1
|
Mo L, Yang Q, Hou Y, Jiang F, Dai J, Li X, Qin L. Oxidative stress mechanisms underlying temporal hormesis effects induced by binary antibiotic mixtures on Scenedesmus obliquus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117889. [PMID: 39954624 DOI: 10.1016/j.ecoenv.2025.117889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The hormesis effect has gradually become a research focus in environmental science and toxicology due to its unique phenomenon of low-concentration stimulation and high-concentration inhibition. The combined toxicity of antibiotics and their regulatory effects on microorganisms are areas that warrant significant attention. In this study, doxycycline hydrochloride (DXC), sulfamethoxazole (SMX) and sulfamethazine (SMZ) were used as the research objects, and Scenedesmus obliquus was used as the indicator organism to study their toxicity and action laws at different exposure times (4d and 8d). The toxic effects of antibiotic mixtures with hormesis effect on Scenedesmus obliquus were comprehensively evaluated from the aspects of growth inhibition, photosynthesis index and antioxidant enzyme activity. The results showed that 11 rays produced hormesis effect, and the hormesis effect value on the 8th day was greater than that on the 4th day. Through the prediction of combined toxicity, it was found that the type and intensity of action were affected by the mixture composition, exposure time and concentration. Hormesis is caused by the regulation of photosynthesis, the activation of the antioxidant defense system, the regulation of gene expression, and the change in cell membrane permeability. This study provides a theoretical basis for comprehensively understanding the environmental toxicity caused by antibiotic mixtures with a hormesis effect.
Collapse
Affiliation(s)
- Lingyun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Qian Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Ying Hou
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Fan Jiang
- Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning 530028, China.
| | - Junfeng Dai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
2
|
Hu L, Wu Q, Wu C, Zhang C, Wu Z, Shi M, Zhang M, Duan S, Wang HB, Jin HL. Light signaling-dependent regulation of plastid RNA processing in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:375-390. [PMID: 39352303 DOI: 10.1111/jipb.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/02/2024] [Indexed: 02/13/2025]
Abstract
Light is a vital environmental signal that regulates the expression of plastid genes. Plastids are crucial organelles that respond to light, but the effects of light on plastid RNA processing following transcription remain unclear. In this study, we systematically examined the influence of light exposure on plastid RNA processing, focusing on RNA splicing and RNA editing. We demonstrated that light promotes the splicing of transcripts from the plastid genes rps12, ndhA, atpF, petB, and rpl2. Additionally, light increased the editing rate of the accD transcript at nucleotide 794 (accD-794) and the ndhF transcript at nucleotide 290 (ndhF-290), while decreasing the editing rate of the clpP transcript at nucleotide 559 (clpP-559). We have identified key regulators of signaling pathways, such as CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), ELONGATED HYPOCOTYL 5 (HY5), and PHYTOCHROME-INTERACTING FACTORs (PIFs), as important players in the regulation of plastid RNA splicing and editing. Notably, COP1 was required for GENOMES UNCOUPLED1 (GUN1)-dependent repression of clpP-559 editing in the light. We showed that HY5 and PIF1 bind to the promoters of nuclear genes encoding plastid-localized RNA processing factors in a light-dependent manner. This study provides insight into the mechanisms underlying light-mediated post-transcriptional regulation of plastid gene expression.
Collapse
Affiliation(s)
- Lili Hu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qian Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunyu Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunmei Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziying Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Meihui Shi
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Man Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
3
|
Dawar P, Adhikari I, Mandal SN, Jayee B. RNA Metabolism and the Role of Small RNAs in Regulating Multiple Aspects of RNA Metabolism. Noncoding RNA 2024; 11:1. [PMID: 39846679 PMCID: PMC11755482 DOI: 10.3390/ncrna11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis. In eukaryotes, sRNAs, typically 20-31 nucleotides in length, are a class of ncRNAs found to function as nodes in various gene regulatory networks. sRNAs are known to play significant roles in regulating RNA population at the transcriptional, post-transcriptional, and translational levels. Along with sRNAs, such as miRNAs, siRNAs, and piRNAs, new categories of ncRNAs, i.e., lncRNAs and circRNAs, also contribute to RNA metabolism regulation in eukaryotes. In plants, various genetic screens have demonstrated that sRNA biogenesis mutants, as well as RNA metabolism pathway mutants, exhibit similar growth and development defects, misregulated primary and secondary metabolism, as well as impaired stress response. In addition, sRNAs are both the "products" and the "regulators" in broad RNA metabolism networks; gene regulatory networks involving sRNAs form autoregulatory loops that affect the expression of both sRNA and the respective target. This review examines the interconnected aspects of RNA metabolism with sRNA regulatory pathways in plants. It also explores the potential conservation of these pathways across different kingdoms, particularly in plants and animals. Additionally, the review highlights how cellular RNA homeostasis directly impacts adaptive responses to environmental changes as well as different developmental aspects in plants.
Collapse
Affiliation(s)
- Pranav Dawar
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Indra Adhikari
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | | | - Bhumika Jayee
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
4
|
Ali NA, Song W, Huang J, Wu D, Zhao X. Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria. Crit Rev Biotechnol 2024; 44:1552-1573. [PMID: 38238104 DOI: 10.1080/07388551.2023.2299789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 11/20/2024]
Abstract
The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.
Collapse
Affiliation(s)
- Nadia Ahmed Ali
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenjian Song
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianyan Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants of Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Kunjumon TK, Ghosh PP, Currie LMJ, Mathur J. Proximity driven plastid-nucleus relationships are facilitated by tandem plastid-ER dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6275-6294. [PMID: 39034638 PMCID: PMC11523032 DOI: 10.1093/jxb/erae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Peri-nuclear clustering (PNC) of chloroplasts has largely been described in senescent and pathogen- or reactive oxygen species-stressed cells. Stromules, tubular plastid extensions, are also observed under similar conditions. Coincident observations of PNC and stromules associate the two phenomena in facilitating retrograde signaling between chloroplasts and the nucleus. However, PNC incidence in non-stressed cells under normal growth and developmental conditions, when stromules are usually not observed, remains unclear. Using transgenic Arabidopsis expressing different organelle-targeted fluorescent proteins, we show that PNC is a dynamic subcellular phenomenon that continues in the absence of light and is not dependent on stromule formation. PNC is facilitated by tandem plastid-endoplasmic reticulum (ER) dynamics created through membrane contact sites between the two organelles. While PNC increases upon ER membrane expansion, some plastids may remain in the peri-nuclear region due to their localization in ER-lined nuclear indentions. Moreover, some PNC plastids may sporadically extend stromules into ER-lined nuclear grooves. Our findings strongly indicate that PNC is not an exclusive response to stress caused by pathogens, high light, or exogenous H2O2 treatment, and does not require stromule formation. However, morphological and behavioral alterations in ER and concomitant changes in tandem, plastid-ER dynamics play a major role in facilitating the phenomenon.
Collapse
Affiliation(s)
- Thomas Kadanthottu Kunjumon
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| | - Puja Puspa Ghosh
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| | - Laura M J Currie
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| | - Jaideep Mathur
- Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada
| |
Collapse
|
6
|
Zhu Y, Narsai R, He C, Štaka Z, Bai C, Berkowitz O, Liew LC, Whelan J. Overexpression of the transcription factor ANAC017 results in a genomes uncoupled phenotype under lincomycin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:91-108. [PMID: 39145415 DOI: 10.1111/tpj.16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Over-expression (OE) lines for the ER-tethered NAC transcription factor ANAC017 displayed de-repression of gun marker genes when grown on lincomycin (lin). RNA-seq revealed that ANAC017OE2 plants constitutively expressed greater than 40% of the genes induced in wild-type with lin treatment, including plastid encoded genes ycf1.2 and the gene cluster ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD, documented as direct RNA targets of GUN1. Genes encoding components involved in organelle translation were enriched in constitutively expressed genes in ANAC017OE2. ANAC017OE resulted in constitutive location in the nucleus and significant constitutive binding of ANAC017 was detected by ChIP-Seq to target genes. ANAC017OE2 lines maintained the ability to green on lin, were more ABA sensitive, did not show photo-oxidative damage after exposure of de-etiolated seedlings to continuous light and the transcriptome response to lin were as much as 80% unique compared to gun1-1. Both double mutants, gun1-1:ANAC017OE and bzip60:ANAC017OE (but not single bzip60), have a gun molecular gene expression pattern and result in variegated and green plants, suggesting that ANAC017OE may act through an independent pathway compared to gun1. Over-expression of ANAC013 or rcd1 did not produce a GUN phenotype or green plants on lin. Thus, constitutive ANAC017OE2 establishes an alternative transcriptional program that likely acts through a number of pathways, that is, maintains plastid gene expression, and induction of a variety of transcription factors involved in reactive oxygen species metabolism, priming plants for lin tolerance to give a gun phenotype.
Collapse
Affiliation(s)
- Yanqiao Zhu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Zorana Štaka
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Bai
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, 314400, People's Republic of China
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
7
|
Zeng Y, Dong J, Fu D, Shi M, Zheng Z, Zhong M, Wang HB, Duan SJ, Jin HL. The HPE1 RNA-binding protein modulates chloroplast RNA editing to promote photosynthesis under cold stress in Arabidopsis. FEBS Lett 2024; 598:1888-1898. [PMID: 38977940 DOI: 10.1002/1873-3468.14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 07/10/2024]
Abstract
Cold stress has severe negative consequences for plant growth and crop yield. Here, we report that an Arabidopsis thaliana mutant that lacks the HPE1 gene, which encodes an RNA-binding protein, maintains higher photosynthetic activity under cold stress, together with higher accumulation of thylakoid proteins. We showed that HPE1 interacts with MORF2 and MORF9 and thereby mediates RNA editing in chloroplasts. Loss of HPE1 function increased the editing efficiency at four RNA editing sites, rpoC-488, ndhB-149, ndhB-746 and matK-706, under cold stress and altered the expression of nuclear photosynthesis-related genes and cold-responsive genes. We propose that HPE1-mediated RNA editing acts as a trigger for retrograde signaling that affects photosynthesis under cold stress.
Collapse
Affiliation(s)
- Yajun Zeng
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
| | - Jie Dong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Danni Fu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
| | - Meihui Shi
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
| | - Zhifeng Zheng
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
| | - Mingxi Zhong
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, China
| | - Su-Juan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, China
| |
Collapse
|
8
|
Liu XY, Jiang RC, Ma B, Wang Y, Yang YZ, Xu C, Sun F, Tan BC. Maize requires Embryo defective27 for embryogenesis and seedling development. PLANT PHYSIOLOGY 2024; 195:430-445. [PMID: 38198212 DOI: 10.1093/plphys/kiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
The essential role of plastid translation in embryogenesis has been established in many plants, but a retrograde signal triggered by defective plastid translation machinery that may leads to embryogenesis arrest remains unknown. In this study, we characterized an embryo defective27 (emb27) mutant in maize (Zea mays), and cloning indicates that Emb27 encodes the plastid ribosomal protein S13. The null mutant emb27-1 conditions an emb phenotype with arrested embryogenesis; however, the leaky mutant emb27-2 exhibits normal embryogenesis but an albino seedling-lethal phenotype. The emb27-1/emb27-2 trans-heterozygotes display varying phenotypes from emb to normal seeds but albino seedlings. Analysis of the Emb27 transcription levels in these mutants revealed that the Emb27 expression level in the embryo corresponds with the phenotypic expression of the emb27 mutants. In the W22 genetic background, an Emb27 transcription level higher than 6% of the wild-type level renders normal embryogenesis, whereas lower than that arrests embryogenesis. Mutation of Emb27 reduces the level of plastid 16S rRNA and the accumulation of the plastid-encoded proteins. As a secondary effect, splicing of several plastid introns was impaired in emb27-1 and 2 other plastid translation-defective mutants, emb15 and emb16, suggesting that plastome-encoded factors are required for the splicing of these introns, such as Maturase K (MatK). Our results indicate that EMB27 is essential for plastid protein translation, embryogenesis, and seedling development in maize and reveal an expression threshold of Emb27 for maize embryogenesis.
Collapse
Affiliation(s)
- Xin-Yuan Liu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Rui-Cheng Jiang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bing Ma
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yan-Zhuo Yang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Chunhui Xu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Feng Sun
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
9
|
Escandón M, Valledor L, Lamelas L, Álvarez JM, Cañal MJ, Meijón M. Multiomics analyses reveal the central role of the nucleolus and its machinery during heat stress acclimation in Pinus radiata. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2558-2573. [PMID: 38318976 DOI: 10.1093/jxb/erae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Global warming is causing rapid changes in mean annual temperature and more severe drought periods. These are major contributors of forest dieback, which is becoming more frequent and widespread. In this work, we investigated how the transcriptome of Pinus radiata changed during initial heat stress response and acclimation. To this end, we generated a high-density dataset employing Illumina technology. This approach allowed us to reconstruct a needle transcriptome, defining 12 164 and 13 590 transcripts as down- and up-regulated, respectively, during a time course stress acclimation experiment. Additionally, the combination of transcriptome data with other available omics layers allowed us to determine the complex inter-related processes involved in the heat stress response from the molecular to the physiological level. Nucleolus and nucleoid activities seem to be a central core in the acclimating process, producing specific RNA isoforms and other essential elements for anterograde-retrograde stress signaling such as NAC proteins (Pra_vml_051671_1 and Pra_vml_055001_5) or helicase RVB. These mechanisms are connected by elements already known in heat stress response (redox, heat-shock proteins, or abscisic acid-related) and with others whose involvement is not so well defined such as shikimate-related, brassinosteriods, or proline proteases together with their potential regulatory elements. This work provides a first in-depth overview about molecular mechanisms underlying the heat stress response and acclimation in P. radiata.
Collapse
Affiliation(s)
- Mónica Escandón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Jóse M Álvarez
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology, and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| |
Collapse
|
10
|
Liu K, Xie B, Peng L, Wu Q, Hu J. Profiling of RNA editing events in plant organellar transcriptomes with high-throughput sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:345-357. [PMID: 38149801 DOI: 10.1111/tpj.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023]
Abstract
RNA editing is a crucial post-transcriptional modification process in plant organellar RNA metabolism. rRNA removal-based total RNA-seq is one of the most common methods to study this event. However, the lack of commercial kits to remove rRNAs limits the usage of this method, especially for non-model plant species. DSN-seq is a transcriptome sequencing method utilizing duplex-specific nuclease (DSN) to degrade highly abundant cDNA species especially those from rRNAs while keeping the robustness of transcript levels of the majority of other mRNAs, and has not been applied to study RNA editing in plants before. In this study, we evaluated the capability of DSN-seq to reduce rRNA content and profile organellar RNA editing events in plants, as well we used commercial Ribo-off-seq and standard mRNA-seq as comparisons. Our results demonstrated that DSN-seq efficiently reduced rRNA content and enriched organellar transcriptomes in rice. With high sensitivity to RNA editing events, DSN-seq and Ribo-off-seq provided a more complete and accurate RNA editing profile of rice, which was further validated by Sanger sequencing. Furthermore, DSN-seq also demonstrated efficient organellar transcriptome enrichment and high sensitivity for profiling RNA editing events in Arabidopsis thaliana. Our study highlights the capability of rRNA removal-based total RNA-seq for profiling RNA editing events in plant organellar transcriptomes and also suggests DSN-seq as a widely accessible RNA editing profiling method for various plant species.
Collapse
Affiliation(s)
- Kejia Liu
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Bin Xie
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Leilei Peng
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Qijia Wu
- Seqhealth Technology Co., Ltd., Wuhan, Hubei, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| |
Collapse
|
11
|
Smith AB, Ganguly DR, Moore M, Bowerman AF, Janapala Y, Shirokikh NE, Pogson BJ, Crisp PA. Dynamics of mRNA fate during light stress and recovery: from transcription to stability and translation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:818-839. [PMID: 37947266 PMCID: PMC10952913 DOI: 10.1111/tpj.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Transcript stability is an important determinant of its abundance and, consequently, translational output. Transcript destabilisation can be rapid and is well suited for modulating the cellular response. However, it is unclear the extent to which RNA stability is altered under changing environmental conditions in plants. We previously hypothesised that recovery-induced transcript destabilisation facilitated a phenomenon of rapid recovery gene downregulation (RRGD) in Arabidopsis thaliana (Arabidopsis) following light stress, based on mathematical calculations to account for ongoing transcription. Here, we test this hypothesis and investigate processes regulating transcript abundance and fate by quantifying changes in transcription, stability and translation before, during and after light stress. We adapt syringe infiltration to apply a transcriptional inhibitor to soil-grown plants in combination with stress treatments. Compared with measurements in juvenile plants and cell culture, we find reduced stability across a range of transcripts encoding proteins involved in RNA binding and processing. We also observe light-induced destabilisation of transcripts, followed by their stabilisation during recovery. We propose that this destabilisation facilitates RRGD, possibly in combination with transcriptional shut-off that was confirmed for HSP101, ROF1 and GOLS1. We also show that translation remains highly dynamic over the course of light stress and recovery, with a bias towards transcript-specific increases in ribosome association, independent of changes in total transcript abundance, after 30 min of light stress. Taken together, we provide evidence for the combinatorial regulation of transcription and stability that occurs to coordinate translation during light stress and recovery in Arabidopsis.
Collapse
Affiliation(s)
- Aaron B. Smith
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Diep R. Ganguly
- CSIRO Synthetic Biology Future Science PlatformCanberraAustralian Capital Territory2601Australia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marten Moore
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Andrew F. Bowerman
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Yoshika Janapala
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Shine‐Dalgarno Centre for RNA InnovationThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Barry J. Pogson
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Peter A. Crisp
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
12
|
Zhang X, Wang L, Pan T, Wu X, Shen J, Jiang L, Tajima H, Blumwald E, Qiu QS. Plastid KEA-type cation/H + antiporters are required for vacuolar protein trafficking in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2157-2174. [PMID: 37252889 DOI: 10.1111/jipb.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/28/2023] [Indexed: 06/01/2023]
Abstract
Arabidopsis plastid antiporters KEA1 and KEA2 are critical for plastid development, photosynthetic efficiency, and plant development. Here, we show that KEA1 and KEA2 are involved in vacuolar protein trafficking. Genetic analyses found that the kea1 kea2 mutants had short siliques, small seeds, and short seedlings. Molecular and biochemical assays showed that seed storage proteins were missorted out of the cell and the precursor proteins were accumulated in kea1 kea2. Protein storage vacuoles (PSVs) were smaller in kea1 kea2. Further analyses showed that endosomal trafficking in kea1 kea2 was compromised. Vacuolar sorting receptor 1 (VSR1) subcellular localizations, VSR-cargo interactions, and p24 distribution on the endoplasmic reticulum (ER) and Golgi apparatus were affected in kea1 kea2. Moreover, plastid stromule growth was reduced and plastid association with the endomembrane compartments was disrupted in kea1 kea2. Stromule growth was regulated by the cellular pH and K+ homeostasis maintained by KEA1 and KEA2. The organellar pH along the trafficking pathway was altered in kea1 kea2. Overall, KEA1 and KEA2 regulate vacuolar trafficking by controlling the function of plastid stromules via adjusting pH and K+ homeostasis.
Collapse
Affiliation(s)
- Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, 810000, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, 810000, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Ting Pan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Xuexia Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, 810000, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
13
|
Jeh HE, Sanchez R, Beltrán J, Yang X, Kundariya H, Wamboldt Y, Dopp I, Hafner A, Mackenzie SA. Sensory plastid-associated PsbP DOMAIN-CONTAINING PROTEIN 3 triggers plant growth- and defense-related epigenetic responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:414-433. [PMID: 37036138 PMCID: PMC10525003 DOI: 10.1111/tpj.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/14/2023]
Abstract
Sensory plastids are important in plant responses to environmental changes. Previous studies show that MutS HOMOLOG 1 (MSH1) perturbation in sensory plastids induces heritable epigenetic phenotype adjustment. Previously, the PsbP homolog DOMAIN-CONTAINING PROTEIN 3 (PPD3), a protein of unknown function, was postulated to be an interactor with MSH1. This study investigates the relationship of PPD3 with MSH1 and with plant environmental sensing. The ppd3 mutant displays a whole-plant phenotype variably altered in growth rate, flowering time, reactive oxygen species (ROS) modulation and response to salt, with effects on meristem growth. Present in both chloroplasts and sensory plastids, PPD3 colocalized with MSH1 in root tips but not in leaf tissues. The suppression or overexpression of PPD3 affected the plant growth rate and stress tolerance, and led to a heritable, heterogenous 'memory' state with both dwarfed and vigorous growth phenotypes. Gene expression and DNA methylome data sets from PPD3-OX and derived memory states showed enrichment in growth versus defense networks and meristem effects. Our results support a model of sensory plastid influence on nuclear epigenetic behavior and ppd3 as a second trigger, functioning within meristem plastids to recalibrate growth plasticity.
Collapse
Affiliation(s)
- Ha Eun Jeh
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Robersy Sanchez
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Jesús Beltrán
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
- Current Address: Department of Botany and Plant Sciences, University of California, Riverside, Riverside CA 92521
| | - Xiaodong Yang
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
- Current Address: School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hardik Kundariya
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Yashitola Wamboldt
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588
- Current Address: MatMaCorp, Lincoln, NE
| | - Isaac Dopp
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Alenka Hafner
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Sally A. Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
14
|
Agrawal V, Singh V, Tripathi BN. Components and processes involved in retrograde signaling from chloroplast to nucleus. PHYSIOLOGIA PLANTARUM 2023; 175:e13987. [PMID: 37616006 DOI: 10.1111/ppl.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023]
Abstract
Retrograde signaling conceptually means the transfer of signals from semi-autonomous cell organelles to the nucleus to modulate nuclear gene expression. A generalized explanation is that chloroplasts are highly sensitive to environmental stimuli and quickly generate signaling molecules (retrograde signals) and transport them to the nucleus through the cytosol to reprogram nuclear gene expression for cellular/metabolic adjustments to cope with environmental fluctuations. During the past decade, substantial advancements have been made in the area of retrograde signaling, including information on putative retrograde signals. Researchers have also proposed possible mechanisms for generating retrograde signals and their transmission. However, the exact mechanisms and processes responsible for transmitting retrograde signaling from the chloroplast to the nucleus remain elusive, demanding substantial attention. This review highlights strategies employed to detect retrograde signals, their possible modes of signaling to the nucleus, and their implications for cellular processes during stress conditions. The present review also summarizes the role of ROS-mediated retrograde signaling in plastid-nucleus communication and its functional significance in co-coordinating the physiological profile of plant cells.
Collapse
Affiliation(s)
- Variyata Agrawal
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, India
| | - Vijetna Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, India
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
15
|
Seo S, Kim Y, Park K. NPR1 Translocation from Chloroplast to Nucleus Activates Plant Tolerance to Salt Stress. Antioxidants (Basel) 2023; 12:antiox12051118. [PMID: 37237984 DOI: 10.3390/antiox12051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Chloroplasts play crucial roles in biotic and abiotic stress responses, regulated by nuclear gene expression through changes in the cellular redox state. Despite lacking the N-terminal chloroplast transit peptide (cTP), nonexpressor of pathogenesis-related genes 1 (NPR1), a redox-sensitive transcriptional coactivator was consistently found in the tobacco chloroplasts. Under salt stress and after exogenous application of H2O2 or aminocyclopropane-1-carboxylic acid, an ethylene precursor, transgenic tobacco plants expressing green fluorescent protein (GFP)-tagged NPR1 (NPR1-GFP) showed significant accumulation of monomeric nuclear NPR1, irrespective of the presence of cTP. Immunoblotting and fluorescence image analyses indicated that NPR1-GFP, with and without cTP, had similar molecular weights, suggesting that the chloroplast-targeted NPR1-GFP is likely translocated from the chloroplasts to the nucleus after processing in the stroma. Translation in the chloroplast is essential for nuclear NPR1 accumulation and stress-related expression of nuclear genes. An overexpression of chloroplast-targeted NPR1 enhanced stress tolerance and photosynthetic capacity. In addition, compared to the wild-type lines, several genes encoding retrograde signaling-related proteins were severely impaired in the Arabidopsis npr1-1 mutant, but were enhanced in NPR1 overexpression (NPR1-Ox) transgenic tobacco line. Taken together, chloroplast NPR1 acts as a retrograding signal that enhances the adaptability of plants to adverse environments.
Collapse
Affiliation(s)
- Soyeon Seo
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Jeollanam-do, Republic of Korea
| | - Yumi Kim
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Jeollanam-do, Republic of Korea
| | - Kyyoung Park
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Jeollanam-do, Republic of Korea
| |
Collapse
|
16
|
Photosynthetic acclimation to changing environments. Biochem Soc Trans 2023; 51:473-486. [PMID: 36892145 DOI: 10.1042/bst20211245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Plants are exposed to environments that fluctuate of timescales varying from seconds to months. Leaves that develop in one set of conditions optimise their metabolism to the conditions experienced, in a process called developmental acclimation. However, when plants experience a sustained change in conditions, existing leaves will also acclimate dynamically to the new conditions. Typically this process takes several days. In this review, we discuss this dynamic acclimation process, focussing on the responses of the photosynthetic apparatus to light and temperature. We briefly discuss the principal changes occurring in the chloroplast, before examining what is known, and not known, about the sensing and signalling processes that underlie acclimation, identifying likely regulators of acclimation.
Collapse
|
17
|
Andrade-Marcial M, Pacheco-Arjona R, Góngora-Castillo E, De-la-Peña C. Chloroplastic pentatricopeptide repeat proteins (PPR) in albino plantlets of Agave angustifolia Haw. reveal unexpected behavior. BMC PLANT BIOLOGY 2022; 22:352. [PMID: 35850575 PMCID: PMC9295523 DOI: 10.1186/s12870-022-03742-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins play an essential role in the post-transcriptional regulation of genes in plastid genomes. Although important advances have been made in understanding the functions of these genes, there is little information available on chloroplastic PPR genes in non-model plants and less in plants without chloroplasts. In the present study, a comprehensive and multifactorial bioinformatic strategy was applied to search for putative PPR genes in the foliar and meristematic tissues of green and albino plantlets of the non-model plant Agave angustifolia Haw. RESULTS A total of 1581 PPR transcripts were identified, of which 282 were chloroplastic. Leaf tissue in the albino plantlets showed the highest levels of expression of chloroplastic PPRs. The search for hypothetical targets of 12 PPR sequences in the chloroplast genes of A. angustifolia revealed their action on transcripts related to ribosomes and translation, photosystems, ATP synthase, plastid-encoded RNA polymerase and RuBisCO. CONCLUSIONS Our results suggest that the expression of PPR genes depends on the state of cell differentiation and plastid development. In the case of the albino leaf tissue, which lacks functional chloroplasts, it is possible that anterograde and retrograde signaling networks are severely compromised, leading to a compensatory anterograde response characterized by an increase in the expression of PPR genes.
Collapse
Affiliation(s)
- M Andrade-Marcial
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - R Pacheco-Arjona
- Facultad de Medicina Veterinaria y Zootecnia, Consejo Nacional de Ciencia y Tecnología- Universidad Autónoma de Yucatán, Mérida, Mexico
| | - E Góngora-Castillo
- Consejo Nacional de Ciencia y Tecnología-Unidad De Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - C De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130 x 32 y 34. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
18
|
Barczak-Brzyżek A, Brzyżek G, Koter M, Siedlecka E, Gawroński P, Filipecki M. Plastid retrograde regulation of miRNA expression in response to light stress. BMC PLANT BIOLOGY 2022; 22:150. [PMID: 35346032 PMCID: PMC8962581 DOI: 10.1186/s12870-022-03525-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 03/10/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs that play a pivotal role in the regulation of plant development and responses to the surrounding environment. Despite the efforts made to elucidate their function in the adaptation of plants to many abiotic and biotic stresses, their role in high light (HL) stress is still vague. HL stress often arises upon plant exposure to full sunlight. Subsequent changes in nuclear gene expression are triggered by chloroplast-derived retrograde signals. RESULTS In this study, we show that HL is involved in miRNA-dependent regulation in Arabidopsis thaliana rosettes. Microtranscriptomic screening revealed a limited number of miRNAs reacting to HL. To explain the miRNA regulation mechanisms at the different biogenesis stages, chemical and genetic approaches were applied. First, we tested the possible role of plastoquinone (PQ) redox changes using photosynthetic electron transport chain inhibitors. The results suggest that increased primary transcript abundance (pri-miRNAs) of HL-regulated miRNAs is dependent on signals upstream of PQ. This indicates that such signals may originate from photosystem II, which is the main singlet oxygen (1O2) source. Nevertheless, no changes in pri-miRNA expression upon a dark-light shift in the conditional fluorescent (flu) mutant producing 1O2 were observed when compared to wild-type plants. Thus, we explored the 1O2 signaling pathway, which is initiated independently in HL and is related to β-carotene oxidation and production of volatile derivatives, such as β-cyclocitral (β-CC). Pri-miRNA induction by β-CC, which is a component of this 1O2 pathway, as well as an altered response in the methylene blue sensitivity 1 (mbs1) mutant support the role of 1O2 signaling in miRNA regulation. CONCLUSIONS We show that light stress triggers changes in miRNA expression. This stress response may be regulated by reactive oxygen species (ROS)-related signaling. In conclusion, our results link ROS action to miRNA biogenesis, suggesting its contribution to inconsistent pri- and mature miRNA dynamics.
Collapse
Affiliation(s)
- Anna Barczak-Brzyżek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776, Warsaw, Poland
| | - Grzegorz Brzyżek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Marek Koter
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776, Warsaw, Poland
| | - Ewa Siedlecka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776, Warsaw, Poland
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776, Warsaw, Poland
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776, Warsaw, Poland.
| |
Collapse
|
19
|
Perea-García A, Puig S, Peñarrubia L. The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1735-1750. [PMID: 34849747 DOI: 10.1093/jxb/erab521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Copper and iron proteins have a wide range of functions in living organisms. Metal assembly into metalloproteins is a complex process, where mismetalation is detrimental and energy consuming to cells. Under metal deficiency, metal distribution is expected to reach a metalation ranking, prioritizing essential versus dispensable metalloproteins, while avoiding interference with other metals and protecting metal-sensitive processes. In this review, we propose that post-transcriptional modulators of metalloprotein mRNA (ModMeR) are good candidates in metal prioritization under metal-limited conditions. ModMeR target high quota or redundant metalloproteins and, by adjusting their synthesis, ModMeR act as internal metal distribution valves. Inappropriate metalation of ModMeR targets could compete with metal delivery to essential metalloproteins and interfere with metal-sensitive processes, such as chloroplastic photosynthesis and mitochondrial respiration. Regulation of ModMeR targets could increase or decrease the metal flow through interconnected pathways in cellular metal distribution, helping to achieve adequate differential metal requirements. Here, we describe and compare ModMeR that function in response to copper and iron deficiencies. Specifically, we describe copper-miRNAs from Arabidopsis thaliana and diverse iron ModMeR from yeast, mammals, and bacteria under copper and iron deficiencies, as well as the influence of oxidative stress. Putative functions derived from their role as ModMeR are also discussed.
Collapse
Affiliation(s)
- Ana Perea-García
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular and Institut Universitari de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| |
Collapse
|
20
|
Lamelas L, Valledor L, López-Hidalgo C, Cañal MJ, Meijón M. Nucleus and chloroplast: A necessary understanding to overcome heat stress in Pinus radiata. PLANT, CELL & ENVIRONMENT 2022; 45:446-458. [PMID: 34855991 DOI: 10.1111/pce.14238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The recovery and maintenance of plant homeostasis under stressful environments are complex processes involving organelle crosstalk for a coordinated cellular response. Here, we revealed through nuclear and chloroplast subcellular proteomics, biochemical cell profiles and targeted transcriptomics how chloroplasts and nuclei developed their responses under increased temperatures in a long-lived species (Pinus radiata). Parallel to photosynthetic impairment and reactive oxygen species production in the chloroplast, a DNA damage response was triggered in the nucleus followed by an altered chromatin conformation. In addition, in the nuclei, we found several proteins, such as HEMERA or WHIRLY, which change their locations from the chloroplasts to the nuclei carrying the stress message. Additionally, our data showed a deep rearrangement of RNA metabolism in both organelles, revealing microRNAs and AGO1 as potential regulators of the acclimation mechanisms. Altogether, our study highlights the synchronisation among the different stages required for thermotolerance acquisition in P. radiata, pointing out the role of chromatin conformation and posttranscriptional gene regulation in overcoming heat stress and assuring plant survival for the following years.
Collapse
Affiliation(s)
- Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| | - Cristina López-Hidalgo
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| |
Collapse
|
21
|
Hu H, Ren D, Hu J, Jiang H, Chen P, Zeng D, Qian Q, Guo L. WHITE AND LESION-MIMIC LEAF1, encoding a lumazine synthase, affects reactive oxygen species balance and chloroplast development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1690-1703. [PMID: 34628678 DOI: 10.1111/tpj.15537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
The riboflavin derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential cofactors for enzymes in multiple cellular processes. Characterizing mutants with impaired riboflavin metabolism can help clarify the role of riboflavin in plant development. Here, we characterized a rice (Oryza sativa) white and lesion-mimic (wll1) mutant, which displays a lesion-mimic phenotype with white leaves, chlorophyll loss, chloroplast defects, excess reactive oxygen species (ROS) accumulation, decreased photosystem protein levels, changes in expression of chloroplast development and photosynthesis genes, and cell death. Map-based cloning and complementation test revealed that WLL1 encodes lumazine synthase, which participates in riboflavin biosynthesis. Indeed, the wll1 mutant showed riboflavin deficiency, and application of FAD rescued the wll1 phenotype. In addition, transcriptome analysis showed that cytokinin metabolism was significantly affected in wll1 mutant, which had increased cytokinin and δ-aminolevulinic acid contents. Furthermore, WLL1 and riboflavin synthase (RS) formed a complex, and the rs mutant had a similar phenotype to the wll1 mutant. Taken together, our findings revealed that WLL1 and RS play pivotal roles in riboflavin biosynthesis, which is necessary for ROS balance and chloroplast development in rice.
Collapse
Affiliation(s)
- Haitao Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hongzhen Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ping Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
22
|
CAF Proteins Help SOT1 Regulate the Stability of Chloroplast ndhA Transcripts. Int J Mol Sci 2021; 22:ijms222312639. [PMID: 34884441 PMCID: PMC8657633 DOI: 10.3390/ijms222312639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 12/26/2022] Open
Abstract
Protein-mediated RNA stabilization plays profound roles in chloroplast gene expression. Genetic studies have indicated that chloroplast ndhA transcripts, encoding a key subunit of the NADH dehydrogenase-like complex that mediates photosystem I cyclic electron transport and facilitates chlororespiration, are stabilized by PPR53 and its orthologs, but the underlying mechanisms are unclear. Here, we report that CHLOROPLAST RNA SPLICING 2 (CRS2)-ASSOCIATED FACTOR (CAF) proteins activate SUPPRESSOR OF THYLAKOID FORMATION 1 (SOT1), an ortholog of PPR53 in Arabidopsis thaliana, enhancing their affinity for the 5' ends of ndhA transcripts to stabilize these molecules while inhibiting the RNA endonuclease activity of the SOT1 C-terminal SMR domain. In addition, we established that SOT1 improves the splicing efficiency of ndhA by facilitating the association of CAF2 with the ndhA intron, which may be due to the SOT1-mediated stability of the ndhA transcripts. Our findings shed light on the importance of PPR protein interaction partners in moderating RNA metabolism.
Collapse
|
23
|
Li G, Wang J, Zhang C, Ai G, Zhang D, Wei J, Cai L, Li C, Zhu W, Larkin RM, Zhang J. L2, a chloroplast metalloproteinase, regulates fruit ripening by participating in ethylene autocatalysis under the control of ethylene response factors. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7035-7048. [PMID: 34255841 DOI: 10.1093/jxb/erab325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Although autocatalytic ethylene biosynthesis plays an important role in the ripening of climacteric fruits, our knowledge of the network that promotes it remains limited. We identified white fruit (wf), a tomato mutant that produces immature fruit that are white and that ripen slowly. We found that an inversion on chromosome 10 disrupts the LUTESCENT2 (L2) gene, and that white fruit is allelic to lutescent2. Using CRISPR/Cas9 technology we knocked out L2 in wild type tomato and found that the l2-cr mutants produced phenotypes that were very similar to white fruit (lutescent2). In the l2-cr fruit, chloroplast development was impaired and the accumulation of carotenoids and lycopene occurred more slowly than in wild type. During fruit ripening in l2-cr mutants, the peak of ethylene release was delayed, less ethylene was produced, and the expression of ACO genes was significantly suppressed. We also found that exogenous ethylene induces the expression of L2 and that ERF.B3, an ethylene response factor, binds to the promoter of the L2 gene and activates its transcription. Thus, the expression of L2 is regulated by exogenous ethylene. Taken together, our results indicate that ethylene may affect the expression of L2 gene and that L2 participates in autocatalytic ethylene biosynthesis during tomato fruit ripening.
Collapse
Affiliation(s)
- Guobin Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiafa Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunli Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dedi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangyu Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Changbao Li
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wenzhao Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
24
|
Wang X, Jiang Z, Yue N, Jin X, Zhang X, Li Z, Zhang Y, Wang X, Han C, Yu J, Li D. Barley stripe mosaic virus γb protein disrupts chloroplast antioxidant defenses to optimize viral replication. EMBO J 2021; 40:e107660. [PMID: 34254679 PMCID: PMC8365260 DOI: 10.15252/embj.2021107660] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/21/2023] Open
Abstract
The plant antioxidant system plays important roles in response to diverse abiotic and biotic stresses. However, the effects of virus infection on host redox homeostasis and how antioxidant defense pathway is manipulated by viruses remain poorly understood. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein is recruited to the chloroplast by the viral αa replicase to enhance viral replication. Here, we show that BSMV infection induces chloroplast oxidative stress. The versatile γb protein interacts directly with NADPH-dependent thioredoxin reductase C (NTRC), a core component of chloroplast antioxidant systems. Overexpression of NbNTRC significantly impairs BSMV replication in Nicotiana benthamiana plants, whereas disruption of NbNTRC expression leads to increased viral accumulation and infection severity. To counter NTRC-mediated defenses, BSMV employs the γb protein to competitively interfere with NbNTRC binding to 2-Cys Prx. Altogether, this study indicates that beyond acting as a helicase enhancer, γb also subverts NTRC-mediated chloroplast antioxidant defenses to create an oxidative microenvironment conducive to viral replication.
Collapse
Affiliation(s)
- Xueting Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhihao Jiang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ning Yue
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xuejiao Jin
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xuan Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhaolei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xian‐Bing Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Chenggui Han
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
25
|
Hõrak H. