1
|
Yoo JH, Santarossa C, Thomas A, Ekiert D, Darwin KH. Characterization of a cytokinin-binding protein locus in Mycobacterium tuberculosis. J Bacteriol 2025; 207:e0000325. [PMID: 40013803 PMCID: PMC11925245 DOI: 10.1128/jb.00003-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Cytokinins are adenine-based hormones that have been well-characterized in plants but are also made by bacteria, including the human-exclusive pathogen Mycobacterium tuberculosis. Like plants, M. tuberculosis uses cytokinins to regulate gene expression. We previously established that cytokinin overaccumulation in M. tuberculosis results in a buildup of aldehydes produced during cytokinin breakdown. In plants, dedicated enzymes called cytokinin oxidases convert cytokinins into adenine and various aldehydes. Proteasome degradation-deficient M. tuberculosis, which cannot degrade the cytokinin-producing enzyme Log, accumulates several cytokinins and at least one cytokinin-associated aldehyde, resulting in increased sensitivity to nitric oxide and copper. We therefore hypothesized that M. tuberculosis encodes one or more cytokinin oxidases, and disruption of this enzyme might restore resistance to nitric oxide and copper in a proteasome-defective strain. Using a homology-based search, we identified Rv3719 as a protein with high similarity to a plant cytokinin oxidase. Deletion of this gene, however, did not restore nitric oxide or copper resistance to a degradation-defective mutant. Instead, we observed increased copper sensitivity when Rv3719 was deleted from either wild-type or proteasome-defective strains. Finally, we characterized Rv3718c, a protein encoded adjacent to Rv3719, and found that it bound a cytokinin with high specificity. Collectively, these data support a role for cytokinin activity in M. tuberculosis physiology that remains to be further elucidated.IMPORTANCENumerous bacterial species encode cytokinin-producing enzymes, the functions of which are almost completely unknown. This work contributes new knowledge to the cytokinin field for bacteria and reveals further conservation of cytokinin-associated proteins between plants and prokaryotes.
Collapse
Affiliation(s)
- Jin Hee Yoo
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Cristina Santarossa
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Audrey Thomas
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Damian Ekiert
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - K. Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Aydin A, Yerlikaya BA, Yerlikaya S, Yilmaz NN, Kavas M. CRISPR-mediated mutation of cytokinin signaling genes (SlHP2 and SlHP3) in tomato: Morphological, physiological, and molecular characterization. THE PLANT GENOME 2025; 18:e20542. [PMID: 39779650 PMCID: PMC11711121 DOI: 10.1002/tpg2.20542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
Synergistic and antagonistic relationships between cytokinins and other plant growth regulators are important in response to changing environmental conditions. Our study aimed to determine the functions of SlHP2 and SlHP3, two members of cytokinin signaling in tomato, in drought stress response using CRISPR/Cas9-mediated mutagenesis. Ten distinct genome-edited lines were generated via Agrobacterium tumefaciens-mediated gene transfer and confirmed through Sanger sequencing. Stress experiments were conducted with two of these lines (slhp2,3-10 and slhp2,3-11), which harbored homozygous mutations in both genes. The responses of two lines carrying homozygous mutations in both genes under polyethylene glycol (PEG)-induced stress were examined using morphological, physiological, biochemical, and molecular methods. The genome-edited lines demonstrated enhanced water retention, reduced stomatal density, and less oxidative damage compared to the wild-type plants under PEG-induced stress. Moreover, the slhp2,3 double mutant plants exhibited improved root growth, showcasing their superior drought tolerance over wild-type plants by accessing deeper water sources and maintaining hydration in water-limited environments. To investigate the involvement of cytokinin signaling regulators and genes associated with stomatal formation and differentiation, the expression of genes (Speechless [SPCH], FAMA, MUTE, TMM, HB25, HB31, RR6, RR7, and Solyc02g080860) was assessed. The results revealed that all regulators were downregulated, with SPCH, TMM, RR7, and RR6 showing significant reductions under PEG-induced stress. These results emphasize the promise of utilizing CRISPR/Cas9 to target cytokinin signaling pathways, enhancing drought tolerance in tomatoes through improvements in water retention and root growth, along with a reduction in stomatal density and malondialdehyde content.
Collapse
Affiliation(s)
- Abdullah Aydin
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| | - Bayram Ali Yerlikaya
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| | - Seher Yerlikaya
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| | - Nisa Nur Yilmaz
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| |
Collapse
|
3
|
Liang X, Yin P, Li F, Cao Y, Jiang C. ZmGolS1 underlies natural variation of raffinose content and salt tolerance in maize. J Genet Genomics 2025; 52:346-355. [PMID: 39725188 DOI: 10.1016/j.jgg.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Salt stress significantly inhibits crop growth and development, and mitigating this can enhance salt tolerance in various crops. Previous studies have shown that regulating saccharide biosynthesis is a key aspect of plant salt tolerance; however, the underlying molecular mechanisms remain largely unexplored. In this study, we demonstrate that overexpression of a salt-inducible galactinol synthase gene, ZmGolS1, alleviates salt-induced growth inhibition, likely by promoting raffinose synthesis. Additionally, we show that natural variation in ZmGolS1 transcript levels contributes to the diversity of raffinose content and salt tolerance in maize. We further reveal that ZmRR18, a type-B response regulator transcription factor, binds to the AATC element in the promoter of ZmGolS1, with this binding increases the transcript levels of ZmGolS1 under salt conditions. Moreover, a single nucleotide polymorphism (termed SNP-302T) within the ZmGolS1 promoter significantly reduces its binding affinity for ZmRR18, resulting in decreased ZmGolS1 expression and diminished raffinose content, ultimately leading to a salt-hypersensitive phenotype. Collectively, our findings reveal the molecular mechanisms by which the ZmRR18-ZmGolS1 module enhances raffinose biosynthesis, thereby promoting maize growth under salt conditions. This research provides important insights into salt tolerance mechanisms associated with saccharide biosynthesis and identifies valuable genetic loci for breeding salt-tolerant maize varieties.
Collapse
Affiliation(s)
- Xiaoyan Liang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pan Yin
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fenrong Li
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yibo Cao
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Chen R, Huang Q, Xu Y, Wang Z, Li N, Lu Y, Tao T, Hua Y, Wang G, Wang S, Wang H, Zhou Y, Xu Y, Li P, Xu C, Yang Z. Comparative Genomic Analysis of the Poaceae Cytokinin Response Regulator RRB Gene Family and Functional Characterization of OsRRB5 in Drought Stress Tolerance in Rice. Int J Mol Sci 2025; 26:1954. [PMID: 40076580 PMCID: PMC11899991 DOI: 10.3390/ijms26051954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
The cytokinin (CK) type B response regulator (RRB) gene is involved in the CK signaling pathway and performs a key function for mediating reactions to amounts of abiotic stresses. Nevertheless, the RRB gene family remains to be characterized in Poaceae (also known as Gramineae or grasses). Here, we performed a comprehensive analysis encompassing phylogenetic relationships, evolutionary pressures, and expression patterns of the RRB gene family in six Poaceae species, including rice, Panicum, Sorghum, Setaria, maize, and wheat. Phylogenetic tree and syntenic analyses revealed that the RRB genes were divided into seven orthologous gene clusters (OGCs), indicating that the common ancestor of these Poaceae species possessed at least seven RRB genes. Further analysis revealed that the evolution of the Poaceae RRB gene family was primarily driven by purifying selection. The expression pattern of rice OsRRB toward phytohormonal and abiotic stresses was also investigated. The findings revealed that several phytohormones, including cytokinin (CK), abscisic acid (ABA), and methyl jasmonate (MeJA), as well as abiotic factors such as drought and cold, significantly increased the expression levels of these genes. Importantly, haplotype analysis identified four crucial variation sites within the OsRRB5 genomic regions that may contribute to drought resistance in rice. Our findings lay the groundwork for further elucidating the biological function of OsRRB genes and provide a promising new target for developing stress-resistant rice varieties.
Collapse
Affiliation(s)
- Rujia Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yanan Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhichao Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Nian Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Tianyun Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yu Hua
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Gaobo Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Shuting Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hanyao Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (R.C.); (Q.H.); (Y.X.); (Z.W.); (N.L.); (Y.L.); (T.T.); (Y.H.); (G.W.); (S.W.); (H.W.); (Y.Z.); (Y.X.); (P.L.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Zhang S, Wang S, Zhang B, Yang S, Wang J. Different concentrations of carbon nanotubes promote or inhibit organogenesis of Arabidopsis explants by regulating endogenous hormone homeostasis. PLANTA 2025; 261:55. [PMID: 39922983 DOI: 10.1007/s00425-025-04633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
MAIN CONCLUSION Carbon nanotubes concentration modulates endogenous hormone balance, influencing callogenesis and organogenesis efficiency, with potential for optimizing plant transformation programs. A unique feature of plant somatic cells is their remarkable ability to regenerate new organs and even an entire plant in vitro. In this work, we investigated how an important group of environmental factors, carbon nanotubes (CNTs) (both single-walled nanotubes as SWCNTs and multi-walled nanotubes as MWCNTs), affect the regenerative capacity of plants and the underlying molecular mechanisms. Our data show that both the induction of pluripotent callus from Arabidopsis root explants and the frequency of de novo shoot regeneration were influenced by the concentration, but not the type of CNTs. Raman analyses show that CNTs can be transported and accumulate in the callus tissue and in the newly formed seedlings. The contrasting effects of CNTs at 0.1 mg L-1 and 50 mg L-1 were reflected not only in the concentrations of endogenous auxin and trans-zeatin (tZT), but also in the changes in the expression levels of positive cell cycle regulators and transcriptional regulators that control callus pluripotency and the establishment of shoot apical meristem (SAM). Since most existing plant transformation strategies involve the conversion of dedifferentiated calli into regenerated plantlets and are very time consuming and inefficient, this work suggests that CNTs could be used as an additive to optimize plant micropropagation and genetic engineering systems by modulating hormone balance and stimulating the intrinsic totipotency of plants, thus overcoming organogenic recalcitrance.
Collapse
Affiliation(s)
- Sainan Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Shuaiqi Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Bing Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Shaohui Yang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Jiehua Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Joshi PS, Singla Pareek SL, Pareek A. Shaping resilience: The critical role of plant response regulators in salinity stress. Biochim Biophys Acta Gen Subj 2025; 1869:130749. [PMID: 39719184 DOI: 10.1016/j.bbagen.2024.130749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Salinity stress affects plant growth, development, biomass, yield, as well as their survival. A series of signaling cascade is activated to cope the deleterious effect of salinity stress. Cytokinins are known for their regulatory roles from cell growth and expansion to abiotic stress signaling. Two component system (TCS) are important multistep phosphorelay signal transduction machinery converging cytokinin, ethylene and light signal transduction pathways together. Plant TCS comprises of histidine kinases, phosho-transfer proteins and response regulators. Histidine kinases perceive the signal and relay it to response regulator via histidine containing phosphor-transfer proteins. SCOPE OF REVIEW Response regulators are one of the major and diverse component of TCS system which have been extensively studied for their role in plant growth, development and circadian rhythm. However, knowledge of their regulatory role in abiotic stress signaling is limited. This mini-review specifically focus on role of response regulators in salinity stress signaling. MAJOR CONCLUSION Response regulators is the divergent node of TCS machinery, where cross-talks with other stress-mediated, phytohormone-mediated, as well as, light-mediated signaling pathways ensues. Studies from past few years have established central role of response regulators in salinity stress, however, the detailed mechanism of their actions need to be studied further. GENERAL SIGNIFICANCE Response regulators act as both negative as well as positive regulator of salinity and cytokinin signaling, making it an excellent target to increase crop yield as well as stress tolerance capabilities.
Collapse
Affiliation(s)
- Priyanka S Joshi
- National Agri-Food and Biomanufacturing Institute, Mohali, Punjab 140306, India
| | - Sneh L Singla Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- National Agri-Food and Biomanufacturing Institute, Mohali, Punjab 140306, India; Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
7
|
Lee K, Yoon H, Park OS, Seo PJ. A positive feedback loop of cytokinin signaling ensures efficient de novo shoot regeneration in Arabidopsis. THE NEW PHYTOLOGIST 2025. [PMID: 39878239 DOI: 10.1111/nph.20409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Affiliation(s)
- Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hobin Yoon
- Interdisciplinary Program in Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Ok-Sun Park
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Korea
- Interdisciplinary Program in Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
8
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
9
|
Takatsuka H, Amari T, Umeda M. Cytokinin signaling is involved in root hair elongation in response to phosphate starvation. PLANT SIGNALING & BEHAVIOR 2024; 19:2305030. [PMID: 38267225 PMCID: PMC10810164 DOI: 10.1080/15592324.2024.2305030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
Root hair, single-celled tubular structures originating from the epidermis, plays a vital role in the uptake of nutrients from the soil by increasing the root surface area. Therefore, optimizing root hair growth is crucial for plants to survive in fluctuating environments. Root hair length is determined by the action of various plant hormones, among which the roles of auxin and ethylene have been extensively studied. However, evidence for the involvement of cytokinins has remained elusive. We recently reported that the cytokinin-activated B-type response regulators, ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) and ARR12 directly upregulate the expression of ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4), which encodes a key transcription factor that controls root hair elongation. However, depending on the nutrient availability, it is unknown whether the ARR1/12-RSL4 pathway controls root hair elongation. This study shows that phosphate deficiency induced the expression of RSL4 and increased the root hair length through ARR1/12, though the transcript and protein levels of ARR1/12 did not change. These results indicate that cytokinins, together with other hormones, regulate root hair growth under phosphate starvation conditions.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Toshiki Amari
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| |
Collapse
|
10
|
Guo LM, Li J, Qi PP, Wang JB, Ghanem H, Qing L, Zhang HM. The TATA-box binding protein-associated factor TAF12b facilitates the degradation of type B response regulators to negatively regulate cytokinin signaling. PLANT COMMUNICATIONS 2024; 5:101076. [PMID: 39228128 PMCID: PMC11671765 DOI: 10.1016/j.xplc.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Cytokinins (CKs) are one of the important classes of plant hormones essential for plant growth and development. TATA-box binding protein-associated factor 12b (TAF12b) is involved in CK signaling, but its molecular and biochemical mechanisms are not fully understood. In this study, TAF12b of Nicotiana benthamiana (NbTAF12b) was found to mediate the CK response by directly interacting with type B response regulators (B-RRs), positive regulators of CK signaling, and inhibiting their transcriptional activities. As a transcriptional co-factor, TAF12b specifically facilitated the proteasomal degradation of non-phosphorylated B-RRs by recruiting the KISS ME DEADLY family of F-box proteins. Such interactions between TAF12b and B-RRs also occur in other plant species. Genetic transformation experiments showed that overexpression of NbTAF12b attenuates the CK-hypersensitive phenotype conferred by NbRR1 overexpression. Taken together, these results suggest a conserved mechanism in which TAF12b negatively regulates CK responses by promoting 26S proteasome-mediated B-RR degradation in multiple plant species, providing novel insights into the regulatory network of CK signaling in plants.
Collapse
Affiliation(s)
- Liu-Ming Guo
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Li
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Pan-Pan Qi
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jie-Bing Wang
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Hussein Ghanem
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400716, China; National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China.
| | - Heng-Mu Zhang
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
11
|
Guo F, Lv M, Zhang J, Li J. Crosstalk between Brassinosteroids and Other Phytohormones during Plant Development and Stress Adaptation. PLANT & CELL PHYSIOLOGY 2024; 65:1530-1543. [PMID: 38727547 DOI: 10.1093/pcp/pcae047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/30/2024] [Accepted: 05/08/2024] [Indexed: 11/14/2024]
Abstract
Brassinosteroids (BRs) are a group of polyhydroxylated phytosterols that play essential roles in regulating plant growth and development as well as stress adaptation. It is worth noting that BRs do not function alone, but rather they crosstalk with other endogenous signaling molecules, including the phytohormones auxin, cytokinins, gibberellins, abscisic acid, ethylene, jasmonates, salicylic acid and strigolactones, forming elaborate signaling networks to modulate plant growth and development. BRs interact with other phytohormones mainly by regulating each others' homeostasis, transport or signaling pathway at the transcriptional and posttranslational levels. In this review, we focus our attention on current research progress in BR signal transduction and the crosstalk between BRs and other phytohormones.
Collapse
Affiliation(s)
- Feimei Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Minghui Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jingjie Zhang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
12
|
Shao Z, Chen CY, Qiao H. How chromatin senses plant hormones. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102592. [PMID: 38941723 PMCID: PMC11790310 DOI: 10.1016/j.pbi.2024.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Plant hormones activate receptors, initiating intracellular signaling pathways. Eventually, hormone-specific transcription factors become active in the nucleus, facilitating hormone-induced transcriptional regulation. Chromatin plays a fundamental role in the regulation of transcription, the process by which genetic information encoded in DNA is converted into RNA. The structure of chromatin, a complex of DNA and proteins, directly influences the accessibility of genes to the transcriptional machinery. The different signaling pathways and transcription factors involved in the transmission of information from the receptors to the nucleus have been readily explored, but not so much for the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation, specifically for plant hormone responses. In this review, we will focus on the advancements in understanding how chromatin receives plant hormones, facilitating the changes necessary for fast, robust, and specific transcriptional regulation.
Collapse
Affiliation(s)
- Zhengyao Shao
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX, 78712, USA; Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA
| | - Chia-Yang Chen
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX, 78712, USA; Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX, 78712, USA; Department of Molecular Biosciences, The University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
13
|
Zhang Y, Dong W, Ma H, Zhao C, Ma F, Wang Y, Zheng X, Jin M. Comparative transcriptome and coexpression network analysis revealed the regulatory mechanism of Astragalus cicer L. in response to salt stress. BMC PLANT BIOLOGY 2024; 24:817. [PMID: 39210248 PMCID: PMC11363611 DOI: 10.1186/s12870-024-05531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Astragalus cicer L. is a perennial rhizomatous legume forage known for its quality, high biomass yield, and strong tolerance to saline-alkaline soils. Soil salinization is a widespread environmental pressure. To use A. cicer L. more scientifically and environmentally in agriculture and ecosystems, it is highly important to study the molecular response mechanism of A. cicer L. to salt stress. RESULTS In this study, we used RNA-seq technology and weighted gene coexpression network analysis (WGCNA) were performed. The results showed 4 key modules were closely related to the physiological response of A. cicer. L. to salt stress. The differentially expressed genes (DEGs) of key modules were mapped into the KEGG database, and found that the most abundant pathways were the plant hormone signal transduction pathway and carbon metabolism pathway. The potential regulatory networks of the cytokinin signal transduction pathway, the ethylene signal transduction pathway, and carbon metabolism related pathways were constructed according to the expression pathways of the DEGs. Seven hub genes in the key modules were selected and distributed among these pathways. They may involved in the positive regulation of cytokinin signaling and carbon metabolism in plant leaves, but limited the positive expression of ethylene signaling. Thus endowing the plant with salt tolerance in the early stage of salt stress. CONCLUSIONS Based on the phenotypic and physiological responses of A. cicer L. to salt stress, this study constructed the gene coexpression network of potential regulation to salt stress in key modules, which provided a new reference for exploring the response mechanism of legumes to abiotic stress.
Collapse
Affiliation(s)
- Yujuan Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| | - Wenke Dong
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China.
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China.
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| | - Chunxu Zhao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| | - Fuqin Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| | - Yan Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| | - Xiaolin Zheng
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| | - Minhui Jin
- College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, China
- Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China
| |
Collapse
|
14
|
Wang Z, Zhang W, Ding C, Xia Y, Yuan Z, Guo J, Yu J, Zhang B, Su X. RNA-seq reveals the gene expression in patterns in Populus × euramericana 'Neva' plantation under different precision water and fertilizer-intensive management. BMC PLANT BIOLOGY 2024; 24:759. [PMID: 39118015 PMCID: PMC11312740 DOI: 10.1186/s12870-024-05427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Populus spp. is a crucial fast-growing and productive tree species extensively cultivated in the mid-latitude plains of the world. However, the impact of intensive cultivation management on gene expression in plantation remains largely unexplored. RESULTS Precision water and fertilizer-intensive management substantially increased key enzyme activities of nitrogen transport, assimilation, and photosynthesis (1.12-2.63 times than CK) in Populus × euramericana 'Neva' plantation. Meanwhile, this management approach had a significant regulatory effect on the gene expression of poplar plantations. 1554 differential expression genes (DEGs)were identified in drip irrigation (ND) compared with conventional irrigation. Relative to ND, 2761-4116 DEGs, predominantly up-regulated, were identified under three drip fertilization combinations, among which 202 DEGs were mainly regulated by fertilization. Moreover, drip irrigation reduced the expression of cell wall synthesis-related genes to reduce unnecessary water transport. Precision drip and fertilizer-intensive management promotes the synergistic regulation of carbon and nitrogen metabolism and up-regulates the expression of major genes in nitrogen transport and assimilation processes (5 DEGs), photosynthesis (15 DEGs), and plant hormone signal transduction (11 DEGs). The incorporation of trace elements further enhanced the up-regulation of secondary metabolic process genes. In addition, the co-expression network identified nine hub genes regulated by precision water and fertilizer-intensive management, suggesting a pivotal role in regulating the growth of poplar. CONCLUSION Precision water and fertilizer-intensive management demonstrated the ability to regulate the expression of key genes and transcription factor genes involved in carbon and nitrogen metabolism pathways, plant hormone signal transduction, and enhance the activity of key enzymes involved in related processes. This regulation facilitated nitrogen absorption and utilization, and photosynthetic abilities such as light capture, light transport, and electron transport, which faintly synergistically regulate the growth of poplar plantations. These results provide a reference for proposing highly efficient precision intensive management to optimize the expression of target genes.
Collapse
Affiliation(s)
- Zhou Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, 100023, P.R. China
| | - Zhengsai Yuan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiangtao Guo
- Heibei Agricultural University, Baoding, 071001, P.R. China
| | - Jinjin Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
15
|
Renganathan P, Puente EOR, Sukhanova NV, Gaysina LA. Hydroponics with Microalgae and Cyanobacteria: Emerging Trends and Opportunities in Modern Agriculture. BIOTECH 2024; 13:27. [PMID: 39051342 PMCID: PMC11270261 DOI: 10.3390/biotech13030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
The global population is expected to reach 9.5 billion, which means that crop productivity needs to double to meet the growing population's food demand. Soil degradation and environmental factors, such as climate events, significantly threaten crop production and global food security. Furthermore, rapid urbanization has led to 55% of the world's population migrating to cities, and this proportion is expected to increase to 75% by 2050, which presents significant challenges in producing staple foods through conventional hinterland farming. Numerous studies have proposed various sustainable farming techniques to combat the shortage of farmable land and increase food security in urban areas. Soilless farming techniques such as hydroponics have gained worldwide popularity due to their resource efficiency and production of superior-quality fresh products. However, using chemical nutrients in a conventional hydroponic system can have significant environmental impacts, including eutrophication and resource depletion. Incorporating microalgae into hydroponic systems as biostimulants offers a sustainable and ecofriendly approach toward circular bioeconomy strategies. The present review summarizes the plant growth-promoting activity of microalgae as biostimulants and their mechanisms of action. We discuss their effects on plant growth parameters under different applications, emphasizing the significance of integrating microalgae into a closed-loop circular economy model to sustainably meet global food demands.
Collapse
Affiliation(s)
- Prabhaharan Renganathan
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
| | - Edgar Omar Rueda Puente
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico;
| | - Natalia V. Sukhanova
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
| | - Lira A. Gaysina
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
- All-Russian Research Institute of Phytopathology, 143050 Bolshye Vyazemy, Russia
| |
Collapse
|
16
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
17
|
Chen M, Dai Y, Liao J, Wu H, Lv Q, Huang Y, Liu L, Feng Y, Lv H, Zhou B, Peng D. TARGET OF MONOPTEROS: key transcription factors orchestrating plant development and environmental response. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2214-2234. [PMID: 38195092 DOI: 10.1093/jxb/erae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Plants have an incredible ability to sustain root and vascular growth after initiation of the embryonic root and the specification of vascular tissue in early embryos. Microarray assays have revealed that a group of transcription factors, TARGET OF MONOPTEROS (TMO), are important for embryonic root initiation in Arabidopsis. Despite the discovery of their auxin responsiveness early on, their function and mode of action remained unknown for many years. The advent of genome editing has accelerated the study of TMO transcription factors, revealing novel functions for biological processes such as vascular development, root system architecture, and response to environmental cues. This review covers recent achievements in understanding the developmental function and the genetic mode of action of TMO transcription factors in Arabidopsis and other plant species. We highlight the transcriptional and post-transcriptional regulation of TMO transcription factors in relation to their function, mainly in Arabidopsis. Finally, we provide suggestions for further research and potential applications in plant genetic engineering.
Collapse
Affiliation(s)
- Min Chen
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yani Dai
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Jiamin Liao
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Huan Wu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Huang
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Lichang Liu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Feng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Hongxuan Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, 410004, Changsha, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| | - Dan Peng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| |
Collapse
|
18
|
Yoo JH, Santarossa C, Thomas A, Ekiert D, Darwin KH. Characterization of a cytokinin-binding protein locus in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586654. [PMID: 38585767 PMCID: PMC10996566 DOI: 10.1101/2024.03.25.586654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cytokinins are adenine-based hormones that have been well-characterized in plants but are also made by bacteria, including the human-exclusive pathogen Mycobacterium tuberculosis . In M. tuberculosis , cytokinins activate transcription of an operon that affects the bacterial cell envelope. In plants, cytokinins are broken down by dedicated enzymes called cytokinin oxidases into adenine and various aldehydes. In proteasome degradation-deficient M. tuberculosis , the cytokinin-producing enzyme Log accumulates, resulting in the buildup of at least one cytokinin-associated aldehyde. We therefore hypothesized that M. tuberculosis encodes one or more cytokinin oxidases. Using a homology-based search for homologs of a plant cytokinin oxidase, we identified Rv3719 and a putative cytokinin-specific binding protein, Rv3718c. Deletion of the locus encoding these proteins did not have a measurable effect on in vitro growth. Nonetheless, Rv3718c bound a cytokinin with high specificity. Our data thus support a model whereby cytokinins play one or more roles in mycobacterial physiology. IMPORTANCE Numerous bacterial species encode cytokinin-producing enzymes, the functions of which are almost completely unknown. This work contributes new knowledge to the cytokinin field for bacteria, and also revealed further conservation of cytokinin-associated proteins between plants and prokaryotes.
Collapse
|
19
|
Demko V, Belova T, Messerer M, Hvidsten TR, Perroud PF, Ako AE, Johansen W, Mayer KFX, Olsen OA, Lang D. Regulation of developmental gatekeeping and cell fate transition by the calpain protease DEK1 in Physcomitrium patens. Commun Biol 2024; 7:261. [PMID: 38438476 PMCID: PMC10912778 DOI: 10.1038/s42003-024-05933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Calpains are cysteine proteases that control cell fate transitions whose loss of function causes severe, pleiotropic phenotypes in eukaryotes. Although mainly considered as modulatory proteases, human calpain targets are directed to the N-end rule degradation pathway. Several such targets are transcription factors, hinting at a gene-regulatory role. Here, we analyze the gene-regulatory networks of the moss Physcomitrium patens and characterize the regulons that are misregulated in mutants of the calpain DEFECTIVE KERNEL1 (DEK1). Predicted cleavage patterns of the regulatory hierarchies in five DEK1-controlled subnetworks are consistent with a pleiotropic and regulatory role during cell fate transitions targeting multiple functions. Network structure suggests DEK1-gated sequential transitions between cell fates in 2D-to-3D development. Our method combines comprehensive phenotyping, transcriptomics and data science to dissect phenotypic traits, and our model explains the protease function as a switch gatekeeping cell fate transitions potentially also beyond plant development.
Collapse
Affiliation(s)
- Viktor Demko
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84104, Bratislava, Slovakia
- Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dubravska cesta 9, 84104, Bratislava, Slovakia
| | - Tatiana Belova
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich-Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Pierre-François Perroud
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Ako Eugene Ako
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell, Nottinghamshire, NG25 0QF, UK
| | - Wenche Johansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich-Research Center for Environmental Health, 85764, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, 85354, Freising, Germany
| | - Odd-Arne Olsen
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Daniel Lang
- Plant Genome and Systems Biology, Helmholtz Center Munich-Research Center for Environmental Health, 85764, Neuherberg, Germany.
- Bundeswehr Institute of Microbiology, Microbial Genomics and Bioforensics, 80937, Munich, Germany.
| |
Collapse
|
20
|
Geem KR, Lim Y, Hong J, Bae W, Lee J, Han S, Gil J, Cho H, Ryu H. Cytokinin signaling promotes root secondary growth and bud formation in Panax ginseng. J Ginseng Res 2024; 48:220-228. [PMID: 38465220 PMCID: PMC10919999 DOI: 10.1016/j.jgr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 03/12/2024] Open
Abstract
Background Panax ginseng, one of the valuable perennial medicinal plants, stores numerous pharmacological substrates in its storage roots. Given its perennial growth habit, organ regeneration occurs each year, and cambium stem cell activity is necessary for secondary growth and storage root formation. Cytokinin (CK) is a phytohormone involved in the maintenance of meristematic cells for the development of storage organs; however, its physiological role in storage-root secondary growth remains unknown. Methods Exogenous CK was repeatedly applied to P. ginseng, and morphological and histological changes were observed. RNA-seq analysis was used to elucidate the transcriptional network of CK that regulates P. ginseng growth and development. The HISTIDINE KINASE 3 (PgHK3) and RESPONSE REGULATOR 2 (PgRR2) genes were cloned in P. ginseng and functionally analyzed in Arabidopsis as a two-component system involved in CK signaling. Results Phenotypic and histological analyses showed that CK increased cambium activity and dormant axillary bud formation in P. ginseng, thus promoting storage-root secondary growth and bud formation. The evolutionarily conserved two-component signaling pathways in P. ginseng were sufficient to restore CK signaling in the Arabidopsis ahk2/3 double mutant and rescue its growth defects. Finally, RNA-seq analysis of CK-treated P. ginseng roots revealed that plant-type cell wall biogenesis-related genes are tightly connected with mitotic cell division, cytokinesis, and auxin signaling to regulate CK-mediated P. ginseng development. Conclusion Overall, we identified the CK signaling-related two-component systems and their physiological role in P. ginseng. This scientific information has the potential to significantly improve the field-cultivation and biotechnology-based breeding of ginseng.
Collapse
Affiliation(s)
- Kyoung Rok Geem
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Yookyung Lim
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jeongeui Hong
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Wonsil Bae
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jinsu Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soeun Han
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Jinsu Gil
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyunwoo Cho
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
21
|
Hornai EML, Aycan M, Mitsui T. The Promising B-Type Response Regulator hst1 Gene Provides Multiple High Temperature and Drought Stress Tolerance in Rice. Int J Mol Sci 2024; 25:2385. [PMID: 38397061 PMCID: PMC10889171 DOI: 10.3390/ijms25042385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
High temperatures, drought, and salt stresses severely inhibit plant growth and production due to the effects of climate change. The Arabidopsis ARR1, ARR10, and ARR12 genes were identified as negative salt and drought stress regulators. However, in rice, the tolerance capacity of the hst1 gene, which is orthologous to the ARR1, ARR10, and ARR12 genes, to drought and multiple high temperature and drought stresses remains unknown. At the seedling and reproductive stages, we investigated the drought (DS) high temperature (HT) and multiple high temperature and drought stress (HT+DS) tolerance capacity of the YNU31-2-4 (YNU) genotype, which carries the hst1 gene, and its nearest genomic relative Sister Line (SL), which has a 99% identical genome without the hst1 gene. At the seedling stage, YNU demonstrated greater growth, photosynthesis, antioxidant enzyme activity, and decreased ROS accumulation under multiple HT+DS conditions. The YNU genotype also demonstrated improved yield potential and grain quality due to higher antioxidant enzyme activity and lower ROS generation throughout the reproductive stage under multiple HT+DS settings. Furthermore, for the first time, we discovered that the B-type response regulator hst1 gene controls ROS generation and antioxidant enzyme activities by regulating upstream and downstream genes to overcome yield reduction under multiple high temperatures and drought stress. This insight will help us to better understand the mechanisms of high temperature and drought stress tolerance in rice, as well as the evolution of tolerant crops that can survive increased salinity to provide food security during climate change.
Collapse
Affiliation(s)
- Ermelinda Maria Lopes Hornai
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- National Division of Research and Statistics, Timor-Leste Ministry of Agriculture, Fisheries and Forest, Dili 626, Timor-Leste
| | - Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
22
|
Zhou CM, Li JX, Zhang TQ, Xu ZG, Ma ML, Zhang P, Wang JW. The structure of B-ARR reveals the molecular basis of transcriptional activation by cytokinin. Proc Natl Acad Sci U S A 2024; 121:e2319335121. [PMID: 38198526 PMCID: PMC10801921 DOI: 10.1073/pnas.2319335121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The phytohormone cytokinin has various roles in plant development, including meristem maintenance, vascular differentiation, leaf senescence, and regeneration. Prior investigations have revealed that cytokinin acts via a phosphorelay similar to the two-component system by which bacteria sense and respond to external stimuli. The eventual targets of this phosphorelay are type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs), containing the conserved N-terminal receiver domain (RD), middle DNA binding domain (DBD), and C-terminal transactivation domain. While it has been established for two decades that the phosphoryl transfer from a specific histidyl residue in ARABIDOPSIS HIS PHOSPHOTRANSFER PROTEINS (AHPs) to an aspartyl residue in the RD of B-ARRs results in a rapid transcriptional response to cytokinin, the underlying molecular basis remains unclear. In this work, we determine the crystal structures of the RD-DBD of ARR1 (ARR1RD-DBD) as well as the ARR1DBD-DNA complex from Arabidopsis. Analyses of the ARR1DBD-DNA complex have revealed the structural basis for sequence-specific recognition of the GAT trinucleotide by ARR1. In particular, comparing the ARR1RD-DBD and ARR1DBD-DNA structures reveals that unphosphorylated ARR1RD-DBD exists in a closed conformation with extensive contacts between the RD and DBD. In vitro and vivo functional assays have further suggested that phosphorylation of the RD weakens its interaction with DBD, subsequently permits the DNA binding capacity of DBD, and promotes the transcriptional activity of ARR1. Our findings thus provide mechanistic insights into phosphorelay activation of gene transcription in response to cytokinin.
Collapse
Affiliation(s)
- Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Jian-Xu Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai201602, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Miao-Lian Ma
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- New Cornerstone Science Laboratory, Shanghai200032, China
| |
Collapse
|
23
|
Li Y, Zhao L, Guo C, Tang M, Lian W, Chen S, Pan Y, Xu X, Luo C, Yi Y, Cui Y, Chen L. OsNAC103, an NAC transcription factor negatively regulates plant height in rice. PLANTA 2024; 259:35. [PMID: 38193994 PMCID: PMC10776745 DOI: 10.1007/s00425-023-04309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
MAIN CONCLUSION OsNAC103 negatively regulates rice plant height by influencing the cell cycle and crosstalk of phytohormones. Plant height is an important characteristic of rice farming and is directly related to agricultural yield. Although there has been great progress in research on plant growth regulation, numerous genes remain to be elucidated. NAC transcription factors are widespread in plants and have a vital function in plant growth. Here, we observed that the overexpression of OsNAC103 resulted in a dwarf phenotype, whereas RNA interference (RNAi) plants and osnac103 mutants showed no significant difference. Further investigation revealed that the cell length did not change, indicating that the dwarfing of plants was caused by a decrease in cell number due to cell cycle arrest. The content of the bioactive cytokinin N6-Δ2-isopentenyladenine (iP) decreased as a result of the cytokinin synthesis gene being downregulated and the enhanced degradation of cytokinin oxidase. OsNAC103 overexpression also inhibited cell cycle progression and regulated the activity of the cell cyclin OsCYCP2;1 to arrest the cell cycle. We propose that OsNAC103 may further influence rice development and gibberellin-cytokinin crosstalk by regulating the Oryza sativa homeobox 71 (OSH71). Collectively, these results offer novel perspectives on the role of OsNAC103 in controlling plant architecture.
Collapse
Affiliation(s)
- Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Liming Zhao
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Chiming Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Wenli Lian
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Siyu Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuehan Pan
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaorong Xu
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Chengke Luo
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
24
|
Li T, Luo K, Wang C, Wu L, Pan J, Wang M, Liu J, Li Y, Yao J, Chen W, Zhu S, Zhang Y. GhCKX14 responding to drought stress by modulating antioxi-dative enzyme activity in Gossypium hirsutum compared to CKX family genes. BMC PLANT BIOLOGY 2023; 23:409. [PMID: 37658295 PMCID: PMC10474641 DOI: 10.1186/s12870-023-04419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Cytokinin oxidase/dehydrogenase (CKX) plays a vital role in response to abiotic stress through modulating the antioxidant enzyme activities. Nevertheless, the biological function of the CKX gene family has yet to be reported in cotton. RESULT In this study, a total of 27 GhCKXs were identified by the genome-wide investigation and distributed across 18 chromosomes. Phylogenetic tree analysis revealed that CKX genes were clustered into four clades, and most gene expansions originated from segmental duplications. The CKXs gene structure and motif analysis displayed remarkably well conserved among the four groups. Moreover, the cis-acting elements related to the abiotic stress, hormones, and light response were identified within the promoter regions of GhCKXs. Transcriptome data and RT-qPCR showed that GhCKX genes demonstrated higher expression levels in various tissues and were involved in cotton's abiotic stress and phytohormone response. The protein-protein interaction network indicates that the CKX family probably participated in redox regulation, including oxidoreduction or ATP levels, to mediate plant growth and development. Functionally identified via virus-induced gene silencing (VIGS) found that the GhCKX14 gene improved drought resistance by modulating the antioxidant-related activitie. CONCLUSIONS In this study, the CKX gene family members were analyzed by bioinformatics, and validates the response of GhCKX gene to various phytohormone treatment and abiotic stresses. Our findings established the foundation of GhCKXs in responding to abiotic stress and GhCKX14 in regulating drought resistance in cotton.
Collapse
Affiliation(s)
- Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kun Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Chenlei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lanxin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jingwen Pan
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Mingyang Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Jinwei Liu
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou, 450001, China.
| |
Collapse
|
25
|
Zhang WJ, Zhou Y, Zhang Y, Su YH, Xu T. Protein phosphorylation: A molecular switch in plant signaling. Cell Rep 2023; 42:112729. [PMID: 37405922 DOI: 10.1016/j.celrep.2023.112729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
Protein phosphorylation modification is crucial for signaling transduction in plant development and environmental adaptation. By precisely phosphorylating crucial components in signaling cascades, plants can switch on and off the specific signaling pathways needed for growth or defense. Here, we have summarized recent findings of key phosphorylation events in typical hormone signaling and stress responses. More interestingly, distinct phosphorylation patterns on proteins result in diverse biological functions of these proteins. Thus, we have also highlighted latest findings that show how the different phosphosites of a protein, also named phosphocodes, determine the specificity of downstream signaling in both plant development and stress responses.
