1
|
Lee SY, Choi JW, Lee TG, Heo MB, Son JG. Influence of albumin concentration on surface characteristics and cellular responses in the pre-incubation of multi-walled carbon nanotubes. NANOSCALE ADVANCES 2024:d4na00743c. [PMID: 39398624 PMCID: PMC11465410 DOI: 10.1039/d4na00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Reliable characterization of protein coronas (PCs) that form when nanomaterials are introduced into biological fluids is a critical step in the development of safe and efficient nanomedicine. We observed that bovine serum albumin (BSA)-coated multi-walled carbon nanotubes (MWCNTs) do not induce cytotoxicity, but have different cellular uptake rates depending on the BSA pretreatment concentration. To determine how these slight differences affect A549 cell responses and intracellular changes, we conducted spectroscopic (circular dichroism and Fourier-transform infrared) and spectrometric (nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses. The various characterization techniques conducted in this study reveal the following. (i) The composition ratio of PCs on MWCNTs differs depending on the BSA concentration. (ii) Analysis of the secondary structure of the proteins revealed that the α-helix structure increased with increasing BSA concentration. (iii) Proteomic analysis showed that different biological pathways were activated at levels higher and lower than 5 mg mL-1. Such combined spectroscopic and spectrometric approaches provide an integrated understanding of PC composition as well as how nano/bio-interface states are linked to cellular-level responses. Our results can support reliable and practical applications of nanomedicine development.
Collapse
Affiliation(s)
- Sun Young Lee
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Jae Won Choi
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
| | - Tae Geol Lee
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Min Beom Heo
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Jin Gyeong Son
- Nanobio Measurement Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science 267 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| |
Collapse
|
2
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
3
|
Audira G, Lee JS, Vasquez RD, Roldan MJM, Lai YH, Hsiao CD. Assessments of carbon nanotubes toxicities in zebrafish larvae using multiple physiological and molecular endpoints. Chem Biol Interact 2024; 392:110925. [PMID: 38452846 DOI: 10.1016/j.cbi.2024.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
In recent years, carbon nanotubes (CNTs) have become one of the most promising materials for the technology industry. However, due to the extensive usage of these materials, they may be released into the environment, and cause toxicities to the organism. Here, their acute toxicities in zebrafish embryos and larvae were evaluated by using various assessments that may provide us with a novel perspective on their effects on aquatic animals. Before conducting the toxicity assessments, the CNTs were characterized as multiwall carbon nanotubes (MWCNTs) functionalized with hydroxyl and carboxyl groups, which improved their solubility and dispersibility. Based on the results, abnormalities in zebrafish behaviors were observed in the exposed groups, indicated by a reduction in tail coiling frequency and alterations in the locomotion as the response toward photo and vibration stimuli that might be due to the disruption in the neuromodulatory system and the formation of reactive oxygen species (ROS) by MWCNTs. Next, based on the respiratory rate assay, exposed larvae consumed more oxygen, which may be due to the injuries in the larval gill by the MWCNTs. Finally, even though no irregularity was observed in the exposed larval cardiac rhythm, abnormalities were shown in their cardiac physiology and blood flow with significant downregulation in several cardiac development-related gene expressions. To sum up, although the following studies are necessary to understand the exact mechanism of their toxicity, the current study demonstrated the environmental implications of MWCNTs in particularly low concentrations and short-term exposure, especially to aquatic organisms.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung, 900391, Taiwan
| | - Ross D Vasquez
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila, 1015, Philippines; Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, 1015, Philippines; The Graduate School, University of Santo Tomas, Manila, 1015, Philippines
| | - Marri Jmelou M Roldan
- Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Espana Blvd., Manila, 1015, Philippines
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, 11114, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center of Nanotechnology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan; Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, 320314, Taiwan.
| |
Collapse
|
4
|
Bilal M, Singh AK, Iqbal HMN, Zdarta J, Chrobok A, Jesionowski T. Enzyme-linked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants. ENVIRONMENTAL RESEARCH 2024; 241:117579. [PMID: 37944691 DOI: 10.1016/j.envres.2023.117579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
A wide array of organic compounds have been recognized as pollutants of high concern due to their controlled or uncontrolled presence in environmental matrices. The persistent prevalence of diverse organic pollutants, including pharmaceutical compounds, phenolic compounds, synthetic dyes, and other hazardous substances, necessitates robust measures for their practical and sustainable removal from water bodies. Several bioremediation and biodegradation methods have been invented and deployed, with a wide range of materials well-suited for diverse environments. Enzyme-linked carbon-based materials have been considered efficient biocatalytic platforms for the remediation of complex organic pollutants, mostly showing over 80% removal efficiency of micropollutants. The advantages of enzyme-linked carbon nanotubes (CNTs) in enzyme immobilization and improved catalytic potential may thus be advantageous for environmental research considering the current need for pollutant removal. This review outlines the perspective of current remediation approaches and highlights the advantageous features of enzyme-linked CNTs in the removal of pollutants, emphasizing their reusability and stability aspects. Furthermore, different applications of enzyme-linked CNTs in environmental research with concluding remarks and future outlooks have been highlighted. Enzyme-linked CNTs serve as a robust biocatalytic platform for the sustainability agenda with the aim of keeping the environment clean and safe from a variety of organic pollutants.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland; Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | - Anil Kumar Singh
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
5
|
Lee SS, Oudjedi F, Kirk AG, Paliouras M, Trifiro MA. Photothermal therapy of papillary thyroid cancer tumor xenografts with targeted thyroid stimulating hormone receptor antibody functionalized multiwalled carbon nanotubes. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
AbstractMultiwalled carbon nanotubes (MWCNTs) are being widely investigated in multiple biomedical applications including, and not limited to, drug delivery, gene therapy, imaging, biosensing, and tissue engineering. Their large surface area and aspect ratio in addition to their unique structural, optical properties, and thermal conductivity also make them potent candidates for novel hyperthermia therapy. Here we introduce thyroid hormone stimulating receptor (TSHR) antibody–conjugate–MWCNT formulation as an enhanced tumor targeting and light-absorbing device for the photoablation of xenografted BCPAP papillary thyroid cancer tumors. To ensure successful photothermal tumor ablation, we determined three key criteria that needed to be addressed: (1) predictive pre-operational modeling; (2) real-time monitoring of the tumor ablation process; and (3) post-operational follow-up to assess the efficacy and ensure complete response with minimal side effects. A COMSOL-based model of spatial temperature distributions of MWCNTs upon selected laser irradiation of the tumor was prepared to accurately predict the internal tumor temperature. This modeling ensured that 4.5W of total laser power delivered over 2 min, would cause an increase of tumor temperature above 45 ℃, and be needed to completely ablate the tumor while minimizing the damage to neighboring tissues. Experimentally, our temperature monitoring results were in line with our predictive modeling, with effective tumor photoablation leading to a significantly reduced post 5-week tumor recurrence using the TSHR-targeted MWCNTs. Ultimately, the results from this study support a utility for photosensitive biologically modified MWCNTs as a cancer therapeutic modality. Further studies will assist with the transition of photothermal therapy from preclinical studies to clinical evaluations.
Collapse
|
6
|
Cid-Samamed A, Correa-Duarte MÁ, Mariño-López A, Diniz MS. Exposure to Oxidized Multi-Walled CNTs Can Lead to Oxidative Stress in the Asian Freshwater Clam Corbicula fluminea (Müller, 1774). Int J Mol Sci 2023; 24:16122. [PMID: 38003314 PMCID: PMC10671163 DOI: 10.3390/ijms242216122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The increasing attention that carbon-based nanomaterials have attracted due to their distinctive properties makes them one of the most widely used nanomaterials for industrial purposes. However, their toxicity and environmental effects must be carefully studied, particularly regarding aquatic biota. The implications of these carbon-based nanomaterials on aquatic ecosystems, due to their potential entry or accidental release during manufacturing and treatment processes, need to be studied because their impacts upon living organisms are not fully understood. In this research work, the toxicity of oxidized multi-walled carbon nanotubes (Ox-MWCNTs) was measured using the freshwater bivalve (Corbicula fluminea) after exposure to different concentrations (0, 0.1, 0.2, and 0.5 mg·L-1 Ox-MWCNTs) for 14 days. The oxidized multi-walled carbon nanotubes were analyzed (pH, Raman microscopy, high-resolution electron microscopy, and dynamic light scattering), showing their properties and behavior (size, aggregation state, and structure) in water media. The antioxidant defenses in the organism's digestive gland and gills were evaluated through measuring oxidative stress enzymes (glutathione-S-transferase, catalase, and superoxide dismutase), lipid peroxidation, and total ubiquitin. The results showed a concentration-dependent response of antioxidant enzymes (CAT and GST) in both tissues (gills and digestive glands) for all exposure periods in bivalves exposed to the different concentrations of oxidized multi-walled carbon nanotubes. Lipid peroxidation (MDA content) showed a variable response with the increase in oxidized multi-walled carbon nanotubes in the gills after 7 and 14 exposure days. Overall, after 14 days, there was an increase in total Ub compared to controls. Overall, the oxidative stress observed after the exposure of Corbicula fluminea to oxidized multi-walled carbon nanotubes indicates that the discharge of these nanomaterials into aquatic ecosystems can affect the biota as well as potentially accumulate in the trophic chain, and may even put human health at risk if they ingest contaminated animals.
