1
|
Ekhator OC, Orish FC, Nnadi EO, Ogaji DS, Isuman S, Orisakwe OE. Impact of black soot emissions on public health in Niger Delta, Nigeria: understanding the severity of the problem. Inhal Toxicol 2024; 36:314-326. [PMID: 38145546 DOI: 10.1080/08958378.2023.2297698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
Rivers State, Niger Delta, Nigeria often referred to as the 'treasure bed of the nation' is the seat of crude oil production activities with the accompanying environmental degradation. The severity of the environmental pollution and contaminated air quality took a new turn for the worse in November 2016, when the residents of Port Harcourt city, Rivers State, a major oil producing State experienced for the first time, aerosol deposition of plumes of black soot. This systematic review paper is aimed at quantifying the severity of this public health challenge. Using appropriate search words, the following databases SCOPUS, PUBMED, Google Scholar, and AJOL were searched from 1990 to 2022 to enable comparative analyses of data before and after the emergence of black soot deposition. Air-related morbidities and mortalities such as cerebrospinal meningitis (CSM), chronic bronchitis, measles, pertussis, hemoptysis, cough, pulmonary tuberculosis, pneumonia, and upper respiratory tract infection (URTI), pneumonia, eye irritation, conjunctivitis, traumatic skin outgrowth, cancers, cardiovascular diseases, and child deformities were compared with levels of air pollutants and particulate matter. The results showed that Port Harcourt city's ambient air quality data were above the standard National Ambient Air Quality data and that of other regulatory agencies having higher levels of both inorganic and organic pollutants. There were significant relationships between air pollutants concentration with morbidities. These correlations were significant in the period covering 2016-2022. Consequently, it is concluded that the black soot emissions in Port Harcourt city, Nigeria has worsened the public health situation in the city.
Collapse
Affiliation(s)
| | | | - Ernest O Nnadi
- School of Energy, Construction & Environment (ECE), Coventry University, Coventry, UK
| | - Daprim Samuel Ogaji
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Success Isuman
- Department of Science Laboratory Technology, University of Benin, Benin City, Nigeria
| | - Orish Ebere Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
2
|
Zhang S, Breitner S, Pickford R, Lanki T, Okokon E, Morawska L, Samoli E, Rodopoulou S, Stafoggia M, Renzi M, Schikowski T, Zhao Q, Schneider A, Peters A. Short-term effects of ultrafine particles on heart rate variability: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120245. [PMID: 36162563 DOI: 10.1016/j.envpol.2022.120245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
An increasing number of epidemiological studies have examined the association between ultrafine particles (UFP) and imbalanced autonomic control of the heart, a potential mechanism linking particulate matter air pollution to cardiovascular disease. This study systematically reviews and meta-analyzes studies on short-term effects of UFP on autonomic function, as assessed by heart rate variability (HRV). We searched PubMed and Web of Science for articles published until June 30, 2022. We extracted quantitative measures of UFP effects on HRV with a maximum lag of 15 days from single-pollutant models. We assessed the risk of bias in the included studies regarding confounding, selection bias, exposure assessment, outcome measurement, missing data, and selective reporting. Random-effects models were applied to synthesize effect estimates on HRV of various time courses. Twelve studies with altogether 1,337 subjects were included in the meta-analysis. For an increase of 10,000 particles/cm3 in UFP assessed by central outdoor measurements, our meta-analysis showed immediate decreases in the standard deviation of the normal-to-normal intervals (SDNN) by 4.0% [95% confidence interval (CI): 7.1%, -0.9%] and root mean square of successive R-R interval differences (RMSSD) by 4.7% (95% CI: 9.1%, 0.0%) within 6 h after exposure. The immediate decreases in SDNN and RMSSD associated with UFP assessed by personal measurements were smaller and borderline significant. Elevated UFP were also associated with decreases in SDNN, low-frequency power, and the ratio of low-frequency to high-frequency power when pooling estimates of lags across hours to days. We did not find associations between HRV and concurrent-day UFP exposure (daily average of at least 18 h) or exposure at lags ≥ one day. Our study indicates that short-term exposure to ambient UFP is associated with decreased HRV, predominantly as an immediate response within hours. This finding highlights that UFP may contribute to the onset of cardiovascular events through autonomic dysregulation.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Regina Pickford
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Timo Lanki
- Finnish Institute for Health and Welfare, Kuopio, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Enembe Okokon
- Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Matteo Renzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Qi Zhao
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany; Partner-Site Munich, German Research Center for Cardiovascular Research (DZHK), Munich, Germany
| |
Collapse
|
3
|
