1
|
Lindsey CR, Knoll AH, Herron MD, Rosenzweig F. Fossil-calibrated molecular clock data enable reconstruction of steps leading to differentiated multicellularity and anisogamy in the Volvocine algae. BMC Biol 2024; 22:79. [PMID: 38600528 PMCID: PMC11007952 DOI: 10.1186/s12915-024-01878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Throughout its nearly four-billion-year history, life has undergone evolutionary transitions in which simpler subunits have become integrated to form a more complex whole. Many of these transitions opened the door to innovations that resulted in increased biodiversity and/or organismal efficiency. The evolution of multicellularity from unicellular forms represents one such transition, one that paved the way for cellular differentiation, including differentiation of male and female gametes. A useful model for studying the evolution of multicellularity and cellular differentiation is the volvocine algae, a clade of freshwater green algae whose members range from unicellular to colonial, from undifferentiated to completely differentiated, and whose gamete types can be isogamous, anisogamous, or oogamous. To better understand how multicellularity, differentiation, and gametes evolved in this group, we used comparative genomics and fossil data to establish a geologically calibrated roadmap of when these innovations occurred. RESULTS Our ancestral-state reconstructions, show that multicellularity arose independently twice in the volvocine algae. Our chronograms indicate multicellularity evolved during the Carboniferous-Triassic periods in Goniaceae + Volvocaceae, and possibly as early as the Cretaceous in Tetrabaenaceae. Using divergence time estimates we inferred when, and in what order, specific developmental changes occurred that led to differentiated multicellularity and oogamy. We find that in the volvocine algae the temporal sequence of developmental changes leading to differentiated multicellularity is much as proposed by David Kirk, and that multicellularity is correlated with the acquisition of anisogamy and oogamy. Lastly, morphological, molecular, and divergence time data suggest the possibility of cryptic species in Tetrabaenaceae. CONCLUSIONS Large molecular datasets and robust phylogenetic methods are bringing the evolutionary history of the volvocine algae more sharply into focus. Mounting evidence suggests that extant species in this group are the result of two independent origins of multicellularity and multiple independent origins of cell differentiation. Also, the origin of the Tetrabaenaceae-Goniaceae-Volvocaceae clade may be much older than previously thought. Finally, the possibility of cryptic species in the Tetrabaenaceae provides an exciting opportunity to study the recent divergence of lineages adapted to live in very different thermal environments.
Collapse
Affiliation(s)
- Charles Ross Lindsey
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
| | - Matthew D Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Bowles AMC, Williamson CJ, Williams TA, Donoghue PCJ. Cryogenian Origins of Multicellularity in Archaeplastida. Genome Biol Evol 2024; 16:evae026. [PMID: 38333966 PMCID: PMC10883732 DOI: 10.1093/gbe/evae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Earth was impacted by global glaciations during the Cryogenian (720 to 635 million years ago; Ma), events invoked to explain both the origins of multicellularity in Archaeplastida and radiation of the first land plants. However, the temporal relationship between these environmental and biological events is poorly established, due to a paucity of molecular and fossil data, precluding resolution of the phylogeny and timescale of archaeplastid evolution. We infer a time-calibrated phylogeny of early archaeplastid evolution based on a revised molecular dataset and reappraisal of the fossil record. Phylogenetic topology testing resolves deep archaeplastid relationships, identifying two clades of Viridiplantae and placing Bryopsidales as sister to the Chlorophyceae. Our molecular clock analysis infers an origin of Archaeplastida in the late-Paleoproterozoic to early-Mesoproterozoic (1712 to 1387 Ma). Ancestral state reconstruction of cytomorphological traits on this time-calibrated tree reveals many of the independent origins of multicellularity span the Cryogenian, consistent with the Cryogenian multicellularity hypothesis. Multicellular rhodophytes emerged 902 to 655 Ma while crown-Anydrophyta (Zygnematophyceae and Embryophyta) originated 796 to 671 Ma, broadly compatible with the Cryogenian plant terrestrialization hypothesis. Our analyses resolve the timetree of Archaeplastida with age estimates for ancestral multicellular archaeplastids coinciding with the Cryogenian, compatible with hypotheses that propose a role of Snowball Earth in plant evolution.
Collapse
Affiliation(s)
- Alexander M C Bowles
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Biological Sciences and School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
3
|
Arzac MI, Miranda-Apodaca J, Gasulla F, Arce-Guerrero M, Fernández-Marín B, García-Plazaola JI. Acquisition of Desiccation Tolerance Unveiled: Polar Lipid Profiles of Streptophyte Algae Offer Insights. PHYSIOLOGIA PLANTARUM 2023; 175:e14073. [PMID: 38148218 DOI: 10.1111/ppl.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023]
Abstract
Terrestrialization by photosynthetic eukaryotes took place in the two branches of green microalgae: Chlorophyta and Charophyta. Within the latter, the paraphyletic streptophytic algae divide into two clades. These are named Klebsormidiophyceae-Chlorokybophyceae-Mesostigmatophyceae (KCM), which is the oldest, and Zygnematophyceae-Coleochaetophyceae-Charophyceae (ZCC), which contains the closest relatives of vascular plants. Terrestrialization required the emergence of adaptations in response to new challenges, such as irradiance, temperature oscillations and water deprivation. In this study, we evaluated lipid composition in species representative of distinct phylogenetic clusters within Charophyta and Chlorophyta. We aim to study whether the inherent thylakoid lipid composition, as well as its adaptability in response to desiccation, were fundamental factors for the evolutionary history of terrestrial plants. The results showed that the lipid composition was similar to that found in flowering land plants, differing only in betaine lipids. Likewise, the largest constitutive pool of oligogalactolipids (OGL) was found only in the fully desiccation-tolerant species Klebsormidium nitens. After desiccation, the content of polar lipids decreased in all species. Conversely, the content of OGL increased, particularly trigalactosyldiacylglycerol and tetragalactosyldiacylglycerol in the ZCC clade. The analysis of the molecular species composition of the newly formed OGL may suggest a different biosynthetic route for the KCM and ZCC clades. We speculate that the appearance of a new OGL synthesis pathway, which eventually arose during the streptophyte evolutionary process, endowed algae with a much more dynamic regulation of thylakoid composition in response to stress, which ultimately contributed to the colonization of terrestrial habitats.
Collapse
Affiliation(s)
- Miren Irati Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Miranda-Apodaca
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - María Arce-Guerrero
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), La Laguna, Canary Islands, Spain
| | | |
Collapse
|
4
|
Caygill S, Dolan L. ATP binding cassette transporters and uridine diphosphate glycosyltransferases are ancient protein families that evolved roles in herbicide resistance through exaptation. PLoS One 2023; 18:e0287356. [PMID: 37733747 PMCID: PMC10513242 DOI: 10.1371/journal.pone.0287356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
ATP-binding cassette (ABC) transporters actively transport various substances across membranes, while uridine diphosphate (UDP) glycosyltransferases (UGTs) are proteins that catalyse the chemical modification of various organic compounds. Both of these protein superfamilies have been associated with conferring herbicide resistance in weeds. Little is known about the evolutionary history of these protein families in the Archaeplastida. To infer the evolutionary histories of these protein superfamilies, we compared protein sequences collected from 10 species which represent distinct lineages of the Archaeplastida-the lineage including glaucophyte algae, rhodophyte algae, chlorophyte algae and the streptophytes-and generated phylogenetic trees. We show that ABC transporters were present in the last common ancestor of the Archaeplastida which lived 1.6 billion years ago, and the major clades identified in extant plants were already present then. Conversely, we only identified UGTs in members of the streptophyte lineage, which suggests a loss of these proteins in earlier diverging Archaeplastida lineages or arrival of UGTs into a common ancestor of the streptophyte lineage through horizontal gene transfer from a non-Archaeplastida eukaryote lineage. We found that within the streptophyte lineage, most diversification of the UGT protein family occurred in the vascular lineage, with 17 of the 20 clades identified in extant plants present only in vascular plants. Based on our findings, we conclude that ABC transporters and UGTs are ancient protein families which diversified during Archaeplastida evolution, which may have evolved for developmental functions as plants began to occupy new environmental niches and are now being selected to confer resistance to a diverse range of herbicides in weeds.
Collapse
Affiliation(s)
- Samuel Caygill
- Gregor Mendel Institute, Vienna, Austria
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Liam Dolan
- Gregor Mendel Institute, Vienna, Austria
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Yao H, Li T, Ma Z, Wang X, Xu L, Zhang Y, Cai Y, Tang Z. Codon usage pattern of the ancestor of green plants revealed through Rhodophyta. BMC Genomics 2023; 24:538. [PMID: 37697255 PMCID: PMC10496412 DOI: 10.1186/s12864-023-09586-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
Rhodophyta are among the closest known relatives of green plants. Studying the codons of their genomes can help us understand the codon usage pattern and characteristics of the ancestor of green plants. By studying the codon usage pattern of all available red algae, it was found that although there are some differences among species, high-bias genes in most red algae prefer codons ending with GC. Correlation analysis, Nc-GC3s plots, parity rule 2 plots, neutrality plot analysis, differential protein region analysis and comparison of the nucleotide content of introns and flanking sequences showed that the bias phenomenon is likely to be influenced by local mutation pressure and natural selection, the latter of which is the dominant factor in terms of translation accuracy and efficiency. It is worth noting that selection on translation accuracy could even be detected in the low-bias genes of individual species. In addition, we identified 15 common optimal codons in seven red algae except for G. sulphuraria for the first time, most of which were found to be complementary and bound to the tRNA genes with the highest copy number. Interestingly, tRNA modification was found for the highly degenerate amino acids of all multicellular red algae and individual unicellular red algae, which indicates that highly biased genes tend to use modified tRNA in translation. Our research not only lays a foundation for exploring the characteristics of codon usage of the red algae as green plant ancestors, but will also facilitate the design and performance of transgenic work in some economic red algae in the future.
Collapse
Affiliation(s)
- Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China.
| | - Tingting Li
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zheng Ma
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xiyuan Wang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Lixiao Xu
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yuxin Zhang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yi Cai
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zizhong Tang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Ruan M, Hu Z, Zhu Q, Li Y, Nie X. 16S rDNA Sequencing-Based Insights into the Bacterial Community Structure and Function in Co-Existing Soil and Coal Gangue. Microorganisms 2023; 11:2151. [PMID: 37763995 PMCID: PMC10536285 DOI: 10.3390/microorganisms11092151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Coal gangue is a solid waste emitted during coal production. Coal gangue is deployed adjacent to mining land and has characteristics similar to those of the soils of these areas. Coal gangue-soil ecosystems provide habitats for a rich and active bacterial community. However, co-existence networks and the functionality of soil and coal gangue bacterial communities have not been studied. Here, we performed Illumina MiSeq high-throughput sequencing, symbiotic network and statistical analyses, and microbial phenotype prediction to study the microbial community in coal gangue and soil samples from Shanxi Province, China. In general, the structural difference between the bacterial communities in coal gangue and soil was large, indicating that interactions between soil and coal gangue are limited but not absent. The bacterial community exhibited a significant symbiosis network in soil and coal gangue. The co-occurrence network was primarily formed by Proteobacteria, Firmicutes, and Actinobacteria. In addition, BugBase microbiome phenotype predictions and PICRUSt bacterial functional potential predictions showed that transcription regulators represented the highest functional category of symbiotic bacteria in soil and coal gangue. Proteobacteria played an important role in various processes such as mobile element pathogenicity, oxidative stress tolerance, and biofilm formation. In general, this work provides a theoretical basis and data support for the in situ remediation of acidified coal gangue hills based on microbiological methods.
Collapse
Affiliation(s)
- Mengying Ruan
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China; (M.R.); (X.N.)
| | - Zhenqi Hu
- China University of Mining and Technology, Xuzhou 221116, China;
| | - Qi Zhu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Yuanyuan Li
- China University of Mining and Technology, Xuzhou 221116, China;
| | - Xinran Nie
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China; (M.R.); (X.N.)
| |
Collapse
|
7
|
Broadwell ELM, Pickford RE, Perkins RG, Sgouridis F, Williamson CJ. Adaptation versus plastic responses to temperature, light, and nitrate availability in cultured snow algal strains. FEMS Microbiol Ecol 2023; 99:fiad088. [PMID: 37553143 PMCID: PMC10481995 DOI: 10.1093/femsec/fiad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
Snow algal blooms are widespread, dominating low temperature, high light, and oligotrophic melting snowpacks. Here, we assessed the photophysiological and cellular stoichiometric responses of snow algal genera Chloromonas spp. and Microglena spp. in their vegetative life stage isolated from the Arctic and Antarctic to gradients in temperature (5 - 15°C), nitrate availability (1 - 10 µmol L-1), and light (50 and 500 µmol photons m-2 s-1). When grown under gradients in temperature, measured snow algal strains displayed Fv/Fm values increased by ∼115% and electron transport rates decreased by ∼50% at 5°C compared to 10 and 15°C, demonstrating how low temperatures can mimic high light impacts to photophysiology. When using carrying capacity as opposed to growth rate as a metric for determining the temperature optima, these snow algal strains can be defined as psychrophilic, with carrying capacities ∼90% higher at 5°C than warmer temperatures. All strains approached Redfield C:N stoichiometry when cultured under nutrient replete conditions regardless of temperature (5.7 ± 0.4 across all strains), whereas significant increases in C:N were apparent when strains were cultured under nitrate concentrations that reflected in situ conditions (17.8 ± 5.9). Intra-specific responses in photophysiology were apparent under high light with Chloromonas spp. more capable of acclimating to higher light intensities. These findings suggest that in situ conditions are not optimal for the studied snow algal strains, but they are able to dynamically adjust both their photochemistry and stoichiometry to acclimate to these conditions.
Collapse
Affiliation(s)
- Emily L M Broadwell
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Rachel E Pickford
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Rupert G Perkins
- School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Fotis Sgouridis
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Christopher J Williamson
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| |
Collapse
|
8
|
Pichler G, Muggia L, Carniel FC, Grube M, Kranner I. How to build a lichen: from metabolite release to symbiotic interplay. THE NEW PHYTOLOGIST 2023; 238:1362-1378. [PMID: 36710517 PMCID: PMC10952756 DOI: 10.1111/nph.18780] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Exposing their vegetative bodies to the light, lichens are outstanding amongst other fungal symbioses. Not requiring a pre-established host, 'lichenized fungi' build an entirely new structure together with microbial photosynthetic partners that neither can form alone. The signals involved in the transition of a fungus and a compatible photosynthetic partner from a free-living to a symbiotic state culminating in thallus formation, termed 'lichenization', and in the maintenance of the symbiosis, are poorly understood. Here, we synthesise the puzzle pieces of the scarce knowledge available into an updated concept of signalling involved in lichenization, comprising five main stages: (1) the 'pre-contact stage', (2) the 'contact stage', (3) 'envelopment' of algal cells by the fungus, (4) their 'incorporation' into a pre-thallus and (5) 'differentiation' into a complex thallus. Considering the involvement of extracellularly released metabolites in each phase, we propose that compounds such as fungal lectins and algal cyclic peptides elicit early contact between the symbionts-to-be, whereas phytohormone signalling, antioxidant protection and carbon exchange through sugars and sugar alcohols are of continued importance throughout all stages. In the fully formed lichen thallus, secondary lichen metabolites and mineral nutrition are suggested to stabilize the functionalities of the thallus, including the associated microbiota.
Collapse
Affiliation(s)
- Gregor Pichler
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| | - Lucia Muggia
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 1034127TriesteItaly
| | | | - Martin Grube
- Institute of BiologyUniversity of GrazHolteigasse 68010GrazAustria
| | - Ilse Kranner
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| |
Collapse
|
9
|
Leterme S, Bastien O, Aiese Cigliano R, Amato A, Michaud M. Phylogenetic and Structural Analyses of VPS13 Proteins in Archaeplastida Reveal Their Complex Evolutionary History in Viridiplantae. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231211976. [PMID: 38033810 PMCID: PMC10683392 DOI: 10.1177/25152564231211976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
VPS13 is a lipid transfer protein family conserved among Eukaryotes and playing roles in fundamental processes involving vesicular transport and membrane expansion including autophagy and organelle biogenesis. VPS13 folds into a long hydrophobic tunnel, allowing lipid transport, decorated by distinct domains involved in protein localization and regulation. Whereas VPS13 organization and function have been extensively studied in yeast and mammals, information in organisms originating from primary endosymbiosis is scarce. In the higher plant Arabidopsis thaliana, four paralogs, AtVPS13S, X, M1, and M2, were identified, AtVPS13S playing a role in the regulation of root growth, cell patterning, and reproduction. In this work, we performed phylogenetic, as well as domain and structural modeling of VPS13 proteins in Archaeplastida in order to understand their general organization and evolutionary history. We confirmed the presence of human VPS13B orthologues in some phyla and described two new VPS13 families presenting a particular domain arrangement: VPS13R in Rhodophytes and VPS13Y in Chlorophytes and Streptophytes. By focusing on Viridiplantae, we were able to draw the evolutionary history of these proteins made by multiple gene gains and duplications as well as domain rearrangements. We showed that some Chlorophytes have only three (AtVPS13M, S, Y) whereas some Charophytes have up to six VPS13 paralogs (AtVPS13M1, M2, S, Y, X, B). We also highlighted specific structural features of VPS13M and X paralogs. This study reveals the complex evolution of VPS13 family and opens important perspectives for their functional characterization in photosynthetic organisms.
Collapse
Affiliation(s)
- Sébastien Leterme
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Olivier Bastien
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | | | - Alberto Amato
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Morgane Michaud
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| |
Collapse
|
10
|
Permann C, Becker B, Holzinger A. Temperature- and light stress adaptations in Zygnematophyceae: The challenges of a semi-terrestrial lifestyle. FRONTIERS IN PLANT SCIENCE 2022; 13:945394. [PMID: 35928713 PMCID: PMC9343959 DOI: 10.3389/fpls.2022.945394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Streptophyte green algae comprise the origin of land plants and therefore life on earth as we know it today. While terrestrialization opened new habitats, leaving the aquatic environment brought additional abiotic stresses. More-drastic temperature shifts and high light levels are major abiotic stresses in semi-terrestrial habitats, in addition to desiccation, which has been reviewed elsewhere. Zygnematophyceae, a species-rich class of streptophyte green algae, is considered a sister-group to embryophytes. They have developed a variety of avoidance and adaptation mechanisms to protect against temperature extremes and high radiation in the form of photosynthetically active and ultraviolet radiation (UV) radiation occurring on land. Recently, knowledge of transcriptomic and metabolomic changes as consequences of these stresses has become available. Land-plant stress-signaling pathways producing homologs of key enzymes have been described in Zygnematophyceae. An efficient adaptation strategy is their mat-like growth habit, which provides self-shading and protects lower layers from harmful radiation. Additionally, Zygnematophyceae possess phenolic compounds with UV-screening ability. Resting stages such as vegetative pre-akinetes tolerate freezing to a much higher extent than do young cells. Sexual reproduction occurs by conjugation without the formation of flagellated male gametes, which can be seen as an advantage in water-deficient habitats. The resulting zygospores possess a multilayer cell wall, contributing to their resistance to terrestrial conditions. Especially in the context of global change, understanding temperature and light tolerance is crucial.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| | - Burkhard Becker
- Department of Biology, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Permann C, Herburger K, Niedermeier M, Felhofer M, Gierlinger N, Holzinger A. Cell wall characteristics during sexual reproduction of Mougeotia sp. (Zygnematophyceae) revealed by electron microscopy, glycan microarrays and RAMAN spectroscopy. PROTOPLASMA 2021; 258:1261-1275. [PMID: 33974144 PMCID: PMC8523461 DOI: 10.1007/s00709-021-01659-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 05/22/2023]
Abstract
Mougeotia spp. collected from field samples were investigated for their conjugation morphology by light-, fluorescence-, scanning- and transmission electron microscopy. During a scalarifom conjugation, the extragametangial zygospores were initially surrounded by a thin cell wall that developed into a multi-layered zygospore wall. Maturing zygospores turned dark brown and were filled with storage compounds such as lipids and starch. While M. parvula had a smooth surface, M. disjuncta had a punctated surface structure and a prominent suture. The zygospore wall consisted of a polysaccharide rich endospore, followed by a thin layer with a lipid-like appaerance, a massive electron dense mesospore and a very thin exospore composed of polysaccharides. Glycan microarray analysis of zygospores of different developmental stages revealed the occurrence of pectins and hemicelluloses, mostly composed of homogalacturonan (HG), xyloglucans, xylans, arabino-galactan proteins and extensins. In situ localization by the probe OG7-13AF 488 labelled HG in young zygospore walls, vegetative filaments and most prominently in conjugation tubes and cross walls. Raman imaging showed the distribution of proteins, lipids, carbohydrates and aromatic components of the mature zygospore with a spatial resolution of ~ 250 nm. The carbohydrate nature of the endo- and exospore was confirmed and in-between an enrichment of lipids and aromatic components, probably algaenan or a sporopollenin-like material. Taken together, these results indicate that during zygospore formation, reorganizations of the cell walls occured, leading to a resistant and protective structure.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, Section for Plant Glycobiology, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Martin Niedermeier
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Martin Felhofer
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190, Vienna, Austria
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
12
|
Hisanaga T, Fujimoto S, Cui Y, Sato K, Sano R, Yamaoka S, Kohchi T, Berger F, Nakajima K. Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants. eLife 2021; 10:57090. [PMID: 34579806 PMCID: PMC8478417 DOI: 10.7554/elife.57090] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/02/2021] [Indexed: 02/03/2023] Open
Abstract
KNOX and BELL transcription factors regulate distinct steps of diploid development in plants. In the green alga Chlamydomonas reinhardtii, KNOX and BELL proteins are inherited by gametes of the opposite mating types and heterodimerize in zygotes to activate diploid development. By contrast, in land plants such as Physcomitrium patens and Arabidopsis thaliana, KNOX and BELL proteins function in sporophyte and spore formation, meristem maintenance and organogenesis during the later stages of diploid development. However, whether the contrasting functions of KNOX and BELL were acquired independently in algae and land plants is currently unknown. Here, we show that in the basal land plant species Marchantia polymorpha, gamete-expressed KNOX and BELL are required to initiate zygotic development by promoting nuclear fusion in a manner strikingly similar to that in C. reinhardtii. Our results indicate that zygote activation is the ancestral role of KNOX/BELL transcription factors, which shifted toward meristem maintenance as land plants evolved.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan.,Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Shota Fujimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yihui Cui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Katsutoshi Sato
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
13
|
Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and evolution. MOLECULAR PLANT 2021; 14:1244-1265. [PMID: 34216829 DOI: 10.1016/j.molp.2021.06.028] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/30/2021] [Indexed: 05/27/2023]
Abstract
The superfamily of cytochrome P450 (CYP) enzymes plays key roles in plant evolution and metabolic diversification. This review provides a status on the CYP landscape within green algae and land plants. The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algae-specific clans are recognized. Clan 71, 72, and 85 remain the largest CYP clans and include many taxa-specific CYP (sub)families reflecting emergence of linage-specific pathways. Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways. High substrate promiscuity is commonly observed for CYPs from large families, favoring retention of gene duplicates and neofunctionalization, thus seeding acquisition of new functions. Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple examples of convergent evolution where CYPs have been independently recruited from the same or different CYP families, to adapt to similar environmental challenges or ecological niches. Sometimes only a single or a few mutations are required for functional interconversion. A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database (erda.dk/public/vgrid/PlantP450/).