Collapse
Affiliation(s)
- Wen Jie Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yewei Zhou
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ying Hua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
26
|
Liu Y, Li Y, Guo H, Lv B, Feng J, Wang H, Zhang Z, Chai S. Gibberellin biosynthesis is required for CPPU-induced parthenocarpy in melon. HORTICULTURE RESEARCH 2023; 10:uhad084. [PMID: 37323228 PMCID: PMC10266944 DOI: 10.1093/hr/uhad084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
Spraying N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU), an exogenous cytokinin (CK) growth regulator, is the conventional method for inducing fruit set during melon (Cucumis melo L.) production; however, the mechanism by which CPPU induces fruit set is unclear. Through histological and morphological observations, fruit size was comparable between CPPU-induced fruits and normal pollinated fruits because CPPU-induced fruits had higher cell density but smaller cell size compared with normal pollinated fruits. CPPU promotes the accumulation of gibberellin (GA) and auxin and decreases the level of abscisic acid (ABA) during fruit set. Moreover, application of the GA inhibitor paclobutrazol (PAC) partially inhibits CPPU-induced fruit set. Transcriptome analysis revealed that CPPU-induced fruit set specifically induced the GA-related pathway, in which the key synthase encoding gibberellin 20-oxidase 1 (CmGA20ox1) was specifically upregulated. Further study indicated that the two-component response regulator 2 (CmRR2) of the cytokinin signaling pathway, which is highly expressed at fruit setting, positively regulates the expression of CmGA20ox1. Collectively, our study determined that CPPU-induced melon fruit set is dependent on GA biosynthesis, providing a theoretical basis for the creation of parthenocarpic melon germplasm.
Collapse
Affiliation(s)
| | | | | | - Bingsheng Lv
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing Feng
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Huihui Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | | | - Sen Chai
- Corresponding authors: E-mail: ;
| |
Collapse
|
27
|
Yin P, Liang X, Zhao H, Xu Z, Chen L, Yang X, Qin F, Zhang J, Jiang C. Cytokinin signaling promotes salt tolerance by modulating shoot chloride exclusion in maize. MOLECULAR PLANT 2023:S1674-2052(23)00109-0. [PMID: 37101396 DOI: 10.1016/j.molp.2023.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/18/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023]
Abstract
Excessive accumulation of chloride (Cl-) in the aboveground tissues under saline conditions is harmful to crops. Increasing the exclusion of Cl- from shoots promotes salt tolerance in various crops. However, the underlying molecular mechanisms remain largely unknown. In this study, we demonstrated that a type A response regulator (ZmRR1) modulates Cl- exclusion from shoots and underlies natural variation of salt tolerance in maize. ZmRR1 negatively regulates cytokinin signaling and salt tolerance, likely by interacting with and inhibiting His phosphotransfer (HP) proteins that are key mediators of cytokinin signaling. A naturally occurring non-synonymous SNP variant enhances the interaction between ZmRR1 and ZmHP2, conferring maize plants with a salt-hypersensitive phenotype. We found that ZmRR1 undergoes degradation under saline conditions, leading to the release of ZmHP2 from ZmRR1 inhibition, and subsequently ZmHP2-mediated signaling improves salt tolerance primarily by promoting Cl- exclusion from shoots. Furthermore, we showed that ZmMATE29 is transcriptionally upregulated by ZmHP2-mediated signaling under highly saline conditions and encodes a tonoplast-located Cl- transporter that promotes Cl- exclusion from shoots by compartmentalizing Cl- into the vacuoles of root cortex cells. Collectively, our study provides an important mechanistic understanding of the cytokinin signaling-mediated promotion of Cl- exclusion from shoots and salt tolerance and suggests that genetic modification to promote Cl- exclusion from shoots is a promising route for developing salt-tolerant maize.
Collapse
Affiliation(s)
- Pan Yin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Xiaoyan Liang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Hanshu Zhao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Zhipeng Xu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100094, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100094, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100094, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100094, China; Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China.
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100094, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100094, China; Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China; Outstanding Discipline Program for the Universities in Beijing, Beijing 100094, China.
| |
Collapse
|
28
|
Masuda K, Akagi T. Evolution of sex in crops: recurrent scrap and rebuild. BREEDING SCIENCE 2023; 73:95-107. [PMID: 37404348 PMCID: PMC10316312 DOI: 10.1270/jsbbs.22082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/20/2022] [Indexed: 07/06/2023]
Abstract
Sexuality is the main strategy for maintaining genetic diversity within a species. In flowering plants (angiosperms), sexuality is derived from ancestral hermaphroditism and multiple sexualities can be expressed in an individual. The mechanisms conferring chromosomal sex determination in plants (or dioecy) have been studied for over a century by both biologists and agricultural scientists, given the importance of this field for crop cultivation and breeding. Despite extensive research, the sex determining gene(s) in plants had not been identified until recently. In this review, we dissect plant sex evolution and determining systems, with a focus on crop species. We introduced classic studies with theoretical, genetic, and cytogenic approaches, as well as more recent research using advanced molecular and genomic techniques. Plants have undergone very frequent transitions into, and out of, dioecy. Although only a few sex determinants have been identified in plants, an integrative viewpoint on their evolutionary trends suggests that recurrent neofunctionalization events are potentially common, in a "scrap and (re)build" cycle. We also discuss the potential association between crop domestication and transitions in sexual systems. We focus on the contribution of duplication events, which are particularly frequent in plant taxa, as a trigger for the creation of new sexual systems.
Collapse
Affiliation(s)
- Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
29
|
Lv Z, Yu L, Zhan H, Li J, Wang C, Huang L, Wang S. Shoot differentiation from Dendrocalamus brandisii callus and the related physiological roles of sugar and hormones during shoot differentiation. TREE PHYSIOLOGY 2023:tpad039. [PMID: 36988419 DOI: 10.1093/treephys/tpad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Only a few calli regeneration systems of bamboos were successfully established, which limited the research on physiological mechanism of callus differentiation. In this study, we successfully established the callus differentiation systems of Dendrocalamus brandisii via seeds. The results showed that the best medium for callus induction of D. brandisii seeds was basal MS media amended with 5.0 mg L-1 2,4-D and 0.5 mg L-1 KT, and the optimal medium for shoot differentiation was the basal MS media supplemented with 4.0 mg L-1 BA and 0.5 mg L-1 NAA. Callus tissues had apparent polarity in cell arrangement, and developed their own meristematic cell layers. α-amylase, STP and SUSY played a dominant role in carbohydrates degradation in callus during shoot differentiation. PPP and TCA pathways up-regulated in the shoot-differentiated calli. The dynamics of BA and KT contents in calli was consistent with their concentrations applied in medium. IAA synthesis and the related signal transduction were down-regulated, while the endogenous CTKs contents were up-regulated by the exogenous CTKs application in shoot-differentiated calli, and their related synthesis, transport and signal transduction pathways were also up-regulated. The downregulated signal transduction pathways of IAA and ABA revealed that they did not play the key role in shoot differentiation of bamboos. GAs also played a role in shoot differentiation based on the down-regulation of DELLA and the up-regulation of PIF4 genes. The overexpression of DbSNRK2 and DbFIF4 genes further confirmed the negative role of ABA and the positive role of GAs in shoot differentiation.
Collapse
Affiliation(s)
- Zhuo Lv
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Lixia Yu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Hui Zhan
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Juan Li
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Changming Wang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| | - Ling Huang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Shuguang Wang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
- Faculty of Bamboo and Rattan, Southwest Forestry University, Kunming, China
| |
Collapse
|
30
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
31
|
Wang R, Yu M, Xia J, Ren Z, Xing J, Li C, Xu Q, Cang J, Zhang D. Cold stress triggers freezing tolerance in wheat (Triticum aestivum L.) via hormone regulation and transcription of related genes. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:308-321. [PMID: 36385725 DOI: 10.1111/plb.13489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Low temperatures limit the geographic distribution and yield of plants. Hormones play an important role in coordinating the growth and development of plants and their tolerance to low temperatures. However, the mechanisms by which hormones affect plant resistance to extreme cold stress in the natural environment are still unclear. In this study, two winter wheat varieties with different cold resistances, Dn1 and J22, were used to conduct targeted plant hormone metabolome analysis on the tillering nodes of winter wheat at 5 °C, -10 °C and -25 °C using an LC-ESI-MS/MS system. We screened 39 hormones from 88 plant hormone metabolites and constructed a partial regulatory network of auxin, jasmonic acid and cytokinin. GO analysis and enrichment of KEGG pathways in different metabolites showed that the 'plant hormone signal transduction' pathway was the most common. Our study showed that extreme low temperature increased the most levels of auxin, cytokinin and salicylic acid, and decreased levels of jasmonic acid and abscisic acid, and that levels of auxin, jasmonic acid and cytokinin in Dn1 were higher than those in J22. These changes in hormone levels were associated with changes in gene expression in synthesis, catabolism, transport and signal transduction pathways. These results differ from the previous hormone regulation mechanisms, which were mostly obtained at 4 °C. Our results provide a basis for further understanding the molecular mechanisms by which plant endogenous hormones regulate plant freezing stress tolerance.
Collapse
Affiliation(s)
- R Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - M Yu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Xia
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Z Ren
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Xing
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - C Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Q Xu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Cang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - D Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
32
|
Swinka C, Hellmann E, Zwack P, Banda R, Rashotte AM, Heyl A. Cytokinin Response Factor 9 Represses Cytokinin Responses in Flower Development. Int J Mol Sci 2023; 24:4380. [PMID: 36901811 PMCID: PMC10002603 DOI: 10.3390/ijms24054380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
A multi-step phosphorelay system is the main conduit of cytokinin signal transduction. However, several groups of additional factors that also play a role in this signaling pathway have been found-among them the Cytokinin Response Factors (CRFs). In a genetic screen, CRF9 was identified as a regulator of the transcriptional cytokinin response. It is mainly expressed in flowers. Mutational analysis indicates that CRF9 plays a role in the transition from vegetative to reproductive growth and silique development. The CRF9 protein is localized in the nucleus and functions as a transcriptional repressor of Arabidopsis Response Regulator 6 (ARR6)-a primary response gene for cytokinin signaling. The experimental data suggest that CRF9 functions as a repressor of cytokinin during reproductive development.