Collapse
Affiliation(s)
- Antonio Cid-Samamed
- Department of Physical Chemistry, Faculty of Sciences, University of Vigo, Campus de As Lagoas S/N, 32004 Ourense, Spain
| | - Miguel Ángel Correa-Duarte
- Team NanoTech, Department of Physical Chemistry, University of Vigo, 36310 Vigo, Spain; (M.Á.C.-D.); (A.M.-L.)
| | - Andrea Mariño-López
- Team NanoTech, Department of Physical Chemistry, University of Vigo, 36310 Vigo, Spain; (M.Á.C.-D.); (A.M.-L.)
| | - Mário S. Diniz
- i4HB—Associate Laboratory Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
7
|
Zahid AA, Chakraborty A, Luo W, Coyle A, Paul A. Tailoring the Inherent Properties of Biobased Nanoparticles for Nanomedicine. ACS Biomater Sci Eng 2023. [PMID: 37378614 DOI: 10.1021/acsbiomaterials.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Biobased nanoparticles are at the leading edge of the rapidly developing field of nanomedicine and biotherapeutics. Their unique size, shape, and biophysical properties make them attractive tools for biomedical research, including vaccination, targeted drug delivery, and immune therapy. These nanoparticles are engineered to present native cell receptors and proteins on their surfaces, providing a biomimicking camouflage for therapeutic cargo to evade rapid degradation, immune rejection, inflammation, and clearance. Despite showing promising clinical relevance, commercial implementation of these biobased nanoparticles is yet to be fully realized. In this perspective, we discuss advanced biobased nanoparticle designs used in medical applications, such as cell membrane nanoparticles, exosomes, and synthetic lipid-derived nanoparticles, and highlight their benefits and potential challenges. Moreover, we critically assess the future of preparing such particles using artificial intelligence and machine learning. These advanced computational tools will be able to predict the functional composition and behavior of the proteins and cell receptors present on the nanoparticle surfaces. With more advancement in designing new biobased nanoparticles, this field of research could play a key role in dictating the future rational design of drug transporters, thereby ultimately improving overall therapeutic outcomes.
Collapse
Affiliation(s)
- Alap Ali Zahid
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Wei Luo
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Department of Chemistry, The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
8
|
Singh RP, Kaur T. HRMAS-NMR and simulation study of the self-assembly of surfactants on carbon nanotubes. Phys Chem Chem Phys 2023; 25:12900-12913. [PMID: 37165884 DOI: 10.1039/d2cp03762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Polyethoxylated surfactants, such as those of the Tween and Pluronic series, are commonly used to disperse carbon nanotubes (CNTs) and other nanoparticles. However, the current understanding of the nature of interactions between these surfactants and CNTs is limited. The nature of the interactions between surfactants (Tween-80 [T80] and Pluronic F68 [PF68]) and CNTs was investigated using high-resolution magic angle spinning nuclear magnetic resonance (HRMAS-NMR) and coarse-grained molecular dynamics (MD) simulations. HRMAS-NMR revealed that T80 molecules interact with single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) via the oleyl chain, whereas PF68 molecules interact with the surface of SWCNTs and MWCNTs via the polypropylene oxide residues. The polyethylene oxide chains were oriented towards the external aqueous environment. The HRMAS-NMR results were supported by MD simulations, and the latter provided further insights into the nature of the interactions.
Collapse
Affiliation(s)
- Raman Preet Singh
- Department of Pharmaceutical Sciences, Government Polytechnic College for Girls, Patiala, PB, 147 001, India.
| | - Taranpreet Kaur
- Department of Biotechnology, Government Mohindra College, Patiala, PB, 147 001, India
| |
Collapse
|
9
|
Da Silva GH, Franqui LS, De Farias MA, De Castro VLSS, Byrne HJ, Martinez DST, Monteiro RTR, Casey A. TiO 2-MWCNT nanohybrid: Cytotoxicity, protein corona formation and cellular internalisation in RTG-2 fish cell line. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106434. [PMID: 36870176 DOI: 10.1016/j.aquatox.2023.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide nanoparticles-multiwalled carbon nanotubes (TiO2-MWCNT) nanohydrid has an enhanced photocatalytic activity across the visible light with promising applications in environmental remediation, solar energy devices and antimicrobial technologies. However, it is necessary to evaluate the toxicological effects of TiO2-MWCNT towards safe and sustainable development of nanohybrids. In this work, we studied the cytotoxicity, protein corona formation and cellular internalisation of TiO2-MWCNT on fibroblasts derived from gonadal rainbow trout tissue (RTG-2) for the first time. This nanohydrid did not show any toxicity effect on RTG-2 cells up to 100 mg L-1 after 24 h of exposure as monitored by alamar blue, neutral red and trypan blue assays (in presence or absence of foetal bovine serum, FBS). Futhermore, cryo-transmission electron microscopy analysis demonstrated that TiO2 particles is attached on nanotube surface after FBS-protein corona formation in cell culture medium. Raman spectroscopy imaging showed that TiO2-MWCNT can be internalised by RTG-2 cells. This work is a novel contribution towards better understanding the nanobiointeractions of nanohydrids linked to their in vitro effects on fish cells in aquatic nanoecotoxicology.
Collapse
Affiliation(s)
- Gabriela H Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; Laboratory of Ecotoxicology and Biosafety, EMBRAPA Environment, Jaguariúna, São Paulo, Brazil; FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland.
| | - Lidiane Silva Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Marcelo A De Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| | - Diego S T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Regina T R Monteiro
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Alan Casey
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
10
|
Schifano E, Cavoto G, Pandolfi F, Pettinari G, Apponi A, Ruocco A, Uccelletti D, Rago I. Plasma-Etched Vertically Aligned CNTs with Enhanced Antibacterial Power. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1081. [PMID: 36985974 PMCID: PMC10054568 DOI: 10.3390/nano13061081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The emergence of multidrug-resistant bacteria represents a growing threat to public health, and it calls for the development of alternative antibacterial approaches not based on antibiotics. Here, we propose vertically aligned carbon nanotubes (VA-CNTs), with a properly designed nanomorphology, as effective platforms to kill bacteria. We show, via a combination of microscopic and spectroscopic techniques, the ability to tailor the topography of VA-CNTs, in a controlled and time-efficient manner, by means of plasma etching processes. Three different varieties of VA-CNTs were investigated, in terms of antibacterial and antibiofilm activity, against Pseudomonas aeruginosa and Staphylococcus aureus: one as-grown variety and two varieties receiving different etching treatments. The highest reduction in cell viability (100% and 97% for P. aeruginosa and S. aureus, respectively) was observed for the VA-CNTs modified using Ar and O2 as an etching gas, thus identifying the best configuration for a VA-CNT-based surface to inactivate both planktonic and biofilm infections. Additionally, we demonstrate that the powerful antibacterial activity of VA-CNTs is determined by a synergistic effect of both mechanical injuries and ROS production. The possibility of achieving a bacterial inactivation close to 100%, by modulating the physico-chemical features of VA-CNTs, opens up new opportunities for the design of self-cleaning surfaces, preventing the formation of microbial colonies.
Collapse
Affiliation(s)
- Emily Schifano
- Dipartimento di Biologia e Biotecnologia “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, 00100 Rome, Italy
| | - Gianluca Cavoto
- Dipartimento di Fisica, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
- INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | | | - Giorgio Pettinari
- Istituto di Fotonica e Nanotecnologie, CNR-IFN, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alice Apponi
- Dipartimento di Scienze, Università Degli Studi Roma Tre and INFN Sezione di Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| | - Alessandro Ruocco
- Dipartimento di Scienze, Università Degli Studi Roma Tre and INFN Sezione di Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| | - Daniela Uccelletti
- Dipartimento di Biologia e Biotecnologia “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, 00100 Rome, Italy
| | - Ilaria Rago
- Dipartimento di Fisica, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
- INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
| |
Collapse
|
11
|
Vijayalakshmi V, Sadanandan B, Anjanapura RV. In vitro comparative cytotoxic assessment of pristine and carboxylic functionalized multiwalled carbon nanotubes on LN18 cells. J Biochem Mol Toxicol 2023; 37:e23283. [PMID: 36541368 DOI: 10.1002/jbt.23283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Multiwalled carbon nanotubes (MWCNTs) have been used in biomedical applications due to their ability to enter the cells. Carboxylic functionalization of MWCNT (MWCNT-COOH) is used to mitigate the toxicity of MWCNTs. Our study focuses on comparing the toxicity of MWCNT and MWCNT-COOH on the neuronal cells, LN18. Concentrations of 5, 10, 20, and 40 µg ml-1 were used for the study, and cytotoxicity was determined at 0, 1, 3, 6, 12, 24, and 48 h of incubation. Cell viability was assessed by Trypan Blue, MTT, and Live dead cell assays, and the oxidative stress produced was determined by reactive oxygen species (ROS) and Lipid peroxidation assays. MWCNT-COOH showed higher cell viability than MWCNT for 20 and 40 µg ml-1 at 24 and 48 h. This was also visually observed in the live dead cell imaging. However, at 48 h, the morphology of the cells appeared more stretched for all the concentrations of MWCNT and MWCNT-COOH in comparison to the control. A significant amount of ROS production can also be observed at the same concentration and time. Viability and oxidative stress results together revealed that MWCNT-COOH is less toxic when compared to MWCNT at longer incubation periods and higher concentrations. However, otherwise, the effect of both are comparable. A concentration of 5-10 µg ml-1 is ideal while using MWCNT and MWCNT-COOH as the toxicity is negligible. These findings can further be extended to various functionalizations of MWCNT for wider applications.
Collapse
Affiliation(s)
| | - Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Raghu V Anjanapura
- Department of Chemistry, Jain Deemed-to-be University, Bengaluru, Karnataka, India
- Faculty of Allied Health Sciences, BLDE (Deemed-to-be University), Vijayapura, Karnataka, India
| |
Collapse
|
12
|
Hassani M, Tahghighi A, Rohani M, Hekmati M, Ahmadian M, Ahmadvand H. Robust antibacterial activity of functionalized carbon nanotube- levofloxacine conjugate based on in vitro and in vivo studies. Sci Rep 2022; 12:10064. [PMID: 35710710 PMCID: PMC9203521 DOI: 10.1038/s41598-022-14206-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
A new nano-antibiotic was synthesized from the conjugation of multi-walled carbon nanotubes with levofloxacin (MWCNT-LVX) through covalent grafting of drug with surface-modified carbon nanotubes in order to achieve an effective, safe, fast-acting nano-drug with the minimal side effects. This study is the first report on the evaluation of in vitro cell viability and antibacterial activity of nano-antibiotic along in addition to the in vivo antibacterial activity in a burn wound model. The drug-loading and release profile at different pH levels was determined using an ultraviolet–visible spectrometer. MWCNT-LVX was synthesized by a simple, reproducible and cost-effective method for the first time and characterized using various techniques, such as scanning electron microscope, transmission electron microscopy, and Brunauer–Emmett–Teller analysis, and so forth. The noncytotoxic nano-antibiotic showed more satisfactory in vitro antibacterial activity against Staphylococcus aureus compared to Pseudomona aeruginosa. The novel synthetic nano-drug possessed high loading capacity and pH-sensitive release profile; resultantly, it exhibited very potent bactericidal activity in a mouse S. aureus wound infection model compared to LVX. Based on the results, the antibacterial properties of the drug enhanced after conjugating with surface-modified MWCNTs. The nano-antibiotic has great industrialization potential for the simple route of synthesis, no toxicity, proper drug loading and release, low effective dose, and strong activity against wound infections. In virtue of unique properties, MWCNTs can serve as a controlled release and delivery system for drugs. The easy penetration to biological membranes and barriers can also increase the drug delivery at lower doses compared to the main drug alone, which can lead to the reduction of its side effects. Hence, MWCNTs can be considered a promising nano-carrier of LVX in the treatment of skin infections.
