PMC6024361 DOI: 10.3390/toxins10060250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Scorpion venoms are composed of several substances with different pharmacological activities. Neurotoxins exert their effects by targeting ion channels resulting in toxic effects to mammals, insects and crustaceans. Tb II-I, a fraction isolated from Tityus bahiensis scorpion venom, was investigated for its ability to induce neurological and immune-inflammatory effects. Two putative β-sodium channel toxins were identified in this fraction, Tb2 II and Tb 4, the latter having been completely sequenced by mass spectrometry. Male Wistar rats, stereotaxically implanted with intrahippocampal cannulas and electrodes, were injected with Tb II-I (2 µg/2 µL) via the intrahippocampal route. The behavior, electrographic activity and cellular integrity of the animals were analyzed and the intracerebral level of cytokines determined. Tb II-I injection induced seizures and damage in the hippocampus. These alterations were correlated with the changes in the level of the cytokines tumoral necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Therefore, the binding of Tb II-I to its target in the central nervous system may induce inflammation resulting in neuropathological and behavioral alterations.
Collapse
|
36
|
de Oliveira UC, Nishiyama MY, dos Santos MBV, Santos-da-Silva ADP, Chalkidis HDM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo IDLM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One 2018; 13:e0193739. [PMID: 29561852 PMCID: PMC5862453 DOI: 10.1371/journal.pone.0193739] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
Background Except for the northern region, where the Amazonian black scorpion, T. obscurus, represents the predominant and most medically relevant scorpion species, Tityus serrulatus, the Brazilian yellow scorpion, is widely distributed throughout Brazil, causing most envenoming and fatalities due to scorpion sting. In order to evaluate and compare the diversity of venom components of Tityus obscurus and T. serrulatus, we performed a transcriptomic investigation of the telsons (venom glands) corroborated by a shotgun proteomic analysis of the venom from the two species. Results The putative venom components represented 11.4% and 16.7% of the total gene expression for T. obscurus and T. serrulatus, respectively. Transcriptome and proteome data revealed high abundance of metalloproteinases sequences followed by sodium and potassium channel toxins, making the toxin core of the venom. The phylogenetic analysis of metalloproteinases from T. obscurus and T. serrulatus suggested an intraspecific gene expansion, as we previously observed for T. bahiensis, indicating that this enzyme may be under evolutionary pressure for diversification. We also identified several putative venom components such as anionic peptides, antimicrobial peptides, bradykinin-potentiating peptide, cysteine rich protein, serine proteinases, cathepsins, angiotensin-converting enzyme, endothelin-converting enzyme and chymotrypsin like protein, proteinases inhibitors, phospholipases and hyaluronidases. Conclusion The present work shows that the venom composition of these two allopatric species of Tityus are considerably similar in terms of the major classes of proteins produced and secreted, although their individual toxin sequences are considerably divergent. These differences at amino acid level may reflect in different epitopes for the same protein classes in each species, explaining the basis for the poor recognition of T. obscurus venom by the antiserum raised against other species.
Collapse
Affiliation(s)
- Ursula Castro de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail: ,
| | - Milton Yutaka Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Norma Yamanouye
- Laboratório de Farmacologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
37
|
Román JP, García F, Medina D, Vásquez M, García J, Graham MR, Romero-Alvarez D, Pardal PPDO, Ishikawa EAY, Borges A. Scorpion envenoming in Morona Santiago, Amazonian Ecuador: Molecular phylogenetics confirms involvement of the Tityus obscurus group. Acta Trop 2018; 178:1-9. [PMID: 29079184 DOI: 10.1016/j.actatropica.2017.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023]
Abstract
Scorpion envenoming by species in the genus Tityus is hereby reported from rural locations in the Amazonian province of Morona Santiago, southeastern Ecuador. Twenty envenoming cases (18 patients under 15 years of age) including one death (a 4-year-old male) were recorded at the Macas General Hospital, Morona Santiago, between January 2015 and December 2016 from the counties of Taisha (n=17), Huamboyo (n=1), Palora (n=1), and Logroño (n=1). An additional fatality from 2014 (a 3-year-old female from Nayantza, Taisha county) is also reported. Leukocytosis and low serum potassium levels were detected in most patients. We observed a significant negative correlation between leukocytosis and hypokalemia. Scorpions involved in three accidents from Macuma, Taisha County, were identified as genetically related to Tityus obscurus from the Brazilian Amazonian region based on comparison of mitochondrial DNA sequences encoding cytochrome oxidase subunit I. These cases, along with previously reported envenoming from northern Manabí, reinforce the notion that scorpionism is a health hazard for children in Ecuador and emphasizes the need to supply effective antivenoms against local species, which are not currently available. The genetic affinity of the Ecuadorian specimens with T. obscurus may underlay toxinological, clinical, and venom antigenic relationships among Amazonian scorpions that deserves further exploration for designing therapeutic strategies to treat scorpionism in the region.
Collapse
Affiliation(s)
- Juan P Román
- Hospital General de Macas, Macas, Morona Santiago, Ecuador
| | | | - Doris Medina
- Hospital General de Macas, Macas, Morona Santiago, Ecuador
| | - Manolo Vásquez
- Hospital General de Macas, Macas, Morona Santiago, Ecuador
| | - José García
- Hospital General de Macas, Macas, Morona Santiago, Ecuador
| | - Matthew R Graham
- Department of Biology, Eastern Connecticut State University, 83 Windham St., Willimantic, CT 06226, USA
| | - Daniel Romero-Alvarez
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Pedro P de Oliveira Pardal
- Laboratory of Medical Entomology and Venomous Animals, Center of Tropical Medicine, Pará Federal University, Av. Generalíssimo Deodoro 92, Umarizal, 66055-240 Belém, Pará State, Brazil
| | - Edna A Y Ishikawa
- Laboratory of Medical Entomology and Venomous Animals, Center of Tropical Medicine, Pará Federal University, Av. Generalíssimo Deodoro 92, Umarizal, 66055-240 Belém, Pará State, Brazil
| | - Adolfo Borges
- Carrera de Biotecnología, Facultad de Ingenierías y Ciencias Agropecuarias, Universidad de Las Américas, Quito, Ecuador; Laboratorio de Biología Molecular de Toxinas y Receptores, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Caracas 1051, Venezuela.
| |
Collapse
|
38
|
Ward MJ, Ellsworth SA, Rokyta DR. Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides hentzi; Buthidae) reveal high toxin diversity in a harmless member of a lethal family. Toxicon 2018; 142:14-29. [DOI: 10.1016/j.toxicon.2017.12.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/02/2023]
|
39
|
Nencioni ALA, Neto EB, de Freitas LA, Dorce VAC. Effects of Brazilian scorpion venoms on the central nervous system. J Venom Anim Toxins Incl Trop Dis 2018; 24:3. [PMID: 29410679 PMCID: PMC5781280 DOI: 10.1186/s40409-018-0139-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/02/2018] [Indexed: 12/26/2022] Open
Abstract
In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group, T. serrulatus, T. bahiensis, T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus, T. silvestres, T. brazilae, T. confluens, T. costatus, T. fasciolatus and T. neglectus are also found in the country, but the incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms - such as myocardial damage, cardiac arrhythmias, pulmonary edema and shock - are mainly due to the release of mediators from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous system and inflammatory response in the process. The participation of the central nervous system in envenoming has always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct participation of the central nervous system in the envenoming process. This review summarizes the major findings on the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally. Most of the studies have been performed with T. serrulatus and T. bahiensis. Little information is available regarding the other Brazilian Tityus species.