Hu J, Xue X, Xiao M, Wang W, Gao Y, Kan H, Ge J, Cui Z, Chen R. The acute effects of particulate matter air pollution on ambulatory blood pressure: A multicenter analysis at the hourly level. ENVIRONMENT INTERNATIONAL 2021; 157:106859. [PMID: 34509047 DOI: 10.1016/j.envint.2021.106859] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological evidence from ambulatory blood pressure monitoring is needed to clarify the associations of particulate air pollution with blood pressure and potential lag patterns. We examined the associations of fine and coarse particulate matter (PM2.5, PM2.5-10) with ambulatory blood pressure among 7108 non-hypertensive participants from 7 Chinese cities between April 2016 and November 2020. Hourly concentrations of PM2.5 and PM2.5-10 were obtained from the nearest monitoring stations. We measured four blood pressure indicators, including systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and pulse pressure (PP). Linear mixed-effect models combined with distributed lag models were applied to analyze the data. Generally, very short-term exposure to PM2.5 was significantly associated with elevated blood pressure. These effects occurred on the same hour of blood pressure measurement, attenuated gradually, and became insignificant approximately at lag 12 h. An interquartile range (IQR, 33 μg/m3) increase of PM2.5 was significantly associated with cumulative increments of 0.58 mmHg for SBP, 0.31 mmHg for DBP, 0.38 mmHg for MAP, and 0.33 mmHg for PP over lag 0 to 12 h. The exposure-response relationship curves were almost linear without thresholds, but tended to be flat at very high concentrations. No significant associations were observed for PM2.5-10. Our study provides independent and robust associations between transient PM2.5 exposure and elevated blood pressure within the first 12 h, and reinforces the evidence for a linear and non-threshold exposure-response relationship, which may have implications for blood pressure management and hypertension prevention in susceptible population.
Collapse
Affiliation(s)
- Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaowei Xue
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Min Xiao
- Jiangsu Standard Medical Technology Co., Ltd, Beijing 100096, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Zhaoqiang Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Nanoparticles as a Tool in Neuro-Oncology Theranostics. Pharmaceutics 2021; 13:pharmaceutics13070948. [PMID: 34202660 PMCID: PMC8309086 DOI: 10.3390/pharmaceutics13070948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
The rapid growth of nanotechnology and the development of novel nanomaterials with unique physicochemical characteristics provides potential for the utility of nanomaterials in theranostics, including neuroimaging, for identifying neurodegenerative changes or central nervous system malignancy. Here we present a systematic and thorough review of the current evidence pertaining to the imaging characteristics of various nanomaterials, their associated toxicity profiles, and mechanisms for enhancing tropism in an effort to demonstrate the utility of nanoparticles as an imaging tool in neuro-oncology. Particular attention is given to carbon-based and metal oxide nanoparticles and their theranostic utility in MRI, CT, photoacoustic imaging, PET imaging, fluorescent and NIR fluorescent imaging, and SPECT imaging.
Collapse
|
5
|
Li L, Hu D, Zhang W, Cui L, Jia X, Yang D, Liu S, Deng F, Liu J, Guo X. Effect of short-term exposure to particulate air pollution on heart rate variability in normal-weight and obese adults. Environ Health 2021; 20:29. [PMID: 33726760 PMCID: PMC7968215 DOI: 10.1186/s12940-021-00707-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND The adverse effects of particulate air pollution on heart rate variability (HRV) have been reported. However, it remains unclear whether they differ by the weight status as well as between wake and sleep. METHODS A repeated-measure study was conducted in 97 young adults in Beijing, China, and they were classified by body mass index (BMI) as normal-weight (BMI, 18.5-24.0 kg/m2) and obese (BMI ≥ 28.0 kg/m2) groups. Personal exposures to fine particulate matter (PM2.5) and black carbon (BC) were measured with portable exposure monitors, and the ambient PM2.5/BC concentrations were obtained from the fixed monitoring sites near the subjects' residences. HRV and heart rate (HR) were monitored by 24-h Holter electrocardiography. The study period was divided into waking and sleeping hours according to time-activity diaries. Linear mixed-effects models were used to investigate the effects of PM2.5/BC on HRV and HR in both groups during wake and sleep. RESULTS The effects of short-term exposure to PM2.5/BC on HRV were more pronounced among obese participants. In the normal-weight group, the positive association between personal PM2.5/BC exposure and high-frequency power (HF) as well as the ratio of low-frequency power to high-frequency power (LF/HF) was observed during wakefulness. In the obese group, personal PM2.5/BC exposure was negatively associated with HF but positively associated with LF/HF during wakefulness, whereas it was negatively correlated to total power and standard deviation of all NN intervals (SDNN) during sleep. An interquartile range (IQR) increase in BC at 2-h moving average was associated with 37.64% (95% confidence interval [CI]: 25.03, 51.51%) increases in LF/HF during wakefulness and associated with 6.28% (95% CI: - 17.26, 6.15%) decreases in SDNN during sleep in obese individuals, and the interaction terms between BC and obesity in LF/HF and SDNN were both statistically significant (p < 0.05). The results also suggested that the effects of PM2.5/BC exposure on several HRV indices and HR differed in magnitude or direction between wake and sleep. CONCLUSIONS Short-term exposure to PM2.5/BC is associated with HRV and HR, especially in obese individuals. The circadian rhythm of HRV should be considered in future studies when HRV is applied.