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Daniele Werck-Reichhart
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
14
|
Nick P. Steady flow, not steady state - a plea for physiological thinking. PROTOPLASMA 2021; 258:681-682. [PMID: 34117936 PMCID: PMC8211586 DOI: 10.1007/s00709-021-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
15
|
Santhanagopalan I, Wong R, Mathur T, Griffiths H. Orchestral manoeuvres in the light: crosstalk needed for regulation of the Chlamydomonas carbon concentration mechanism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4604-4624. [PMID: 33893473 PMCID: PMC8320531 DOI: 10.1093/jxb/erab169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 05/19/2023]
Abstract
The inducible carbon concentration mechanism (CCM) in Chlamydomonas reinhardtii has been well defined from a molecular and ultrastructural perspective. Inorganic carbon transport proteins, and strategically located carbonic anhydrases deliver CO2 within the chloroplast pyrenoid matrix where Rubisco is packaged. However, there is little understanding of the fundamental signalling and sensing processes leading to CCM induction. While external CO2 limitation has been believed to be the primary cue, the coupling between energetic supply and inorganic carbon demand through regulatory feedback from light harvesting and photorespiration signals could provide the original CCM trigger. Key questions regarding the integration of these processes are addressed in this review. We consider how the chloroplast functions as a crucible for photosynthesis, importing and integrating nuclear-encoded components from the cytoplasm, and sending retrograde signals to the nucleus to regulate CCM induction. We hypothesize that induction of the CCM is associated with retrograde signals associated with photorespiration and/or light stress. We have also examined the significance of common evolutionary pressures for origins of two co-regulated processes, namely the CCM and photorespiration, in addition to identifying genes of interest involved in transcription, protein folding, and regulatory processes which are needed to fully understand the processes leading to CCM induction.
Collapse
Affiliation(s)
- Indu Santhanagopalan
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Rachel Wong
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | - Tanya Mathur
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
16
|
Li X, Hou Z, Xu C, Shi X, Yang L, Lewis LA, Zhong B. Large Phylogenomic Data sets Reveal Deep Relationships and Trait Evolution in Chlorophyte Green Algae. Genome Biol Evol 2021; 13:6265471. [PMID: 33950183 PMCID: PMC8271138 DOI: 10.1093/gbe/evab101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/01/2022] Open
Abstract
The chlorophyte green algae (Chlorophyta) are species-rich ancient groups ubiquitous in various habitats with high cytological diversity, ranging from microscopic to macroscopic organisms. However, the deep phylogeny within core Chlorophyta remains unresolved, in part due to the relatively sparse taxon and gene sampling in previous studies. Here we contribute new transcriptomic data and reconstruct phylogenetic relationships of core Chlorophyta based on four large data sets up to 2,698 genes of 70 species, representing 80% of extant orders. The impacts of outgroup choice, missing data, bootstrap-support cutoffs, and model misspecification in phylogenetic inference of core Chlorophyta are examined. The species tree topologies of core Chlorophyta from different analyses are highly congruent, with strong supports at many relationships (e.g., the Bryopsidales and the Scotinosphaerales-Dasycladales clade). The monophyly of Chlorophyceae and of Trebouxiophyceae as well as the uncertain placement of Chlorodendrophyceae and Pedinophyceae corroborate results from previous studies. The reconstruction of ancestral scenarios illustrates the evolution of the freshwater-sea and microscopic–macroscopic transition in the Ulvophyceae, and the transformation of unicellular→colonial→multicellular in the chlorophyte green algae. In addition, we provided new evidence that serine is encoded by both canonical codons and noncanonical TAG code in Scotinosphaerales, and stop-to-sense codon reassignment in the Ulvophyceae has originated independently at least three times. Our robust phylogenetic framework of core Chlorophyta unveils the evolutionary history of phycoplast, cyto-morphology, and noncanonical genetic codes in chlorophyte green algae.
Collapse
Affiliation(s)
- Xi Li
- College of Life Sciences, Nanjing Normal University, China
| | - Zheng Hou
- College of Life Sciences, Nanjing Normal University, China
| | - Chenjie Xu
- College of Life Sciences, Nanjing Normal University, China
| | - Xuan Shi
- College of Life Sciences, Nanjing Normal University, China
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, China
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
17
|
Žárský J, Žárský V, Hanáček M, Žárský V. Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle - The Origin of the Anydrophytes and Zygnematophyceae Split. FRONTIERS IN PLANT SCIENCE 2021; 12:735020. [PMID: 35154170 PMCID: PMC8829067 DOI: 10.3389/fpls.2021.735020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/17/2021] [Indexed: 05/05/2023]
Abstract
For tens of millions of years (Ma), the terrestrial habitats of Snowball Earth during the Cryogenian period (between 720 and 635 Ma before present-Neoproterozoic Era) were possibly dominated by global snow and ice cover up to the equatorial sublimative desert. The most recent time-calibrated phylogenies calibrated not only on plants but on a comprehensive set of eukaryotes indicate that within the Streptophyta, multicellular charophytes (Phragmoplastophyta) evolved in the Mesoproterozoic to the early Neoproterozoic. At the same time, Cryogenian is the time of the likely origin of the common ancestor of Zygnematophyceae and Embryophyta and later, also of the Zygnematophyceae-Embryophyta split. This common ancestor is proposed to be called Anydrophyta; here, we use anydrophytes. Based on the combination of published phylogenomic studies and estimated diversification time comparisons, we deem it highly likely that anydrophytes evolved in response to Cryogenian cooling. Also, later in the Cryogenian, secondary simplification of multicellular anydrophytes and loss of flagella resulted in Zygnematophyceae diversification as an adaptation to the extended cold glacial environment. We propose that the Marinoan geochemically documented expansion of first terrestrial flora has been represented not only by Chlorophyta but also by Streptophyta, including the anydrophytes, and later by Zygnematophyceae, thriving on glacial surfaces until today. It is possible that multicellular early Embryophyta survived in less abundant (possibly relatively warmer) refugia, relying more on mineral substrates, allowing the retention of flagella-based sexuality. The loss of flagella and sexual reproduction by conjugation evolved in Zygnematophyceae and zygomycetous fungi during the Cryogenian in a remarkably convergent way. Thus, we support the concept that the important basal cellular adaptations to terrestrial environments were exapted in streptophyte algae for terrestrialization and propose that this was stimulated by the adaptation to glacial habitats dominating the Cryogenian Snowball Earth. Including the glacial lifestyle when considering the rise of land plants increases the parsimony of connecting different ecological, phylogenetic, and physiological puzzles of the journey from aquatic algae to terrestrial floras.
Collapse
Affiliation(s)
- Jakub Žárský
- CryoEco Research Group, Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Jakub Žárský,
| | - Vojtěch Žárský
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Martin Hanáček
- Polar-Geo-Lab, Department of Geography, Faculty of Science, Masaryk University, Brno, Czechia
- Regional Museum in Jeseník, Jeseník, Czechia
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
18
|
Nawaz MA, Azeem F, Zakharenko AM, Lin X, Atif RM, Baloch FS, Chan TF, Chung G, Ham J, Sun S, Golokhvast KS. In-silico Exploration of Channel Type and Efflux Silicon Transporters and Silicification Proteins in 80 Sequenced Viridiplantae Genomes. PLANTS 2020; 9:plants9111612. [PMID: 33233677 PMCID: PMC7709012 DOI: 10.3390/plants9111612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Silicon (Si) accumulation protects plants from biotic and abiotic stresses. It is transported and distributed within the plant body through a cooperative system of channel type (e.g., OsLsi1) and efflux (Lsi2s e.g., OsLsi2) Si transporters (SITs) that belong to Noduline-26 like intrinsic protein family of aquaporins and an uncharacterized anion transporter family, respectively. Si is deposited in plant tissues as phytoliths and the process is known as biosilicification but the knowledge about the proteins involved in this process is limited. In the present study, we explored channel type SITs and Lsi2s, and siliplant1 protein (Slp1) in 80 green plant species. We found 80 channel type SITs and 133 Lsi2s. The channel type SITs characterized by the presence of two NPA motifs, GSGR or STAR selectivity filter, and 108 amino acids between two NPA motifs were absent from Chlorophytes, while Streptophytes evolved two different types of channel type SITs with different selectivity filters. Both channel type SITs and Lsi2s evolved two types of gene structures each, however, Lsi2s are ancient and were also found in Chlorophyta. Homologs of Slp1 (225) were present in almost all Streptophytes regardless of their Si accumulation capacity. In Si accumulator plant species, the Slp1s were characterized by the presence of H, D-rich domain, P, K, E-rich domain, and P, T, Y-rich domain, while moderate Si accumulators lacked H, D-rich domain and P, T, Y-rich domains. The digital expression analysis and coexpression networks highlighted the role of channel type and Lsi2s, and how Slp1 homologs were ameliorating plants’ ability to withstand different stresses by co-expressing with genes related to structural integrity and signaling. Together, the in-silico exploration made in this study increases our knowledge of the process of biosilicification in plants.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Laboratory of Bio-Economics and Biotechnology, Department of Bio-Economics and Food Safety, School of Economics and Management, Far Eastern Federal University, 690950 Vladivostok, Russia;
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | | | - Xiao Lin
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong SAR, Hong Kong 999077, China; (X.L.); (T.-F.C.)
| | - Rana Muhammad Atif
- US-Pakistan Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Turkey;
| | - Ting-Fung Chan
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong SAR, Hong Kong 999077, China; (X.L.); (T.-F.C.)
