1
|
Roitman M, Eshel D. Similar chilling response of dormant buds in potato tuber and woody perennials. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6076-6092. [PMID: 38758594 DOI: 10.1093/jxb/erae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Bud dormancy is a survival strategy that plants have developed in their native habitats. It helps them endure harsh seasonal changes by temporarily halting growth and activity until conditions become more favorable. Research has primarily focused on bud dormancy in tree species and the ability to halt growth in vegetative tissues, particularly in meristems. Various plant species, such as potato, have developed specialized storage organs, enabling them to become dormant during their yearly growth cycle. Deciduous trees and potato tubers exhibit a similar type of bud endodormancy, where the bud meristem will not initiate growth, even under favorable environmental conditions. Chilling accumulation activates C-repeat/dehydration responsive element binding (DREB) factors (CBFs) transcription factors that modify the expression of dormancy-associated genes. Chilling conditions shorten the duration of endodormancy by influencing plant hormones and sugar metabolism, which affect the timing and rate of bud growth. Sugar metabolism and signaling pathways can interact with abscisic acid, affecting the symplastic connection of dormant buds. This review explores how chilling affects endodormancy duration and explores the similarity of the chilling response of dormant buds in potato tubers and woody perennials.
Collapse
Affiliation(s)
- Marina Roitman
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dani Eshel
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
2
|
Wu YN, Lu JY, Li S, Zhang Y. Are vacuolar dynamics crucial factors for plant cell division and differentiation? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112090. [PMID: 38636812 DOI: 10.1016/j.plantsci.2024.112090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Vacuoles are the largest membrane-bound organelles in plant cells, critical for development and environmental responses. Vacuolar dynamics indicate reversible changes of vacuoles in morphology, size, or numbers. In this review, we summarize current understandings of vacuolar dynamics in different types of plant cells, biological processes associated with vacuolar dynamics, and regulators controlling vacuolar dynamics. Specifically, we point out the possibility that vacuolar dynamics play key roles in cell division and differentiation, which are controlled by the nucleus. Finally, we propose three routes through which vacuolar dynamics actively participate in nucleus-controlled cellular activities.
Collapse
Affiliation(s)
- Ya-Nan Wu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jin-Yu Lu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Yoshida T, Mergner J, Yang Z, Liu J, Kuster B, Fernie AR, Grill E. Integrating multi-omics data reveals energy and stress signaling activated by abscisic acid in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1112-1133. [PMID: 38613775 DOI: 10.1111/tpj.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024]
Abstract
Phytohormones are essential signaling molecules regulating various processes in growth, development, and stress responses. Genetic and molecular studies, especially using Arabidopsis thaliana (Arabidopsis), have discovered many important players involved in hormone perception, signal transduction, transport, and metabolism. Phytohormone signaling pathways are extensively interconnected with other endogenous and environmental stimuli. However, our knowledge of the huge and complex molecular network governed by a hormone remains limited. Here we report a global overview of downstream events of an abscisic acid (ABA) receptor, REGULATORY COMPONENTS OF ABA RECEPTOR (RCAR) 6 (also known as PYRABACTIN RESISTANCE 1 [PYR1]-LIKE [PYL] 12), by integrating phosphoproteomic, proteomic and metabolite profiles. Our data suggest that the RCAR6 overexpression constitutively decreases the protein levels of its coreceptors, namely clade A protein phosphatases of type 2C, and activates sucrose non-fermenting-1 (SNF1)-related protein kinase 1 (SnRK1) and SnRK2, the central regulators of energy and ABA signaling pathways. Furthermore, several enzymes in sugar metabolism were differentially phosphorylated and expressed in the RCAR6 line, and the metabolite profile revealed altered accumulations of several organic acids and amino acids. These results indicate that energy- and water-saving mechanisms mediated by the SnRK1 and SnRK2 kinases, respectively, are under the control of the ABA receptor-coreceptor complexes.
Collapse
Affiliation(s)
- Takuya Yoshida
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Zhenyu Yang
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Jinghui Liu
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| |
Collapse
|
4
|
Sun M, Lu T, Chen P, Wang X, Yang H, Zhou R, Zheng W, Zhao Y. The sensor histidine kinase (SLN1) and acetyl-CoA carboxylase (ACC1) coordinately regulate the response of Neurospora crassa to the springtail Sinella curviseta (Collembola: Entomobryidae) attack. Appl Environ Microbiol 2023; 89:e0101823. [PMID: 37855634 PMCID: PMC10686092 DOI: 10.1128/aem.01018-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/12/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Understanding the regulatory pathways by which fungi respond to environmental signals through interlinked genes provides insights into the interactions between fungi and insects. The coordinated optimization of the regulatory networks is necessary for fungi to adapt to their habitats. We demonstrated that the synergistic regulation of sensor histidine kinase (SLN1) and acetyl-CoA carboxylase (ACC1) plays a critical role in regulating the fungal response to Sinella curviseta stress. Furthermore, we found that the enhanced production of trehalose, carotenoids, and 5-MTHF plays crucial role in the resistance to the fungivore. Our results provide insights into the understanding of the adaptation of N. crassa to environmental stimuli.
Collapse
Affiliation(s)
- Mengni Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ting Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Pengxu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiaomeng Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hanbing Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Rong Zhou
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Weifa Zheng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yanxia Zhao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
5
|
Semi-Targeted Profiling of the Lipidome Changes Induced by Erysiphe Necator in Disease-Resistant and Vitis vinifera L. Varieties. Int J Mol Sci 2023; 24:ijms24044072. [PMID: 36835477 PMCID: PMC9958630 DOI: 10.3390/ijms24044072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The ascomycete Erysiphe necator is a serious pathogen in viticulture. Despite the fact that some grapevine genotypes exhibit mono-locus or pyramided resistance to this fungus, the lipidomics basis of these genotypes' defense mechanisms remains unknown. Lipid molecules have critical functions in plant defenses, acting as structural barriers in the cell wall that limit pathogen access or as signaling molecules after stress responses that may regulate innate plant immunity. To unravel and better understand their involvement in plant defense, we used a novel approach of ultra-high performance liquid chromatography (UHPLC)-MS/MS to study how E. necator infection changes the lipid profile of genotypes with different sources of resistance, including BC4 (Run1), "Kishmish vatkhana" (Ren1), F26P92 (Ren3; Ren9), and "Teroldego" (a susceptible genotype), at 0, 24, and 48 hpi. The lipidome alterations were most visible at 24 hpi for BC4 and F26P92, and at 48 hpi for "Kishmish vatkhana". Among the most abundant lipids in grapevine leaves were the extra-plastidial lipids: glycerophosphocholine (PCs), glycerophosphoethanolamine (PEs) and the signaling lipids: glycerophosphates (Pas) and glycerophosphoinositols (PIs), followed by the plastid lipids: glycerophosphoglycerols (PGs), monogalactosyldiacylglycerols (MGDGs), and digalactosyldiacylglycerols (DGDGs) and, in lower amounts lyso-glycerophosphocholines (LPCs), lyso-glycerophosphoglycerols (LPGs), lyso-glycerophosphoinositols (LPIs), and lyso-glycerophosphoethanolamine (LPEs). Furthermore, the three resistant genotypes had the most prevalent down-accumulated lipid classes, while the susceptible genotype had the most prevalent up-accumulated lipid classes.
Collapse
|
6
|
Koh SWH, Diaz-Ardila HN, Bascom CS, Berenguer E, Ingram G, Estelle M, Hardtke CS. Heterologous expression of a lycophyte protein enhances angiosperm seedling vigor. Development 2022; 149:dev200917. [PMID: 36196593 PMCID: PMC10655917 DOI: 10.1242/dev.200917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/26/2022] [Indexed: 03/15/2023]
Abstract
Seedling vigor is a key agronomic trait that determines juvenile plant performance. Angiosperm seeds develop inside fruits and are connected to the mother plant through vascular tissues. Their formation requires plant-specific genes, such as BREVIS RADIX (BRX) in Arabidopsis thaliana roots. BRX family proteins are found throughout the euphyllophytes but also occur in non-vascular bryophytes and non-seed lycophytes. They consist of four conserved domains, including the tandem BRX domains. We found that bryophyte or lycophyte BRX homologs can only partially substitute for Arabidopsis BRX (AtBRX) because they miss key features in the linker between the BRX domains. Intriguingly, however, expression of a BRX homolog from the lycophyte Selaginella moellendorffii (SmBRX) in an A. thaliana wild-type background confers robustly enhanced root growth vigor that persists throughout the life cycle. This effect can be traced to a substantial increase in seed and embryo size, is associated with enhanced vascular tissue proliferation, and can be reproduced with a modified, SmBRX-like variant of AtBRX. Our results thus suggest that BRX variants can boost seedling vigor and shed light on the activity of ancient, non-angiosperm BRX family proteins.
Collapse
Affiliation(s)
- Samuel W. H. Koh
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Carlisle S. Bascom
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Eduardo Berenguer
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, 69364 Lyon, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, 69364 Lyon, France
| | - Mark Estelle
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Wang Y, Zhao S, Gou B, Duan P, Wei M, Yang N, Zhang G, Wei B. Identification and expression analysis of phospholipase C family genes between different male fertility accessions in pepper. PROTOPLASMA 2022; 259:1541-1552. [PMID: 35296925 DOI: 10.1007/s00709-022-01751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Phospholipase C (PLC) is one of the major lipid-hydrolyzing enzymes, involved in lipid-mediating signal pathway. PLCs have been found to play a significant role in the growth and development of plants. In this study, the genome-wide identification and characteristic analysis of CaPLC family genes in pepper were conducted and the expression of two CaPLC genes were investigated. The results showed that a total of 11 CaPLC family genes were systematically identified, which were distributed on five chromosomes and divided into two groups based on their evolutionary relevance. Some cis-elements responding to different hormones and stresses were screened in the promoters of CaPLC genes. Quantitative real-time PCR indicated that the expression of CaPIPLC1 and CaPIPLC5 in flowers were dozens of times higher than in other tissues. In addition, with the development of flower buds, the relative expressions of CaPIPLC1 and CaPIPLC5 gradually increased in fertile materials R1 and F1. However, no expression of CaPIPLC1 and CaPIPLC5 were detected at all developmental stages of cytoplasmic male sterile lines (CMS) compared with fertile accessions. The study revealed the number and characteristics of the CaPLC family genes, which supplied a basic and systematic understanding of CaPLC family. In addition, these findings provided new insights into the role of CaPLC genes in pollen development and fertility restoration in pepper.