Collapse
Affiliation(s)
- Marzieh Hassani
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Azar Tahghighi
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Malak Hekmati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ahmadian
- Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ahmadvand
- Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
13
|
Jeong J, Choi J. Quantitative adverse outcome pathway (qAOP) using bayesian network model on comparative toxicity of multi-walled carbon nanotubes (MWCNTs): safe-by-design approach. Nanotoxicology 2022; 16:679-694. [PMID: 36353843 DOI: 10.1080/17435390.2022.2140615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
While the various physicochemical properties of engineered nanomaterials influence their toxicities, their understanding is still incomplete. A predictive framework is required to develop safe nanomaterials, and a Bayesian network (BN) model based on adverse outcome pathway (AOP) can be utilized for this purpose. In this study, to explore the applicability of the AOP-based BN model in the development of safe nanomaterials, a comparative study was conducted on the change in the probability of toxicity pathways in response to changes in the dimensions and surface functionalization of multi-walled carbon nanotubes (MWCNTs). Based on the results of our previous study, we developed an AOP leading to cell death, and the experimental results were collected in human liver cells (HepG2) and bronchial epithelium cells (Beas-2B). The BN model was trained on these data to identify probabilistic causal relationships between key events. The results indicated that dimensions were the main influencing factor for lung cells, whereas -OH or -COOH surface functionalization and aspect ratio were the main influencing factors for liver cells. Endoplasmic reticulum stress was found to be a more sensitive pathway for dimensional changes, and oxidative stress was a more sensitive pathway for surface functionalization. Overall, our results suggest that the AOP-based BN model can be used to provide a scientific basis for the development of safe nanomaterials.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| |
Collapse
|
14
|
Malatjie TS, Botha TL, Tekere M, Kuvarega AT, Nkambule TTI, Mamba BB, Msagati TAM. Toxicity assessment of TiO 2-conjugated Carbon-based nanohybrid material on a freshwater bioindicator cladoceran, Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106176. [PMID: 35487150 DOI: 10.1016/j.aquatox.2022.106176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
The application of nanocomposite materials fabricated from titanium dioxide nanoparticles (TiO2 NPs) and different carbon (C) allotropes have gained popularity in water treatment applications due to their synergistic properties. Studies to date have focused on simple forms of nanomaterials (NMs), however, with the technology development, there is a dramatic increase in production and application of these complex NMs which could result in toxicological impacts on organisms when released into aquatic environments. This raises serious concerns about their safety and the need to ascertain their potential adverse effects on aquatic organisms. While conjugated TiO2 NPs/carbon-based nanohybrids (TiO2/C-NHs) may exhibit enhanced photocatalytic activity, there is no research in the scientific community regarding their toxicological effects on D. magna, which are indicators of freshwater pollution. In this study, two under-represented TiO2/C-NHs (i.e., TiO2- conjugated carbon nanofiber (CNF), and TiO2-conjugated multi-walled carbon nanotube (CNT)) were investigated for their toxic effects on D. magna, through a series of acute toxicity tests with a set of sublethal biochemical biomarkers of oxidative stress. The lethal toxicity and oxidative stress formation of TiO2/C-NHs over 48 h revealed a concentration-dependant increase in D. magna mortality. The primary mechanism identified was the generation of ROS, which was in line with toxicity results. Light microscopy and CytoViva® images visualized D. magna interaction with the NPs, which accumulated and appeared as dark materials in the lines of the gut tract. The collective results indicate that TiO2/C-NHs have the potential to cause an effect on freshwater organisms when released into the environment. However, the relevance of TiO2/C-NHs effects needs further chronic toxicity studies since they show promise to be used in nano-bioremediation materials to treat wastewaters.
Collapse
Affiliation(s)
- Terrence S Malatjie
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa.
| | - Tarryn L Botha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa
| | - Memory Tekere
- Department of Environmental Sciences, College of Agriculture & Environmental Sciences, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa
| | - Alex T Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, P/Bag X6, Roodepoort 1709, South Africa.
| |
Collapse
|
15
|
Chetyrkina MR, Fedorov FS, Nasibulin AG. In vitro toxicity of carbon nanotubes: a systematic review. RSC Adv 2022; 12:16235-16256. [PMID: 35733671 PMCID: PMC9152879 DOI: 10.1039/d2ra02519a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Carbon nanotube (CNT) toxicity-related issues provoke many debates in the scientific community. The controversial and disputable data about toxicity doses, proposed hazard effects, and human health concerns significantly restrict CNT applications in biomedical studies, laboratory practices, and industry, creating a barrier for mankind in the way of understanding how exactly the material behaves in contact with living systems. Raising the toxicity question again, many research groups conclude low toxicity of the material and its potential safeness at some doses for contact with biological systems. To get new momentum for researchers working on the intersection of the biological field and nanomaterials, i.e., CNT materials, we systematically reviewed existing studies with in vitro toxicological data to propose exact doses that yield toxic effects, summarize studied cell types for a more thorough comparison, the impact of incubation time, and applied toxicity tests. Using several criteria and different scientific databases, we identified and analyzed nearly 200 original publications forming a "golden core" of the field to propose safe doses of the material based on a statistical analysis of retrieved data. We also differentiated the impact of various forms of CNTs: on a substrate and in the form of dispersion because in both cases, some studies demonstrated good biocompatibility of CNTs. We revealed that CNTs located on a substrate had negligible impact, i.e., 90% of studies report good viability and cell behavior similar to control, therefore CNTs could be considered as a prospective conductive substrate for cell cultivation. In the case of dispersions, our analysis revealed mean values of dose/incubation time to be 4-5 μg mL-1 h-1, which suggested the material to be a suitable candidate for further studies to get a more in-depth understanding of its properties in biointerfaces and offer CNTs as a promising platform for fundamental studies in targeted drug delivery, chemotherapy, tissue engineering, biosensing fields, etc. We hope that the present systematic review will shed light on the current knowledge about CNT toxicity, indicate "dark" spots and offer possible directions for the subsequent studies based on the demonstrated here tabulated and statistical data of doses, cell models, toxicity tests, viability, etc.
Collapse
Affiliation(s)
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
- Aalto University FI-00076 15100 Espoo Finland
| |
Collapse
|
16
|
Boreggio M, Rosini E, Gambarotti C, Pollegioni L, Fasoli E. Unveiling the Bio-corona Fingerprinting of Potential Anticancer Carbon Nanotubes Coupled with D-Amino Acid Oxidase. Mol Biotechnol 2022; 64:1164-1176. [PMID: 35467257 PMCID: PMC9411096 DOI: 10.1007/s12033-022-00488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/31/2022] [Indexed: 11/27/2022]
Abstract
The oxidation therapy, based on the controlled production of Reactive Oxygen Species directly into the tumor site, was introduced as alternative antitumor approach. For this purpose, d-amino acid oxidase (DAAO) from the yeast Rhodotorula gracilis, an enzyme able to efficiently catalyze the production of hydrogen peroxide from d-amino acids, was adsorbed onto multi-walled carbon nanotubes (MWCNTs), previously functionalized with polylactic-co-glycolic acid (PLGA) or polyethylene glycol (PEG) at different degrees to reduce their toxicity, to be targeted directly into the tumor. In vitro activity and cytotoxicity assays demonstrated that DAAO-functionalized nanotubes (f-MWCNTs) produced H2O2 and induced toxic effects to selected tumor cell lines. After incubation in human plasma, the protein corona was investigated by SDS-PAGE and mass spectrometry analysis. The enzyme nanocarriers generally seemed to favor their biocompatibility, promoting the interaction with dysopsonins. Despite this, PLGA or high degree of PEGylation promoted the adsorption of immunoglobulins with a possible activation of immune response and this effect was probably due to PLGA hydrophobicity and dimensions and to the production of specific antibodies against PEG. In conclusion, the PEGylated MWCNTs at low degree seemed the most biocompatible nanocarrier for adsorbed DAAO, preserving its anticancer activity and forming a bio-corona able to reduce both defensive responses and blood clearance.
Collapse
Affiliation(s)
- Marta Boreggio
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varèse, Italy
| | - Cristian Gambarotti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varèse, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
17
|
Analysis of the In Vitro Toxicity of Nanocelluloses in Human Lung Cells as Compared to Multi-Walled Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12091432. [PMID: 35564141 PMCID: PMC9104944 DOI: 10.3390/nano12091432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Cellulose micro/nanomaterials (CMNM), comprising cellulose microfibrils (CMF), nanofibrils (CNF), and nanocrystals (CNC), are being recognized as promising bio-nanomaterials due to their natural and renewable source, attractive properties, and potential for applications with industrial and economical value. Thus, it is crucial to investigate their potential toxicity before starting their production at a larger scale. The present study aimed at evaluating the cell internalization and in vitro cytotoxicity and genotoxicity of CMNM as compared to two multi-walled carbon nanotubes (MWCNT), NM-401 and NM-402, in A549 cells. The exposure to all studied NM, with the exception of CNC, resulted in evident cellular uptake, as analyzed by transmission electron microscopy. However, none of the CMNM induced cytotoxic effects, in contrast to the cytotoxicity observed for the MWCNT. Furthermore, no genotoxicity was observed for CNF, CNC, and NM-402 (cytokinesis-block micronucleus assay), while CMF and NM-401 were able to significantly raise micronucleus frequency. Only NM-402 was able to induce ROS formation, although it did not induce micronuclei. Thus, it is unlikely that the observed CMF and NM-401 genotoxicity is mediated by oxidative DNA damage. More studies targeting other genotoxicity endpoints and cellular and molecular events are underway to allow for a more comprehensive safety assessment of these nanocelluloses.
Collapse
|
18
|
de Carvalho Lima EN, Octaviano ALM, Piqueira JRC, Diaz RS, Justo JF. Coronavirus and Carbon Nanotubes: Seeking Immunological Relationships to Discover Immunotherapeutic Possibilities. Int J Nanomedicine 2022; 17:751-781. [PMID: 35241912 PMCID: PMC8887185 DOI: 10.2147/ijn.s341890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Since December 2019, the world has faced an unprecedented pandemic crisis due to a new coronavirus disease, coronavirus disease-2019 (COVID-19), which has instigated intensive studies on prevention and treatment possibilities. Here, we investigate the relationships between the immune activation induced by three coronaviruses associated with recent outbreaks, with special attention to SARS-CoV-2, the causative agent of COVID-19, and the immune activation induced by carbon nanotubes (CNTs) to understand the points of convergence in immune induction and modulation. Evidence suggests that CNTs are among the most promising materials for use as immunotherapeutic agents. Therefore, this investigation explores new possibilities of effective immunotherapies for COVID-19. This study aimed to raise interest and knowledge about the use of CNTs as immunotherapeutic agents in coronavirus treatment. Thus, we summarize the most important immunological aspects of various coronavirus infections and describe key advances and challenges in using CNTs as immunotherapeutic agents against viral infections and the activation of the immune response induced by CNTs, which can shed light on the immunotherapeutic possibilities of CNTs.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, SP, CEP 05508-010, Brazil
| | - Ana Luiza Moraes Octaviano
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, SP, CEP 05508-010, Brazil
| |
Collapse
|
19
|
Shatursky OY, Demchenko AP, Panas I, Krisanova N, Pozdnyakova N, Borisova T. The ability of carbon nanoparticles to increase transmembrane current of cations coincides with impaired synaptic neurotransmission. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183817. [PMID: 34767780 DOI: 10.1016/j.bbamem.2021.183817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Here, carbon nanodots synthesized from β-alanine (Ala-CDs) and detonation nanodiamonds (NDs) were assessed using (1) radiolabeled excitatory neurotransmitters L-[14C]glutamate, D-[2,33H]aspartate, and inhibitory ones [3H]GABA, [3H]glycine for registration of their extracellular concentrations in rat cortex nerve terminals; (2) the fluorescent ratiometric probe NR12S and pH-sensitive probe acridine orange for registration of the membrane lipid order and synaptic vesicle acidification, respectively; (3) suspended bilayer lipid membrane (BLM) to monitor changes in transmembrane current. In nerve terminals, Ala-CDs and NDs increased the extracellular concentrations of neurotransmitters and decreased acidification of synaptic vesicles, whereas have not changed sufficiently the lipid order of membrane. Both nanoparticles, Ala-CDs and NDs, were capable of increasing the conductance of the BLM by inducing stable potential-dependent cation-selective pores. Introduction of divalent cations, Zn2+ or Cd2+ on the particles` application side (cis-side) increased the rate of Ala-CDs pore-formation in the BLM. The application of positive potential (+100 mV) to the cis-chamber with Ala-CDs or NDs also activated the insertion as compared with the negative potential (-100 mV). The Ala-CD pores exhibited a wide-range distribution of conductances between 10 and 60 pS and consecutive increase in conductance of each major peak by ~10 pS, which suggest the clustering of the same basic ion-conductive structure. NDs also formed ion-conductive pores ranging from 6 pS to 60 pS with the major peak of conductance at ~12 pS in cholesterol-containing membrane. Observed Ala-CDs and NDs-induced increase in transmembrane current coincides with disturbance of excitatory and inhibitory neurotransmitter transport in nerve terminals.
Collapse
Affiliation(s)
- Oleg Ya Shatursky
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Alexander P Demchenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine
| | - Ihor Panas
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev 01054, Ukraine.
| |
Collapse
|
20
|
Jain R, Nirbhaya V, Chandra R, Kumar S. Nanostructured Mesoporous Carbon Based Electrochemical Biosensor for Efficient Detection of Swine Flu. ELECTROANAL 2022. [DOI: 10.1002/elan.202100242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Raghav Jain
- Department of Chemistry University of Delhi Delhi 110007 India
| | | | - Ramesh Chandra
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Suveen Kumar
- Department of Chemistry University of Delhi Delhi 110007 India
| |
Collapse
|
21
|
Fraser K, Hubbs A, Yanamala N, Mercer RR, Stueckle TA, Jensen J, Eye T, Battelli L, Clingerman S, Fluharty K, Dodd T, Casuccio G, Bunker K, Lersch TL, Kashon ML, Orandle M, Dahm M, Schubauer-Berigan MK, Kodali V, Erdely A. Histopathology of the broad class of carbon nanotubes and nanofibers used or produced in U.S. facilities in a murine model. Part Fibre Toxicol 2021; 18:47. [PMID: 34923995 PMCID: PMC8686255 DOI: 10.1186/s12989-021-00440-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/02/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Multi-walled carbon nanotubes and nanofibers (CNT/F) have been previously investigated for their potential toxicities; however, comparative studies of the broad material class are lacking, especially those with a larger diameter. Additionally, computational modeling correlating physicochemical characteristics and toxicity outcomes have been infrequently employed, and it is unclear if all CNT/F confer similar toxicity, including histopathology changes such as pulmonary fibrosis. Male C57BL/6 mice were exposed to 40 µg of one of nine CNT/F (MW #1-7 and CNF #1-2) commonly found in exposure assessment studies of U.S. facilities with diameters ranging from 6 to 150 nm. Human fibroblasts (0-20 µg/ml) were used to assess the predictive value of in vitro to in vivo modeling systems. RESULTS All materials induced histopathology changes, although the types and magnitude of the changes varied. In general, the larger diameter MWs (MW #5-7, including Mitsui-7) and CNF #1 induced greater histopathology changes compared to MW #1 and #3 while MW #4 and CNF #2 were intermediate in effect. Differences in individual alveolar or bronchiolar outcomes and severity correlated with physical dimensions and how the materials agglomerated. Human fibroblast monocultures were found to be insufficient to fully replicate in vivo fibrosis outcomes suggesting in vitro predictive potential depends upon more advanced cell culture in vitro models. Pleural penetrations were observed more consistently in CNT/F with larger lengths and diameters. CONCLUSION Physicochemical characteristics, notably nominal CNT/F dimension and agglomerate size, predicted histopathologic changes and enabled grouping of materials by their toxicity profiles. Particles of greater nominal tube length were generally associated with increased severity of histopathology outcomes. Larger particle lengths and agglomerates were associated with more severe bronchi/bronchiolar outcomes. Spherical agglomerated particles of smaller nominal tube dimension were linked to granulomatous inflammation while a mixture of smaller and larger dimensional CNT/F resulted in more severe alveolar injury.
Collapse
Affiliation(s)
- Kelly Fraser
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - Ann Hubbs
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Naveena Yanamala
- Division of Cardiovascular Disease and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ USA
| | - Robert R. Mercer
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Todd A. Stueckle
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - Jake Jensen
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Tracy Eye
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Lori Battelli
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Sidney Clingerman
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Kara Fluharty
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Tiana Dodd
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | | | | | | | - Michael L. Kashon
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Marlene Orandle
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Matthew Dahm
- Division of Field Studies Evaluation, National Institute for Occupational Safety and Health, Cincinnati, OH USA
| | - Mary K. Schubauer-Berigan
- Division of Field Studies Evaluation, National Institute for Occupational Safety and Health, Cincinnati, OH USA
- International Agency for Research On Cancer, Lyon, France
| | - Vamsi Kodali
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - Aaron Erdely
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| |
Collapse
|
22
|
Zacouteguy AMB, Limberger GM, de Oliveira PSC, da Fonseca DB, Bruch GE, Barros DM. The adverse effects of injected functionalized multi-walled carbon nanotube (f-MWCNT) on in vivo neurosecretory brain cells of Jamaican field cricket, Gryllus assimilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66968-66977. [PMID: 34244942 DOI: 10.1007/s11356-021-15308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanotubes (CNTs) have been increasingly more prevalent due to their use in product technology owing to their exceptional electrical and thermal conductivity and tensile strength because of their nanostructure and strength of the bonds among carbon atoms. The potential increase of CNTs in the environment is a concern, and studies to assess the toxic effects of these nanomaterials (NMs) are needed. However, so far, most of the studies are focused on aquatic species and much less is understood about the effects of NM in terrestrial organisms. This investigation used a functionalized multi-walled carbon nanotube (f-MWCNT) and the Jamaican cricket Gryllus assimilis to assess the effects of this NM. Cricket nymphs were injected with f-MWCNT suspension-at three different concentrations. The insecticide Fipronil was used as a positive control. Survival was monitored, and histological analysis was made in the brains. Pyknotic cells were quantified in two brain regions, a neurosecretory called Pars intercerebralis (PI), and an associative region called mushroom body (MB). No mortality was observed in any f-MWCNT concentration tested. A significant increase in pyknotic cells was observed as sub-lethal effect for the intermediate concentration of f-MWCNT, at PI, while any significant change was observed at the Kenyon cells of the MB. These results are discussed in the context of agglomeration and dispersion of the f-MWCNT at different concentrations, and availability of the f-MWCNT on the circulatory system, as well as the natural decay of pyknotic cells with time and different patterns of adult cricket neurogenesis. Our results showed that f-MWCNT had negative effects in the neurosecretory region of the brain.