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea;
| | - Junghee Ham
- Department of Health Policy and Management, Wonkwang University, Iksan, Jeonbuk 54538, Korea;
| | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea;
- Correspondence: (S.S.); (K.S.G.)
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42, 44 Bolshaya Morskaya Street, 190000 St. Petersburg, Russia;
- Education and Scientific Center of Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia
- Pacific Geographical Institute, FEB RAS, 7 Radio street, 690014 Vladivostok, Russia
- Correspondence: (S.S.); (K.S.G.)
| |
Collapse
|
19
|
Goudet MMM, Orr DJ, Melkonian M, Müller KH, Meyer MT, Carmo-Silva E, Griffiths H. Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae. THE NEW PHYTOLOGIST 2020; 227:810-823. [PMID: 32249430 DOI: 10.1111/nph.16577] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/23/2020] [Indexed: 05/19/2023]
Abstract
Green algae expressing a carbon-concentrating mechanism (CCM) are usually associated with a Rubisco-containing micro-compartment, the pyrenoid. A link between the small subunit (SSU) of Rubisco and pyrenoid formation in Chlamydomonas reinhardtii has previously suggested that specific RbcS residues could explain pyrenoid occurrence in green algae. A phylogeny of RbcS was used to compare the protein sequence and CCM distribution across the green algae and positive selection in RbcS was estimated. For six streptophyte algae, Rubisco catalytic properties, affinity for CO2 uptake (K0.5 ), carbon isotope discrimination (δ13 C) and pyrenoid morphology were compared. The length of the βA-βB loop in RbcS provided a phylogenetic marker discriminating chlorophyte from streptophyte green algae. Rubisco kinetic properties in streptophyte algae have responded to the extent of inducible CCM activity, as indicated by changes in inorganic carbon uptake affinity, δ13 C and pyrenoid ultrastructure between high and low CO2 conditions for growth. We conclude that the Rubisco catalytic properties found in streptophyte algae have coevolved and reflect the strength of any CCM or degree of pyrenoid leakiness, and limitations to inorganic carbon in the aquatic habitat, whereas Rubisco in extant land plants reflects more recent selective pressures associated with improved diffusive supply of the terrestrial environment.
Collapse
Affiliation(s)
- Myriam M M Goudet
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Michael Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, 50674, Cologne, Germany
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Moritz T Meyer
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | | | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
20
|
Nie Y, Foster CSP, Zhu T, Yao R, Duchêne DA, Ho SYW, Zhong B. Accounting for Uncertainty in the Evolutionary Timescale of Green Plants Through Clock-Partitioning and Fossil Calibration Strategies. Syst Biol 2020; 69:1-16. [PMID: 31058981 DOI: 10.1093/sysbio/syz032] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
Establishing an accurate evolutionary timescale for green plants (Viridiplantae) is essential to understanding their interaction and coevolution with the Earth's climate and the many organisms that rely on green plants. Despite being the focus of numerous studies, the timing of the origin of green plants and the divergence of major clades within this group remain highly controversial. Here, we infer the evolutionary timescale of green plants by analyzing 81 protein-coding genes from 99 chloroplast genomes, using a core set of 21 fossil calibrations. We test the sensitivity of our divergence-time estimates to various components of Bayesian molecular dating, including the tree topology, clock models, clock-partitioning schemes, rate priors, and fossil calibrations. We find that the choice of clock model affects date estimation and that the independent-rates model provides a better fit to the data than the autocorrelated-rates model. Varying the rate prior and tree topology had little impact on age estimates, with far greater differences observed among calibration choices and clock-partitioning schemes. Our analyses yield date estimates ranging from the Paleoproterozoic to Mesoproterozoic for crown-group green plants, and from the Ediacaran to Middle Ordovician for crown-group land plants. We present divergence-time estimates of the major groups of green plants that take into account various sources of uncertainty. Our proposed timeline lays the foundation for further investigations into how green plants shaped the global climate and ecosystems, and how embryophytes became dominant in terrestrial environments.
Collapse
Affiliation(s)
- Yuan Nie
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Charles S P Foster
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tianqi Zhu
- National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100000, China
| | - Ru Yao
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - David A Duchêne
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
21
|
Evolution of Photorespiratory Glycolate Oxidase among Archaeplastida. PLANTS 2020; 9:plants9010106. [PMID: 31952152 PMCID: PMC7020209 DOI: 10.3390/plants9010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/17/2022]
Abstract
Photorespiration has been shown to be essential for all oxygenic phototrophs in the present-day oxygen-containing atmosphere. The strong similarity of the photorespiratory cycle in cyanobacteria and plants led to the hypothesis that oxygenic photosynthesis and photorespiration co-evolved in cyanobacteria, and then entered the eukaryotic algal lineages up to land plants via endosymbiosis. However, the evolutionary origin of the photorespiratory enzyme glycolate oxidase (GOX) is controversial, which challenges the common origin hypothesis. Here, we tested this hypothesis using phylogenetic and biochemical approaches with broad taxon sampling. Phylogenetic analysis supported the view that a cyanobacterial GOX-like protein of the 2-hydroxy-acid oxidase family most likely served as an ancestor for GOX in all eukaryotes. Furthermore, our results strongly indicate that GOX was recruited to the photorespiratory metabolism at the origin of Archaeplastida, because we verified that Glaucophyta, Rhodophyta, and Streptophyta all express GOX enzymes with preference for the substrate glycolate. Moreover, an “ancestral” protein synthetically derived from the node separating all prokaryotic from eukaryotic GOX-like proteins also preferred glycolate over l-lactate. These results support the notion that a cyanobacterial ancestral protein laid the foundation for the evolution of photorespiratory GOX enzymes in modern eukaryotic phototrophs.
Collapse
|
22
|
Chang X, Xie S, Wei L, Lu Z, Chen ZH, Chen F, Lai Z, Lin Z, Zhang L. Origins and Stepwise Expansion of R2R3-MYB Transcription Factors for the Terrestrial Adaptation of Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:575360. [PMID: 33424877 PMCID: PMC7785938 DOI: 10.3389/fpls.2020.575360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/30/2020] [Indexed: 05/14/2023]
Abstract
The R2R3-MYB transcription factors play critical roles in various processes in embryophytes (land plants). Here, we identified genes encoding R2R3-MYB proteins from rhodophytes, glaucophytes, Chromista, chlorophytes, charophytes, and embryophytes. We classified the R2R3-MYB genes into three subgroups (I, II, and III) based on their evolutionary history and gene structure. The subgroup I is the most ancient group that includes members from all plant lineages. The subgroup II was formed before the divergence of charophytes and embryophytes. The subgroup III genes form a monophyletic group and only comprise members from land plants with conserved exon-intron structure. Each subgroup was further divided into multiple clades. The subgroup I can be divided into I-A, I-B, I-C, and I-D. The I-A, I-B, and I-C are the most basal clades that have originated before the divergence of Archaeplastida. The I-D with the II and III subgroups form a monophyletic group, containing only green plants. The II and III subgroups form another monophyletic group with Streptophyta only. Once on land, the subgroup III genes have experienced two rounds of major expansions. The first round occurred before the origin of land plants, and the second round occurred after the divergence of land plants. Due to significant gene expansion, the subgroup III genes have become the predominant group of R2R3-MYBs in land plants. The highly unbalanced pattern of birth and death evolution of R2R3-MYB genes indicates their important roles in the successful adaptation and massive radiation of land plants to occupy a multitude of terrestrial environments.
Collapse
Affiliation(s)
- Xiaojun Chang
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shupeng Xie
- Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua, China
| | - Lanlan Wei
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Fei Chen
- College of Horticulture, Faculty of Plant Science, Nanjing Agricultural University, Nanjing, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Zhongxiong Lai,
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO, United States
- Zhenguo Lin,
| | - Liangsheng Zhang
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Liangsheng Zhang, ;
| |
Collapse
|
23
|
Rippin M, Pichrtová M, Arc E, Kranner I, Becker B, Holzinger A. Metatranscriptomic and metabolite profiling reveals vertical heterogeneity within a Zygnema green algal mat from Svalbard (High Arctic). Environ Microbiol 2019; 21:4283-4299. [PMID: 31454446 PMCID: PMC6899726 DOI: 10.1111/1462-2920.14788] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/22/2019] [Indexed: 02/02/2023]
Abstract
Within streptophyte green algae Zygnematophyceae are the sister group to the land plants that inherited several traits conferring stress protection. Zygnema sp., a mat-forming alga thriving in extreme habitats, was collected from a field site in Svalbard, where the bottom layers are protected by the top layers. The two layers were investigated by a metatranscriptomic approach and GC-MS-based metabolite profiling. In the top layer, 6569 genes were significantly upregulated and 149 were downregulated. Upregulated genes coded for components of the photosynthetic apparatus, chlorophyll synthesis, early light-inducible proteins, cell wall and carbohydrate metabolism, including starch-degrading enzymes. An increase in maltose in the top layer and degraded starch grains at the ultrastructural levels corroborated these findings. Genes involved in amino acid, redox metabolism and DNA repair were upregulated. A total of 29 differentially accumulated metabolites (out of 173 identified ones) confirmed higher metabolic turnover in the top layer. For several of these metabolites, differential accumulation matched the transcriptional changes of enzymes involved in associated pathways. In summary, the findings support the hypothesis that in a Zygnema mat the top layer shields the bottom layers from abiotic stress factors such as excessive irradiation.
Collapse
Affiliation(s)
- Martin Rippin
- University of CologneBotanical InstituteCologneGermany
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Erwann Arc
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - Ilse Kranner
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | | |
Collapse
|
24
|
Caisová L, Jobe TO. Regeneration and transient gene expression in protoplasts of Draparnaldia (chlorophytes), an emerging model for comparative analyses with basal streptophytes. PLANT METHODS 2019; 15:74. [PMID: 31338114 PMCID: PMC6624896 DOI: 10.1186/s13007-019-0460-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/06/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Green plants comprise two lineages: (1) the streptophytes that colonised land and (2) the chlorophytes that have adaptations to land but remained mostly aquatic. To better understand what made streptophytes so successful, we are currently establishing the chlorophyte alga Draparnaldia sp. (Chaetophorales, Chlorophyceae) as a model for comparative analyses between these two lineages. However, establishing Draparnaldia as a valuable model requires that it can be transformed. Thus, our goal is to develop a transformation protocol for this alga. RESULTS We have established the first transformation protocol for Draparnaldia. This protocol is based on protoplast transformation by electroporation. It includes instructions on protoplast isolation, regeneration and transient transfection. It also provides a list of the effective selective agents for future Draparnaldia transformations. CONCLUSIONS Our protocol opens a way for Draparnaldia functional genomics analyses. Moreover, it also provides an important base for establishment of stable transformation.
Collapse
Affiliation(s)
- Lenka Caisová
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT UK
| | - Timothy O. Jobe
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
25
|
Williamson CJ, Cameron KA, Cook JM, Zarsky JD, Stibal M, Edwards A. Glacier Algae: A Dark Past and a Darker Future. Front Microbiol 2019; 10:524. [PMID: 31019491 PMCID: PMC6458304 DOI: 10.3389/fmicb.2019.00524] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/28/2019] [Indexed: 11/13/2022] Open
Abstract
"Glacier algae" grow on melting glacier and ice sheet surfaces across the cryosphere, causing the ice to absorb more solar energy and consequently melt faster, while also turning over carbon and nutrients. This makes glacier algal assemblages, which are typically dominated by just three main species, a potentially important yet under-researched component of the global biosphere, carbon, and water cycles. This review synthesizes current knowledge on glacier algae phylogenetics, physiology, and ecology. We discuss their significance for the evolution of early land plants and highlight their impacts on the physical and chemical supraglacial environment including their role as drivers of positive feedbacks to climate warming, thereby demonstrating their influence on Earth's past and future. Four complementary research priorities are identified, which will facilitate broad advances in glacier algae research, including establishment of reliable culture collections, sequencing of glacier algae genomes, development of diagnostic biosignatures for remote sensing, and improved predictive modeling of glacier algae biological-albedo effects.
Collapse
Affiliation(s)
- Christopher J Williamson
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Karen A Cameron
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Joseph M Cook
- Department of Geography, The University of Sheffield, Sheffield, United Kingdom
| | - Jakub D Zarsky
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Marek Stibal
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Arwyn Edwards
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
26
|
Pierangelini M, Glaser K, Mikhailyuk T, Karsten U, Holzinger A. Light and Dehydration but Not Temperature Drive Photosynthetic Adaptations of Basal Streptophytes (Hormidiella, Streptosarcina and Streptofilum) Living in Terrestrial Habitats. MICROBIAL ECOLOGY 2019; 77:380-393. [PMID: 29974184 PMCID: PMC6394494 DOI: 10.1007/s00248-018-1225-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/24/2018] [Indexed: 05/05/2023]
Abstract
Streptophyte algae are the ancestors of land plants, and several classes contain taxa that are adapted to an aero-terrestrial lifestyle. In this study, four basal terrestrial streptophytes from the class Klebsormidiophyceae, including Hormidiella parvula; two species of the newly described genus Streptosarcina (S. costaricana and S. arenaria); and the newly described Streptofilum capillatum were investigated for their responses to radiation, desiccation and temperature stress conditions. All the strains showed low-light adaptation (Ik < 70 μmol photons m-2 s-1) but differed in photoprotective capacities (such as non-photochemical quenching). Acclimation to enhanced photon fluence rates (160 μmol photons m-2 s-1) increased photosynthetic performance in H. parvula and S. costaricana but not in S. arenaria, showing that low-light adaptation is a constitutive trait for S. arenaria. This lower-light adaptation of S. arenaria was coupled with a higher desiccation tolerance, providing further evidence that dehydration is a selective force shaping species occurrence in low light. For protection against ultraviolet radiation, all species synthesised and accumulated different amounts of mycosporine-like amino acids (MAAs). Biochemically, MAAs synthesised by Hormidiella and Streptosarcina were similar to MAAs from closely related Klebsormidium spp. but differed in retention time and spectral characteristics in S. capillatum. Unlike the different radiation and dehydration tolerances, Hormidiella, Streptosarcina and Streptofilum displayed preferences for similar thermal conditions. These species showed a temperature dependence of photosynthesis similar to respiration, contrasting with Klebsormidium spp. and highlighting an interspecific diversity in thermal requirements, which could regulate species distributions under temperature changes.
Collapse
Affiliation(s)
- Mattia Pierangelini
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020, Innsbruck, Austria
- Laboratoire de Génétique et Physiologie des microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Liege, 4000, Belgium
| | - Karin Glaser
- Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| | - Tatiana Mikhailyuk
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereschenkivska Str. 2, Kyiv, 01004, Ukraine
| | - Ulf Karsten
- Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
27
|
Tirumani S, Gothandam KM, J Rao B. Coordination between photorespiration and carbon concentrating mechanism in Chlamydomonas reinhardtii: transcript and protein changes during light-dark diurnal cycles and mixotrophy conditions. PROTOPLASMA 2019; 256:117-130. [PMID: 29987443 DOI: 10.1007/s00709-018-1283-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Carbon concentrating mechanism (CCM) and photorespiration (PR) are interlinked and co-regulated in Chlamydomonas reinhardtii, but conditions where co-regulation alters are not sufficiently explored. Here, we uncover that PR gene transcripts, like CCM transcripts, are induced even in the dark when both processes are not active. Such diurnal cycles show that transcript levels peak in the middle of 12 h day, decline by early part of 12-h dark followed by their onset again at mid-dark. Interestingly, the onset in the mid-dark phase is sensitive to high CO2, implying that the active carbon sensing mechanism operates even in the dark. The rhythmic alterations of both CCM and PR transcript levels are unlinked to circadian clock: the "free-running state" reveals no discernible rhythmicity in transcript changes. Only continuous light leads to high transcript levels but no detectable transcripts were observed in continuous dark. Asynchronous continuous light cultures, upon shifting to low from high CO2 exhibit only transient induction of PR transcripts/proteins while CCM transcript induction is stable, indicating the loss of co-regulation between PR and CCM gene transcription. Lastly, we also describe that both CCM and PR transcripts/proteins are induced in low CO2 even in mixotrophic cultures, but only in high light, the same being attenuated in high CO2, implying that high light is a mandatory "trigger" for CCM and PR induction in low CO2 mixotrophy. Our study provides comprehensive analyses of conditions where CCM and PR were differently regulated, setting a paradigm for a detailed mechanistic probing of these responses.
Collapse
Affiliation(s)
- S Tirumani
- B-202, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - K M Gothandam
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Basuthkar J Rao
- B-202, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India.
- Indian Institute of Science Education and Research, Karkambadi Road, Mangalam (B.O.), Tirupati, AP, 517507, India.
| |
Collapse
|
28
|
Chen F, Zhang L, Lin Z, Cheng ZMM. Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling. BMC Genomics 2018; 19:306. [PMID: 29703146 PMCID: PMC5924475 DOI: 10.1186/s12864-018-4685-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. Results Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK, comprises SnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK’s unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. Conclusions This report identified a novel gene fusion and dated its precise fusion time in Metakinetoplastina protists. This potential fourth eukaryotic calcium signal conversion pathway complements our current knowledge that convergent evolution occurs in eukaryotic calcium signaling. Electronic supplementary material The online version of this article (10.1186/s12864-018-4685-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps; Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Plant Sciences, University of Tennessee, Knoxville, 37996, USA
| | - Liangsheng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps; Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, 63103-2010, USA
| | - Zong-Ming Max Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Department of Plant Sciences, University of Tennessee, Knoxville, 37996, USA.
| |
Collapse
|
29
|
Abstract
500Ma ago the terrestrial habitat was a barren, unwelcoming place for species other than, for example, bacteria or fungi. Most probably, filamentous freshwater algae adapted to aerial conditions and eventually conquered land. Adaptation to a severely different habitat apparently included sturdy cell walls enabling an erect body plan as well as protection against abiotic stresses such as ultraviolet radiation, drought and varying temperature. To thrive on land, plants probably required more elaborate signaling pathways to react to diverse environmental conditions, and phytohormones to control developmental programs. Many such plant-typical features have been studied in flowering plants, but their evolutionary origins were long clouded. With the sequencing of a moss genome a decade ago, inference of ancestral land plant states using comparative genomics, phylogenomics and evolutionary developmental approaches began in earnest. In the past few years, the ever increasing availability of genomic and transcriptomic data of organisms representing the earliest common ancestors of the plant tree of life has much informed our understanding of the conquest of land by plants.
Collapse
Affiliation(s)
- Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|
30
|
Kenrick P. Changing expressions: a hypothesis for the origin of the vascular plant life cycle. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170149. [PMID: 29254970 PMCID: PMC5745341 DOI: 10.1098/rstb.2017.0149] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
Plant life cycles underwent fundamental changes during the initial colonization of the land in the Early Palaeozoic, shaping the direction of evolution. Fossils reveal unanticipated diversity, including new variants of meiotic cell division and leafless gametophytes with mycorrhizal-like symbioses, rhizoids, vascular tissues and stomata. Exceptional fossils from the 407-Ma Rhynie chert (Scotland) play a key role in unlocking this diversity. These fossils are reviewed against progress in our understanding of the plant tree of life and recent advances in developmental genetics. Combining data from different sources sheds light on a switch in life cycle that gave rise to the vascular plants. One crucial step was the establishment of a free-living sporophyte from one that was an obligate matrotroph borne on the gametophyte. It is proposed that this difficult evolutionary transition was achieved through expansion of gene expression primarily from the gametophyte to the sporophyte, establishing a now extinct life cycle variant that was more isomorphic than heteromorphic. These changes also linked for the first time in one developmental system rhizoids, vascular tissues and stomata, putting in place the critical components that regulate transpiration and forming a physiological platform of primary importance to the diversification of vascular plants.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
- Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
31
|
Pierangelini M, Ryšánek D, Lang I, Adlassnig W, Holzinger A. Terrestrial adaptation of green algae Klebsormidium and Zygnema (Charophyta) involves diversity in photosynthetic traits but not in CO 2 acquisition. PLANTA 2017; 246:971-986. [PMID: 28721563 PMCID: PMC5633629 DOI: 10.1007/s00425-017-2741-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/09/2017] [Indexed: 05/20/2023]
Abstract
The basal streptophyte Klebsormidium and the advanced Zygnema show adaptation to terrestrialization. Differences are found in photoprotection and resistance to short-term light changes, but not in CO 2 acquisition. Streptophyte green algae colonized land about 450-500 million years ago giving origin to terrestrial plants. We aim to understand how their physiological adaptations are linked to the ecological conditions (light, water and CO2) characterizing modern terrestrial habitats. A new Klebsormidium isolate from a strongly acidic environment of a former copper mine (Schwarzwand, Austria) is investigated, in comparison to Klebsormidium cf. flaccidum and Zygnema sp. We show that these genera possess different photosynthetic traits and water requirements. Particularly, the Klebsormidium species displayed a higher photoprotection capacity, concluded from non-photochemical quenching (NPQ) and higher tolerance to high light intensity than Zygnema. However, Klebsormidium suffered from photoinhibition when the light intensity in the environment increased rapidly, indicating that NPQ is involved in photoprotection against strong and stable irradiance. Klebsormidium was also highly resistant to cellular water loss (dehydration) under low light. On the other hand, exposure to relatively high light intensity during dehydration caused a harmful over-reduction of the electron transport chain, leading to PSII damages and impairing the ability to recover after rehydration. Thus, we suggest that dehydration is a selective force shaping the adaptation of this species towards low light. Contrary to the photosynthetic characteristics, the inorganic carbon (C i ) acquisition was equivalent between Klebsormidium and Zygnema. Despite their different habitats and restriction to hydro-terrestrial environment, the three organisms showed similar use of CO2 and HCO3- as source of Ci for photosynthesis, pointing out a similar adaptation of their CO2-concentrating mechanisms to terrestrial life.
Collapse
Affiliation(s)
- Mattia Pierangelini
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020, Innsbruck, Austria
| | - David Ryšánek
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 12801, Prague 2, Czech Republic
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, v. v. i., Průmyslová 595, 252 42, Vestec, Czech Republic
| | - Ingeborg Lang
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Wolfram Adlassnig
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
32
|
Park SY, Scranton MA, Stajich JE, Yee A, Walling LL. Chlorophyte aspartyl aminopeptidases: Ancient origins, expanded families, new locations, and secondary functions. PLoS One 2017; 12:e0185492. [PMID: 29023459 PMCID: PMC5638241 DOI: 10.1371/journal.pone.0185492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022] Open
Abstract
M18 aspartyl aminopeptidases (DAPs) are well characterized in microbes and animals with likely functions in peptide processing and vesicle trafficking. In contrast, there is a dearth of knowledge on plant aminopeptidases with a preference for proteins and peptides with N-terminal acidic residues. During evolution of the Plantae, there was an expansion and diversification of the M18 DAPs. After divergence of the ancestral green algae from red and glaucophyte algae, a duplication yielded the DAP1 and DAP2 lineages. Subsequently DAP1 genes were lost in chlorophyte algae. A duplication of DAP2-related genes occurred early in green plant evolution. DAP2 genes were retained in land plants and picoeukaryotic algae and lost in green algae. In contrast, DAP2-like genes persisted in picoeukaryotic and green algae, while this lineage was lost in land plants. Consistent with this evolutionary path, Arabidopsis thaliana has two DAP gene lineages (AtDAP1 and AtDAP2). Similar to animal and yeast DAPs, AtDAP1 is localized to the cytosol or vacuole; while AtDAP2 harbors an N-terminal transit peptide and is chloroplast localized. His6-DAP1 and His6-DAP2 expressed in Escherichia coli were enzymatically active and dodecameric with masses exceeding 600 kDa. His6-DAP1 and His6-DAP2 preferentially hydrolyzed Asp-p-nitroanilide and Glu-p-nitroanilide. AtDAPs are highly conserved metallopeptidases activated by MnCl2 and inhibited by ZnCl2 and divalent ion chelators. The protease inhibitor PMSF inhibited and DTT stimulated both His6-DAP1 and His6-DAP2 activities suggesting a role for thiols in the AtDAP catalytic mechanism. The enzymes had distinct pH and temperature optima, as well as distinct kinetic parameters. Both enzymes had high catalytic efficiencies (kcat/Km) exceeding 1.0 x 107 M-1 sec-1. Using established molecular chaperone assays, AtDAP1 and AtDAP2 prevented thermal denaturation. AtDAP1 also prevented protein aggregation and promoted protein refolding. Collectively, these data indicate that plant DAPs have a complex evolutionary history and have evolved new biochemical features that may enable their role in vivo.
Collapse
Affiliation(s)
- Sang-Youl Park
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Melissa A. Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Ashley Yee
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci U S A 2017; 114:E7737-E7745. [PMID: 28808007 PMCID: PMC5603991 DOI: 10.1073/pnas.1620089114] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The early evolutionary history of the chloroplast lineage remains an open question. It is widely accepted that the endosymbiosis that established the chloroplast lineage in eukaryotes can be traced back to a single event, in which a cyanobacterium was incorporated into a protistan host. It is still unclear, however, which Cyanobacteria are most closely related to the chloroplast, when the plastid lineage first evolved, and in what habitats this endosymbiotic event occurred. We present phylogenomic and molecular clock analyses, including data from cyanobacterial and chloroplast genomes using a Bayesian approach, with the aim of estimating the age for the primary endosymbiotic event, the ages of crown groups for photosynthetic eukaryotes, and the independent incorporation of a cyanobacterial endosymbiont by Paulinella Our analyses include both broad taxon sampling (119 taxa) and 18 fossil calibrations across all Cyanobacteria and photosynthetic eukaryotes. Phylogenomic analyses support the hypothesis that the chloroplast lineage diverged from its closet relative Gloeomargarita, a basal cyanobacterial lineage, ∼2.1 billion y ago (Bya). Our analyses suggest that the Archaeplastida, consisting of glaucophytes, red algae, green algae, and land plants, share a common ancestor that lived ∼1.9 Bya. Whereas crown group Rhodophyta evolved in the Mesoproterozoic Era (1,600-1,000 Mya), crown groups Chlorophyta and Streptophyta began to radiate early in the Neoproterozoic (1,000-542 Mya). Stochastic mapping analyses indicate that the first endosymbiotic event occurred in low-salinity environments. Both red and green algae colonized marine environments early in their histories, with prasinophyte green phytoplankton diversifying 850-650 Mya.
Collapse
Affiliation(s)
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Davide Pisani
- School of Biological Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom
- School of Earth Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
34
|
The calmodulin fused kinase novel gene family is the major system in plants converting Ca 2+ signals to protein phosphorylation responses. Sci Rep 2017. [PMID: 28646145 PMCID: PMC5482843 DOI: 10.1038/s41598-017-03367-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Eukaryotes utilize Ca2+ as a universal second messenger to convert and multiply environmental and developmental signals to downstream protein phosphorylation responses. However, the phylogenetic relationships of the genes that convert Ca2+ signal (CS) to protein phosphorylation responses (PPRs) remain highly controversial, and their origin and evolutionary trajectory are unclear, which greatly hinders functional studies. Here we examined the deep phylogeny of eukaryotic CS converter gene families and identified a phylogenetically and structurally distinctive monophyly in Archaeplastida. This monophyly can be divided into four subfamilies, and each can be traced to ancestral members that contain a kinase domain and a calmodulin-like domain. This strongly indicates that the ancestor of this monophyly originated by a de novo fusion of a kinase gene and a calmodulin gene. This gene family, with a proposed new name, Calmodulin Fused Kinase (CFK), had expanded and diverged significantly both in sizes and in structures for efficient and accurate Ca2+ signalling, and was shown to play pivotal roles in all the six major plant adaptation events in evolution. Our findings elucidated the common origin of all CS-PPR converter genes except CBL-CIPK converter genes, and revealed that CFKs act as the main CS conversion system in plants.
Collapse
|
35
|
Abstract
The first animals evolved from an unknown single-celled ancestor in the Precambrian period. Recently, the identification and characterization of the genomic and cellular traits of the protists most closely related to animals have shed light on the origin of animals. Comparisons of animals with these unicellular relatives allow us to reconstruct the first evolutionary steps towards animal multicellularity. Here, we review the results of these investigations and discuss their implications for understanding the earliest stages of animal evolution, including the origin of metazoan genes and genome function.
Collapse
|
36
|
Chang HX, Haudenshield JS, Bowen CR, Hartman GL. Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity. Front Microbiol 2017; 8:519. [PMID: 28421041 PMCID: PMC5378059 DOI: 10.3389/fmicb.2017.00519] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/13/2017] [Indexed: 11/25/2022] Open
Abstract
Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. In this study, bulk soil samples collected from a high and a low productivity area from within six agronomic fields in Illinois were quantified for abiotic and biotic characteristics. Extracted DNA from these bulk soil samples were shotgun sequenced. While logistic regression analyses resulted in no significant association between crop productivity and the 26 soil characteristics, principal coordinate analysis and constrained correspondence analysis showed crop productivity explained a major proportion of the taxa variance in the bulk soil microbiome. Metagenome-wide association studies (MWAS) identified more Bradyrhizodium and Gammaproteobacteria in higher productivity areas and more Actinobacteria, Ascomycota, Planctomycetales, and Streptophyta in lower productivity areas. Machine learning using a random forest method successfully predicted productivity based on the microbiome composition with the best accuracy of 0.79 at the order level. Our study showed that crop productivity differences were associated with bulk soil microbiome composition and highlighted several nitrogen utility-related taxa. We demonstrated the merit of MWAS and machine learning for the first time in a plant-microbiome study.
Collapse
Affiliation(s)
- Hao-Xun Chang
- Department of Crop Sciences, University of IllinoisUrbana, IL, USA
| | - James S. Haudenshield
- Department of Crop Sciences, University of IllinoisUrbana, IL, USA
- USDA—Agricultural Research ServiceUrbana, IL, USA
| | - Charles R. Bowen
- Department of Crop Sciences, University of IllinoisUrbana, IL, USA
- USDA—Agricultural Research ServiceUrbana, IL, USA
| | - Glen L. Hartman
- Department of Crop Sciences, University of IllinoisUrbana, IL, USA
- USDA—Agricultural Research ServiceUrbana, IL, USA
| |
Collapse
|
37
|
Brikis CJ, Zarei A, Trobacher CP, DeEll JR, Akama K, Mullen RT, Bozzo GG, Shelp BJ. Ancient Plant Glyoxylate/Succinic Semialdehyde Reductases: GLYR1s Are Cytosolic, Whereas GLYR2s Are Localized to Both Mitochondria and Plastids. FRONTIERS IN PLANT SCIENCE 2017; 8:601. [PMID: 28484477 PMCID: PMC5399074 DOI: 10.3389/fpls.2017.00601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/03/2017] [Indexed: 05/18/2023]
Abstract
Plant NADPH-dependent glyoxylate/succinic semialdehyde reductases 1 and 2 (GLYR1 and GLYR2) are considered to be involved in detoxifying harmful aldehydes, thereby preserving plant health during exposure to various abiotic stresses. Phylogenetic analysis revealed that the two GLYR isoforms appeared in the plant lineage prior to the divergence of the Chlorophyta and Streptophyta, which occurred approximately 750 million years ago. Green fluorescent protein fusions of apple (Malus x domestica Borkh.), rice (Oryza sativa L.) and Arabidopsis thaliana [L.] Heynh GLYRs were transiently expressed in tobacco (Nicotiana tabaccum L.) suspension cells or Arabidopsis protoplasts, as well in methoxyfenozide-induced, stably transformed Arabidopsis seedlings. The localization of apple GLYR1 confirmed that this isoform is cytosolic, whereas apple, rice and Arabidopsis GLYR2s were localized to both mitochondria and plastids. These findings highlight the potential involvement of GLYRs within distinct compartments of the plant cell.
Collapse
Affiliation(s)
| | - Adel Zarei
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | | | - Jennifer R. DeEll
- Ontario Ministry of Agriculture Food and Rural Affairs, SimcoeON, Canada
| | - Kazuhito Akama
- Department of Biological Science, Shimane UniversityMatsue, Japan
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Gale G. Bozzo
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | - Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
- *Correspondence: Barry J. Shelp,
| |
Collapse
|
38
|
Hagemann M, Bauwe H. Photorespiration and the potential to improve photosynthesis. Curr Opin Chem Biol 2016; 35:109-116. [PMID: 27693890 DOI: 10.1016/j.cbpa.2016.09.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 01/13/2023]
Abstract
The photorespiratory pathway, in short photorespiration, is an essential metabolite repair pathway that allows the photosynthetic CO2 fixation of plants to occur in the presence of oxygen. It is necessary because oxygen is a competing substrate of the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase, forming 2-phosphoglycolate that negatively interferes with photosynthesis. Photorespiration very efficiently recycles 2-phosphoglycolate into 3-phosphoglycerate, which re-enters the Calvin-Benson cycle to drive sustainable photosynthesis. Photorespiration however requires extra energy and re-oxidises one quarter of the 2-phosphoglycolate carbon to CO2, lowering potential maximum rates of photosynthesis in most plants including food and energy crops. This review discusses natural and artificial strategies to reduce the undesired impact of air oxygen on photosynthesis and in turn plant growth.
Collapse
Affiliation(s)
- Martin Hagemann
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18051 Rostock, Germany.
| | - Hermann Bauwe
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18051 Rostock, Germany
| |
Collapse
|
39
|
Kunugi M, Satoh S, Ihara K, Shibata K, Yamagishi Y, Kogame K, Obokata J, Takabayashi A, Tanaka A. Evolution of Green Plants Accompanied Changes in Light-Harvesting Systems. PLANT & CELL PHYSIOLOGY 2016; 57:1231-43. [PMID: 27057002 DOI: 10.1093/pcp/pcw071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 03/31/2016] [Indexed: 05/10/2023]
Abstract
Photosynthetic organisms have various pigments enabling them to adapt to various light environments. Green plants are divided into two groups: streptophytes and chlorophytes. Streptophytes include some freshwater green algae and land plants, while chlorophytes comprise the other freshwater green algae and seawater green algae. The environmental conditions driving the divergence of green plants into these two groups and the changes in photosynthetic properties accompanying their evolution remain unknown. Here, we separated the core antennae of PSI and the peripheral antennae [light-harvesting complexes (LHCs)] in green plants by green-native gel electrophoresis and determined their pigment compositions. Freshwater green algae and land plants have high Chl a/b ratios, with most Chl b existing in LHCs. In contrast, seawater green algae have low Chl a/b ratios. In addition, Chl b exists not only in LHCs but also in PSI core antennae in these organisms, a situation beneficial for survival in deep seawater, where blue-green light is the dominant light source. Finally, low-energy Chl (red Chl) of PSI was detected in freshwater green algae and land plants, but not in seawater green algae. We thus conclude that the different level of Chl b accumulation in core antennae and differences in PSI red Chl between freshwater and seawater green algae are evolutionary adaptations of these algae to their habitats, especially to high- or low-light environments.
Collapse
Affiliation(s)
- Motoshi Kunugi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefecture University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Kensuke Shibata
- AIMEN Co., Ltd, 81-1 Takaoka-cho, Matsuyama, Ehime, 791-8036 Japan
| | - Yukimasa Yamagishi
- Faculty of Life Science and Biotechnology, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama, Hiroshima, 729-0292 Japan
| | - Kazuhiro Kogame
- Faculty of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo, 060-0810 Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefecture University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan CREST, JST, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan CREST, JST, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| |
Collapse
|
40
|
de Vries J, Stanton A, Archibald JM, Gould SB. Streptophyte Terrestrialization in Light of Plastid Evolution. TRENDS IN PLANT SCIENCE 2016; 21:467-476. [PMID: 26895731 DOI: 10.1016/j.tplants.2016.01.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 05/21/2023]
Abstract
Key steps in evolution are often singularities. The emergence of land plants is one such case and it is not immediately apparent why. A recent analysis found that the zygnematophycean algae represent the closest relative to embryophytes. Intriguingly, many exaptations thought essential to conquer land are common among various streptophytes, but zygnematophycean algae share with land plants the transfer of a few plastid genes to the nucleus. Considering the contribution of the chloroplast to terrestrialization highlights potentially novel exaptations that currently remain unexplored. We discuss how the streptophyte chloroplast evolved into what we refer to as the embryoplast, and argue this was as important for terrestrialization by freshwater algae as the host cell-associated exaptations that are usually focused upon.
Collapse
Affiliation(s)
- Jan de Vries
- Institute for Molecular Evolution, Heinrich-Heine-University (HHU) Düsseldorf, 40225 Düsseldorf, Germany
| | - Amanda Stanton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University (HHU) Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
41
|
Carniel FC, Gerdol M, Montagner A, Banchi E, De Moro G, Manfrin C, Muggia L, Pallavicini A, Tretiach M. New features of desiccation tolerance in the lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach. PLANT MOLECULAR BIOLOGY 2016; 91:319-339. [PMID: 26992400 DOI: 10.1007/s11103-016-0468-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Trebouxia is the most common lichen-forming genus of aero-terrestrial green algae and all its species are desiccation tolerant (DT). The molecular bases of this remarkable adaptation are, however, still largely unknown. We applied a transcriptomic approach to a common member of the genus, T. gelatinosa, to investigate the alteration of gene expression occurring after dehydration and subsequent rehydration in comparison to cells kept constantly hydrated. We sequenced, de novo assembled and annotated the transcriptome of axenically cultured T. gelatinosa by using Illumina sequencing technology. We tracked the expression profiles of over 13,000 protein-coding transcripts. During the dehydration/rehydration cycle c. 92 % of the total protein-coding transcripts displayed a stable expression, suggesting that the desiccation tolerance of T. gelatinosa mostly relies on constitutive mechanisms. Dehydration and rehydration affected mainly the gene expression for components of the photosynthetic apparatus, the ROS-scavenging system, Heat Shock Proteins, aquaporins, expansins, and desiccation related proteins (DRPs), which are highly diversified in T. gelatinosa, whereas Late Embryogenesis Abundant Proteins were not affected. Only some of these phenomena were previously observed in other DT green algae, bryophytes and resurrection plants, other traits being distinctive of T. gelatinosa, and perhaps related to its symbiotic lifestyle. Finally, the phylogenetic inference extended to DRPs of other chlorophytes, embryophytes and bacteria clearly pointed out that DRPs of chlorophytes are not orthologous to those of embryophytes: some of them were likely acquired through horizontal gene transfer from extremophile bacteria which live in symbiosis within the lichen thallus.
Collapse
Affiliation(s)
- Fabio Candotto Carniel
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
- Institute of Botany, University of Innsbruck, Sternwartestraße, 15, 6020, Innsbruck, Austria
| | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy.
| | - Alice Montagner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Elisa Banchi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Gianluca De Moro
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Chiara Manfrin
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Lucia Muggia
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Alberto Pallavicini
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| | - Mauro Tretiach
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, via L. Giorgieri, 10, 34127, Trieste, Italy
| |
Collapse
|
42
|
Lemieux C, Otis C, Turmel M. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae. FRONTIERS IN PLANT SCIENCE 2016; 7:697. [PMID: 27252715 PMCID: PMC4877394 DOI: 10.3389/fpls.2016.00697] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/06/2016] [Indexed: 05/18/2023]
Abstract
The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus far; it lacks eight genes relative to its Chaetosphaeridium globosum homolog, four of which represent unique events in the evolutionary scenario of gene losses we reconstructed for streptophyte algae. The 10 compared zygnematophycean cpDNAs display tremendous variations at all levels, except gene content. During zygnematophycean evolution, the IR disappeared a minimum of five times, the rDNA operon was broken at four distinct sites, group II introns were lost on at least 43 occasions, and putative foreign genes, mainly of phage/viral origin, were gained.
Collapse
Affiliation(s)
- Claude Lemieux
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, QuébecQC, Canada
| | | | | |
Collapse
|
43
|
Hagemann M, Kern R, Maurino VG, Hanson DT, Weber APM, Sage RF, Bauwe H. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2963-76. [PMID: 26931168 DOI: 10.1093/jxb/erw063] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photorespiration and oxygenic photosynthesis are intimately linked processes. It has been shown that under the present day atmospheric conditions cyanobacteria and all eukaryotic phototrophs need functional photorespiration to grow autotrophically. The question arises as to when this essential partnership evolved, i.e. can we assume a coevolution of both processes from the beginning or did photorespiration evolve later to compensate for the generation of 2-phosphoglycolate (2PG) due to Rubisco's oxygenase reaction? This question is mainly discussed here using phylogenetic analysis of proteins involved in the 2PG metabolism and the acquisition of different carbon concentrating mechanisms (CCMs). The phylogenies revealed that the enzymes involved in the photorespiration of vascular plants have diverse origins, with some proteins acquired from cyanobacteria as ancestors of the chloroplasts and others from heterotrophic bacteria as ancestors of mitochondria in the plant cell. Only phosphoglycolate phosphatase was found to originate from Archaea. Notably glaucophyte algae, the earliest branching lineage of Archaeplastida, contain more photorespiratory enzymes of cyanobacterial origin than other algal lineages or land plants indicating a larger initial contribution of cyanobacterial-derived proteins to eukaryotic photorespiration. The acquisition of CCMs is discussed as a proxy for assessing the timing of periods when photorespiratory activity may have been enhanced. The existence of CCMs also had marked influence on the structure and function of photorespiration. Here, we discuss evidence for an early and continuous coevolution of photorespiration, CCMs and photosynthesis starting from cyanobacteria via algae, to land plants.
Collapse
Affiliation(s)
- Martin Hagemann
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, A.- Einstein-Str. 3, D-18051 Rostock, Germany
| | - Ramona Kern
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, A.- Einstein-Str. 3, D-18051 Rostock, Germany
| | - Veronica G Maurino
- University of Düsseldorf, Institute of Developmental and Molecular Biology of Plants and Biotechnology, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Rowan F Sage
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Hermann Bauwe
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, A.- Einstein-Str. 3, D-18051 Rostock, Germany
| |
Collapse
|
44
|
Rademacher N, Kern R, Fujiwara T, Mettler-Altmann T, Miyagishima SY, Hagemann M, Eisenhut M, Weber APM. Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3165-75. [PMID: 26994474 PMCID: PMC4867895 DOI: 10.1093/jxb/erw118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photorespiration is essential for all organisms performing oxygenic photosynthesis. The evolution of photorespiratory metabolism began among cyanobacteria and led to a highly compartmented pathway in plants. A molecular understanding of photorespiration in eukaryotic algae, such as glaucophytes, rhodophytes, and chlorophytes, is essential to unravel the evolution of this pathway. However, mechanistic detail of the photorespiratory pathway in red algae is scarce. The unicellular red alga Cyanidioschyzon merolae represents a model for the red lineage. Its genome is fully sequenced, and tools for targeted gene engineering are available. To study the function and importance of photorespiration in red algae, we chose glycolate oxidase (GOX) as the target. GOX catalyses the conversion of glycolate into glyoxylate, while hydrogen peroxide is generated as a side-product. The function of the candidate GOX from C. merolae was verified by the fact that recombinant GOX preferred glycolate over L-lactate as a substrate. Yellow fluorescent protein-GOX fusion proteins showed that GOX is targeted to peroxisomes in C. merolae The GOX knockout mutant lines showed a high-carbon-requiring phenotype with decreased growth and reduced photosynthetic activity compared to the wild type under ambient air conditions. Metabolite analyses revealed glycolate and glycine accumulation in the mutant cells after a shift from high CO2 conditions to ambient air. In summary, or results demonstrate that photorespiratory metabolism is essential for red algae. The use of a peroxisomal GOX points to a high photorespiratory flux as an ancestral feature of all photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Nadine Rademacher
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ramona Kern
- University Rostock, Department Plant Physiology, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Takayuki Fujiwara
- Division of Symbiosis and Cell Evolution, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Shin-Ya Miyagishima
- Division of Symbiosis and Cell Evolution, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan
| | - Martin Hagemann
- University Rostock, Department Plant Physiology, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Fernández-Marín B, Holzinger A, García-Plazaola J. Photosynthetic Strategies of Desiccation-Tolerant Organisms. HANDBOOK OF PHOTOSYNTHESIS, THIRD EDITION 2016. [DOI: 10.1201/b19498-49] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Holzinger A, Pichrtová M. Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques. FRONTIERS IN PLANT SCIENCE 2016; 7:678. [PMID: 27242877 PMCID: PMC4873514 DOI: 10.3389/fpls.2016.00678] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/02/2016] [Indexed: 05/20/2023]
Abstract
Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetophyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae, and Charo- phyceae. Zygnematophyceae (Conjugating green algae) are considered to be closest algal relatives to land plants (Embryophyta). Therefore, they are ideal model organisms for studying stress tolerance mechanisms connected with transition to land, one of the most important events in plant evolution and the Earth's history. In Zygnematophyceae, but also in Coleochaetophyceae, Chlorokybophyceae, and Klebsormidiophyceae terrestrial members are found which are frequently exposed to naturally occurring abiotic stress scenarios like desiccation, freezing and high photosynthetic active (PAR) as well as ultraviolet (UV) irradiation. Here, we summarize current knowledge about various stress tolerance mechanisms including insight provided by pioneer transcriptomic and proteomic studies. While formation of dormant spores is a typical strategy of freshwater classes, true terrestrial groups are stress tolerant in vegetative state. Aggregation of cells, flexible cell walls, mucilage production and accumulation of osmotically active compounds are the most common desiccation tolerance strategies. In addition, high photophysiological plasticity and accumulation of UV-screening compounds are important protective mechanisms in conditions with high irradiation. Now a shift from classical chemical analysis to next-generation genome sequencing, gene reconstruction and annotation, genome-scale molecular analysis using omics technologies followed by computer-assisted analysis will give new insights in a systems biology approach. For example, changes in transcriptome and role of phytohormone signaling in Klebsormidium during desiccation were recently described. Application of these modern approaches will deeply enhance our understanding of stress reactions in an unbiased non-targeted view in an evolutionary context.
Collapse
Affiliation(s)
- Andreas Holzinger
- Unit of Functional Plant Biology, Institute of Botany, University of Innsbruck, InnsbruckAustria
- *Correspondence: Andreas Holzinger,
| | - Martina Pichrtová
- Unit of Functional Plant Biology, Institute of Botany, University of Innsbruck, InnsbruckAustria
| |
Collapse
|
47
|
Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis. Proc Natl Acad Sci U S A 2014; 111:E5480-7. [PMID: 25468978 DOI: 10.1073/pnas.1421545111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metallochaperones traffic copper (Cu(+)) from its point of entry at the plasma membrane to its destination. In plants, one destination is the chloroplast, which houses plastocyanin, a Cu-dependent electron transfer protein involved in photosynthesis. We present a previously unidentified Cu(+) chaperone that evolved early in the plant lineage by an alternative-splicing event of the pre-mRNA encoding the chloroplast P-type ATPase in Arabidopsis 1 (PAA1). In several land plants, recent duplication events created a separate chaperone-encoding gene coincident with loss of alternative splicing. The plant-specific Cu(+) chaperone delivers Cu(+) with specificity for PAA1, which is flipped in the envelope relative to prototypical bacterial ATPases, compatible with a role in Cu(+) import into the stroma and consistent with the canonical catalytic mechanism of these enzymes. The ubiquity of the chaperone suggests conservation of this Cu(+)-delivery mechanism and provides a unique snapshot into the evolution of a Cu(+) distribution pathway. We also provide evidence for an interaction between PAA2, the Cu(+)-ATPase in thylakoids, and the Cu(+)-chaperone for Cu/Zn superoxide dismutase (CCS), uncovering a Cu(+) network that has evolved to fine-tune Cu(+) distribution.
Collapse
|
48
|
Holzinger A, Kaplan F, Blaas K, Zechmann B, Komsic-Buchmann K, Becker B. Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLoS One 2014; 9:e110630. [PMID: 25340847 PMCID: PMC4207709 DOI: 10.1371/journal.pone.0110630] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Water loss has significant effects on physiological performance and survival rates of algae. However, despite the prominent presence of aeroterrestrial algae in terrestrial habitats, hardly anything is known about the molecular events that allow aeroterrestrial algae to survive harsh environmental conditions. We analyzed the transcriptome and physiology of a strain of the alpine aeroterrestrial alga Klebsormidium crenulatum under control and strong desiccation-stress conditions. PRINCIPAL FINDINGS For comparison we first established a reference transcriptome. The high-coverage reference transcriptome includes about 24,183 sequences (1.5 million reads, 636 million bases). The reference transcriptome encodes for all major pathways (energy, carbohydrates, lipids, amino acids, sugars), nearly all deduced pathways are complete or missing only a few transcripts. Upon strong desiccation, more than 7000 transcripts showed changes in their expression levels. Most of the highest up-regulated transcripts do not show similarity to known viridiplant proteins, suggesting the existence of some genus- or species-specific responses to desiccation. In addition, we observed the up-regulation of many transcripts involved in desiccation tolerance in plants (e.g. proteins similar to those that are abundant in late embryogenesis (LEA), or proteins involved in early response to desiccation ERD), and enzymes involved in the biosynthesis of the raffinose family of oligosaccharides (RFO) known to act as osmolytes). Major physiological shifts are the up-regulation of transcripts for photosynthesis, energy production, and reactive oxygen species (ROS) metabolism, which is supported by elevated cellular glutathione content as revealed by immunoelectron microscopy as well as an increase in total antiradical power. However, the effective quantum yield of Photosystem II and CO2 fixation decreased sharply under the applied desiccation stress. In contrast, transcripts for cell integrative functions such as cell division, DNA replication, cofactor biosynthesis, and amino acid biosynthesis were down-regulated. SIGNIFICANCE This is the first study investigating the desiccation transcriptome of a streptophyte green alga. Our results indicate that the cellular response is similar to embryophytes, suggesting that embryophytes inherited a basic cellular desiccation tolerance from their streptophyte predecessors.
Collapse
Affiliation(s)
- Andreas Holzinger
- University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Franziska Kaplan
- University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Kathrin Blaas
- University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Bernd Zechmann
- Baylor University, Center for Microscopy and Imaging, Waco, Texas, United States of America
| | | | - Burkhard Becker
- University of Cologne, Botanical Institute, Biocenter, Cologne, Germany
| |
Collapse
|
49
|
Blaby IK, Blaby-Haas CE, Tourasse N, Hom EFY, Lopez D, Aksoy M, Grossman A, Umen J, Dutcher S, Porter M, King S, Witman GB, Stanke M, Harris EH, Goodstein D, Grimwood J, Schmutz J, Vallon O, Merchant SS, Prochnik S. The Chlamydomonas genome project: a decade on. TRENDS IN PLANT SCIENCE 2014; 19:672-80. [PMID: 24950814 PMCID: PMC4185214 DOI: 10.1016/j.tplants.2014.05.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 05/04/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis, and micronutrient homeostasis. Ten years since its genome project was initiated an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the omics era. Housed at Phytozome, the plant genomics portal of the Joint Genome Institute (JGI), the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of whole transcriptome sequencing (RNA-Seq) data. We present here the past, present, and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions, and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes.
Collapse
Affiliation(s)
- Ian K Blaby
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Crysten E Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Nicolas Tourasse
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7141, Institut de Biologie Physico-Chimique, Paris, France
| | - Erik F Y Hom
- Department of Molecular and Cellular Biology and FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - David Lopez
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Munevver Aksoy
- Department of Plant Biology, Carnegie Institute for Science, 260 Panama Street, Stanford, CA, USA
| | - Arthur Grossman
- Department of Plant Biology, Carnegie Institute for Science, 260 Panama Street, Stanford, CA, USA
| | - James Umen
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Susan Dutcher
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Mary Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Stephen King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Mario Stanke
- lnstitut für Mikrobiologie und Genetik, Universität Göttingen, Göttingen, Germany
| | | | - David Goodstein
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- HudsonAlpha Genome Sequencing Center, Huntsville, AL 35806, USA
| | - Olivier Vallon
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7141, Institut de Biologie Physico-Chimique, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Simon Prochnik
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA.
| |
Collapse
|
50
|
Hamel LP, Sheen J, Séguin A. Ancient signals: comparative genomics of green plant CDPKs. TRENDS IN PLANT SCIENCE 2014; 19:79-89. [PMID: 24342084 PMCID: PMC3932502 DOI: 10.1016/j.tplants.2013.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/23/2013] [Accepted: 10/26/2013] [Indexed: 05/18/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are multifunctional proteins that combine calcium-binding and signaling capabilities within a single gene product. This unique versatility enables multiple plant biological processes to be controlled, including developmental programs and stress responses. The genome of flowering plants typically encodes around 30 CDPK homologs that cluster in four conserved clades. In this review, we take advantage of the recent availability of genome sequences from green algae and early land plants to examine how well the previously described CDPK family from angiosperms compares to the broader evolutionary states associated with early diverging green plant lineages. Our analysis suggests that the current architecture of the CDPK family was shaped during the colonization of the land by plants, whereas CDPKs from ancestor green algae have continued to evolve independently.
Collapse
Affiliation(s)
- Louis-Philippe Hamel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, QC G1V 4C7, Canada.
| |
Collapse
|