Collapse
Affiliation(s)
- Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Xu Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
6
|
Lecca LI, Marcias G, Uras M, Meloni F, Mucci N, Larese Filon F, Massacci G, Buonanno G, Cocco P, Campagna M. Response of the Cardiac Autonomic Control to Exposure to Nanoparticles and Noise: A Cross-Sectional Study of Airport Ground Staff. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2507. [PMID: 33802520 PMCID: PMC7967637 DOI: 10.3390/ijerph18052507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022]
Abstract
Airport activity causes the emission of particulate matter and noise, two environmental contaminants and potential health hazards, particularly for the personnel operating nearby taxiways. We explored the association between exposure to fine/ultrafine particles (UFPs) and noise with heart rate variability (HRV), an early indicator of cardiovascular autonomic response, among a sample of airport ground staff. Between May and June 2018, thirty-four male operators (mean age = 43 years and SD = 6.7) underwent personal monitoring of exposure to nanoparticles and noise, and HRV during their work activity. We conducted univariate and multivariate analysis to test the effect of UFP and noise exposure HRV. Total Lung Deposition Surface Area (LDSA) was significantly associated with a decrease in HRV Total Power and Triangular index (β = -0.038 p = 0.016 and β = -7.8 × 10-5, p = 0.042, respectively). Noise peak level showed an opposite effect, which was significant for Total Power (β = 153.03, p = 0.027), and for Triangular index (β = 0.362, p = 0.035). Further investigation is warranted to clarify the effect of the concurrent exposure to UFPs and noise on early changes of cardiac autonomic regulation.
Collapse
Affiliation(s)
- Luigi Isaia Lecca
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (G.M.); (M.U.); (F.M.); (P.C.); (M.C.)
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Gabriele Marcias
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (G.M.); (M.U.); (F.M.); (P.C.); (M.C.)
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy;
| | - Michele Uras
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (G.M.); (M.U.); (F.M.); (P.C.); (M.C.)
| | - Federico Meloni
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (G.M.); (M.U.); (F.M.); (P.C.); (M.C.)
| | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Francesca Larese Filon
- Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, 34129 Trieste, Italy;
| | - Giorgio Massacci
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy;
| | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043 Cassino, Italy;
| | - Pierluigi Cocco
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (G.M.); (M.U.); (F.M.); (P.C.); (M.C.)
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (G.M.); (M.U.); (F.M.); (P.C.); (M.C.)
| |
Collapse
|
7
|
Hadei M, Naddafi K. Cardiovascular effects of airborne particulate matter: A review of rodent model studies. CHEMOSPHERE 2020; 242:125204. [PMID: 31675579 DOI: 10.1016/j.chemosphere.2019.125204] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 05/20/2023]
Abstract
In recent year, animal models have been growingly used to increase our knowledge about the toxicity of PM and underlying mechanisms leading to cardiovascular diseases. In this article, we review the current state of knowledge and findings of studies investigating the cardiovascular effects of PM in rats and mice. The six main areas covered in this review include: I) nature of particulate matter and toxicity mechanisms, II) systemic inflammation, III) heart rate and heart rate variability, IV) histopathological effects, V) atherosclerosis, VI) thrombosis, and VI) myocardial infarction. This review showed that animal model studies have been successful to bring new insights into the mechanisms underlying PM-induced cardiovascular diseases. However, there are some areas that the exact mechanisms are still unclear. In conclusion, investigating the cardiovascular effects of PM in vivo or interpreting the results should attempt to justify the role of different PM compositions, which may vastly affect the overall cytotoxicity of particles.
Collapse
Affiliation(s)
- Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bing F, Wang X, Shen W, Li L, Niu P, Chen Y, Zhang W, Tan W, Huo Y. Inhalation of Ultrafine Zinc Particles Impaired Cardiovascular Functions in Hypertension-Induced Heart Failure Rats With Preserved Ejection Fraction. Front Bioeng Biotechnol 2020; 8:13. [PMID: 32039193 PMCID: PMC6993201 DOI: 10.3389/fbioe.2020.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/08/2020] [Indexed: 12/30/2022] Open
Abstract
Although it is possible for inhalation of ultrafine particles to impair human health, its effect is not clear in patients with HFpEF. This study investigated cardiac and hemodynamic changes in hypertension-induced rats of HFpEF after inhaling ultrafine zinc particles for a while. Multiple experimental measurements were carried out in DSS rats fed with high salt (HS) and low salt (LS) diets as well as HS diet with the inhalation of ultrafine zinc particles (defined as HP). Cardiac strain and strain rate were quantified by the speckle tracking echocardiography. The pressure and flow waves were recorded in the carotid artery and abdominal aorta and analyzed by the models of Windkessel and Womersley types. HS and HP rats were found to show lower strains on endocardium and epicardium than LS rats. The inhalation of ultrafine zinc particles further reduced the strain in the longitudinal direction on the endocardium of rats with HFpEF, but had relatively small effects on the epicardium. The inhalation of ultrafine zinc particles resulted in the increase of systemic resistance and the decrease of total vascular compliance as well as the increased PWV and induced more severe vascular stiffening in rats with HFpEF. In summary, the inhalation of ultrafine zinc particles deteriorated local myocardial dysfunctions in the LV and the hemodynamic environment in peripheral arteries in rats of HFpEF. This study is of importance to understand the mechanisms of cardiovascular impairments owing to air pollution.
Collapse
Affiliation(s)
- Fangbo Bing
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Xuan Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Wenzeng Shen
- College of Medicine, Hebei University, Baoding, China
| | - Li Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Pei Niu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Ying Chen
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.,Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Wenxi Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Wenchang Tan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.,Shenzhen Graduate School, Peking University, Shenzhen, China.,PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
| | - Yunlong Huo
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China.,Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Tang CS, Chuang KJ, Chang TY, Chuang HC, Chen LH, Lung SCC, Chang LT. Effects of Personal Exposures to Micro- and Nano-Particulate Matter, Black Carbon, Particle-Bound Polycyclic Aromatic Hydrocarbons, and Carbon Monoxide on Heart Rate Variability in a Panel of Healthy Older Subjects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234672. [PMID: 31771182 PMCID: PMC6926945 DOI: 10.3390/ijerph16234672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
As a non-invasive method, heart rate variability (HRV) has been widely used to study cardiovascular autonomous control. Environmental epidemiological studies indicated that the increase in an average concentration of particulate matter (PM) would result in a decrease in HRV, which was related to the increase of cardiovascular mortality in patients with myocardial infarction and the general population. With rapid economic and social development in Asia, how air pollutants, such as PM of different sizes and their components, affect the cardiovascular health of older people, still need to be further explored. The current study includes a 72 h personal exposure monitoring of seven healthy older people who lived in the Taipei metropolitan area. Mobile equipment, a portable electrocardiogram recorder, and the generalized additive mixed model (GAMM) were adopted to evaluate how HRV indices were affected by size-fractionated PM, particle-bound polycyclic aromatic hydrocarbons (p-PAHs), black carbon (BC), and carbon monoxide (CO). Other related confounding factors, such as age, sex, body mass index (BMI), temperature, relative humidity (RH), time, and monitoring week were controlled by fixed effects of the GAMM. Statistical analyses of multi-pollutant models showed that PM2.5–10, PM1, and nanoparticle (NP) could cause heart rate (HR), time-domain indices, and frequency-domain indices to rise; PM1–2.5 and BC would cause the frequency-domain index to rise; p-PAHs would cause HR to rise, and CO would cause time-domain index and frequency-domain index to decline. In addition, the moving average time all fell after one hour and might appear at 8 h in HRVs’ largest percentage change caused by each pollutant, results of which suggested that size-fractionated PM, p-PAHs, BC, and CO exposures have delayed effects on HRVs. In conclusion, the results of the study showed that the increase in personal pollutant exposure would affect cardiac autonomic control function of healthy older residents in metropolitan areas, and the susceptibility of cardiovascular effects was higher than that of healthy young people. Since the small sample size would limit the generalizability of this study, more studies with larger scale are warranted to better understand the HRV effects of simultaneous PM and other pollution exposures for subpopulation groups.