Collapse
Affiliation(s)
- Christine Swinka
- Institut für Angewandte Genetik, Freie Universität Berlin, Albrecht Thaer Weg 6, 14195 Berlin, Germany
| | - Eva Hellmann
- Institut für Angewandte Genetik, Freie Universität Berlin, Albrecht Thaer Weg 6, 14195 Berlin, Germany
| | - Paul Zwack
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, AL 36849, USA
| | - Ramya Banda
- Department of Biology, Adelphi University, 1 South Ave, Garden City, NY 11530, USA
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, AL 36849, USA
| | - Alexander Heyl
- Department of Biology, Adelphi University, 1 South Ave, Garden City, NY 11530, USA
| |
Collapse
|
33
|
Ahmad N, Jiang Z, Zhang L, Hussain I, Yang X. Insights on Phytohormonal Crosstalk in Plant Response to Nitrogen Stress: A Focus on Plant Root Growth and Development. Int J Mol Sci 2023; 24:ijms24043631. [PMID: 36835044 PMCID: PMC9958644 DOI: 10.3390/ijms24043631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Nitrogen (N) is a vital mineral component that can restrict the growth and development of plants if supplied inappropriately. In order to benefit their growth and development, plants have complex physiological and structural responses to changes in their nitrogen supply. As higher plants have multiple organs with varying functions and nutritional requirements, they coordinate their responses at the whole-plant level based on local and long-distance signaling pathways. It has been suggested that phytohormones are signaling substances in such pathways. The nitrogen signaling pathway is closely associated with phytohormones such as auxin (AUX), abscisic acid (ABA), cytokinins (CKs), ethylene (ETH), brassinosteroid (BR), strigolactones (SLs), jasmonic acid (JA), and salicylic acid (SA). Recent research has shed light on how nitrogen and phytohormones interact to modulate physiology and morphology. This review provides a summary of the research on how phytohormone signaling affects root system architecture (RSA) in response to nitrogen availability. Overall, this review contributes to identifying recent developments in the interaction between phytohormones and N, as well as serving as a foundation for further study.
Collapse
Affiliation(s)
- Nazir Ahmad
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Zhengjie Jiang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Lijun Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Iqbal Hussain
- Department of Horticulture, Institute of Vegetable Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
34
|
Li L, Zheng Q, Jiang W, Xiao N, Zeng F, Chen G, Mak M, Chen ZH, Deng F. Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2023; 63:1787-1805. [PMID: 35639886 DOI: 10.1093/pcp/pcac071] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of crops faces increasing challenges from global climate change and human activities, which leads to increasing instances of many abiotic stressors to plants. Among the abiotic stressors, drought, salinity and excessive levels of toxic metals cause reductions in global agricultural productivity and serious health risks for humans. Cytokinins (CKs) are key phytohormones functioning in both normal development and stress responses in plants. Here, we summarize the molecular mechanisms on the biosynthesis, metabolism, transport and signaling transduction pathways of CKs. CKs act as negative regulators of both root system architecture plasticity and root sodium exclusion in response to salt stress. The functions of CKs in mineral-toxicity tolerance and their detoxification in plants are reviewed. Comparative genomic analyses were performed to trace the origin, evolution and diversification of the critical regulatory networks linking CK signaling and abiotic stress. We found that the production of CKs and their derivatives, pathways of signal transduction and drought-response root growth regulation are evolutionarily conserved in land plants. In addition, the mechanisms of CK-mediated sodium exclusion under salt stress are suggested for further investigations. In summary, we propose that the manipulation of CK levels and their signaling pathways is important for plant abiotic stress and is, therefore, a potential strategy for meeting the increasing demand for global food production under changing climatic conditions.
Collapse
Affiliation(s)
- Lijun Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Nayun Xiao
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
35
|
Kaszler N, Benkő P, Molnár Á, Zámbori A, Fehér A, Gémes K. Absence of Arabidopsis Polyamine Oxidase 5 Influences the Cytokinin-Induced Shoot Meristem Formation from Lateral Root Primordia. PLANTS (BASEL, SWITZERLAND) 2023; 12:454. [PMID: 36771539 PMCID: PMC9920396 DOI: 10.3390/plants12030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Lateral root primordia (LRPs) of Arabidopsis can be directly converted to shoot meristems (SMs) by the application of exogenous cytokinin. Here, we report that Arabidopsis POLYAMINE OXIDASE 5 (AtPAO5) contributes to this process, since the rate of SM formation from LRPs was significantly lower in the pao5-2 knockout mutant. Furthermore, the presented experiments showed that AtPAO5 influences SM formation via controlling the thermospermine (T-Spm) level. Gene expression analyses supported the view that the pao5-2 mutation as well as exogenous T-Spm downregulate the expression of the class 3 haemoglobin coding genes AtGLB1 and AtGLB2. AtGLB1 and 2 have been reported to augment cytokinin sensitivity, indirectly inhibiting the expression of type-A ARABIDOPSIS RESPONSE REGULATORs (ARRs). In agreement, the same ARR-coding genes were found to be upregulated in the pao5-2 mutant. Although GLB proteins might also control cytokinin-induced nitric oxide (NO) accumulation, we could not find experimental evidence for it. Rather, the negative effect of NO-donor treatment on AtPAO5 gene expression and SM formation was seen. Nevertheless, a hypothetical pathway is set up explaining how AtPAO5 may affect direct shoot meristem formation, controlling cytokinin sensitivity through T-Spm and GLBs.
Collapse
Affiliation(s)
- Nikolett Kaszler
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 62. Temesvári krt., H-6726 Szeged, Hungary
- Doctoral School of Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
| | - Péter Benkő
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 62. Temesvári krt., H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
| | - Abigél Zámbori
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 62. Temesvári krt., H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
| | - Katalin Gémes
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 62. Temesvári krt., H-6726 Szeged, Hungary
- Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726 Szeged, Hungary
| |
Collapse
|
36
|
Abstract
The extraordinary variety that characterizes the living world in terms of forms and structures is the result of natural selection that allows an organism to be in perfect harmony with its environmental niche. Once a specific shape is acquired, many different factors act together to guarantee phenotypic robustness and developmental stability of the organism. Among these factors, hormones play a key role in the regulation and coordination of growth - they control the activity of a single cell, the progression to tissue organization, the development of specific organs, ending with the development of the entire body. In plants, hormones acquire yet another important role - plants, due to their sessile nature, along with the quest for robust development, rely on plastic development to adapt growth to a changing environment. Plant hormones play a crucial role in sensing and responding to different environmental stimuli, translating these inputs into specific developmental changes that adapt the plant body to the environment. Here, we will focus on cytokinins - a unique class of plant hormones - giving clues on their metabolism, on how they are perceived by cells and how cells change their activity in response to it. Most of the data presented have been derived by studies conducted on Arabidopsis thaliana, a plant used as a model system in plant science.
Collapse
Affiliation(s)
- Noemi Svolacchia
- Laboratory of Functional Genomics and Proteomics of Model Systems, Department of Biology and Biotechnology "C. Darwin", "La Sapienza" University of Rome, Via dei Sardi 70, Rome, Italy
| | - Sabrina Sabatini
- Laboratory of Functional Genomics and Proteomics of Model Systems, Department of Biology and Biotechnology "C. Darwin", "La Sapienza" University of Rome, Via dei Sardi 70, Rome, Italy.
| |
Collapse
|
37
|
Zhao L, Sun L, Guo L, Lu X, Malik WA, Chen X, Wang D, Wang J, Wang S, Chen C, Nie T, Ye W. Systematic analysis of Histidine photosphoto transfer gene family in cotton and functional characterization in response to salt and around tolerance. BMC PLANT BIOLOGY 2022; 22:548. [PMID: 36443680 PMCID: PMC9703675 DOI: 10.1186/s12870-022-03947-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phosphorylation regulated by the two-component system (TCS) is a very important approach signal transduction in most of living organisms. Histidine phosphotransfer (HP) is one of the important members of the TCS system. Members of the HP gene family have implications in plant stresses tolerance and have been deeply studied in several crops. However, upland cotton is still lacking with complete systematic examination of the HP gene family. RESULTS A total of 103 HP gene family members were identified. Multiple sequence alignment and phylogeny of HPs distributed them into 7 clades that contain the highly conserved amino acid residue "XHQXKGSSXS", similar to the Arabidopsis HP protein. Gene duplication relationship showed the expansion of HP gene family being subjected with whole-genome duplication (WGD) in cotton. Varying expression profiles of HPs illustrates their multiple roles under altering environments particularly the abiotic stresses. Analysis is of transcriptome data signifies the important roles played by HP genes against abiotic stresses. Moreover, protein regulatory network analysis and VIGS mediated functional approaches of two HP genes (GhHP23 and GhHP27) supports their predictor roles in salt and drought stress tolerance. CONCLUSIONS This study provides new bases for systematic examination of HP genes in upland cotton, which formulated the genetic makeup for their future survey and examination of their potential use in cotton production.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Liangqing Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
- Cotton Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Taili Nie
- Cotton Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China.
| |
Collapse
|
38
|
Li C, Gong C, Wu J, Yang L, Zhou L, Wu B, Gao L, Ling F, You A, Li C, Lin Y. Improvement of Rice Agronomic Traits by Editing Type-B Response Regulators. Int J Mol Sci 2022; 23:ijms232214165. [PMID: 36430643 PMCID: PMC9698459 DOI: 10.3390/ijms232214165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Type-B response regulator proteins in rice contain a conserved receiver domain, followed by a GARP DNA binding domain and a longer C-terminus. Some type-B response regulators such as RR21, RR22 and RR23 are involved in the development of rice leaf, root, flower and trichome. In this study, to evaluate the application potential of type-B response regulators in rice genetic improvement, thirteen type-B response regulator genes in rice were respectively knocked out by using CRISPR/Cas9 genome editing technology. Two guide RNAs (gRNAs) were simultaneously expressed on a knockout vector to mutate one gene. T0 transformed plants were used to screen the plants with deletion of large DNA fragments through PCR with specific primers. The mutants of CRISPR/Cas9 gene editing were detected by Cas9 specific primer in the T1 generation, and homozygous mutants without Cas9 were screened, whose target regions were confirmed by sequencing. Mutant materials of 12 OsRRs were obtained, except for RR24. Preliminary phenotypic observation revealed variations of various important traits in different mutant materials, including plant height, tiller number, tillering angle, heading date, panicle length and yield. The osrr30 mutant in the T2 generation was then further examined. As a result, the heading date of the osrr30 mutant was delayed by about 18 d, while the yield was increased by about 30%, and the chalkiness was significantly reduced compared with those of the wild-type under field high temperature stress. These results indicated that osrr30 has great application value in rice breeding. Our findings suggest that it is feasible to perform genetic improvement of rice by editing the type-B response regulators.