Collapse
Affiliation(s)
- Aline Maciel Bueno Zacouteguy
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | - Guilherme Martins Limberger
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | | | | | - Gisele Eva Bruch
- Departamento de Física/ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniela Martí Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil.
| |
Collapse
|
23
|
Keshavan S, Gupta G, Martin S, Fadeel B. Multi-walled carbon nanotubes trigger lysosome-dependent cell death (pyroptosis) in macrophages but not in neutrophils. Nanotoxicology 2021; 15:1125-1150. [PMID: 34657549 DOI: 10.1080/17435390.2021.1988171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Carbon nanotubes (CNTs) have been extensively investigated, and several studies have shown that multi-walled CNTs can trigger inflammation and fibrosis in animal models. However, while neutrophils are involved in inflammation, most in vitro studies have addressed macrophages. Here we explored the impact of three MWCNTs with varying morphology (i.e. long and rigid versus short and/or tangled) on primary human macrophages and macrophage-differentiated THP-1 cells versus primary human neutrophils and neutrophil-differentiated HL-60 cells. We found that long and rigid MWCNTs triggered caspase-dependent cell death in macrophages, accompanied by NLRP3 inflammasome activation and gasdermin D (GSDMD)-mediated release of pro-inflammatory IL-1β. The release of IL-1β was suppressed by disulfiram, an FDA-approved drug known to act as an inhibitor of membrane pore formation by GSDMD. Evidence of autophagic cell death was noted in macrophages exposed to higher concentrations of the long and rigid MWCNTs. Furthermore, lysosomal damage with cytosolic release of cathepsin B was observed in macrophages exposed to the latter MWCNTs. On the other hand, there was little evidence of uptake of MWCNTs in neutrophils and the cells failed to undergo MWCNT-triggered cell death. Our studies have demonstrated that long and rigid MWCNTs trigger pyroptosis in human macrophages.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastin Martin
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Dubey R, Dutta D, Sarkar A, Chattopadhyay P. Functionalized carbon nanotubes: synthesis, properties and applications in water purification, drug delivery, and material and biomedical sciences. NANOSCALE ADVANCES 2021; 3:5722-5744. [PMID: 36132675 PMCID: PMC9419119 DOI: 10.1039/d1na00293g] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/08/2021] [Indexed: 05/03/2023]
Abstract
Carbon nanotubes (CNTs) are considered as one of the ideal materials due to their high surface area, high aspect ratio, and impressive material properties, such as mechanical strength, and thermal and electrical conductivity, for the manufacture of next generation composite materials. In spite of the mentioned attractive features, they tend to agglomerate due to their inherent chemical structure which limits their application. Surface modification is required to overcome the agglomeration and increase their dispersability leading to enhanced interactions of the functionalized CNTs with matrix materials/polymer matrices. Recent developments concerning reliable methods for the functionalization of carbon nanotubes offer an additional thrust towards extending their application areas. By chemical functionalization, organic functional groups are generated/attached to the surfaces as well as the tip of CNTs which opens up the possibilities for tailoring the properties of nanotubes and extending their application areas. Different research efforts have been devoted towards both covalent and non-covalent functionalization for different applications. Functionalized CNTs have been used successfully for the development of high quality nanocomposites, finding wide application as chemical and biological sensors, in optoelectronics and catalysis. Non covalently functionalized carbon nanotubes have been used as a substrate for the immobilization of a large variety of biomolecules to impart specific recognition properties for the development of miniaturized biosensors as well as designing of novel bioactive nanomaterials. Functionalized CNTs have also been demonstrated as one of the promising nanomaterials for the decontamination of water due to their high adsorption capacity and specificity for various contaminants. Specifically modified CNTs have been utilized for bone tissue engineering and as a novel and versatile drug delivery vehicle. This review article discusses in short the synthesis, properties and applications of CNTs. This includes the need for functionalization of CNTs, methods and types of functionalization, and properties of functionalized CNTs and their applications especially with respect to material and biomedical sciences, water purification, and drug delivery systems.
Collapse
Affiliation(s)
- Rama Dubey
- Defence Research Laboratory Post Bag No. 2 Tezpur 784001 Assam India +91-3712-258508, +91-3712-258836 +91-3712-258534
| | - Dhiraj Dutta
- Defence Research Laboratory Post Bag No. 2 Tezpur 784001 Assam India +91-3712-258508, +91-3712-258836 +91-3712-258534
| | - Arpan Sarkar
- Defence Research Laboratory Post Bag No. 2 Tezpur 784001 Assam India +91-3712-258508, +91-3712-258836 +91-3712-258534
| | - Pronobesh Chattopadhyay
- Defence Research Laboratory Post Bag No. 2 Tezpur 784001 Assam India +91-3712-258508, +91-3712-258836 +91-3712-258534
| |
Collapse
|
25
|
de Carvalho Lima EN, Diaz RS, Justo JF, Castilho Piqueira JR. Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. Int J Nanomedicine 2021; 16:5411-5435. [PMID: 34408416 PMCID: PMC8367085 DOI: 10.2147/ijn.s314308] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Advances in nanobiotechnology have allowed the utilization of nanotechnology through nanovaccines. Nanovaccines are powerful tools for enhancing the immunogenicity of a specific antigen and exhibit advantages over other adjuvant approaches, with features such as expanded stability, prolonged release, decreased immunotoxicity, and immunogenic selectivity. We introduce recent advances in carbon nanotubes (CNTs) to induce either a carrier effect as a nanoplatform or an immunostimulatory effect. Several studies of CNT-based nanovaccines revealed that due to the ability of CNTs to carry immunogenic molecules, they can act as nonclassical vaccines, a quality not possessed by vaccines with traditional formulations. Therefore, adapting and modifying the physicochemical properties of CNTs for use in vaccines may additionally enhance their efficacy in inducing a T cell-based immune response. Accordingly, the purpose of this study is to renew and awaken interest in and knowledge of the safe use of CNTs as adjuvants and carriers in vaccines.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Ganesan R, Vasantha-Srinivasan P, Sadhasivam DR, Subramanian R, Vimalraj S, Suk KT. Carbon Nanotubes Induce Metabolomic Profile Disturbances in Zebrafish: NMR-Based Metabolomics Platform. Front Mol Biosci 2021; 8:688827. [PMID: 34277704 PMCID: PMC8283261 DOI: 10.3389/fmolb.2021.688827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
The present study aims to investigate the metabolic effects of single-walled carbon nanotubes (SWCNT) on zebrafish (Danio rerio) using 1H nuclear magnetic resonance (1H-NMR) spectroscopy. However, there is no significant information available regarding the characterization of organic molecules, and metabolites with SWCNT exposure. Noninvasive biofluid methods have improved our understanding of SWCNT metabolism in zebrafish in recent years. Here, we used targeted metabolomics to quantify a set of metabolites within biological systems. SWCNT at various concentrations was given to zebrafish, and the metabolites were extracted using two immiscible solvent systems, methanol and chloroform. Metabolomics profiling was used in association with univariate and multivariate data analysis to determine metabolomic phenotyping. The metabolites, malate, oxalacetate, phenylaniline, taurine, sn-glycero-3-phosphate, glycine, N-acetyl mate, lactate, ATP, AMP, valine, pyruvate, ADP, serine, niacinamide are significantly impacted. The metabolism of amino acids, energy and nucleotides are influenced by SWCNT which might indicate a disturbance in metabolic reaction networks. In conclusion, using high-throughput analytical methods, we provide a perspective of metabolic impacts and the underlying associated metabolic pathways.
Collapse
Affiliation(s)
- Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea.,Department of Biological Sciences, Pusan National University, Busan, Korea.,Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | | | | | - Raghunandhakumar Subramanian
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Selvaraj Vimalraj
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.,Center for Biotechnology, Anna University, Chennai, India
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| |
Collapse
|
27
|
Abstract
Flexible bioelectronics have promising applications in electronic skin, wearable devices, biomedical electronics, etc. Hydrogels have unique advantages for bioelectronics due to their tissue-like mechanical properties and excellent biocompatibility. Particularly, conductive and tissue adhesive hydrogels can self-adhere to bio-tissues and have great potential in implantable wearable bioelectronics. This review focuses on the recent progress in tissue adhesive hydrogel bioelectronics, including the mechanism and preparation of tissue adhesive hydrogels, the fabrication strategies of conductive hydrogels, and tissue adhesive hydrogel bioelectronics and applications. Some perspectives on tissue adhesive hydrogel bioelectronics are provided at the end of the review.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| | - Yang Cong
- College of Materials Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315201, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| |
Collapse
|
28
|
Li H, He D, Xiao X, Yu G, Hu G, Zhang W, Wen X, Lin Y, Li X, Lin H, Diao Y, Tang Y. Nitrogen-Doped Multiwalled Carbon Nanotubes Enhance Bone Remodeling through Immunomodulatory Functions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25290-25305. [PMID: 33908252 DOI: 10.1021/acsami.1c05437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It has been reported that multiwalled carbon nanotubes (MWCNTs) can reportedly positively affect growth and differentiation of bone-related cells and therefore offer great potential in biomedical applications. To overcome negative immune responses that limit their application, specific doping and functionalization can improve their biocompatibility. Here, we demonstrated that nitrogen-doped carboxylate-functionalized MWCNTs (N-MWCNTs) enhance bone remodeling both in vitro and in vivo with excellent biocompatibility, via stimulation of both bone resorption and formation. We revealed that 0.2 μg/mL N-MWCNTs not only increase the transcription of osteoblastogenic and osteoclastogenic genes but also up-regulate the activities of both TRAP and AKP in the differentiation of bone marrow stromal cells (BMSCs). Additionally, intramuscular administration of N-MWCNTs at a dosage of 1.0 mg/kg body weight enhances bone mineral density and bone mass content in mice, as well as induces potentiated degree of TRAP- and ARS-positive staining in the femur. The positive regulation of N-MWCNTs on bone remodeling is initiated by macrophage phagocytosis, which induces altered production of inflammatory cytokines by immune response pathways, and consequently up-regulates IL1α, IL10, and IL16. These cytokines collectively regulate the central osteoclastogenic transcription factor NFATc1 and osteoblastogenic BMP signaling, the suppression of which confirmed that these factors respectively participate in N-MWCNT-mediated regulation of osteoclastic and osteoblastic bone marrow stem cell activities. These results suggest that N-MWCNTs can be readily generalized for use as biomaterials in bone tissue engineering for metabolic bone disorders.
Collapse
Affiliation(s)
- Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Dalin He
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xue Xiao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Guanliu Yu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Geng Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Wenqian Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Wen
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yun Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xianyao Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Youxiang Diao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yi Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
29
|
Vardakas P, Skaperda Z, Tekos F, Trompeta AF, Tsatsakis A, Charitidis CA, Kouretas D. An integrated approach for assessing the in vitro and in vivo redox-related effects of nanomaterials. ENVIRONMENTAL RESEARCH 2021; 197:111083. [PMID: 33775680 DOI: 10.1016/j.envres.2021.111083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, nanotechnology has risen to the forefront of both the research and industrial interest, resulting in the manufacture and utilization of various nanomaterials, as well as in their integration into a wide range of fields. However, the consequent elevated exposure to such materials raises serious concerns regarding their effects on human health and safety. Existing scientific data indicate that the induction of oxidative stress, through the excessive generation of Reactive Oxygen Species (ROS), might be the principal mechanism of exerting their toxicity. Meanwhile, a number of nanomaterials exhibit antioxidant properties, either intrinsic or resulting from their functionalization with conventional antioxidants. Considering that their redox properties are implicated in the manifestation of their biological effects, we propose an integrated approach for the assessment of the redox-related activities of nanomaterials at three biological levels (in vitro-cell free systems, cell cultures, in vivo). Towards this direction, a battery of translational biomarkers is recommended, and a series of reliable protocols are presented in detail. The aim of the present approach is to acquire a better understanding with respect to the biological actions of nanomaterials in the interrelated fields of Redox Biology and Toxicology.
Collapse
Affiliation(s)
- Periklis Vardakas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Aikaterini-Flora Trompeta
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 157 80, Athens, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Constantinos A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 157 80, Athens, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece.
| |
Collapse
|
30
|
Characterization of Betulinic Acid-Multiwalled Carbon Nanotubes Modified with Hydrophilic Biopolymer for Improved Biocompatibility on NIH/3T3 Cell Line. Polymers (Basel) 2021; 13:polym13091362. [PMID: 33919467 PMCID: PMC8122267 DOI: 10.3390/polym13091362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023] Open
Abstract
The biocompatibility of carbon nanotubes (CNT) is fairly a challenging task for their applications in nanomedicine. Therefore, the objective of this research was to formulate four types of highly biocompatible betulinic acid-loaded biopolymer nanocomposites, namely chitosan-multiwalled carbon nanotubes (MWBA-CS), polyethylene glycol-multiwalled carbon nanotubes (MWBA-PG), Tween 20-multiwalled carbon nanotubes (MWBA-T2) and Tween 80-multiwalled carbon nanotubes (MWBA-T8). The physico-chemical properties of the modified nanocomposites were determined by Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and Raman spectroscopy, while the surface morphology of the resulting nanocomposites was studied using field emission scanning electron microscopy (FESEM). All data revealed that the external surface of MWBA nanocomposites was successfully coated with the respective polymer molecules through hydrophobic and electrostatic interactions with improved thermal profiles. The cell viability assay, which was performed on cultured normal embryonic mouse fibroblast cells, confirmed their excellent biocompatibility in phosphate-buffered saline aqueous media. Overall, our findings herein suggest that the synthesized biopolymer-coated MWBA nanocomposites are promising nanomaterials for drug delivery applications as they enhance the solubility and dispersibility of CNT with significantly reduced cytotoxic effect, especially in normal cells.
Collapse
|
31
|
Zhao J, Luo W, Xu Y, Ling J, Deng L. Potential reproductive toxicity of multi-walled carbon nanotubes and their chronic exposure effects on the growth and development of Xenopus tropicalis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142652. [PMID: 33092835 DOI: 10.1016/j.scitotenv.2020.142652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The increasing production and use of multi-walled carbon nanotubes (MWCNTs) will inevitably lead to discharge into the environment and exert negative effects on organisms. Many studies have focused on the toxicity of MWCNTs to aquatic animals, but little is known about their possible potential reproductive toxicity. In this study, 6 sexually mature Xenopus tropicalis were exposed to 0.5 and 2.5 mg/L MWCNTs suspensions for 56 days, and the toxicity of MWCNTs to the growth and reproduction of X. tropicalis were studied. The results showed that MWCNTs could inhibit the growth of body, including the testis, ovaries and fat of X. tropicalis. Histopathological section analysis showed that MWCNTs affected the formation of spermatogonia and oocytes, while had no notable effect on the heart or liver. MWCNTs would be accumulated in lungs of X. tropicalis inducing lung cannons. In addition, MWCNTs changed the microbial community structure and diversity of gut microbiota but did not change its abundance significantly. Moreover, MWCNTs could even decrease the fertilized and survival rate of X. tropicalis embryos. These results indicated that chronic exposure to MWCNTs would not only affect the growth and development of X. tropicalis, but also pose a potential risk on their reproduction.
Collapse
Affiliation(s)
- Jianbin Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenshi Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiayin Ling
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Longhua Deng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
Occupational Exposure to Carbon Nanotubes and Carbon Nanofibres: More Than a Cobweb. NANOMATERIALS 2021; 11:nano11030745. [PMID: 33809629 PMCID: PMC8002294 DOI: 10.3390/nano11030745] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 01/20/2023]
Abstract
Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are erroneously considered as singular material entities. Instead, they should be regarded as a heterogeneous class of materials bearing different properties eliciting particular biological outcomes both in vitro and in vivo. Given the pace at which the industrial production of CNTs/CNFs is increasing, it is becoming of utmost importance to acquire comprehensive knowledge regarding their biological activity and their hazardous effects in humans. Animal studies carried out by inhalation showed that some CNTs/CNFs species can cause deleterious effects such as inflammation and lung tissue remodeling. Their physico-chemical properties, biological behavior and biopersistence make them similar to asbestos fibers. Human studies suggest some mild effects in workers handling CNTs/CNFs. However, owing to their cross-sectional design, researchers have been as yet unable to firmly demonstrate a causal relationship between such an exposure and the observed effects. Estimation of acceptable exposure levels should warrant a proper risk management. The aim of this review is to challenge the conception of CNTs/CNFs as a single, unified material entity and prompt the establishment of standardized hazard and exposure assessment methodologies able to properly feed risk assessment and management frameworks.
Collapse
|
33
|
Scavenger Receptor A1 Mediates the Uptake of Carboxylated and Pristine Multi-Walled Carbon Nanotubes Coated with Bovine Serum Albumin. NANOMATERIALS 2021; 11:nano11020539. [PMID: 33672587 PMCID: PMC7924066 DOI: 10.3390/nano11020539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 01/08/2023]
Abstract
Previously, we noted that carboxylated multi-walled carbon nanotubes (cMWNTs) coated with Pluronic® F-108 (PF108) bound to and were accumulated by macrophages, but that pristine multi-walled carbon nanotubes (pMWNTs) coated with PF108 were not (Wang et al., Nanotoxicology2018, 12, 677). Subsequent studies with Chinese hamster ovary (CHO) cells that overexpressed scavenger receptor A1 (SR-A1) and with macrophages derived from mice knocked out for SR-A1 provided evidence that SR-A1 was a receptor of PF108-cMWNTs (Wang et al., Nanomaterials (Basel) 2020, 10, 2417). Herein, we replaced the PF108 coat with bovine serum albumin (BSA) to investigate how a BSA corona affected the interaction of multi-walled carbon nanotubes (MWNTs) with cells. Both BSA-coated cMWNTs and pMWNTs bound to and were accumulated by RAW 264.7 macrophages, although the cells bound two times more BSA-coated cMWNT than pMWNTs. RAW 264.7 cells that were deleted for SR-A1 using CRISPR-Cas9 technology had markedly reduced binding and accumulation of both BSA-coated cMWNTs and pMWNTs, suggesting that SR-A1 was responsible for the uptake of both MWNT types. Moreover, CHO cells that ectopically expressed SR-A1 accumulated both MWNT types, whereas wild-type CHO cells did not. One model to explain these results is that SR-A1 can interact with two structural features of BSA-coated cMWNTs, one inherent to the oxidized nanotubes (such as COOH and other oxidized groups) and the other provided by the BSA corona; whereas SR-A1 only interacts with the BSA corona of BSA-pMWNTs.
Collapse
|
34
|
Benko A, Medina-Cruz D, Duch J, Popiela T, Wilk S, Bińczak M, Nocuń M, Menaszek E, Geoffrion LD, Guisbiers G, Kotarba A, Webster TJ. Conductive all-carbon nanotube layers: Results on attractive physicochemical, anti-bacterial, anticancer and biocompatibility properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111703. [DOI: 10.1016/j.msec.2020.111703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
|
35
|
Saleemi MA, Hosseini Fouladi M, Yong PVC, Chinna K, Palanisamy NK, Wong EH. Toxicity of Carbon Nanotubes: Molecular Mechanisms, Signaling Cascades, and Remedies in Biomedical Applications. Chem Res Toxicol 2020; 34:24-46. [PMID: 33319996 DOI: 10.1021/acs.chemrestox.0c00172] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbon nanotubes (CNTs) are the most studied allotropic form of carbon. They can be used in various biomedical applications due to their novel physicochemical properties. In particular, the small size of CNTs, with a large surface area per unit volume, has a considerable impact on their toxicity. Despite of the use of CNTs in various applications, toxicity is a big problem that requires more research. In this Review, we discuss the toxicity of CNTs and the associated mechanisms. Physicochemical factors, such as metal impurities, length, size, solubilizing agents, CNTs functionalization, and agglomeration, that may lead to oxidative stress, toxic signaling pathways, and potential ways to control these mechanisms are also discussed. Moreover, with the latest mechanistic evidence described in this Review, we expect to give new insights into CNTs' toxicological effects at the molecular level and provide new clues for the mitigation of harmful effects emerging from exposure to CNTs.
Collapse
Affiliation(s)
- Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Mohammad Hosseini Fouladi
- School of Engineering, Faculty of Innovation and Technology, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Phelim Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Karuthan Chinna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Navindra Kumari Palanisamy
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000 Sungai Buloh, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
36
|
Fraser K, Kodali V, Yanamala N, Birch ME, Cena L, Casuccio G, Bunker K, Lersch TL, Evans DE, Stefaniak A, Hammer MA, Kashon ML, Boots T, Eye T, Hubczak J, Friend SA, Dahm M, Schubauer-Berigan MK, Siegrist K, Lowry D, Bauer AK, Sargent LM, Erdely A. Physicochemical characterization and genotoxicity of the broad class of carbon nanotubes and nanofibers used or produced in U.S. facilities. Part Fibre Toxicol 2020; 17:62. [PMID: 33287860 PMCID: PMC7720492 DOI: 10.1186/s12989-020-00392-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 μg/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. RESULTS Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. CONCLUSION Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters.
Collapse
Affiliation(s)
- Kelly Fraser
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - Vamsi Kodali
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - Naveena Yanamala
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - M. Eileen Birch
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Cincinnati, OH USA
| | | | | | | | | | - Douglas E. Evans
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Cincinnati, OH USA
| | - Aleksandr Stefaniak
- Repiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV USA
| | - Mary Ann Hammer
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Michael L. Kashon
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Theresa Boots
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Tracy Eye
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - John Hubczak
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - Sherri A. Friend
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Matthew Dahm
- Division of Field Studies Evaluation, National Institute for Occupational Safety and Health, Cincinnati, OH USA
| | - Mary K. Schubauer-Berigan
- Division of Field Studies Evaluation, National Institute for Occupational Safety and Health, Cincinnati, OH USA
- International Agency for Research on Cancer, Lyon, France
| | - Katelyn Siegrist
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - David Lowry
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Alison K. Bauer
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Linda M. Sargent
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Aaron Erdely
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| |
Collapse
|
37
|
Huda S, Alam MA, Sharma PK. Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Abstract
Abstract
Carbon nanotubes (CNTs), with unique graphitic structure, superior mechanical, electrical, optical and biological properties, has attracted more and more interests in biomedical applications, including gene/drug delivery, bioimaging, biosensor and tissue engineering. In this review, we focus on the role of CNTs and their polymeric composites in tissue engineering applications, with emphasis on their usages in the nerve, cardiac and bone tissue regenerations. The intrinsic natures of CNTs including their physical and chemical properties are first introduced, explaining the structure effects on CNTs electrical conductivity and various functionalization of CNTs to improve their hydrophobic characteristics. Biosafety issues of CNTs are also discussed in detail including the potential reasons to induce the toxicity and their potential strategies to minimise the toxicity effects. Several processing strategies including solution-based processing, polymerization, melt-based processing and grafting methods are presented to show the 2D/3D construct formations using the polymeric composite containing CNTs. For the sake of improving mechanical, electrical and biological properties and minimising the potential toxicity effects, recent advances using polymer/CNT composite the tissue engineering applications are displayed and they are mainly used in the neural tissue (to improve electrical conductivity and biological properties), cardiac tissue (to improve electrical, elastic properties and biological properties) and bone tissue (to improve mechanical properties and biological properties). Current limitations of CNTs in the tissue engineering are discussed and the corresponded future prospective are also provided. Overall, this review indicates that CNTs are promising “next-generation” materials for future biomedical applications.
Collapse
|
39
|
The Importance of Evaluating the Lot-to-Lot Batch Consistency of Commercial Multi-Walled Carbon Nanotube Products. NANOMATERIALS 2020; 10:nano10101930. [PMID: 32992617 PMCID: PMC7601794 DOI: 10.3390/nano10101930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
The biological response of multi-walled carbon nanotubes (MWNTs) is related to their physicochemical properties and a thorough MWNT characterization should accompany an assessment of their biological activity, including their potential toxicity. Beyond characterizing the physicochemical properties of MWNTs from different sources or manufacturers, it is also important to characterize different production lots of the same MWNT product from the same vendor (i.e., lot-to-lot batch consistency). Herein, we present a comprehensive physicochemical characterization of two lots of commercial pristine MWNTs (pMWNTs) and carboxylated MWNTs (cMWNTs) used to study the response of mammalian macrophages to MWNTs. There were many similarities between the physicochemical properties of the two lots of cMWNTs and neither significantly diminished the 24-h proliferation of RAW 264.7 macrophages up to the highest concentration tested (200 μg cMWNTs/mL). Conversely, several physicochemical properties of the two lots of pMWNTs were different; notably, the newer lot of pMWNTs displayed less oxidative stability, a higher defect density, and a smaller amount of surface oxygen species relative to the original lot. Furthermore, a 72-h half maximal inhibitory concentration (IC-50) of ~90 µg pMWNTs/mL was determined for RAW 264.7 cells with the new lot of pMWNTs. These results demonstrate that subtle physicochemical differences can lead to significantly dissimilar cellular responses, and that production-lot consistency must be considered when assessing the toxicity of MWNTs.
Collapse
|
40
|
Abdul Manaf SA, Mohamad Fuzi SFZ, Abdul Manas NH, Md Illias R, Low KO, Hegde G, Che Man R, Wan Azelee NI, Matias-Peralta HM. Emergence of nanomaterials as potential immobilization supports for whole cell biocatalysts and cell toxicity effects. Biotechnol Appl Biochem 2020; 68:1128-1138. [PMID: 32969042 DOI: 10.1002/bab.2034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022]
Abstract
The traditional approach of fermentation by a free cell system has limitations of low productivity and product separation that need to be addressed for production enhancement and cost effectiveness. One of potential methods to solve the problems is cell immobilization. Microbial cell immobilization allows more efficient up-scaling by reducing the nonproductive growth phase, improving product yield and simplifying product separation. Furthermore, the emergence of nanomaterials such as carbon nanotubes, graphene, and metal-based nanomaterials with excellent functional properties provides novel supports for cell immobilization. Nanomaterials have catalytic properties that can provide specific binding site with targeted cells. However, the toxicity of nanomaterials towards cells has hampered its application as it affects the biological system of the cells, which cannot be neglected in any way. This gray area in immobilization is an important concern that needs to be addressed and understood by researchers. This review paper discusses an overview of nanomaterials used for cell immobilization with special focus on its toxicological challenges and how by understanding physicochemical properties of nanomaterials could influence the toxicity and biocompatibility of the cells.
Collapse
Affiliation(s)
- Shoriya Aruni Abdul Manaf
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
| | - Siti Fatimah Zaharah Mohamad Fuzi
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
| | - Nor Hasmaliana Abdul Manas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malasiya.,Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Rosli Md Illias
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malasiya
| | | | - Gurumurthy Hegde
- Centre for Nanomaterials and Displays, BMS College of Engineering, Bangalore, India
| | - Rohaida Che Man
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Pahang, Malaysia
| | - Nur Izyan Wan Azelee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malasiya.,Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Hazel Monica Matias-Peralta
- Freshwater Aquaculture Center-College of Fisheries, Central Luzon State University, Nueva Ecija, Philippines
| |
Collapse
|
41
|
Deline AR, Frank BP, Smith CL, Sigmon LR, Wallace AN, Gallagher MJ, Goodwin DG, Durkin DP, Fairbrother DH. Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chem Rev 2020; 120:11651-11697. [DOI: 10.1021/acs.chemrev.0c00351] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alyssa R. Deline
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Benjamin P. Frank
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Casey L. Smith
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Leslie R. Sigmon
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Alexa N. Wallace
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Miranda J. Gallagher
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - David G. Goodwin
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Durkin
- Department of Chemistry, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - D. Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
42
|
Szymański T, Mieloch AA, Richter M, Trzeciak T, Florek E, Rybka JD, Giersig M. Utilization of Carbon Nanotubes in Manufacturing of 3D Cartilage and Bone Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4039. [PMID: 32933020 PMCID: PMC7560098 DOI: 10.3390/ma13184039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022]
Abstract
Cartilage and bone injuries are prevalent ailments, affecting the quality of life of injured patients. Current methods of treatment are often imperfect and pose the risk of complications in the long term. Therefore, tissue engineering is a rapidly developing branch of science, which aims at discovering effective ways of replacing or repairing damaged tissues with the use of scaffolds. However, both cartilage and bone owe their exceptional mechanical properties to their complex ultrastructure, which is very difficult to reproduce artificially. To address this issue, nanotechnology was employed. One of the most promising nanomaterials in this respect is carbon nanotubes, due to their exceptional physico-chemical properties, which are similar to collagens-the main component of the extracellular matrix of these tissues. This review covers the important aspects of 3D scaffold development and sums up the existing research tackling the challenges of scaffold design. Moreover, carbon nanotubes-reinforced bone and cartilage scaffolds manufactured using the 3D bioprinting technique will be discussed as a novel tool that could facilitate the achievement of more biomimetic structures.
Collapse
Affiliation(s)
- Tomasz Szymański
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland
| | - Adam Aron Mieloch
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland
| | - Magdalena Richter
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 czerwca 1956r. Street No. 135/147, 61-545 Poznan, Poland;
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 czerwca 1956r. Street No. 135/147, 61-545 Poznan, Poland;
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
| | - Michael Giersig
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland; (T.S.); (A.A.M.); (M.R.); (M.G.)
- Department of Physics, Institute of Experimental Physics, Freie Universität, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
43
|
Abstract
Currently, apart from the widely known lithium-ion batteries, there are competitive solutions in the form of, for example, Li-S batteries. While the results of studies on the toxicity of Li-ion battery components are published, such studies on the components of Li-S cells are just beginning. The purpose of the current review was to identify materials used in the production of Li-S batteries and their toxicity, especially for humans. The review showed many kinds of materials with different levels of toxicity utilized for manufacturing of these cells. Some materials are of low toxicity, while some others are of the high one. A lot of materials have assigned different hazard statements. For some of the materials, no hazard statements were assigned, although such materials are toxic. No data related to the toxicity of some materials were found in the literature. This points out the need to further studies on their toxicity and legal actions to assign appropriate hazard statements.