Collapse
Affiliation(s)
- Yongfu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Shufang Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Bingdiao Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Panpan Duan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Min Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Nan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
8
|
Zhou Y, Sun M, Sun P, Gao H, Yang H, Jing Y, Hussain MA, Saxena RK, Carther FI, Wang Q, Li H. Tonoplast inositol transporters: Roles in plant abiotic stress response and crosstalk with other signals. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153660. [PMID: 35240513 DOI: 10.1016/j.jplph.2022.153660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Inositol transporters (INT) are thought to be the pivotal transporters for vital metabolites, in particular lipids, minerals, and sugars. These transporters play an important role in transitional metabolism and various signaling pathways in plants through regulating the transduction of messages from hormones, neurotransmitters, and immunologic and growth factors. Extensive studies have been conducted on animal INT, with promising outcomes. However, only few recent studies have highlighted the importance and complexity of INT genes in the regulation of plant physiology stages, including growth and tolerance to stress conditions. The present review summarizes the most recent findings concerning the role of INT or inositol genes in plant metabolism and the response mechanisms triggered by external stressors. Moreover, we highlight the emerging role of vacuoles and vacuolar INT in plant molecular transition and their related roles in plant growth and development. INTs are the essential mediators of inositol uptake and its intracellular broadcasting for various metabolic pathways where they play crucial roles. Additionally, we report evidence on Na+/inositol transporters, which until now have only been characterized in animals, as well as H+/inositol symporters and their kinetic functions and physiological role and suggest their roles and operating mode in plants. A more comprehensive understanding of the INT functioning system, in particular the coordinated movement of inositol and the relation between inositol generation and other important plant signaling pathways, would greatly advance the study of plant stress adaptation.
Collapse
Affiliation(s)
- Yonggang Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Monan Sun
- College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Pengyu Sun
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Hongtao Gao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - He Yang
- RDFZ Sanya School, Sanya, 572025, China.
| | - Yan Jing
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Muhammad Azhar Hussain
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| | - Foka Idrice Carther
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Qingyu Wang
- College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Haiyan Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| |
Collapse
|
9
|
Perlikowski D, Lechowicz K, Skirycz A, Michaelis Ä, Pawłowicz I, Kosmala A. The Role of Triacylglycerol in the Protection of Cells against Lipotoxicity under Drought in Lolium multiflorum/Festucaarundinacea Introgression Forms. PLANT & CELL PHYSIOLOGY 2022; 63:353-368. [PMID: 34994787 DOI: 10.1093/pcp/pcac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Triacylglycerol is a key lipid compound involved in maintaining homeostasis of both membrane lipids and free fatty acids (FFA) in plant cells under adverse environmental conditions. However, its role in the process of lipid remodeling has not been fully recognized, especially in monocots, including grass species. For our study, two closely related introgression forms of Lolium multiflorum (Italian ryegrass) and Festuca arundinacea (tall fescue), distinct in their level of drought tolerance, were selected as plant models to study rearrangements in plant lipidome under water deficit and further re-watering. The low drought tolerant (LDT) form revealed an elevated level of cellular membrane damage accompanied by an increased content of polyunsaturated FFA and triacylglycerol under water deficit, compared with the high drought tolerant (HDT) form. However, the LDT introgression form demonstrated also the ability to regenerate its membranes after stress cessation. The obtained results clearly indicated that accumulation of triacylglycerol under advanced drought in the LDT form could serve as a cellular protective mechanism against overaccumulation of toxic polyunsaturated FFA and other lipid intermediates. Furthermore, accumulation of triacylglycerol under drought conditions could serve also as storage of substrates required for further regeneration of membranes after stress cessation. The rearrangements in triacylglycerol metabolism were supported by the upregulation of several genes, involved in a biosynthesis of triacylglycerol. With respect to this process, diacylglycerol O-acyltransferase DGAT2 seems to play the most important role in the analyzed grasses.
Collapse
Affiliation(s)
- Dawid Perlikowski
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Katarzyna Lechowicz
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Aleksandra Skirycz
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Änna Michaelis
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Izabela Pawłowicz
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| |
Collapse
|
10
|
Allen JR, Wilkinson EG, Strader LC. Creativity comes from interactions: modules of protein interactions in plants. FEBS J 2022; 289:1492-1514. [PMID: 33774929 PMCID: PMC8476656 DOI: 10.1111/febs.15847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Protein interactions are the foundation of cell biology. For robust signal transduction to occur, proteins interact selectively and modulate their behavior to direct specific biological outcomes. Frequently, modular protein interaction domains are central to these processes. Some of these domains bind proteins bearing post-translational modifications, such as phosphorylation, whereas other domains recognize and bind to specific amino acid motifs. Other modules act as diverse protein interaction scaffolds or can be multifunctional, forming head-to-head homodimers and binding specific peptide sequences or membrane phospholipids. Additionally, the so-called head-to-tail oligomerization domains (SAM, DIX, and PB1) can form extended polymers to regulate diverse aspects of biology. Although the mechanism and structures of these domains are diverse, they are united by their modularity. Together, these domains are versatile and facilitate the evolution of complex protein interaction networks. In this review, we will highlight the role of select modular protein interaction domains in various aspects of plant biology.
Collapse
Affiliation(s)
- Jeffrey R. Allen
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Edward G. Wilkinson
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Lucia C. Strader
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
11
|
Kim JH, Lee HN, Huang X, Jung H, Otegui MS, Li F, Chung T. FYVE2, a phosphatidylinositol 3-phosphate effector, interacts with the COPII machinery to control autophagosome formation in Arabidopsis. THE PLANT CELL 2022; 34:351-373. [PMID: 34718777 PMCID: PMC8846182 DOI: 10.1093/plcell/koab263] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is an intracellular trafficking mechanism by which cytosolic macromolecules and organelles are sequestered into autophagosomes for degradation inside the vacuole. In various eukaryotes including yeast, metazoans, and plants, the precursor of the autophagosome, termed the phagophore, nucleates in the vicinity of the endoplasmic reticulum (ER) with the participation of phosphatidylinositol 3-phosphate (PI3P) and the coat protein complex II (COPII). Here we show that Arabidopsis thaliana FYVE2, a plant-specific PI3P-binding protein, provides a functional link between the COPII machinery and autophagy. FYVE2 interacts with the small GTPase Secretion-associated Ras-related GTPase 1 (SAR1), which is essential for the budding of COPII vesicles. FYVE2 also interacts with ATG18A, another PI3P effector on the phagophore membrane. Fluorescently tagged FYVE2 localized to autophagic membranes near the ER and was delivered to vacuoles. SAR1 fusion proteins were also targeted to the vacuole via FYVE2-dependent autophagy. Either mutations in FYVE2 or the expression of dominant-negative mutant SAR1B proteins resulted in reduced autophagic flux and the accumulation of autophagic organelles. We propose that FYVE2 regulates autophagosome biogenesis through its interaction with ATG18A and the COPII machinery, acting downstream of ATG2.
Collapse
Affiliation(s)
- Jeong Hun Kim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Han Nim Lee
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xiao Huang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hyera Jung
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
12
|
Sun C, Li D, Gao Z, Gao L, Shang L, Wang M, Qiao J, Ding S, Li C, Geisler M, Jiang D, Qi Y, Qian Q. OsRLR4 binds to the OsAUX1 promoter to negatively regulate primary root development in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:118-134. [PMID: 34726825 DOI: 10.1111/jipb.13183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Root architecture is one of the most important agronomic traits that determines rice crop yield. The primary root (PR) absorbs mineral nutrients and provides mechanical support; however, the molecular mechanisms of PR elongation remain unclear in rice. Here, the two loss-of-function T-DNA insertion mutants of root length regulator 4 (OsRLR4), osrlr4-1 and osrlr4-2 with longer PR, and three OsRLR4 overexpression lines, OE-OsRLR4-1/-2/-3 with shorter PR compared to the wild type/Hwayoung (WT/HY), were identified. OsRLR4 is one of five members of the PRAF subfamily of the regulator chromosome condensation 1 (RCC1) family. Phylogenetic analysis of OsRLR4 from wild and cultivated rice indicated that it is under selective sweeps, suggesting its potential role in domestication. OsRLR4 controls PR development by regulating auxin accumulation in the PR tip and thus the root apical meristem activity. A series of biochemical and genetic analyses demonstrated that OsRLR4 functions directly upstream of the auxin transporter OsAUX1. Moreover, OsRLR4 interacts with the TRITHORAX-like protein OsTrx1 to promote H3K4me3 deposition at the OsAUX1 promoter, thus altering its transcription level. This work provides insight into the cooperation of auxin and epigenetic modifications in regulating root architecture and provides a genetic resource for plant architecture breeding.
Collapse
Affiliation(s)
- Chendong Sun
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Lin'an Hangzhou, 311300, China
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Lei Gao
- College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, Shenzhen, China
| | - Lianguang Shang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Mei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiyue Qiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shilin Ding
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Dean Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanhua Qi
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006, China
| |
Collapse
|
13
|
Kehelpannala C, Rupasinghe T, Hennessy T, Bradley D, Ebert B, Roessner U. The state of the art in plant lipidomics. Mol Omics 2021; 17:894-910. [PMID: 34699583 DOI: 10.1039/d1mo00196e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are a group of compounds with diverse structures that perform several important functions in plants. To unravel and better understand their in vivo functions, plant biologists have been using various lipidomic technologies including liquid-chromatography (LC)-mass spectrometry (MS). However, there are still significant challenges in LC-MS based plant lipidomics, which need to be addressed. In this review, we provide an overview of the key developments in LC-MS based lipidomic approaches to detect and identify plant lipids with emphasis on areas that can be further improved. Given that the cellular lipidome is estimated to contain hundreds of thousands of lipids,1,2 many of the lipid structures remain to be discovered. Furthermore, the plant lipidome is considered to be significantly more complex compared to that of mammals. Recent technical developments in mass spectrometry have made the detection of novel lipids possible; hence, approaches that can be used for plant lipid discovery are also discussed.
Collapse
Affiliation(s)
- Cheka Kehelpannala
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | | | - Thomas Hennessy
- Agilent Technologies Australia Pty Ltd, 679 Springvale Road, Mulgrave, VIC 3170, Australia
| | - David Bradley
- Agilent Technologies Australia Pty Ltd, 679 Springvale Road, Mulgrave, VIC 3170, Australia
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
14
|
Genome-Wide Analysis and Expression Profiling of the Phospholipase D Gene Family in Solanum tuberosum. BIOLOGY 2021; 10:biology10080741. [PMID: 34439973 PMCID: PMC8389595 DOI: 10.3390/biology10080741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/17/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
Phospholipase D (PLD) is the most important phospholipid hydrolase in plants, which can hydrolyze phospholipids into phosphatidic acid (PA) and choline. When plants encounter low temperature, drought and high salt stress, phospholipase D and its products play an important role in regulating plant growth and development and coping with stress. In this study, 16 members of StPLD gene family were identified in potato genome, which were distributed in α, β, δ, and ζ subfamilies, and their expression patterns under salt, high temperature, drought, and ABA stress were detected by qRT-PCR method. Gene expression analysis showed that the expression of StPLD genes in potato was upregulated and downregulated to varying degrees under the four stresses, indicating that the PLD gene family is involved in the interaction of potato plant hormones and abiotic stress signals. Chromosome distribution showed that StPLD gene was unevenly distributed on 8 chromosomes, and only one pair of tandem repeat genes was found. All StPLD promoters contain hormone and stress-related cis-regulatory elements to respond to different stresses. Structural analysis showed that StPLD genes in the same subgroup had a similar exon-intron structure. Our study provides a valuable reference for further research of the function and structure of PLD gene.
Collapse
|
15
|
Liu C, Zeng Y, Li H, Yang C, Shen W, Xu M, Xiao Z, Chen T, Li B, Cao W, Jiang L, Otegui MS, Gao C. A plant-unique ESCRT component, FYVE4, regulates multivesicular endosome biogenesis and plant growth. THE NEW PHYTOLOGIST 2021; 231:193-209. [PMID: 33772801 DOI: 10.1111/nph.17358] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
During evolution, land plants generated unique proteins that participate in endosomal sorting and multivesicular endosome (MVE) biogenesis, many of them with specific phosphoinositide-binding capabilities. Nonetheless, the function of most plant phosphoinositide-binding proteins in endosomal trafficking remains elusive. Here, we analysed several Arabidopsis mutants lacking predicted phosphoinositide-binding proteins and first identified fyve4-1 as a mutant with a hypersensitive response to high-boron conditions and defects in degradative vacuolar sorting of membrane proteins such as the borate exporter BOR1-GFP. FYVE4 encodes a plant-unique, FYVE domain-containing protein that interacts with SNF7, a core component of ESCRT-III (Endosomal Sorting Complex Required for Transport III). FYVE4 affects the membrane association of the late-acting ESCRT components SNF7 and VPS4, and modulates the formation of intraluminal vesicles (ILVs) inside MVEs. The critical function of FYVE4 in the ESCRT pathway was further demonstrated by the strong genetic interactions with SNF7B and LIP5. Although the fyve4-1, snf7b and lip5 single mutants were viable, the fyve4-1 snf7b and fyve4-1 lip5 double mutants were seedling lethal, with strong defects in MVE biogenesis and vacuolar sorting of ubiquitinated membrane proteins. Taken together, we identified FYVE4 as a novel plant endosomal regulator, which functions in ESCRTing pathway to regulate MVE biogenesis.
Collapse
Affiliation(s)
- Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Min Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhidan Xiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Baiying Li
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenhan Cao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marisa S Otegui
- Department of Botany, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
16
|
de Jong F, Munnik T. Attracted to membranes: lipid-binding domains in plants. PLANT PHYSIOLOGY 2021; 185:707-723. [PMID: 33793907 PMCID: PMC8133573 DOI: 10.1093/plphys/kiaa100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 05/18/2023]
Abstract
Membranes are essential for cells and organelles to function. As membranes are impermeable to most polar and charged molecules, they provide electrochemical energy to transport molecules across and create compartmentalized microenvironments for specific enzymatic and cellular processes. Membranes are also responsible for guided transport of cargoes between organelles and during endo- and exocytosis. In addition, membranes play key roles in cell signaling by hosting receptors and signal transducers and as substrates and products of lipid second messengers. Anionic lipids and their specific interaction with target proteins play an essential role in these processes, which are facilitated by specific lipid-binding domains. Protein crystallography, lipid-binding studies, subcellular localization analyses, and computer modeling have greatly advanced our knowledge over the years of how these domains achieve precision binding and what their function is in signaling and membrane trafficking, as well as in plant development and stress acclimation.
Collapse
Affiliation(s)
- Femke de Jong
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Teun Munnik
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Wang ZQ, Liu Q, Wu JH, Li J, He JM, Zhang Y, Li S. Downregulating VAC14 in Guard Cells Causes Drought Hypersensitivity by Inhibiting Stomatal Closure. FRONTIERS IN PLANT SCIENCE 2020; 11:602701. [PMID: 33391314 PMCID: PMC7773697 DOI: 10.3389/fpls.2020.602701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Stomata are a key land plant innovation that permit the regulation of gaseous exchanges between the plant interior and the surrounding environment. By opening or closing, stomata regulate transpiration of water though the plant; and these actions are coordinated with acquisition of CO2 for photosynthesis. Stomatal movement is controlled by various environmental and physiological factors and associates with multiple intracellular activities, among which the dynamic remodeling of vacuoles plays a crucial role. Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is critical for dynamic remodeling of vacuoles. Its production requires a PI(3,5)P2-metabolizing complex consisting of FAB1/PIKfyve kinases, SAC phosphatases, and the scaffolding protein VAC14. Although genetic or pharmacological downregulation of PI(3,5)P2 causes hyposensitivity to ABA-induced stomatal closure, whether the effect of PI(3,5)P2 on stomatal movement is cell-autonomous and the physiological consequences of its reduction were unclear. We report that downregulating Arabidopsis VAC14 specifically in guard cells by artificial microRNAs (amiR-VAC14) results in enlarged guard cells and hyposensitivity to ABA- and dark-induced stomatal closure. Vacuolar fission during stomatal closure is compromised by downregulating VAC14 in guard cells. Exogenous application of PI(3,5)P2 rescued the amiR-VAC14 phenotype whereas PI(3,5)P2 inhibitor YM201636 caused wild-type plants to have inhibited stomatal closure. We further show that downregulating VAC14 specifically in guard cells impairs drought tolerance, suggestive of a key role of guard cell-produced PI(3,5)P2 in plant fitness.
Collapse
Affiliation(s)
- Zong-Qi Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Qi Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ju-Hua Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Juan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
18
|
Phospholipid Signaling Is a Component of the Salicylic Acid Response in Plant Cell Suspension Cultures. Int J Mol Sci 2020; 21:ijms21155285. [PMID: 32722468 PMCID: PMC7432775 DOI: 10.3390/ijms21155285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/31/2023] Open
Abstract
Salicylic acid (SA) is an important signaling molecule involved in plant defense. While many proteins play essential roles in SA signaling, increasing evidence shows that responses to SA appear to involve and require lipid signals. The phospholipid-generated signal transduction involves a family of enzymes that catalyze the hydrolysis or phosphorylation of phospholipids in membranes to generate signaling molecules, which are important in the plant cellular response. In this review, we focus first, the role of SA as a mitigator in biotic/abiotic stress. Later, we describe the experimental evidence supporting the phospholipid–SA connection in plant cells, emphasizing the roles of the secondary lipid messengers (phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid (PA)) and related enzymes (phospholipase D (PLD) and phospholipase C (PLC)). By placing these recent finding in context of phospholipids and SA in plant cells, we highlight the role of phospholipids as modulators in the early steps of SA triggered transduction in plant cells.
Collapse
|
19
|
Exploration of the Effects of Different Blue LED Light Intensities on Flavonoid and Lipid Metabolism in Tea Plants via Transcriptomics and Metabolomics. Int J Mol Sci 2020; 21:ijms21134606. [PMID: 32610479 PMCID: PMC7369854 DOI: 10.3390/ijms21134606] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Blue light extensively regulates multiple physiological processes and secondary metabolism of plants. Although blue light quantity (fluence rate) is important for plant life, few studies have focused on the effects of different blue light intensity on plant secondary metabolism regulation, including tea plants. Here, we performed transcriptomic and metabolomic analyses of young tea shoots (one bud and two leaves) under three levels of supplemental blue light, including low-intensity blue light (LBL, 50 μmol m–2 s–1), medium-intensity blue light (MBL, 100 μmol m–2 s–1), and high-intensity blue light (HBL, 200 μmol m–2 s–1). The total number of differentially expressed genes (DEGs) in LBL, MBL and HBL was 1, 7 and 1097, respectively, indicating that high-intensity blue light comprehensively affects the transcription of tea plants. These DEGs were primarily annotated to the pathways of photosynthesis, lipid metabolism and flavonoid synthesis. In addition, the most abundant transcription factor (TF) families in DEGs were bHLH and MYB, which have been shown to be widely involved in the regulation of plant flavonoids. The significantly changed metabolites that we detected contained 15 lipids and 6 flavonoid components. Further weighted gene co-expression network analysis (WGCNA) indicated that CsMYB (TEA001045) may be a hub gene for the regulation of lipid and flavonoid metabolism by blue light. Our results may help to establish a foundation for future research investigating the regulation of woody plants by blue light.
Collapse
|
20
|
Tan S, Zhang X, Kong W, Yang XL, Molnár G, Vondráková Z, Filepová R, Petrášek J, Friml J, Xue HW. The lipid code-dependent phosphoswitch PDK1-D6PK activates PIN-mediated auxin efflux in Arabidopsis. NATURE PLANTS 2020; 6:556-569. [PMID: 32393881 DOI: 10.1038/s41477-020-0648-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Directional intercellular transport of the phytohormone auxin mediated by PIN-FORMED (PIN) efflux carriers has essential roles in both coordinating patterning processes and integrating multiple external cues by rapidly redirecting auxin fluxes. PIN activity is therefore regulated by multiple internal and external cues, for which the underlying molecular mechanisms are not fully elucidated. Here, we demonstrate that 3'-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1 (PDK1), which is conserved in plants and mammals, functions as a molecular hub that perceives upstream lipid signalling and modulates downstream substrate activity through phosphorylation. Using genetic analysis, we show that the loss-of-function Arabidopsis pdk1.1 pdk1.2 mutant exhibits a plethora of abnormalities in organogenesis and growth due to defective polar auxin transport. Further cellular and biochemical analyses reveal that PDK1 phosphorylates D6 protein kinase, a well-known upstream activator of PIN proteins. We uncover a lipid-dependent phosphorylation cascade that connects membrane-composition-based cellular signalling with plant growth and patterning by regulating morphogenetic auxin fluxes.
Collapse
Affiliation(s)
- Shutang Tan
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Xixi Zhang
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Wei Kong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Li Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Gergely Molnár
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Zuzana Vondráková
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Roberta Filepová
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Petrášek
- Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Abstract
Anionic phospholipids, which include phosphatidic acid, phosphatidylserine, and phosphoinositides, represent a small percentage of membrane lipids. They are able to modulate the physical properties of membranes, such as their surface charges, curvature, or clustering of proteins. Moreover, by mediating interactions with numerous membrane-associated proteins, they are key components in the establishment of organelle identity and dynamics. Finally, anionic lipids also act as signaling molecules, as they are rapidly produced or interconverted by a set of dedicated enzymes. As such, anionic lipids are major regulators of many fundamental cellular processes, including cell signaling, cell division, membrane trafficking, cell growth, and gene expression. In this review, we describe the functions of anionic lipids from a cellular perspective. Using the localization of each anionic lipid and its related metabolic enzymes as starting points, we summarize their roles within the different compartments of the endomembrane system and address their associated developmental and physiological consequences.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure (ENS) de Lyon, L'Université Claude Bernard (UCB) Lyon 1, CNRS, INRAE, 69342 Lyon, France; ,
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure (ENS) de Lyon, L'Université Claude Bernard (UCB) Lyon 1, CNRS, INRAE, 69342 Lyon, France; ,
| |
Collapse
|
22
|
Coordinated Localization and Antagonistic Function of NtPLC3 and PI4P 5-Kinases in the Subapical Plasma Membrane of Tobacco Pollen Tubes. PLANTS 2020; 9:plants9040452. [PMID: 32260253 PMCID: PMC7238183 DOI: 10.3390/plants9040452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 01/22/2023]
Abstract
Polar tip growth of pollen tubes is regulated by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which localizes in a well-defined region of the subapical plasma membrane. How the PtdIns(4,5)P2 region is maintained is currently unclear. In principle, the formation of PtdIns(4,5)P2 by PI4P 5-kinases can be counteracted by phospholipase C (PLC), which hydrolyzes PtdIns(4,5)P2. Here, we show that fluorescence-tagged tobacco NtPLC3 displays a subapical plasma membrane distribution which frames that of fluorescence-tagged PI4P 5-kinases, suggesting that NtPLC3 may modulate PtdIns(4,5)P2-mediated processes in pollen tubes. The expression of a dominant negative NtPLC3 variant resulted in pollen tube tip swelling, consistent with a delimiting effect on PtdIns(4,5)P2 production. When pollen tube morphologies were assessed as a quantitative read-out for PtdIns(4,5)P2 function, NtPLC3 reverted the effects of a coexpressed PI4P 5-kinase, demonstrating that NtPLC3-mediated breakdown of PtdIns(4,5)P2 antagonizes the effects of PtdIns(4,5)P2 overproduction in vivo. When analyzed by spinning disc microscopy, fluorescence-tagged NtPLC3 displayed discontinuous membrane distribution omitting punctate areas of the membrane, suggesting that NtPLC3 is involved in the spatial restriction of plasma membrane domains also at the nanodomain scale. Together, the data indicate that NtPLC3 may contribute to the spatial restriction of PtdIns(4,5)P2 in the subapical plasma membrane of pollen tubes.
Collapse
|
23
|
Agudelo-Romero P, Fortes AM, Suárez T, Lascano HR, Saavedra L. Evolutionary insights into FYVE and PHOX effector proteins from the moss Physcomitrella patens. PLANTA 2020; 251:62. [PMID: 32040768 DOI: 10.1007/s00425-020-03354-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Genome-wide identification, together with gene expression patterns and promoter region analysis of FYVE and PHOX proteins in Physcomitrella patens, emphasized their importance in regulating mainly developmental processes in P. patens. Phosphatidylinositol 3-phosphate (PtdIns3P) is a signaling phospholipid, which regulates several aspects of plant growth and development, as well as responses to biotic and abiotic stresses. The mechanistic insights underlying PtdIns3P mode of action, specifically through effector proteins have been partially explored in plants, with main focus on Arabidopsis thaliana. In this study, we searched for genes coding for PtdIns3P-binding proteins such as FYVE and PHOX domain-containing sequences from different photosynthetic organisms to gather evolutionary insights on these phosphoinositide binding domains, followed by an in silico characterization of the FYVE and PHOX gene families in the moss Physcomitrella patens. Phylogenetic analysis showed that PpFYVE proteins can be grouped in 7 subclasses, with an additional subclass whose FYVE domain was lost during evolution to higher plants. On the other hand, PpPHOX proteins are classified into 5 subclasses. Expression analyses based on RNAseq data together with the analysis of cis-acting regulatory elements and transcription factor (TF) binding sites in promoter regions suggest the importance of these proteins in regulating stress responses but mainly developmental processes in P. patens. The results provide valuable information and robust candidate genes for future functional analysis aiming to further explore the role of this signaling pathway mainly during growth and development of tip growing cells and during the transition from 2 to 3D growth. These studies would identify ancestral regulatory players undertaken during plant evolution.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- The UWA Institute of Agriculture, The University of Western Australia, M082, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, M316 Perth, Perth, 6009, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Ana Margarida Fortes
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Trinidad Suárez
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Hernán Ramiro Lascano
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- CONICET-Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Laura Saavedra
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
24
|
Jia Q, Kong D, Li Q, Sun S, Song J, Zhu Y, Liang K, Ke Q, Lin W, Huang J. The Function of Inositol Phosphatases in Plant Tolerance to Abiotic Stress. Int J Mol Sci 2019; 20:ijms20163999. [PMID: 31426386 PMCID: PMC6719168 DOI: 10.3390/ijms20163999] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
Inositol signaling is believed to play a crucial role in various aspects of plant growth and adaptation. As an important component in biosynthesis and degradation of myo-inositol and its derivatives, inositol phosphatases could hydrolyze the phosphate of the inositol ring, thus affecting inositol signaling. Until now, more than 30 members of inositol phosphatases have been identified in plants, which are classified intofive families, including inositol polyphosphate 5-phosphatases (5PTases), suppressor of actin (SAC) phosphatases, SAL1 phosphatases, inositol monophosphatase (IMP), and phosphatase and tensin homologue deleted on chromosome 10 (PTEN)-related phosphatases. The current knowledge was revised here in relation to their substrates and function in response to abiotic stress. The potential mechanisms were also concluded with the focus on their activities of inositol phosphatases. The general working model might be that inositol phosphatases would degrade the Ins(1,4,5)P3 or phosphoinositides, subsequently resulting in altering Ca2+ release, abscisic acid (ABA) signaling, vesicle trafficking or other cellular processes.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Defeng Kong
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinghua Li
- Putian Institute of Agricultural Sciences, Putian 351144, China
| | - Song Sun
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junliang Song
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yebao Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Kangjing Liang
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingming Ke
- Putian Institute of Agricultural Sciences, Putian 351144, China
| | - Wenxiong Lin
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Jinwen Huang
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| |
Collapse
|
25
|
Mosesso N, Nagel MK, Isono E. Ubiquitin recognition in endocytic trafficking - with or without ESCRT-0. J Cell Sci 2019; 132:132/16/jcs232868. [PMID: 31416855 DOI: 10.1242/jcs.232868] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability to sense and adapt to the constantly changing environment is important for all organisms. Cell surface receptors and transporters are key for the fast response to extracellular stimuli and, thus, their abundance on the plasma membrane has to be strictly controlled. Heteromeric endosomal sorting complexes required for transport (ESCRTs) are responsible for mediating the post-translational degradation of endocytosed plasma membrane proteins in eukaryotes and are essential both in animals and plants. ESCRTs bind and sort ubiquitylated cargoes for vacuolar degradation. Although many components that comprise the multi-subunit ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III complexes are conserved in eukaryotes, plant and animal ESCRTs have diverged during the course of evolution. Homologues of ESCRT-0, which recognises ubiquitylated cargo, have emerged in metazoan and fungi but are not found in plants. Instead, the Arabidopsis genome encodes plant-specific ubiquitin adaptors and a greater number of target of Myb protein 1 (TOM1) homologues than in mammals. In this Review, we summarise and discuss recent findings on ubiquitin-binding proteins in Arabidopsis that could have equivalent functions to ESCRT-0. We further hypothesise that SH3 domain-containing proteins might serve as membrane curvature-sensing endophilin and amphiphysin homologues during plant endocytosis.
Collapse
Affiliation(s)
- Niccolò Mosesso
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | | | - Erika Isono
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
26
|
Maraldi NM. In search of a primitive signaling code. Biosystems 2019; 183:103984. [PMID: 31201829 DOI: 10.1016/j.biosystems.2019.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
Cells must have preceded by simpler chemical systems (protocells) that had the capacity of a spontaneous self-assembly process and the ability to confine chemical reaction networks together with a form of information. The presence of lipid molecules in the early Earth conditions is sufficient to ensure the occurrence of spontaneous self-assembly processes, not defined by genetic information, but related to their chemical amphiphilic nature. Ribozymes are plausible molecules for early life, being the first small polynucleotides made up of random oligomers or formed by non-enzymatic template copying. Compartmentalization represents a strategy for the evolution of ribozymes; the attachment of ribozymes to surfaces, such as formed by lipid micellar aggregates may be particular relevant if the surface itself catalyzes RNA polymerization.It is conceivable that the transition from pre-biotic molecular aggregates to cellular life required the coevolution of the RNA world, capable of synthesizing specific, instead of statistical proteins, and of the Lipid world, with a transition from micellar aggregates to semipermeable vesicles. Small molecules available in the prebiotic inventory might promote RNA stability and the evolution of hydrophobic micellar aggregates into membrane-delimited vesicles. The transition from ribozymes catalyzing the assembly of statistical polypeptides to the synthesis of proteins, required the appearance of the genetic code; the transition from hydrophobic platforms favoring the stability of ribozymes and of nascent polypeptides to the selective transport of reagents through a membrane, required the appearance of the signal transduction code.A further integration between the RNA and Lipid worlds can be advanced, taking into account the emerging roles of phospholipid aggregates not only in ensuring stability to ribozymes by compartmentalization, but also in a crucial step of evolution through natural selection mechanisms, based on signal transduction pathways that convert environmental changes into biochemical responses that could vary according to the context. Here I present evidences on the presence of traces of the evolution of a signal transduction system in extant cells, which utilize a phosphoinositide signaling system located both at nucleoplasmic level as well as at the plasma membrane, based on the very same molecules but responding to different rules. The model herewith proposed is based on the following assumptions on the biomolecules of extant organisms: i) amphiphils can be converted into structured aggregates by hydrophobic forces thus giving rise to functional platforms for the interaction of other biomolecules and to their compartmentalization; ii) fundamental biochemical pathways, including protein synthesis, can be sustained by natural ribozymes of ancient origin; iii) ribozymes and nucleotide-derived coenzymes could have existed long before protein enzymes emerged; iv) signaling molecules, both derived from phospholipids and from RNAs could have guided the evolution of complex metabolic processes before the emergence of proteins.
Collapse
Affiliation(s)
- Nadir M Maraldi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|
27
|
Chung T. How phosphoinositides shape autophagy in plant cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:146-158. [PMID: 30824047 DOI: 10.1016/j.plantsci.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 05/06/2023]
Abstract
Plant cells use autophagy to degrade their own cytoplasm in vacuoles, thereby not only recycling their breakdown products, but also ensuring the homeostasis of essential cytoplasmic constituents and organelles. Plants and other eukaryotes have a conserved set of core Autophagy-related (ATG) genes involved in the biogenesis of the autophagosome, the main autophagic compartment destined for the lytic vacuole. In the past decade, the core ATG genes were isolated from several plant species. The core ATG proteins include the components of the VACUOLAR PROTEIN SORTING 34 (VPS34) complex that is responsible for the local production of phosphatidylinositol 3-phosphate (PI3P) at the site of autophagosome formation. Dissecting the roles of PI3P and its effectors in autophagy is challenging, because of the multi-faceted links between autophagosomal and endosomal systems. This review highlights recent studies on putative plant PI3P effectors involved in autophagosome dynamics. Molecular mechanisms underlying the requirement of PI3P for autophagosome biogenesis and trafficking are also discussed.
Collapse
Affiliation(s)
- Taijoon Chung
- Department of Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
28
|
Omrani M, Roth M, Roch G, Blanc A, Morris CE, Audergon JM. Genome-wide association multi-locus and multi-variate linear mixed models reveal two linked loci with major effects on partial resistance of apricot to bacterial canker. BMC PLANT BIOLOGY 2019; 19:31. [PMID: 30665361 PMCID: PMC6341767 DOI: 10.1186/s12870-019-1631-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/04/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Diseases caused by Pseudomonas syringae (Ps) are recognized as the most damaging factors in fruit trees with a significant economic and sanitary impact on crops. Among them, bacterial canker of apricot is exceedingly difficult to control due to a lack of efficient prophylactic measures. Several sources of partial resistance have been identified among genetic resources but the underlying genetic pattern has not been elucidated thus far. In this study, we phenotyped bacterial canker susceptibility in an apricot core-collection of 73 accessions over 4 years by measuring canker and superficial browning lengths issued from artificial inoculations in the orchard. In order to investigate the genetic architecture of partial resistance, we performed a genome-wide association study using best linear unbiased predictors on genetic (G) and genetic x year (G × Y) interaction effects extracted from linear mixed models. Using a set of 63,236 single-nucleotide polymorphism markers genotyped in the germplasm over the whole genome, multi-locus and multi-variate mixed models aimed at mapping the resistance while controlling for relatedness between individuals. RESULTS We detected 11 significant associations over 7 candidate loci linked to disease resistance under the two most severe years. Colocalizations between G and G × Y terms indicated a modulation on allelic effect depending on environmental conditions. Among the candidate loci, two loci on chromosomes 5 and 6 had a high impact on both canker length and superficial browning, explaining 41 and 26% of the total phenotypic variance, respectively. We found unexpected long-range linkage disequilibrium (LD) between these two markers revealing an inter-chromosomal LD block linking the two underlying genes. This result supports the hypothesis of a co-adaptation effect due to selection through population demography. Candidate genes annotations suggest a functional pathway involving abscisic acid, a hormone mainly known for mediating abiotic stress responses but also reported as a potential factor in plant-pathogen interactions. CONCLUSIONS Our study contributed to the first detailed characterization of the genetic determinants of partial resistance to bacterial canker in a Rosaceae species. It provided tools for fruit tree breeding by identifying progenitors with favorable haplotypes and by providing major-effect markers for a marker-assisted selection strategy.
Collapse
Affiliation(s)
- Mariem Omrani
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
- INRA, UR407 Pathologie Végétale, Centre de Recherche PACA, Montfavet, France
- ENGREF, AgroParisTech, Paris, France
| | - Morgane Roth
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
- Present Address: Agroscope, Research Division Plant Breeding, Wädenswil, Switzerland
| | - Guillaume Roch
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
- CEP Innovation, Lyon, France
| | - Alain Blanc
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| | - Cindy E. Morris
- INRA, UR407 Pathologie Végétale, Centre de Recherche PACA, Montfavet, France
| | - Jean-Marc Audergon
- INRA, UR1052 Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Montfavet, France
| |
Collapse
|
29
|
Yu D, Rupasinghe TW, Boughton BA, Natera SH, Hill CB, Tarazona P, Feussner I, Roessner U. A high-resolution HPLC-QqTOF platform using parallel reaction monitoring for in-depth lipid discovery and rapid profiling. Anal Chim Acta 2018; 1026:87-100. [DOI: 10.1016/j.aca.2018.03.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 02/07/2023]
|
30
|
McCabe CE, Cianzio SR, O'Rourke JA, Graham MA. Leveraging RNA-Seq to Characterize Resistance to Brown Stem Rot and the Rbs3 Locus in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1083-1094. [PMID: 30004290 DOI: 10.1094/mpmi-01-18-0009-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brown stem rot, caused by the fungus Phialophora gregata, reduces soybean yield by up to 38%. Although three dominant resistance loci have been identified (Rbs1 to Rbs3), the gene networks responsible for pathogen recognition and defense remain unknown. Further, identification and characterization of resistant and susceptible germplasm remains difficult. We conducted RNA-Seq of infected and mock-infected leaf, stem, and root tissues of a resistant (PI 437970, Rbs3) and susceptible (Corsoy 79) genotype. Combining historical mapping data with genotype expression differences allowed us to identify a cluster of receptor-like proteins that are candidates for the Rbs3 resistance gene. Reads mapping to the Rbs3 locus were used to identify potential novel single-nucleotide polymorphisms within candidate genes that could improve phenotyping and breeding efficiency. Comparing responses to infection revealed little overlap in differential gene expression between genotypes or tissues. Gene networks associated with defense, DNA replication, and iron homeostasis are hallmarks of resistance to P. gregata. This novel research demonstrates the utility of combining contrasting genotypes, gene expression, and classical genetic studies to characterize complex disease resistance loci.
Collapse
Affiliation(s)
- Chantal E McCabe
- 1 United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research Unit, Ames, IA 50011-1010, U.S.A. and Department of Agronomy, Iowa State University, Ames; and
| | | | - Jamie A O'Rourke
- 1 United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research Unit, Ames, IA 50011-1010, U.S.A. and Department of Agronomy, Iowa State University, Ames; and
| | - Michelle A Graham
- 1 United States Department of Agriculture-Agricultural Research Service Corn Insects and Crop Genetics Research Unit, Ames, IA 50011-1010, U.S.A. and Department of Agronomy, Iowa State University, Ames; and
| |
Collapse
|
31
|
Han X, Shi Y, Liu G, Guo Y, Yang Y. Activation of ROP6 GTPase by Phosphatidylglycerol in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:347. [PMID: 29599797 PMCID: PMC5862815 DOI: 10.3389/fpls.2018.00347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Plant Rho-like GTPases (ROPs) are switch-like proteins which play essential roles in controlling cell polarity development and cellular activities. ROPs are regulated by many factors, such as auxin, light, and RopGEFs and RopGAPs proteins. However, it has not been reported yet whether small molecules play a role in the regulation of ROP activity. Here, we showed that AtROP6 specially bound to a phospholipid, phosphatidylglycerol (PG), by the protein-lipid overlay and liposome sedimentation assays, and further MST assay gave a dissociation constant (Kd) of 4.8 ± 0.4 μM for binding of PG to His-AtROP6. PG profile analysis in Arabidopsis revealed that PG existed both in leaves and roots but with distinctive fatty acyl chain patterns. By evaluating AtROP6 activity using RIC1 effector binding-based assay, we found that PG stimulated AtROP6 activity. In the FM4-64 uptake experiment, PG inhibited AtROP6-mediated endocytosis process. By evaluating internalization of PIN2, PG was shown to regulate endocytosis process coordinately with NAA. Further root gravitropism experiment revealed that PG enhanced the AtROP6-mediated root gravity response. These results suggest that the phospholipid PG physically binds AtROP6, stimulates its activity and influences AtROP6-mediated root gravity response in Arabidopsis.