Collapse
Affiliation(s)
| | - Emidio Beraldo Neto
- Laboratory of Pharmacology, Butantan Institute, Av. Dr. Vital Brasil, 1500, São Paulo, SP 05503-900 Brazil
- Graduation Program in Sciences – Toxinology, Butantan Institute, São Paulo, SP Brazil
| | - Lucas Alves de Freitas
- Laboratory of Pharmacology, Butantan Institute, Av. Dr. Vital Brasil, 1500, São Paulo, SP 05503-900 Brazil
- Graduation Program in Sciences – Toxinology, Butantan Institute, São Paulo, SP Brazil
| | | |
Collapse
|
40
|
Profiling the short, linear, non-disulfide bond-containing peptidome from the venom of the scorpion Tityus obscurus. J Proteomics 2018; 170:70-79. [DOI: 10.1016/j.jprot.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/23/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023]
|
41
|
Miyamoto JG, Andrade FB, Ferraz CR, Cândido DM, Knysak I, Venancio ÉJ, Verri WA, Landgraf MA, Landgraf RG, Kwasniewski FH. A comparative study of pathophysiological alterations in scorpionism induced by Tityus serrulatus and Tityus bahiensis venoms. Toxicon 2018; 141:25-33. [DOI: 10.1016/j.toxicon.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/31/2017] [Accepted: 11/18/2017] [Indexed: 12/21/2022]
|
42
|
Romero-Gutierrez T, Peguero-Sanchez E, Cevallos MA, Batista CVF, Ortiz E, Possani LD. A Deeper Examination of Thorellius atrox Scorpion Venom Components with Omic Techonologies. Toxins (Basel) 2017; 9:E399. [PMID: 29231872 PMCID: PMC5744119 DOI: 10.3390/toxins9120399] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 02/02/2023] Open
Abstract
This communication reports a further examination of venom gland transcripts and venom composition of the Mexican scorpion Thorellius atrox using RNA-seq and tandem mass spectrometry. The RNA-seq, which was performed with the Illumina protocol, yielded more than 20,000 assembled transcripts. Following a database search and annotation strategy, 160 transcripts were identified, potentially coding for venom components. A novel sequence was identified that potentially codes for a peptide with similarity to spider ω-agatoxins, which act on voltage-gated calcium channels, not known before to exist in scorpion venoms. Analogous transcripts were found in other scorpion species. They could represent members of a new scorpion toxin family, here named omegascorpins. The mass fingerprint by LC-MS identified 135 individual venom components, five of which matched with the theoretical masses of putative peptides translated from the transcriptome. The LC-MS/MS de novo sequencing allowed to reconstruct and identify 42 proteins encoded by assembled transcripts, thus validating the transcriptome analysis. Earlier studies conducted with this scorpion venom permitted the identification of only twenty putative venom components. The present work performed with more powerful and modern omic technologies demonstrates the capacity of accomplishing a deeper characterization of scorpion venom components and the identification of novel molecules with potential applications in biomedicine and the study of ion channel physiology.
Collapse
Affiliation(s)
- Teresa Romero-Gutierrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Esteban Peguero-Sanchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Miguel A Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Cesar V F Batista
- Laboratorio Universitario de Proteómica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca CP: 62210, Morelos, Mexico.
| |
Collapse
|
43
|
New findings from the first transcriptome of the Bothrops moojeni snake venom gland. Toxicon 2017; 140:105-117. [DOI: 10.1016/j.toxicon.2017.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 11/18/2022]
|
44
|
Tityus serrulatus Scorpion Venom: In Vitro Tests and Their Correlation with In Vivo Lethal Dose Assay. Toxins (Basel) 2017; 9:toxins9120380. [PMID: 29168766 PMCID: PMC5744100 DOI: 10.3390/toxins9120380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/29/2022] Open
Abstract
Scorpion stings are the main cause of human envenomation in Brazil and, for the treatment of victims, the World Health Organization (WHO) recommends the use of antivenoms. The first step to achieve effective antivenom is to use a good quality venom pool and to evaluate it, with LD50 determination as the most accepted procedure. It is, however, time-consuming and requires advanced technical training. Further, there are significant ethical concerns regarding the number of animals required for testing. Hence, we investigated the correspondence between LD50 results, in vitro assays, and a strong correlation with proteolytic activity levels was observed, showing, remarkably, that proteases are potential toxicity markers for Tityus serrulatus venom. The comparison of reversed-phase chromatographic profiles also has a potential application in venoms’ quality control, as there were fewer neurotoxins detected in the venom with high LD50 value. These results were confirmed by mass spectrometry analysis. Therefore, these methods could precede the LD50 assay to evaluate the venom excellence by discriminating—and discarding—poor-quality batches, and, consequently, with a positive impact on the number of animals used. Notably, proposed assays are fast and inexpensive, being technically and economically feasible in Tityus serrulatus venom quality control to produce effective antivenoms.