Collapse
|
44
|
Kondej D, Sosnowski TR. Interfacial rheology for the assessment of potential health effects of inhaled carbon nanomaterials at variable breathing conditions. Sci Rep 2020; 10:14044. [PMID: 32820205 PMCID: PMC7441146 DOI: 10.1038/s41598-020-70909-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Lung surface is the first line of contact between inhaled carbon nanomaterials, CNMs, and the organism, so this is the place where pulmonary health effects begin. The paper analyzes the influence of several CNMs (single- and multi-walled nanotubes with various surface area: 90-1,280 m2/g and aspect ratio: 8-3,750) on the surface-active properties of the lung surfactant, LS, model (Survanta). Effects of CNM concentration (0.1-1 mg/ml) and surface oscillation rate were determined using the oscillating drop method at simulated breathing conditions (2-10 s per cycle, 37 °C). Based on the values of apparent elasticity and viscosity of the interfacial region, new parameters: Sε and Sμ were proposed to evaluate potential effect of particles on the LS at various breathing rates. Some of tested CNMs (e.g., COOH- functionalized short nanotubes) significantly influenced the surfactant dynamics, while the other had weaker effects even at high particle concentration. Analysis of changes in Sε and Sμ provides a new way to evaluate of a possible disturbance of the basic functions of LS. The results show that the expected pulmonary effects caused by inhaled CNMs at variable breathing rate depend not only on particle concentration (inhaled dose) but also on their size, structure and surface properties.
Collapse
Affiliation(s)
- Dorota Kondej
- Central Institute for Labour Protection - National Research Institute, Czerniakowska 16, 00-701, Warsaw, Poland
| | - Tomasz R Sosnowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland.
| |
Collapse
|
45
|
Henna TK, Raphey VR, Sankar R, Ameena Shirin VK, Gangadharappa HV, Pramod K. Carbon nanostructures: The drug and the delivery system for brain disorders. Int J Pharm 2020; 587:119701. [PMID: 32736018 DOI: 10.1016/j.ijpharm.2020.119701] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Neurodegenerative disorders and brain tumors are major pathological conditions affecting the brain. The delivery of therapeutic agents into the brain is not as easy as to other organs or systems. The presence of the blood-brain barrier (BBB) makes the drug delivery into the brain more complicated and challenging. Many techniques have been developed to overcome the difficulties with BBB and to achieve brain-targeted drug delivery. Incorporation of the drugs into nanocarriers capable to penetrate BBB is a simple technique. Different nanocarriers have been developed including polymeric nanoparticles, carbon nanoparticles, lipid-based nanoparticles, etc. Carbon nanostructures could make a superior position among them, because of their good biocompatibility and easy penetration of BBB. Carbon-family nanomaterials consist of different carbon-based structures including zero-dimensional fullerene, one-dimensional carbon nanotube, two-dimensional graphene, and some other related structures like carbon dots and nanodiamonds. They can be used as efficient carriers for drug delivery into the brain. Apart from the drug delivery applications, they can also be used as a central nervous system (CNS) therapeutic agent; some of the carbon nanostructures have neuroregenerative activity. Their influence on neuronal growth and anti-amyloid action is also interesting. This review focuses on different carbon nanostructures for brain-targeted drug delivery and their CNS activities. As a carrier and CNS therapeutic agent, carbon nanostructures can revolutionize the treatment of brain disorders.
Collapse
Affiliation(s)
- T K Henna
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - V R Raphey
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Renu Sankar
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - V K Ameena Shirin
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, India.
| | - K Pramod
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India.
| |
Collapse
|
46
|
Edwards CH, Christie CR, Masotti A, Celluzzi A, Caporali A, Campbell EM. Dendrimer-coated carbon nanotubes deliver dsRNA and increase the efficacy of gene knockdown in the red flour beetle Tribolium castaneum. Sci Rep 2020; 10:12422. [PMID: 32709999 PMCID: PMC7381663 DOI: 10.1038/s41598-020-69068-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/01/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, the use of dendrimer-coated carbon nanotubes (CNTs) as a delivery vehicle for dsRNA was assessed in Tribolium castaneum. Exposure to low dosages of polyamidoamine dendrimer carbon nanotubes (PAMAM-CNTs) did not affect T. castaneum larval mortality. Expression of key apoptotic factors, Dronc (Tc12580), Dredd (Tcn-like, Tc014026) and Buffy, (Tcinhib apop1), which can act as toxicity indicators, were not altered in T. castaneum larvae following injection of PAMAM-CNTs. The level of knockdown of two target genes, α-tubulin and mitochondrial RNA polymerase (mtpol), were significantly increased when larvae were injected with double-stranded RNA bound to CNTs (PAMAM-CNT-dsRNA), compared to those injected with target dsRNA alone. PAMAM-CNTs were visualised in cellular vacuoles and in the cell nucleus. Increase occurrence of a blistered wing phenotype was found in a subset of PAMAM-CNT-dsRNAαtub injected larvae, relative to the level seen in larvae injected with naked dsRNAαtub alone. These results suggest that the use of functionalised CNTs for dsRNA delivery could increase the efficacy of RNA interference in insect pest species.
Collapse
Affiliation(s)
| | - Craig R Christie
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Andrea Caporali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ewan M Campbell
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, 23 St. Machar Drive, Aberdeen, AB24 3RY, UK.
| |
Collapse
|
47
|
Kyriakidou K, Brasinika D, Trompeta A, Bergamaschi E, Karoussis I, Charitidis C. In vitro cytotoxicity assessment of pristine and carboxyl-functionalized MWCNTs. Food Chem Toxicol 2020; 141:111374. [DOI: 10.1016/j.fct.2020.111374] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
|
48
|
Ahmed DS, Mohammed MKA. Studying the bactericidal ability and biocompatibility of gold and gold oxide nanoparticles decorating on multi-wall carbon nanotubes. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01223-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Ventura C, Pereira JFS, Matos P, Marques B, Jordan P, Sousa-Uva A, Silva MJ. Cytotoxicity and genotoxicity of MWCNT-7 and crocidolite: assessment in alveolar epithelial cells versus their coculture with monocyte-derived macrophages. Nanotoxicology 2020; 14:479-503. [PMID: 32046553 DOI: 10.1080/17435390.2019.1695975] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 02/08/2023]
Abstract
In the past years, several in vitro studies have addressed the pulmonary toxicity of multi-walled carbon nanotubes (MWCNT) and compared it with that caused by asbestos fibers, but their conclusions have been somewhat inconsistent and difficult to extrapolate to in vivo. Since cell coculture models were proposed to better represent the in vivo conditions than conventional monocultures, this work intended to compare the cytotoxicity and genotoxicity of MWCNT-7 (Mitsui-7) and crocidolite using A549 cells grown in a conventional monoculture or in coculture with THP-1 macrophages. Although a decrease in A549 viability was noted following exposure to a concentration range of MWCNT-7 and crocidolite, no viability change occurred in similarly exposed cocultures. Early events indicating epithelial to mesenchymal transition (EMT) were observed which could explain apoptosis resistance. The comet assay results were similar between the two models, being positive and negative for crocidolite and MWCNT-7, respectively. An increase in the micronucleus frequency was detected in the cocultured A549-treated cells with both materials, but not in the monoculture. On the other hand, exposure of A549 monocultures to MWCNT-7 induced a highly significant increase in nucleoplasmic bridges in which those were found embedded. Our overall results demonstrate that (i) both materials are cytotoxic and genotoxic, (ii) the presence of THP-1 macrophages upholds the viability of A549 cells and increases the aneugenic/clastogenic effects of both materials probably through EMT, and (iii) MWCNT-7 induces the formation of nucleoplasmic bridges in A549 cells.
Collapse
Affiliation(s)
- Célia Ventura
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Department of Occupational and Environmental Health, National School of Public Health, NOVA University of Lisbon (UNL), Lisbon, Portugal
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
| | - Joana F S Pereira
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Bárbara Marques
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - António Sousa-Uva
- Department of Occupational and Environmental Health, National School of Public Health, NOVA University of Lisbon (UNL), Lisbon, Portugal
- CISP - Public Health Research Center, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
| |
Collapse
|
50
|
Wang Q, Wang Q, Zhao Z, Alexander DB, Zhao D, Xu J, Tsuda H. Pleural translocation and lesions by pulmonary exposed multi-walled carbon nanotubes. J Toxicol Pathol 2020; 33:145-151. [PMID: 32764839 PMCID: PMC7396733 DOI: 10.1293/tox.2019-0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Carbon nanotubes (CNTs) are recently developed tubular nanomaterials, with diameters ranging from a few nanometers to tens of nanometers, and the length reaching up to several micrometers. They can be either single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs). Due to their nano-scaled structure, CNTs have a unique set of mechanical, electrical, and chemical properties that make them useful in information technologies, optoelectronics, energy technologies, material sciences, medical technologies, and other fields. However, with the wide application and increasing production of CNTs, their potential risks have led to concerns regarding their impact on environment and health. The shape of some types of CNTs is similar to asbestos fibers, which suggests that these CNTs may cause characteristic pleural diseases similar to those found in asbestos-exposed humans, such as pleural plaques and malignant mesothelioma. Experimental data indicate that CNTs can induce lung and pleural lesions, inflammation, pleural fibrosis, lung tumors, and malignant mesothelioma upon inhalation in the experimental animals. In this review, we focus on the potential of MWCNTs to induce diseases similar to those by asbestos, molecular and cellular mechanisms associated with these diseases, and we discuss a method for evaluating the pleural toxicity of MWCNTs.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, P.R. China
| | - Qiqi Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, P.R. China
| | - Ziyue Zhao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, P.R. China
| | - David B Alexander
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya 467-8603, Japan
| | - Dahai Zhao
- Department of Respiratory and Critical Medicine, the Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, Anhui Province 230601, P.R. China
| | - Jiegou Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, P.R. China
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|