Collapse
Affiliation(s)
- Chin-Sheng Tang
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung 40402, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Li-Hsin Chen
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | | - Li-Te Chang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
- Correspondence: ; Tel.: +886-4-2451-7250
| |
Collapse
|
10
|
Occupational Fine/Ultrafine Particles and Noise Exposure in Aircraft Personnel Operating in Airport Taxiway. ENVIRONMENTS 2019. [DOI: 10.3390/environments6030035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The occupational exposure to airborne fine and ultrafine particles (UFPs) and noise in aircraft personnel employed in airport taxiway was investigated. Stationary samplings and multiple personal sampling sites and job tasks were considered. Size distribution, particle number concentrations, lung dose surface area were measured by personal particle counters and by means of an electric low pressure impactor (ELPI+TM). Morphological and chemical characterization of UFPs were performed by transmission and scanning electron microscopy, the latter together with energy dispersive X-Ray spectroscopy based spatially resolved compositional mapping. A-weighted noise exposure level A-weighted noise exposure level normalized to an 8 h working day and Peak Sound C-weighted Pressure Level was calculated for single worker and for homogeneous exposure groups. Our study provides evidence on the impact of aviation-related emissions on occupational exposure to ultrafine particles and noise exposure of workers operating in an airport taxiway. Main exposure peaks are related to pre-flight operations of engine aircrafts. Although exposure to ultrafine particles and noise appears to not be critical if compared with other occupational scenarios, the coincidence in time of high peaks of exposure to ultrafine particles and noise suggest that further investigations are warranted in order to assess possible subclinical and clinical adverse health effects in exposed workers, especially for cardiovascular apparatus.
Collapse
|
11
|
Dong W, Pan L, Li H, Miller MR, Loh M, Wu S, Xu J, Yang X, Shan J, Chen Y, Deng F, Guo X. Association of size-fractionated indoor particulate matter and black carbon with heart rate variability in healthy elderly women in Beijing. INDOOR AIR 2018; 28:373-382. [PMID: 29315830 DOI: 10.1111/ina.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/22/2017] [Indexed: 05/09/2023]
Abstract
Associations between size-fractionated indoor particulate matter (PM) and black carbon (BC) and heart rate variability (HRV) and heart rate (HR) in elderly women remain unclear. Twenty-nine healthy elderly women were measured for 24-hour HRV/HR indices. Real-time size-fractionated indoor PM and BC were monitored on the same day and on the preceding day. Mixed-effects models were applied to investigate the associations between pollutants and HRV/HR indices. Increases in size-fractionated indoor PM were significantly associated with declines in power in the high-frequency band (HF), power in the low-frequency band (LF), and standard deviation of all NN intervals (SDNN). The largest decline in HF was 19% at 5-minute moving average for an interquartile range (IQR) increase (24 μg/m3 ) in PM0.5 . The results showed that smaller particles could lead to greater reductions in HRV indices. The reported associations were modified by body mass index (BMI): Declines in HF at 5-minute average for an IQR increase in PM0.5 were 34.5% and 1.0% for overweight (BMI ≥25 kg/m2 ) and normal-weight (BMI <25 kg/m2 ) participants, respectively. Moreover, negative associations between BC and HRV indices were found to be significant in overweight participants. Increases in size-fractionated indoor PM and BC were associated with compromised cardiac autonomic function in healthy elderly women, especially overweight ones.
Collapse
Affiliation(s)
- W Dong
- Department of Occupational and Environmental Health Sciences, Peking University, School of Public Health, Beijing, China
| | - L Pan
- Department of Occupational and Environmental Health Sciences, Peking University, School of Public Health, Beijing, China
| | - H Li
- Department of Occupational and Environmental Health Sciences, Peking University, School of Public Health, Beijing, China
| | - M R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - M Loh
- Institute of Occupational Medicine, Edinburgh, UK
| | - S Wu
- Department of Occupational and Environmental Health Sciences, Peking University, School of Public Health, Beijing, China
| | - J Xu
- Department of Occupational and Environmental Health Sciences, Peking University, School of Public Health, Beijing, China
| | - X Yang
- Department of Occupational and Environmental Health Sciences, Peking University, School of Public Health, Beijing, China
| | - J Shan
- Department of Occupational and Environmental Health Sciences, Peking University, School of Public Health, Beijing, China
| | - Y Chen
- Respiratory Department, Peking University Third Hospital, Beijing, China
| | - F Deng
- Department of Occupational and Environmental Health Sciences, Peking University, School of Public Health, Beijing, China
| | - X Guo
- Department of Occupational and Environmental Health Sciences, Peking University, School of Public Health, Beijing, China
| |
Collapse
|
12
|
Wardoyo AYP, Juswono UP, Noor JAE. A study of the correlation between ultrafine particle emissions in motorcycle smoke and mice erythrocyte damages. ACTA ACUST UNITED AC 2017; 69:649-655. [PMID: 28655429 DOI: 10.1016/j.etp.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023]
Abstract
Sharply increasing of motor vehicles every year contributes to amounts of ultrafine particles (UFPs) in the air. Besides, the existence of UFPs in the blood may cause erythrocyte damages that subject to shape deformation. This study was aimed to investigate the influence of UFPs in the motorcycle smoke exposed to mice in different concentrations to the erythrocyte damages. The experiments were conducted by injecting the motorcycle smoke with the varied amounts in an experimental chamber (dimension of 30×20×20cm3) where the mice were put in advance for exposuring twice a day (100s). Total numbers of UFPs in the smoke were calculated by measuring the total concentrations multiplied by the smoke debit. They were measured using a TSI 8525 P-Trak UPC. The effects of the smoke exposures in the mice's erythrocytes related to the UFPs in the smoke were observed by a binocular CX-31 Computer Microscope after the 2nd, 4th, 6th, 8th, and 10th exposure days. The erythrocyte damages were calculated from the total abnormal erythrocytes divided by the total erythrocytes. Our results showed that more UFPs exposed to mice resulted in more the erythrocytes damages. Longer exposures caused more damages of the mice erythrocytes. This study found significant correlations between the numbers of UFPs exposed to mice and the erythrocyte damages. Our finding gives important evidence that motorcycle emissions especially UFPs affect on health.
Collapse
Affiliation(s)
- Arinto Y P Wardoyo
- Physics Department Brawijaya University, Jl. Veteran 65145, Malang, Indonesia.
| | - Unggul P Juswono
- Physics Department Brawijaya University, Jl. Veteran 65145, Malang, Indonesia.
| | - Johan A E Noor
- Physics Department Brawijaya University, Jl. Veteran 65145, Malang, Indonesia.
| |
Collapse
|
13
|
Niranjan R, Thakur AK. The Toxicological Mechanisms of Environmental Soot (Black Carbon) and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways. Front Immunol 2017; 8:763. [PMID: 28713383 PMCID: PMC5492873 DOI: 10.3389/fimmu.2017.00763] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/16/2017] [Indexed: 12/29/2022] Open
Abstract
The environmental soot and carbon blacks (CBs) cause many diseases in humans, but their underlying mechanisms of toxicity are still poorly understood. Both are formed after the incomplete combustion of hydrocarbons but differ in their constituents and percent carbon contents. For the first time, “Sir Percival Pott” described soot as a carcinogen, which was subsequently confirmed by many others. The existing data suggest three main types of diseases due to soot and CB exposures: cancer, respiratory diseases, and cardiovascular dysfunctions. Experimental models revealed the involvement of oxidative stress, DNA methylation, formation of DNA adducts, and Aryl hydrocarbon receptor activation as the key mechanisms of soot- and CB-induced cancers. Metals including Si, Fe, Mn, Ti, and Co in soot also contribute in the reactive oxygen species (ROS)-mediated DNA damage. Mechanistically, ROS-induced DNA damage is further enhanced by eosinophils and neutrophils via halide (Cl− and Br−) dependent DNA adducts formation. The activation of pulmonary dendritic cells, T helper type 2 cells, and mast cells is crucial mediators in the pathology of soot- or CB-induced respiratory disease. Polyunsaturated fatty acids (PUFAs) were also found to modulate T cells functions in respiratory diseases. Particularly, telomerase reverse transcriptase was found to play the critical role in soot- and CB-induced cardiovascular dysfunctions. In this review, we propose integrated mechanisms of soot- and CB-induced toxicity emphasizing the role of inflammatory mediators and oxidative stress. We also suggest use of antioxidants and PUFAs as protective strategies against soot- and CB-induced disorders.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
14
|
Lim WW, Baumert M, Neo M, Kuklik P, Ganesan AN, Lau DH, Tsoutsman T, Semsarian C, Sanders P, Saint DA. Slowed atrial and atrioventricular conduction and depressed HRV in a murine model of hypertrophic cardiomyopathy. Clin Exp Pharmacol Physiol 2016; 43:95-101. [PMID: 26444142 DOI: 10.1111/1440-1681.12498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/29/2015] [Accepted: 10/02/2015] [Indexed: 11/30/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a common heritable cardiac disorder with diverse clinical outcomes including sudden death, heart failure, and stroke. Depressed heart rate variability (HRV), a measure of cardiac autonomic regulation, has been shown to predict mortality in patients with cardiovascular disease. Cardiac autonomic remodelling in animal models of HCM are not well characterised. This study analysed Gly203Ser cardiac troponin-I transgenic (TG) male mice previously demonstrated to develop hallmarks of HCM by age 21 weeks. 33 mice aged 30 and 50 weeks underwent continuous electrocardiogram (ECG) recording for 30 min under anaesthesia. TG mice demonstrated prolonged P-wave duration (P < 0.001) and PR intervals (P < 0.001) compared to controls. Additionally, TG mice demonstrated depressed standard deviation of RR intervals (SDRR; P < 0.01), coefficient of variation of RR intervals (CVRR; P < 0.001) and standard deviation of heart rate (SDHR; P < 0.001) compared to controls. Additionally, total power was significantly reduced in TG mice (P < 0.05). No significant age-related difference in either strain was observed in ECG or HRV parameters. Mice with HCM developed slowed atrial and atrioventricular conduction and depressed HRV. These changes were conserved with increasing age. This finding may be indicative of atrial and ventricular hypertrophy or dysfunction, and perhaps an indication of worse clinical outcome in heart failure progression in HCM patients.