Collapse
|
45
|
McElroy T, McReynolds CN, Gulledge A, Knight KR, Smith WE, Albrecht EA. Differential toxicity and venom gland gene expression in Centruroides vittatus. PLoS One 2017; 12:e0184695. [PMID: 28976980 PMCID: PMC5627916 DOI: 10.1371/journal.pone.0184695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/29/2017] [Indexed: 11/19/2022] Open
Abstract
Variation in venom toxicity and composition exists in many species. In this study, venom potency and venom gland gene expression was evaluated in Centruroides vittatus, size class I-II (immature) and size class IV (adults/penultimate instars) size classes. Venom toxicity was evaluated by probit analysis and returned ED50 values of 50.1 μg/g for class IV compared to 134.2 μg/g for class I-II 24 hours post injection, suggesting size class IV was 2.7 fold more potent. Next generation sequencing (NGS and qPCR were used to characterize venom gland gene expression. NGS data was assembled into 36,795 contigs, and annotated using BLASTx with UNIPROT. EdgeR analysis of the sequences showed statistically significant differential expression in transcripts associated with sodium and potassium channel modulation. Sodium channel modulator expression generally favored size class IV; in contrast, potassium channel modulators were favored in size class I-II expression. Real-time quantitative PCR of 14 venom toxin transcripts detected relative expression ratios that paralleled NGS data and identified potential family members or splice variants for several sodium channel modulators. Our data suggests ontogenetic differences in venom potency and venom related genes expression exist between size classes I-II and IV.
Collapse
Affiliation(s)
- Thomas McElroy
- Department of Ecology, Evolution and Organismal Biology, Kennesaw State University, Kennesaw, GA, United States of America
| | - C. Neal McReynolds
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, United States of America
| | - Alyssa Gulledge
- Department of Ecology, Evolution and Organismal Biology, Kennesaw State University, Kennesaw, GA, United States of America
| | - Kelci R. Knight
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States of America
| | - Whitney E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States of America
| | - Eric A. Albrecht
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States of America
- * E-mail:
| |
Collapse
|
46
|
Melo MMA, Daniele-Silva A, Teixeira DG, Estrela AB, Melo KRT, Oliveira VS, Rocha HAO, Ferreira LDS, Pontes DL, Lima JPMS, Silva-Júnior AA, Barbosa EG, Carvalho E, Fernandes-Pedrosa MF. Structure and in vitro activities of a Copper II-chelating anionic peptide from the venom of the scorpion Tityus stigmurus. Peptides 2017; 94:91-98. [PMID: 28552408 DOI: 10.1016/j.peptides.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Abstract
Anionic Peptides are molecules rich in aspartic acid (Asp) and/or glutamic acid (Glu) residues in the primary structure. This work presents, for the first time, structural characterization and biological activity assays of an anionic peptide from the venom of the scorpion Tityus stigmurus, named TanP. The three-dimensional structure of TanP was obtained by computational modeling and refined by molecular dynamic (MD) simulations. Furthermore, we have performed circular dichroism (CD) analysis to predict TanP secondary structure, and UV-vis spectroscopy to evaluate its chelating activity. CD indicated predominance of random coil conformation in aqueous medium, as well as changes in structure depending on pH and temperature. TanP has chelating activity on copper ions, which modified the peptide's secondary structure. These results were corroborated by MD data. The molar ratio of binding (TanP:copper) depends on the concentration of peptide: at lower TanP concentration, the molar ratio was 1:5 (TanP:Cu2+), whereas in concentrated TanP solution, the molar ratio was 1:3 (TanP:Cu2+). TanP was not cytotoxic to non-neoplastic or cancer cell lines, and showed an ability to inhibit the in vitro release of nitric oxide by LPS-stimulated macrophages. Altogether, the results suggest TanP is a promising peptide for therapeutic application as a chelating agent.
Collapse
Affiliation(s)
- Menilla M A Melo
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil
| | - Alessandra Daniele-Silva
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Diego G Teixeira
- Laboratório de Sistemas Metabólicos, Centro de Biociências, UFRN, Natal, RN, Brazil
| | - Andréia B Estrela
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Karolline R T Melo
- Laboratório de Biotecnologia de Polímeros Naturais, UFRN, Natal, RN, Brazil
| | | | - Hugo A O Rocha
- Laboratório de Biotecnologia de Polímeros Naturais, UFRN, Natal, RN, Brazil
| | | | - Daniel L Pontes
- Laboratório de Química de Coordenação e Polímeros, UFRN, Natal, RN, Brazil
| | - João P M S Lima
- Laboratório de Sistemas Metabólicos, Centro de Biociências, UFRN, Natal, RN, Brazil
| | - Arnóbio A Silva-Júnior
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil
| | - Euzebio G Barbosa
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil; Laboratório de Química Farmacêutica, UFRN, Natal, RN, Brazil
| | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Matheus F Fernandes-Pedrosa
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil.
| |
Collapse
|
47
|
Venomics of Remipede Crustaceans Reveals Novel Peptide Diversity and Illuminates the Venom's Biological Role. Toxins (Basel) 2017; 9:toxins9080234. [PMID: 28933727 PMCID: PMC5577568 DOI: 10.3390/toxins9080234] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/24/2017] [Indexed: 01/15/2023] Open
Abstract
We report the first integrated proteomic and transcriptomic investigation of a crustacean venom. Remipede crustaceans are the venomous sister group of hexapods, and the venom glands of the remipede Xibalbanus tulumensis express a considerably more complex cocktail of proteins and peptides than previously thought. We identified 32 venom protein families, including 13 novel peptide families that we name xibalbins, four of which lack similarities to any known structural class. Our proteomic data confirm the presence in the venom of 19 of the 32 families. The most highly expressed venom components are serine peptidases, chitinase and six of the xibalbins. The xibalbins represent Inhibitory Cystine Knot peptides (ICK), a double ICK peptide, peptides with a putative Cystine-stabilized α-helix/β-sheet motif, a peptide similar to hairpin-like β-sheet forming antimicrobial peptides, two peptides related to different hormone families, and four peptides with unique structural motifs. Remipede venom components represent the full range of evolutionary recruitment frequencies, from families that have been recruited into many animal venoms (serine peptidases, ICKs), to those having a very narrow taxonomic range (double ICKs), to those unique for remipedes. We discuss the most highly expressed venom components to shed light on their possible functional significance in the predatory and defensive use of remipede venom, and to provide testable ideas for any future bioactivity studies.
Collapse
|
48
|
Venom gland transcriptomic and venom proteomic analyses of the scorpion Megacormus gertschi Díaz-Najera, 1966 (Scorpiones: Euscorpiidae: Megacorminae). Toxicon 2017; 133:95-109. [DOI: 10.1016/j.toxicon.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
|
49
|
Rokyta DR, Ward MJ. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Toxicon 2017; 128:23-37. [DOI: 10.1016/j.toxicon.2017.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
50
|
Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel) 2016; 8:toxins8120367. [PMID: 27941686 PMCID: PMC5198561 DOI: 10.3390/toxins8120367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/28/2022] Open
Abstract
Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis. The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. We annotated 135 transcripts putatively coding for peptides with identity to known venom components available from different protein databases. Fresh venom collected by electrostimulation was analyzed by LC-MS/MS allowing the identification of 26 distinct components with sequences matching counterparts from the transcriptomic analysis. In addition, the phylogenetic affinities of the found putative calcins, scorpines, La1-like peptides and potassium channel κ toxins were analyzed. The first three components are often reported as ubiquitous in the venom of different families of scorpions. Our results suggest that, at least calcins and scorpines, could be used as molecular markers in phylogenetic studies of scorpion venoms.
Collapse
|