Collapse
Affiliation(s)
- Chuanhong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenbo Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiemin Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Linfeng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bian Wu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Ling
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Changyan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: (C.L.); (Y.L.)
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (C.L.); (Y.L.)
| |
Collapse
|
39
|
Sk R, Miyabe MT, Takezawa D, Yajima S, Yotsui I, Taji T, Sakata Y. Targeted in vivo mutagenesis of a sensor histidine kinase playing an essential role in ABA signaling of the moss Physcomitrium patens. Biochem Biophys Res Commun 2022; 637:93-99. [DOI: 10.1016/j.bbrc.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
|
40
|
Aoki N, Cui S, Yoshida S. Cytokinins Induce Prehaustoria Coordinately with Quinone Signals in the Parasitic Plant Striga hermonthica. PLANT & CELL PHYSIOLOGY 2022; 63:1446-1456. [PMID: 36112485 DOI: 10.1093/pcp/pcac130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Orobanchaceae parasitic plants are major threats to global food security, causing severe agricultural damage worldwide. Parasitic plants derive water and nutrients from their host plants through multicellular organs called haustoria. The formation of a prehaustorium, a primitive haustorial structure, is provoked by host-derived haustorium-inducing factors (HIFs). Quinones, including 2,6-dimethoxy-p-benzoquinone (DMBQ), are of the most potent HIFs for various species in Orobanchaceae, but except non-photosynthetic holoparasites, Phelipanche and Orobanche spp. Instead, cytokinin (CK) phytohormones were reported to induce prehaustoria in Phelipanche ramosa. However, little is known about whether CKs act as HIFs in the other parasitic species to date. Moreover, the signaling pathways for quinones and CKs in prehaustorium induction are not well understood. This study shows that CKs act as HIFs in the obligate parasite Striga hermonthica but not in the facultative parasite Phtheirospermum japonicum. Using chemical inhibitors and marker gene expression analysis, we demonstrate that CKs activate prehaustorium formation through a CK-specific signaling pathway that overlaps with the quinone HIF pathway at downstream in S. hermonthica. Moreover, host root exudates activated S. hermonthica CK biosynthesis and signaling genes, and DMBQ and CK inhibitors perturbed the prehaustorium-inducing activity of exudates, indicating that host root exudates include CKs. Our study reveals the importance of CKs for prehaustorium formation in obligate parasitic plants.
Collapse
Affiliation(s)
- Natsumi Aoki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
| | - Songkui Cui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
| | - Satoko Yoshida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
| |
Collapse
|
41
|
Fu S, Yang Y, Wang P, Ying Z, Xu W, Zhou Z. Comparative transcriptomic analysis of normal and abnormal in vitro flowers in Cymbidium nanulum Y. S. Wu et S. C. Chen identifies differentially expressed genes and candidate genes involved in flower formation. FRONTIERS IN PLANT SCIENCE 2022; 13:1007913. [PMID: 36352857 PMCID: PMC9638074 DOI: 10.3389/fpls.2022.1007913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
It is beneficial for breeding and boosting the flower value of ornamental plants such as orchids, which can take several years of growth before blooming. Over the past few years, in vitro flowering of Cymbidium nanulum Y. S. Wu et S. C. Chen has been successfully induced; nevertheless, the production of many abnormal flowers has considerably limited the efficiency of this technique. We carried out transcriptomic analysis between normal and abnormal in vitro flowers, each with four organs, to investigate key genes and differentially expressed genes (DEGs) and to gain a comprehensive perspective on the formation of abnormal flowers. Thirty-six DEGs significantly enriched in plant hormone signal transduction, and photosynthesis-antenna proteins pathways were identified as key genes. Their broad upregulation and several altered transcription factors (TFs), including 11 MADS-box genes, may contribute to the deformity of in vitro flowers. By the use of weighted geneco-expression network analysis (WGCNA), three hub genes, including one unknown gene, mitochondrial calcium uniporter (MCU) and harpin-induced gene 1/nonrace-specific disease resistance gene 1 (NDR1/HIN1-Like) were identified that might play important roles in floral organ formation. The data presented in our study may serve as a comprehensive resource for understanding the regulatory mechanisms underlying flower and floral organ formation of C. nanulum Y. S. Wu et S. C. Chen in vitro.
Collapse
|
42
|
Sharma S, Kaur P, Gaikwad K. Role of cytokinins in seed development in pulses and oilseed crops: Current status and future perspective. Front Genet 2022; 13:940660. [PMID: 36313429 PMCID: PMC9597640 DOI: 10.3389/fgene.2022.940660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Cytokinins constitutes a vital group of plant hormones regulating several developmental processes, including growth and cell division, and have a strong influence on grain yield. Chemically, they are the derivatives of adenine and are the most complex and diverse group of hormones affecting plant physiology. In this review, we have provided a molecular understanding of the role of cytokinins in developing seeds, with special emphasis on pulses and oilseed crops. The importance of cytokinin-responsive genes including cytokinin oxidases and dehydrogenases (CKX), isopentenyl transferase (IPT), and cytokinin-mediated genetic regulation of seed size are described in detail. In addition, cytokinin expression in germinating seeds, its biosynthesis, source-sink dynamics, cytokinin signaling, and spatial expression of cytokinin family genes in oilseeds and pulses have been discussed in context to its impact on increasing economy yields. Recently, it has been shown that manipulation of the cytokinin-responsive genes by mutation, RNA interference, or genome editing has a significant effect on seed number and/or weight in several crops. Nevertheless, the usage of cytokinins in improving crop quality and yield remains significantly underutilized. This is primarily due to the multigene control of cytokinin expression. The information summarized in this review will help the researchers in innovating newer and more efficient ways of manipulating cytokinin expression including CKX genes with the aim to improve crop production, specifically of pulses and oilseed crops.
Collapse
Affiliation(s)
- Sandhya Sharma
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
| | | | - Kishor Gaikwad
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research, New Delhi, India
- *Correspondence: Kishor Gaikwad,
| |
Collapse
|
43
|
Zhao L, Guo L, Lu X, Malik WA, Zhang Y, Wang J, Chen X, Wang S, Wang J, Wang D, Ye W. Structure and character analysis of cotton response regulator genes family reveals that GhRR7 responses to draught stress. Biol Res 2022; 55:27. [PMID: 35974357 PMCID: PMC9380331 DOI: 10.1186/s40659-022-00394-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cytokinin signal transduction is mediated by a two-component system (TCS). Two-component systems are utilized in plant responses to hormones as well as to biotic and abiotic environmental stimuli. In plants, response regulatory genes (RRs) are one of the main members of the two-component system (TCS). Method From the aspects of gene structure, evolution mode, expression type, regulatory network and gene function, the evolution process and role of RR genes in the evolution of the cotton genome were analyzed. Result A total of 284 RR genes in four cotton species were identified. Including 1049 orthologous/paralogous gene pairs were identified, most of which were whole genome duplication (WGD). The RR genes promoter elements contain phytohormone responses and abiotic or biotic stress-related cis-elements. Expression analysis showed that RR genes family may be negatively regulate and involved in salt stress and drought stress in plants. Protein regulatory network analysis showed that RR family proteins are involved in regulating the DNA-binding transcription factor activity (COG5641) pathway and HP kinase pathways. VIGS analysis showed that the GhRR7 gene may be in the same regulatory pathway as GhAHP5 and GhPHYB, ultimately negatively regulating cotton drought stress by regulating POD, SOD, CAT, H2O2 and other reactive oxygen removal systems. Conclusion This study is the first to gain insight into RR gene members in cotton. Our research lays the foundation for discovering the genes related to drought and salt tolerance and creating new cotton germplasm materials for drought and salt tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00394-2.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
| |
Collapse
|
44
|
Genome-Wide Analysis of the Type-B Authentic Response Regulator Gene Family in Brassica napus. Genes (Basel) 2022; 13:genes13081449. [PMID: 36011360 PMCID: PMC9408017 DOI: 10.3390/genes13081449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The type-B authentic response regulators (type-B ARRs) are positive regulators of cytokinin signaling and involved in plant growth and stress responses. In this study, we used bioinformatics, RNA-seq, and qPCR to study the phylogenetic and expression pattern of 35 type-B ARRs in Brassica napus. The BnARRs experienced gene expansion and loss during genome polyploidization and were classified into seven groups. Whole-genome duplication (WGD) and segmental duplication were the main forces driving type-B ARR expansion in B. napus. Several BnARRs with specific expression patterns during rapeseed development were identified, including BnARR12/14/18/23/33. Moreover, we found the type-B BnARRs were involved in rapeseed development and stress responses, through participating in cytokinin and ABA signaling pathways. This study revealed the origin, evolutionary history, and expression pattern of type-B ARRs in B. napus and will be helpful to the functional characterization of BnARRs.
Collapse
|
45
|
Avilez-Montalvo JR, Quintana-Escobar AO, Méndez-Hernández HA, Aguilar-Hernández V, Brito-Argáez L, Galaz-Ávalos RM, Uc-Chuc MA, Loyola-Vargas VM. Auxin-Cytokinin Cross Talk in Somatic Embryogenesis of Coffea canephora. PLANTS 2022; 11:plants11152013. [PMID: 35956493 PMCID: PMC9370429 DOI: 10.3390/plants11152013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Cytokinins (CK) are plant growth regulators involved in multiple physiological processes in plants. One less studied aspect is CK homeostasis (HM). The primary genes related to HM are involved in biosynthesis (IPT), degradation (CKX), and signaling (ARR). This paper demonstrates the effect of auxin (Aux) and CK and their cross talk in a Coffea canephora embryogenic system. The transcriptome and RT-qPCR suggest that Aux in pre-treatment represses biosynthesis, degradation, and signal CK genes. However, in the induction, there is an increase of genes implicated in the CK perception/signal, indicating perhaps, as in other species, Aux is repressing CK, and CK are inducing per se genes involved in its HM. This is reflected in the endogenous concentration of CK; pharmacology experiments helped study the effect of each plant growth regulator in our SE system. We conclude that the Aux–CK balance is crucial to directing somatic embryogenesis in C. canephora.
Collapse
Affiliation(s)
- Johny R. Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Ana O. Quintana-Escobar
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Hugo A. Méndez-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Víctor Aguilar-Hernández
- Catedrático CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico;
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Rosa M. Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Miguel A. Uc-Chuc
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
- Correspondence: ; Tel.: +52-999-942-83-30 (ext. 243)
| |
Collapse
|
46
|
Royo J, Muñiz LM, Gómez E, Añazco-Guenkova AM, Hueros G. Distinct Hormone Signalling-Modulation Activities Characterize Two Maize Endosperm-Specific Type-A Response Regulators. PLANTS 2022; 11:plants11151992. [PMID: 35956471 PMCID: PMC9370639 DOI: 10.3390/plants11151992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
ZmTCRR1 and 2 are type-A response regulators expressed in the maize endosperm transfer cells (TC). While type-B response regulators transcriptionally control canonical type-A response regulators, as part of the cytokinin signal transduction mechanism, the ZmTCRRs are regulated by ZmMRP1, a master regulator of TC identity. In addition, the corresponding proteins are not detected in the TC, accumulating in the inner endosperm cells instead. These features suggest these molecules are not involved in classical, cell-autonomous, cytokinin signalling pathways. Using transgenic Arabidopsis plants ectopically expressing these genes, we have shown that ZmTCRR1 and 2 can modulate auxin and cytokinin signalling, respectively. In Arabidopsis, the ectopic expression of ZmTCRR2 blocked, almost completely, cytokinin perception. Given the conservation of these signalling pathways at the molecular level, our results suggest that the ZmTCRRs modulate cytokinin and auxin perception in the inner endosperm cells.
Collapse
|
47
|
Transcriptome Analysis Reveals the Regulatory Networks of Cytokinin in Promoting Floral Feminization in Castanea henryi. Int J Mol Sci 2022; 23:ijms23126389. [PMID: 35742833 PMCID: PMC9224409 DOI: 10.3390/ijms23126389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Castanea henryi is a monoecious plant with a low female-to-male ratio, which limits its yield. The phytohormone cytokinin (CK) plays a crucial role in flower development, especially gynoecium development. Here, the feminizing effect of CK on the development of C. henryi was confirmed by the exogenous spraying of N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU). Spraying CPPU at 125 mg·L-1 thrice changed the male catkin into a pure female catkin, whereas at 5 mg·L-1 and 25 mg·L-1, only a part of the male catkin was transformed into a female catkin. A comparative transcriptome analysis of male catkins subjected to CPPU was performed to study the mechanism of the role of CKs in sex differentiation. Using Pearson's correlation analysis between hormone content and hormone synthesis gene expression, four key genes, LOG1, LOG3, LOG7 and KO, were identified in the CK and GA synthesis pathways. Moreover, a hub gene in the crosstalk between JA and the other hormone signaling pathways, MYC2, was identified, and 15 flowering-related genes were significantly differentially expressed after CPPU treatment. These results suggest that CK interacts with other phytohormones to determine the sex of C. henryi, and CK may directly target floral organ recognition genes to control flower sex.
Collapse
|
48
|
ADA2b and GCN5 Affect Cytokinin Signaling by Modulating Histone Acetylation and Gene Expression during Root Growth of Arabidopsis thaliana. PLANTS 2022; 11:plants11101335. [PMID: 35631760 PMCID: PMC9148027 DOI: 10.3390/plants11101335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
In Arabidopsis thaliana, the histone acetyltransferase GCN5 and the associated coactivator ADA2b regulate root growth and affect gene expression. The cytokinin signaling reporter TCS::GFP was introduced into gcn5-1, ada2b-1, and ada2a-2, as well as the ada2a-2ada2b-1 mutants. The early root growth (4 to 7 days post-germination) was analyzed using cellular and molecular approaches. TCS signal accumulated from the fourth to seventh days of root growth in the wild-type columella cells. In contrast, ada2b-1 and gcn5-1 and ada2a-2ada2b-1 double mutants displayed reduced TCS expression relative to wild type. Gene expression analysis showed that genes associated with cytokinin homeostasis were downregulated in the roots of gcn5-1 and ada2b-1 mutants compared to wild-type plants. H3K14 acetylation was affected in the promoters of cytokinin synthesis and catabolism genes during root growth of Arabidopsis. Therefore, GCN5 and ADA2b are positive regulators of cytokinin signaling during root growth by modulating histone acetylation and the expression of genes involved in cytokinin synthesis and catabolism. Auxin application in the roots of wild-type seedlings increased TCS::GFP expression. In contrast, ada2b and ada2ada2b mutant plants do not show the auxin-induced TCS signal, suggesting that GCN5 and ADA2b are required for the auxin-induced cytokinin signaling in early root growth.
Collapse
|
49
|
Li K, Tian H, Tahir MM, Li S, Chen S, Fan L, Liu Z, Mao J, Zhang D. Transcriptome analysis reveals that cytokinins inhibit adventitious root formation through the MdRR12-MdCRF8 module in apple rootstock. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111220. [PMID: 35351311 DOI: 10.1016/j.plantsci.2022.111220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Adventitious root (AR) formation is great significance for apple rootstock breeding. Transcriptome analyses were performed with cytokinins (CTKs) signal treatments to analyze the mechanism of AR formation. The results showed that 6-benzyadenine (6-BA) treatment inhibited AR formation. Histological analysis also observed that AR primordium cell formation was significantly suppressed by 6-BA treatment; the ratio of auxin/cytokinins exhibited the lowest values at 1 and 3 day (d) in the 6-BA treatment group. Furthermore, the differentially expressed genes were divided into five categories, including auxin, cytokinins, other hormones, cell cycle, and carbohydrate metabolism pathways. Due to the study of cytokinins signal treatment, it is important to understand the particular module mediated by the cytokinins pathway. The expression level of MdRR12 (a family member of B-type cytokinins-responsive factors) was significantly upregulated at 3 d by 6-BA treatment. Compared to the wild type, the 35S::MdRR12 transgenic tobaccos suppressed AR formation. The promoter sequence of MdCRF8 contains AGATT motif elements that respond to MdRR12. RNA-seq and RT-qPCR assays predicted cytokinins response factor (MdCRF8) to be a downstream gene regulated by MdRR12. The activity of the pro-MdCRF8-GUS promoter was obviously induced by 6-BA treatment and inhibited by lovastatin (Lov) treatment. Yeast one-hybrid, dual-luciferase reporter, and GUS coexpression assays revealed that MdRR12 could directly bind to the MdCRF8 promoter. Additionally, 35S::MdCRF8 transgenic tobaccos also blocked AR growth. Compared to the wild type, 35S::MdRR12 and 35S::MdCRF8 transgenic tobaccos enhanced sensitivity to cytokinins. Thus, we describe that MdRR12 and MdCRF8 function as integrators of cytokinins signals that affect cell cycle- and carbohydrate metabolism-related genes to regulate cell fate transition during AR formation. On the basis of these results, we concluded that the MdRR12-MdCRF8 module is involved in the negative regulation of AR formation in apple rootstock and can potentially be applied in agriculture using genetic approaches.
Collapse
Affiliation(s)
- Ke Li
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Huiyue Tian
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Muhammad Mobeen Tahir
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Shaohuan Li
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Shiyue Chen
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Li Fan
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Zhimin Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Jiangping Mao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| |
Collapse
|
50
|
Jiang F, Lyi SM, Sun T, Li L, Wang T, Liu J. Involvement of cytokinins in STOP1-mediated resistance to proton toxicity. STRESS BIOLOGY 2022; 2:17. [PMID: 37676526 PMCID: PMC10441851 DOI: 10.1007/s44154-022-00033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/10/2022] [Indexed: 09/08/2023]
Abstract
STOP1 (sensitive to proton rhizotoxicity1) is a master transcription factor that governs the expression of a set of regulatory and structural genes involved in resistance to aluminum and low pH (i.e., proton) stresses in Arabidopsis. However, the mechanisms and regulatory networks underlying STOP1-mediated resistance to proton stresses are largely unclear. Here, we report that low-pH stresses severely inhibited root growth of the stop1 plants by suppressing root meristem activities. Interestingly, the stop1 plants were less sensitive to exogenous cytokinins at normal and low pHs than the wild type. Significantly, low concentrations of cytokinins promoted root growth of the stop1 mutant under low-pH stresses. Moreover, lateral and adventitious root formation was stimulated in stop1 and by low-pH stresses but suppressed by cytokinins. Further studies of the expression patterns of a cytokinin signaling reporter suggest that both the loss-of-function mutation of STOP1 and low-pH stresses suppressed cytokinin signaling outputs in the root. Furthermore, the expression of critical genes involved in cytokinin biosynthesis, biodegradation, and signaling is altered in the stop1 mutant in response to low-pH stresses. In conclusion, our results reveal a complex network of resistance to low-pH stresses, which involves coordinated actions of STOP1, cytokinins, and an additional low-pH-resistant mechanism for controlling root meristem activities and root growth upon proton stresses.
Collapse
Affiliation(s)
- Fei Jiang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853 USA
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan China
| | - Sangbom M. Lyi
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853 USA
| | - Tianhu Sun
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853 USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan China
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853 USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|