Collapse
Affiliation(s)
- Wei-Wen Lim
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, Australia
| | - Mathias Baumert
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, Australia
| | - Melissa Neo
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, Australia
| | - Pawel Kuklik
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Anand N Ganesan
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, Australia
| | - Tatiana Tsoutsman
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia and the University of Sydney, Sydney, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia and the University of Sydney, Sydney, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, Australia
| | - David A Saint
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and the Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
15
|
Meta-Analysis of Cardiac Mortality in Three Cohorts of Carbon Black Production Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030302. [PMID: 27005647 PMCID: PMC4808965 DOI: 10.3390/ijerph13030302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 01/06/2023]
Abstract
Epidemiological studies have demonstrated associations between airborne environmental particle exposure and cardiac disease and mortality; however, few have examined such effects from poorly soluble particles of low toxicity such as manufactured carbon black (CB) particles in the work place. We combined standardised mortality ratio (SMR) and Cox proportional hazards results from cohort studies of US, UK and German CB production workers. Under a common protocol, we analysed mortality from all causes, heart disease (HD), ischemic heart disease (IHD) and acute myocardial infarction (AMI). Fixed and random effects (RE) meta-regression models were fit for employment duration, and for overall cumulative and lugged quantitative CB exposure estimates. Full cohort meta-SMRs (RE) were 1.01 (95% confidence interval (CI) 0.79–1.29) for HD; 1.02 (95% CI 0.80–1.30) for IHD, and 1.08 (95% CI 0.74–1.59) for AMI mortality. For all three outcomes, meta-SMRs were heterogeneous, increased with time since first and time since last exposure, and peaked after 25–29 or 10–14 years, respectively. Meta-Cox coefficients showed no association with lugged duration of exposure. A small but imprecise increased AMI mortality risk was suggested for cumulative exposure (RE-hazards ratio (HR) = 1.10 per 100 mg/m3-years; 95% CI 0.92–1.31), but not for lugged exposures. Our results do not demonstrate that airborne CB exposure increases all-cause or cardiac disease mortality.
Collapse
|
16
|
Clark J, Gregory CC, Matthews IP, Hoogendoorn B. The biological effects upon the cardiovascular system consequent to exposure to particulates of less than 500 nm in size. Biomarkers 2015; 21:1-47. [PMID: 26643755 DOI: 10.3109/1354750x.2015.1118540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Ultrafine particulate matter contribution to cardiovascular disease is not known and not regulated. PM up to 500 nm are abundant in urban air and alveolar deposition is significant. OBJECTIVE Effects beyond the alveolar barrier within the body or in vitro tissues exposed to particles <500 nm. METHODS AND RESULTS DATABASES MEDLINE; Ovid-MEDLINE PREM; Web of Science; PubMed (SciGlobe). 127 articles. Results in tables: "subject type exposed", "exposure type", "technique". CONCLUSION Heart rate, vasoactivity, atherosclerotic advancement, oxidative stress, coagulability, inflammatory changes are affected. Production of reactive oxygen species is a useful target to limit outcomes associated with UFP exposure.
Collapse
Affiliation(s)
- James Clark
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Clive C Gregory
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Ian P Matthews
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Bastiaan Hoogendoorn
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| |
Collapse
|
17
|
Zhang X, Chen Y, Wei H, Qin Y, Hao Y, Zhu Y, Deng F, Guo X. Ultrafine carbon black attenuates the antihypertensive effect of captopril in spontaneously hypertensive rats. Inhal Toxicol 2014; 26:853-60. [DOI: 10.3109/08958378.2014.965558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Ultrafine carbon black induces glutamate and ATP release by activating connexin and pannexin hemichannels in cultured astrocytes. Toxicology 2014; 323:32-41. [PMID: 24932759 DOI: 10.1016/j.tox.2014.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/21/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022]
Abstract
Ultrafine particles could enter central nervous system and were associated with brain damage. The underlying mechanisms have not been fully elucidated. Glutamate and ATP are important signaling molecules in brain physiology and pathology. We investigated whether ultrafine carbon black (ufCB) could regulate the release of glutamate and ATP from cultured cortical astrocytes and the involvement of hemichannels in the release mechanism. Our results showed that ufCB dose-dependently increased glutamate and ATP release and activated hemichannels in astrocytes. ufCB-activated hemichannels were attributed to the activation of both connexin 43 (Cx43) and pannexin1 (Panx1) hemichannels, which was based on the finding of increased protein expression and distribution on cell surface of Cx43 and Panx1, and the inhibiting effects of hemichannel inhibitor carbenoxolone, Cx43 hemichannel inhibitor (43)Gap27 and Panx1 hemichannel inhibitor (10)Panx1 on hemichannel activation. Furthermore, ufCB-induced glutamate and ATP release were dependent on Cx43 and Panx1 hemichannels, because carbenoxolone and (43)Gap27 inhibited ufCB-induced glutamate and ATP release, and (10)Panx1 inhibited ufCB-induced ATP release. Taken together, we demonstrated, for the first time, that ufCB could induce glutamate and ATP release by activating Cx43 and Panx1 hemchannels in astrocytes. Our findings suggest a novel mechanism for neurotoxicity caused by ultrafine particles.
Collapse
|
19
|
Chen T, Nie H, Gao X, Yang J, Pu J, Chen Z, Cui X, Wang Y, Wang H, Jia G. Epithelial–mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway. Toxicol Lett 2014; 226:150-62. [DOI: 10.1016/j.toxlet.2014.02.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 02/06/2023]
|
20
|
Jia X, Guo X, Li H, An X, Zhao Y. Characteristics and popular topics of latest researches into the effects of air particulate matter on cardiovascular system by bibliometric analysis. Inhal Toxicol 2013; 25:211-8. [PMID: 23480197 DOI: 10.3109/08958378.2013.775196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In recent years, many epidemiological and toxicological studies have investigated the adverse effects of air particulate matter (PM) on the cardiovascular system. However, it is difficult for the researchers to have a timely and effective overall command of the latest characteristics and popular topics in such a wide field. Different from the previous reviews, in which the research characteristics and trends are empirically concluded by experts, we try to have a comprehensive evaluation of the above topics for the first time by bibliometric analysis, a quantitative tool in information exploration. This study aims to introduce the bibliometric method into the field of PM and cardiovascular system. The articles were selected by searching PubMed/MEDLINE (from 2007 to 2012) using Medical Subject Headings (MeSH) terms "particulate matter" and "cardiovascular system". A total of 935 eligible articles and 1895 MeSH terms were retrieved and processed by the software Thomson Data Analyzer (TDA). The bibliographic information and the MeSH terms of these articles were classified and analyzed to summarize the research characteristics. The top 200 high-frequency MeSH terms (the cumulative frequency percentage was 74.2%) were clustered for popular-topic conclusion. We summarized the characteristics of published articles, of researcher collaborations and of the contents. Ten clusters of MeSH terms are presented. Six popular topics are concluded and elaborated for reference. Our study presents an overview of the characteristics and popular topics in the field of PM and cardiovascular system in the past five years by bibliometric tools, which may provide a new perspective for future researchers.
Collapse
Affiliation(s)
- Xiaofeng Jia
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | | | | | | | | |
Collapse
|
21
|
Nichols JL, Owens EO, Dutton SJ, Luben TJ. Systematic review of the effects of black carbon on cardiovascular disease among individuals with pre-existing disease. Int J Public Health 2013; 58:707-24. [PMID: 23892931 DOI: 10.1007/s00038-013-0492-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Recent interest has developed in understanding the health effects attributable to different components of particulate matter. This review evaluates the effects of black carbon (BC) on cardiovascular disease in individuals with pre-existing disease using evidence from epidemiologic and experimental studies. METHODS A systematic literature search was conducted to identify epidemiologic and experimental studies examining the relationship between BC and cardiovascular health effects in humans with pre-existing diseases. Nineteen epidemiologic and six experimental studies were included. Risk of bias was evaluated for each study. RESULTS Evidence across studies suggested ambient BC is associated with changes in subclinical cardiovascular health effects in individuals with diabetes and coronary artery disease (CAD). Limited evidence demonstrated that chronic respiratory disease does not modify the effect of BC on cardiovascular health. CONCLUSIONS Results in these studies consistently demonstrated that diabetes is a risk factor for BC-related cardiovascular effects, including increased interleukin-6 and ECG parameters. Cardiovascular effects were associated with BC in individuals with CAD, but few comparisons to individuals without CAD were provided in the literature.
Collapse
Affiliation(s)
- Jennifer L Nichols
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Drive B243-01, Research Triangle Park, NC, 27711, USA,
| | | | | | | |
Collapse
|
22
|
Chuang HC, Hsueh TW, Chang CC, Hwang JS, Chuang KJ, Yan YH, Cheng TJ. Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation. Toxicol Appl Pharmacol 2013; 266:298-306. [DOI: 10.1016/j.taap.2012.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 11/16/2022]
|