Collapse
|
32
|
Zheng G, Li W. Profiling membrane glycerolipids during γ-ray-induced membrane injury. BMC PLANT BIOLOGY 2017; 17:203. [PMID: 29141586 PMCID: PMC5688707 DOI: 10.1186/s12870-017-1153-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 11/07/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND γ-rays are high-energy radiation that cause a range of random injuries to plant cells. Most studies on this issue have focused on γ-ray-induced nucleotide damage and the production of reactive oxygen species in cells, so little is known about the glycerolipid metabolism during γ-rays induced membrane injury. Using an ESI-MS/MS-based lipidomic method, we analysed the lipidome changes in wild-type and phospholipase D (PLD)δ- and α1-deficient Arabidopsis after γ-ray treatment. The aim of this study was to investigate the role of PLD-mediated glycerolipid metabolism in γ-ray-induced membrane injury. RESULTS The ion leakage of Arabidopsis leaves after 2885-Gy γ-ray treatment was less than 10%. High does γ-ray treatment could induce the accumulation of intracellular reactive oxygen species (ROS). Inhibition of PLDα1 caused severe lipid degradation under γ-ray treatment. γ-ray-induced glycerolipid degradation mostly happened in chloroplastidic lipids, rather than extraplastidic ones. The levels of lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) were maintained in the WS ecotypes during γ-ray treatments, while increased significantly in the Col ecotype treated with 1100 Gy. After 210- and 1100-Gy γ-ray treatments, the level of lysophosphatidylglycerol (lysoPG) decreased significantly in the four genotypes of Arabidopsis. CONCLUSIONS γ-ray-induced membrane injury may occur via an indirect mechanism. The degradation of distinct lipids is not synchronous, and that interconversions among lipids can occur. During γ-ray-induced membrane injury, the degradation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) may be mediated by PLDζ1 or phospholipase A1. The degradation of phosphatidylglycerol was not mediated by PLA, PLDδ or PLDα1, but by phospholipase C or other PLDs. γ-rays can decrease the double-bond index and increase the acyl chain length in membrane lipids, which may make membranes more rigid and further cause injury in membranes.
Collapse
Affiliation(s)
- Guowei Zheng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 People’s Republic of China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 People’s Republic of China
| | - Weiqi Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 People’s Republic of China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201 People’s Republic of China
| |
Collapse
|
33
|
Abstract
The membranes of eukaryotic cells create hydrophobic barriers that control substance and information exchange between the inside and outside of cells and between cellular compartments. Besides their roles as membrane building blocks, some membrane lipids, such as phosphoinositides (PIs), also exert regulatory effects. Indeed, emerging evidence indicates that PIs play crucial roles in controlling polarity and growth in plants. Here, I highlight the key roles of PIs as important regulatory membrane lipids in plant development and function.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06114, Germany
| |
Collapse
|
34
|
Hong K, Zhang L, Zhan R, Huang B, Song K, Jia Z. Identification and Characterization of Phospholipase D Genes Putatively Involved in Internal Browning of Pineapple during Postharvest Storage. FRONTIERS IN PLANT SCIENCE 2017; 8:913. [PMID: 28674540 PMCID: PMC5474486 DOI: 10.3389/fpls.2017.00913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/15/2017] [Indexed: 05/28/2023]
Abstract
Phospholipase D (PLD) in plants plays vital roles in growth, development, and stress responses. However, the precise role of PLDs in pineapple remains poorly understood. In this study, 10 putative PLD genes, designated as AcPLD1-AcPLD10, were identified based on the pineapple genome database. The 10 AcPLDs could be clustered into five of the six known PLD families according to sequence characterization. Their deduced amino acid sequences displayed similarities to PLDs from other plant species. Expression analyses of PLD mRNAs from pineapple pulp were performed. The 10 PLDs exhibited differential expression patterns during storage periods of fruits treated with hexaldehyde (a specific PLD inhibitor) which could alleviate internal browning (IB) of pineapple after harvest. Functional subcellular localization signaling assays of two PLD proteins (AcPLD2 and AcPLD9) were performed by fluorescence microscopy. To further detect the potential action mechanism underlying PLD involved in the IB defense response, PLD, hydrogen peroxide (H2O2) and H2O2 associated with antioxidative enzymes such as superoxide dismutase, catalase, NADPH, and ascorbate peroxidase were quantified by enzyme-linked immunosorbent assay. This report is the first to provide a genome-wide description of the pineapple PLD gene family, and the results should expand knowledge of this family.
Collapse
Affiliation(s)
| | | | - Rulin Zhan
- *Correspondence: Lubin Zhang, Rulin Zhan,
| | | | | | | |
Collapse
|
35
|
Underwood W, Ryan A, Somerville SC. An Arabidopsis Lipid Flippase Is Required for Timely Recruitment of Defenses to the Host-Pathogen Interface at the Plant Cell Surface. MOLECULAR PLANT 2017; 10:805-820. [PMID: 28434950 DOI: 10.1016/j.molp.2017.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 05/22/2023]
Abstract
Deposition of cell wall-reinforcing papillae is an integral component of the plant immune response. The Arabidopsis PENETRATION 3 (PEN3) ATP binding cassette (ABC) transporter plays a role in defense against numerous pathogens and is recruited to sites of pathogen detection where it accumulates within papillae. However, the trafficking pathways and regulatory mechanisms contributing to recruitment of PEN3 and other defenses to the host-pathogen interface are poorly understood. Here, we report a confocal microscopy-based screen to identify mutants with altered localization of PEN3-GFP after inoculation with powdery mildew fungi. We identified a mutant, aberrant localization of PEN3 3 (alp3), displaying accumulation of the normally plasma membrane (PM)-localized PEN3-GFP in endomembrane compartments. The mutant was found to be disrupted in the P4-ATPase AMINOPHOSPHOLIPID ATPASE 3 (ALA3), a lipid flippase that plays a critical role in vesicle formation. We provide evidence that PEN3 undergoes continuous endocytic cycling from the PM to the trans-Golgi network (TGN). In alp3, PEN3 accumulates in the TGN, causing delays in recruitment to the host-pathogen interface. Our results indicate that PEN3 and other defense proteins continuously cycle through the TGN and that timely exit of these proteins from the TGN is critical for effective pre-invasive immune responses against powdery mildews.
Collapse
Affiliation(s)
- William Underwood
- Energy Biosciences Institute, University of California, Berkeley, CA 94720, USA.
| | - Andrew Ryan
- Energy Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Shauna C Somerville
- Energy Biosciences Institute, University of California, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
36
|
Gerth K, Lin F, Menzel W, Krishnamoorthy P, Stenzel I, Heilmann M, Heilmann I. Guilt by Association: A Phenotype-Based View of the Plant Phosphoinositide Network. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:349-374. [PMID: 28125287 DOI: 10.1146/annurev-arplant-042916-041022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Eukaryotic membranes contain small amounts of phospholipids that have regulatory effects on the physiological functions of cells, tissues, and organs. Phosphoinositides (PIs)-the phosphorylated derivatives of phosphatidylinositol-are one example of such regulatory lipids. Although PIs were described in plants decades ago, their contribution to the regulation of physiological processes in plants is not well understood. In the past few years, evidence has emerged that PIs are essential for plant function and development. Recently reported phenotypes associated with the perturbation of different PIs suggest that some subgroups of PIs influence specific processes. Although the molecular targets of PI-dependent regulation in plants are largely unknown, the effects of perturbed PI metabolism can be used to propose regulatory modules that involve particular downstream targets of PI regulation. This review summarizes phenotypes associated with the perturbation of the plant PI network to categorize functions and suggest possible downstream targets of plant PI regulation.
Collapse
Affiliation(s)
- Katharina Gerth
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Feng Lin
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Wilhelm Menzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Praveen Krishnamoorthy
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; , , , , , ,
| |
Collapse
|
37
|
Phosphatidylinositol 3-phosphate-binding protein AtPH1 controls the localization of the metal transporter NRAMP1 in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:E3354-E3363. [PMID: 28373552 DOI: 10.1073/pnas.1702975114] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
"Too much of a good thing" perfectly describes the dilemma that living organisms face with metals. The tight control of metal homeostasis in cells depends on the trafficking of metal transporters between membranes of different compartments. However, the mechanisms regulating the location of transport proteins are still largely unknown. Developing Arabidopsis thaliana seedlings require the natural resistance-associated macrophage proteins (NRAMP3 and NRAMP4) transporters to remobilize iron from seed vacuolar stores and thereby acquire photosynthetic competence. Here, we report that mutations in the pleckstrin homology (PH) domain-containing protein AtPH1 rescue the iron-deficient phenotype of nramp3nramp4 Our results indicate that AtPH1 binds phosphatidylinositol 3-phosphate (PI3P) in vivo and acts in the late endosome compartment. We further show that loss of AtPH1 function leads to the mislocalization of the metal uptake transporter NRAMP1 to the vacuole, providing a rationale for the reversion of nramp3nramp4 phenotypes. This work identifies a PH domain protein as a regulator of plant metal transporter localization, providing evidence that PH domain proteins may be effectors of PI3P for protein sorting.
Collapse
|
38
|
Zheng G, Li L, Li W. Glycerolipidome responses to freezing- and chilling-induced injuries: examples in Arabidopsis and rice. BMC PLANT BIOLOGY 2016; 16:70. [PMID: 27000868 PMCID: PMC4802656 DOI: 10.1186/s12870-016-0758-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/15/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Glycerolipids are the principal constituent of cellular membranes; remodelling of glycerolipids plays important roles in temperature adaptation in plants. Temperate plants can endure freezing stress, but even chilling at above-zero temperatures can induce death in tropical species. However, little is known about the differences in glycerolipid response to low temperatures between chilling-sensitive and freezing-tolerant plants. Using ESI-MS/MS-based lipidomic analysis, we compared the glycerolipidome of chilling (4 and 10 °C)-treated rice with that of freezing (-6 and -12 °C)-treated Arabidopsis, both immediately after these low-temperature treatments and after a subsequent recovery culture period. RESULTS Arabidopsis is a 16:3 plant that harbours both eukaryotic and prokaryotic-type lipid synthesis pathways, while rice is an 18:3 plant that harbours only the eukaryotic lipid synthesis pathway. Arabidopsis contains higher levels of galactolipids than rice and has a higher double bond index (DBI). Arabidopsis contains lower levels of high melting point phosphatidylglycerol (PG) molecules and has a lower average acyl chain length (ACL). Marked phospholipid degradation occurred during the recovery culture period of non-lethal chilling treated rice, but did not occur in non-lethal freezing treated Arabidopsis. Glycerolipids with larger head groups were synthesized more in Arabidopsis than in rice at sub-lethal low-temperatures. Levels of phosphatidic acid (PA) and phosphatidylinositol (PI) rose in both plants after low-temperature treatment. The DBI and ACL of total lipids did not change during low-temperature treatment. CONCLUSIONS A higher DBI and a lower ACL could make the membranes of Arabidopsis more fluid at low temperatures. The ability to synthesize glycerolipids containing a larger head group may correlate with low-temperature tolerance. The low-temperature-induced increase of PA may play a dual role in plant responses to low temperatures: as a lipid signal that initiates tolerance responses, and as a structural molecule that, on extensive in large accumulation, could damage the integrity of membranes. Changes in ACL and DBI are responses of plants to long-term low temperature.
Collapse
Affiliation(s)
- Guowei Zheng
- />Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650202 People’s Republic of China
- />Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
| | - Lixia Li
- />Guiyang Medicinal Botanical Garden, Guiyang, 550002 People’s Republic of China
| | - Weiqi Li
- />Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650202 People’s Republic of China
- />Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 People’s Republic of China
| |
Collapse
|
39
|
Gujas B, Rodriguez-Villalon A. Plant Phosphoglycerolipids: The Gatekeepers of Vascular Cell Differentiation. FRONTIERS IN PLANT SCIENCE 2016; 7:103. [PMID: 26904069 PMCID: PMC4751917 DOI: 10.3389/fpls.2016.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/19/2016] [Indexed: 05/31/2023]
Abstract
In higher plants, the plant vascular system has evolved as an inter-organ communication network essential to deliver a wide range of signaling factors among distantly separated organs. To become conductive elements, phloem and xylem cells undergo a drastic differentiation program that involves the degradation of the majority of their organelles. While the molecular mechanisms regulating such complex process remain poorly understood, it is nowadays clear that phosphoglycerolipids display a pivotal role in the regulation of vascular tissue formation. In animal cells, this class of lipids is known to mediate acute responses as signal transducers and also act as constitutive signals that help defining organelle identity. Their rapid turnover, asymmetrical distribution across subcellular compartments as well as their ability to rearrange cytoskeleton fibers make phosphoglycerolipids excellent candidates to regulate complex morphogenetic processes such as vascular differentiation. Therefore, in this review we aim to summarize, emphasize and connect our current understanding about the involvement of phosphoglycerolipids in phloem and xylem differentiation.
Collapse
|
40
|
Zhou J, Lyu Y, Richlen M, Anderson DM, Cai Z. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions. CRITICAL REVIEWS IN PLANT SCIENCES 2016; 35:81-105. [PMID: 28966438 PMCID: PMC5619252 DOI: 10.1080/07352689.2016.1172461] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS.
Collapse
Affiliation(s)
- Jin Zhou
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yihua Lyu
- South China Sea Environment Monitoring Center, State Oceanic Administration, Guangzhou, 510300, P. R. China
| | - Mindy Richlen
- Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., MS 32, Woods Hole, Massachusetts, 02543, USA
| | - Donald M. Anderson
- Department of Biology, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., MS 32, Woods Hole, Massachusetts, 02543, USA
| | - Zhonghua Cai
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
41
|
Foissner I, Sommer A, Hoeftberger M, Hoepflinger MC, Absolonova M. Is Wortmannin-Induced Reorganization of the trans-Golgi Network the Key to Explain Charasome Formation? FRONTIERS IN PLANT SCIENCE 2016; 7:756. [PMID: 27375631 PMCID: PMC4891338 DOI: 10.3389/fpls.2016.00756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Wortmannin, a fungal metabolite and an inhibitor of phosphatidylinositol-3 (PI3) and phosphatidylinositol-4 (PI4) kinases, is widely used for the investigation and dissection of vacuolar trafficking routes and for the identification of proteins located at multivesicular bodies (MVBs). In this study, we applied wortmannin on internodal cells of the characean green alga Chara australis. Wortmannin was used at concentrations of 25 and 50 μM which, unlike in other cells, arrested neither constitutive, nor wounding-induced endocytosis via coated vesicles. Wortmannin caused the formation of "mixed compartments" consisting of MVBs and membranous tubules which were probably derived from the trans-Golgi network (TGN) and within these compartments MVBs fused into larger organelles. Most interestingly, wortmannin also caused pronounced changes in the morphology of the TGNs. After transient hypertrophy, the TGNs lost their coat and formed compact, three-dimensional meshworks of anastomosing tubules containing a central core. These meshworks had a size of up to 4 μm and a striking resemblance to charasomes, which are convoluted plasma membrane domains, and which serve to increase the area available for transporters. Our findings indicate that similar mechanisms are responsible for the formation of charasomes and the wortmannin-induced reorganization of the TGN. We hypothesize that both organelles grow because of a disturbance of clathrin-dependent membrane retrieval due to inhibition of PI3 and/or PI4 kinases. This leads to local inhibition of clathrin-mediated endocytosis during charasome formation in untreated cells and to inhibition of vesicle release from the TGN in wortmannin-treated cells, respectively. The morphological resemblance between charasomes and wortmannin-modified TGN compartments suggests that homologous proteins are involved in membrane curvature and organelle architecture.
Collapse
|
42
|
Wan Y, Tang K, Zhang D, Xie S, Zhu X, Wang Z, Lang Z. Transcriptome-wide high-throughput deep m(6)A-seq reveals unique differential m(6)A methylation patterns between three organs in Arabidopsis thaliana. Genome Biol 2015; 16:272. [PMID: 26667818 PMCID: PMC4714525 DOI: 10.1186/s13059-015-0839-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
Background m6A is a ubiquitous RNA modification in eukaryotes. Transcriptome-wide m6A patterns in Arabidopsis have been assayed recently. However, differential m6A patterns between organs have not been well characterized. Results Over two-third of the transcripts in Arabidopsis are modified by m6A. In contrast to a recent observation of m6A enrichment in 5′ mRNA, we find that m6A is distributed predominantly near stop codons. Interestingly, 85 % of the modified transcripts show high m6A methylation extent compared to their transcript level. The 290 highly methylated transcripts are mainly associated with transporters, stress responses, redox, regulation factors, and some non-coding RNAs. On average, the proportion of transcripts showing differential methylation between two plant organs is higher than that showing differential transcript levels. The transcripts with extensively higher m6A methylation in an organ are associated with the unique biological processes of this organ, suggesting that m6A may be another important contributor to organ differentiation in Arabidopsis. Highly expressed genes are relatively less methylated and vice versa, and different RNAs have distinct m6A patterns, which hint at mRNA fate. Intriguingly, most of the transposable element transcripts maintained a fragmented form with a relatively low transcript level and high m6A methylation in the cells. Conclusions This is the first study to comprehensively analyze m6A patterns in a variety of RNAs, the relationship between transcript level and m6A methylation extent, and differential m6A patterns across organs in Arabidopsis. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0839-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yizhen Wan
- State Key Lab Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Dayong Zhang
- Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shaojun Xie
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.,Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaohong Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.,Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zegang Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Zhaobo Lang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA. .,Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
43
|
Abstract
Although the eukaryotic TOR (target of rapamycin) kinase signalling pathway has emerged as a key player for integrating nutrient-, energy- and stress-related cues with growth and metabolic outputs, relatively little is known of how this ancient regulatory mechanism has been adapted in higher plants. Drawing comparisons with the substantial knowledge base around TOR kinase signalling in fungal and animal systems, functional aspects of this pathway in plants are reviewed. Both conserved and divergent elements are discussed in relation to unique aspects associated with an autotrophic mode of nutrition and adaptive strategies for multicellular development exhibited by plants.
Collapse
|
44
|
Kolb C, Nagel MK, Kalinowska K, Hagmann J, Ichikawa M, Anzenberger F, Alkofer A, Sato MH, Braun P, Isono E. FYVE1 is essential for vacuole biogenesis and intracellular trafficking in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1361-73. [PMID: 25699591 PMCID: PMC4378156 DOI: 10.1104/pp.114.253377] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/18/2015] [Indexed: 05/18/2023]
Abstract
The plant vacuole is a central organelle that is involved in various biological processes throughout the plant life cycle. Elucidating the mechanism of vacuole biogenesis and maintenance is thus the basis for our understanding of these processes. Proper formation of the vacuole has been shown to depend on the intracellular membrane trafficking pathway. Although several mutants with altered vacuole morphology have been characterized in the past, the molecular basis for plant vacuole biogenesis has yet to be fully elucidated. With the aim to identify key factors that are essential for vacuole biogenesis, we performed a forward genetics screen in Arabidopsis (Arabidopsis thaliana) and isolated mutants with altered vacuole morphology. The vacuolar fusion defective1 (vfd1) mutant shows seedling lethality and defects in central vacuole formation. VFD1 encodes a Fab1, YOTB, Vac1, and EEA1 (FYVE) domain-containing protein, FYVE1, that has been implicated in intracellular trafficking. FYVE1 localizes on late endosomes and interacts with Src homology-3 domain-containing proteins. Mutants of FYVE1 are defective in ubiquitin-mediated protein degradation, vacuolar transport, and autophagy. Altogether, our results show that FYVE1 is essential for plant growth and development and place FYVE1 as a key regulator of intracellular trafficking and vacuole biogenesis.
Collapse
Affiliation(s)
- Cornelia Kolb
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Marie-Kristin Nagel
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Kamila Kalinowska
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Jörg Hagmann
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Mie Ichikawa
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Franziska Anzenberger
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Angela Alkofer
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Masa H Sato
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Pascal Braun
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Erika Isono
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| |
Collapse
|
45
|
Williams SP, Gillaspy GE, Perera IY. Biosynthesis and possible functions of inositol pyrophosphates in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:67. [PMID: 25729385 PMCID: PMC4325660 DOI: 10.3389/fpls.2015.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/26/2015] [Indexed: 05/24/2023]
Abstract
Inositol phosphates (InsPs) are intricately tied to lipid signaling, as at least one portion of the inositol phosphate signaling pool is derived from hydrolysis of the lipid precursor, phosphatidyl inositol (4,5) bisphosphate. The focus of this review is on the inositol pyrophosphates, which are a novel group of InsP signaling molecules containing diphosphate or triphosphate chains (i.e., PPx) attached to the inositol ring. These PPx-InsPs are emerging as critical players in the integration of cellular metabolism and stress signaling in non-plant eukaryotes. Most eukaryotes synthesize the precursor molecule, myo-inositol (1,2,3,4,5,6)-hexakisphosphate (InsP6), which can serve as a signaling molecule or as storage compound of inositol, phosphorus, and minerals (referred to as phytic acid). Even though plants produce huge amounts of precursor InsP6 in seeds, almost no attention has been paid to whether PPx-InsPs exist in plants, and if so, what roles these molecules play. Recent work has delineated that Arabidopsis has two genes capable of PP-InsP5 synthesis, and PPx-InsPs have been detected across the plant kingdom. This review will detail the known roles of PPx-InsPs in yeast and animal systems, and provide a description of recent data on the synthesis and accumulation of these novel molecules in plants, and potential roles in signaling.
Collapse
Affiliation(s)
- Sarah P. Williams
- Biochemistry, Virginia Polytechnic and State UniversityBlacksburg, VA, USA
| | - Glenda E. Gillaspy
- Biochemistry, Virginia Polytechnic and State UniversityBlacksburg, VA, USA
| | - Imara Y. Perera
- Plant and Microbial Biology, North Carolina State UniversityRaleigh, NC, USA
| |
Collapse
|
46
|
Gao C, Luo M, Zhao Q, Yang R, Cui Y, Zeng Y, Xia J, Jiang L. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth. Curr Biol 2014; 24:2556-63. [PMID: 25438943 DOI: 10.1016/j.cub.2014.09.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/16/2014] [Accepted: 09/02/2014] [Indexed: 01/10/2023]
Abstract
Tight control of membrane protein homeostasis by selective degradation is crucial for proper cell signaling and multicellular organismal development. Membrane proteins destined for degradation, such as misfolded proteins or activated receptors, are usually ubiquitinated and sorted into the intraluminal vesicles (ILVs) of prevacuolar compartments/multivesicular bodies (PVCs/MVBs), which then fuse with vacuoles/lysosomes to deliver their contents to the lumen for degradation by luminal proteases. The formation of ILVs and the sorting of ubiquitinated membrane cargoes into them are facilitated by the endosomal sorting complex required for transport (ESCRT) machinery. Plants possess most evolutionarily conserved members of the ESCRT machinery but apparently lack orthologs of ESCRT-0 subunits and the ESCRT-I component Mvb12. Here, we identified a unique plant ESCRT component called FYVE domain protein required for endosomal sorting 1 (FREE1). FREE1 binds to phosphatidylinositol-3-phosphate (PI3P) and ubiquitin and specifically interacts with Vps23 via PTAP-like tetrapeptide motifs to be incorporated into the ESCRT-I complex. Arabidopsis free1 mutant is seedling lethal and defective in the formation of ILVs in MVBs. Consequently, endocytosed plasma membrane (PM) proteins destined for degradation, such as the auxin efflux carrier PIN2, cannot reach the lumen of the vacuole and mislocalize to the tonoplast. Collectively, our findings provide the first functional characterization of a plant FYVE domain protein, which is essential for plant growth via its role as a unique evolutionary ESCRT component for MVB biogenesis and vacuolar sorting of membrane proteins.
Collapse
Affiliation(s)
- Caiji Gao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ming Luo
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Key Laboratory of Plant Resources, Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qiong Zhao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Renzhi Yang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jun Xia
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
47
|
Zheng J, Han SW, Rodriguez-Welsh MF, Rojas-Pierce M. Homotypic vacuole fusion requires VTI11 and is regulated by phosphoinositides. MOLECULAR PLANT 2014; 7:1026-1040. [PMID: 24569132 DOI: 10.1093/mp/ssu019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most plant cells contain a large central vacuole that is essential to maintain cellular turgor. We report a new mutant allele of VTI11 that implicates the SNARE protein VTI11 in homotypic fusion of protein storage and lytic vacuoles. Fusion of the multiple vacuoles present in vti11 mutants could be induced by treatment with Wortmannin and LY294002, which are inhibitors of Phosphatidylinositol 3-Kinase (PI3K). We provide evidence that Phosphatidylinositol 3-Phosphate (PtdIns(3)P) regulates vacuole fusion in vti11 mutants, and that fusion of these vacuoles requires intact microtubules and actin filaments. Finally, we show that Wortmannin also induced the fusion of guard cell vacuoles in fava beans, where vacuoles are naturally fragmented after ABA-induced stomata closure. These results suggest a ubiquitous role of phosphoinositides in vacuole fusion, both during the development of the large central vacuole and during the dynamic vacuole remodeling that occurs as part of stomata movements.
Collapse
Affiliation(s)
- Jiameng Zheng
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Sang Won Han
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
48
|
Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci U S A 2014; 111:8293-8. [PMID: 24843126 DOI: 10.1073/pnas.1402262111] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In plants, the controlled absorption of soil nutrients by root epidermal cells is critical for growth and development. IRON-REGULATED TRANSPORTER 1 (IRT1) is the main root transporter taking up iron from the soil and is also the main entry route in plants for potentially toxic metals such as manganese, zinc, cobalt, and cadmium. Previous work demonstrated that the IRT1 protein localizes to early endosomes/trans-Golgi network (EE/TGN) and is constitutively endocytosed through a monoubiquitin- and clathrin-dependent mechanism. Here, we show that the availability of secondary non-iron metal substrates of IRT1 (Zn, Mn, and Co) controls the localization of IRT1 between the outer polar domain of the plasma membrane and EE/TGN in root epidermal cells. We also identify FYVE1, a phosphatidylinositol-3-phosphate-binding protein recruited to late endosomes, as an important regulator of IRT1-dependent metal transport and metal homeostasis in plants. FYVE1 controls IRT1 recycling to the plasma membrane and impacts the polar delivery of this transporter to the outer plasma membrane domain. This work establishes a functional link between the dynamics and the lateral polarity of IRT1 and the transport of its substrates, and identifies a molecular mechanism driving polar localization of a cell surface protein in plants.
Collapse
|
49
|
Hopkins J, Pierre O, Kazmierczak T, Gruber V, Frugier F, Clement M, Frendo P, Herouart D, Boncompagni E. MtZR1, a PRAF protein, is involved in the development of roots and symbiotic root nodules in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2014; 37:658-69. [PMID: 23961805 DOI: 10.1111/pce.12185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
PRAF proteins are present in all plants, but their functions remain unclear. We investigated the role of one member of the PRAF family, MtZR1, on the development of roots and nitrogen-fixing nodules in Medicago truncatula. We found that MtZR1 was expressed in all M. truncatula organs. Spatiotemporal analysis showed that MtZR1 expression in M. truncatula roots was mostly limited to the root meristem and the vascular bundles of mature nodules. MtZR1 expression in root nodules was down-regulated in response to various abiotic stresses known to affect nitrogen fixation efficiency. The down-regulation of MtZR1 expression by RNA interference in transgenic roots decreased root growth and impaired nodule development and function. MtZR1 overexpression resulted in longer roots and significant changes to nodule development. Our data thus indicate that MtZR1 is involved in the development of roots and nodules. To our knowledge, this work provides the first in vivo experimental evidence of a biological role for a typical PRAF protein in plants.
Collapse
Affiliation(s)
- Julie Hopkins
- INRA 1355, UMR 'Institut Sophia Agrobiotech', Sophia-Antipolis Cedex, F-06903, France; CNRS 7254, UMR 'Institut Sophia Agrobiotech', Sophia-Antipolis Cedex, F-06903, France; UMR 'Institut Sophia Agrobiotech' Université de Nice-Sophia Antipolis (UNS), Cedex, F-06903, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:2818-23. [PMID: 24550313 DOI: 10.1073/pnas.1324264111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Phosphatidylinositol (PtdIns) is a structural phospholipid that can be phosphorylated into various lipid signaling molecules, designated polyphosphoinositides (PPIs). The reversible phosphorylation of PPIs on the 3, 4, or 5 position of inositol is performed by a set of organelle-specific kinases and phosphatases, and the characteristic head groups make these molecules ideal for regulating biological processes in time and space. In yeast and mammals, PtdIns3P and PtdIns(3,5)P2 play crucial roles in trafficking toward the lytic compartments, whereas the role in plants is not yet fully understood. Here we identified the role of a land plant-specific subgroup of PPI phosphatases, the suppressor of actin 2 (SAC2) to SAC5, during vacuolar trafficking and morphogenesis in Arabidopsis thaliana. SAC2-SAC5 localize to the tonoplast along with PtdIns3P, the presumable product of their activity. In SAC gain- and loss-of-function mutants, the levels of PtdIns monophosphates and bisphosphates were changed, with opposite effects on the morphology of storage and lytic vacuoles, and the trafficking toward the vacuoles was defective. Moreover, multiple sac knockout mutants had an increased number of smaller storage and lytic vacuoles, whereas extralarge vacuoles were observed in the overexpression lines, correlating with various growth and developmental defects. The fragmented vacuolar phenotype of sac mutants could be mimicked by treating wild-type seedlings with PtdIns(3,5)P2, corroborating that this PPI is important for vacuole morphology. Taken together, these results provide evidence that PPIs, together with their metabolic enzymes SAC2-SAC5, are crucial for vacuolar trafficking and for vacuolar morphology and function in plants.
Collapse
|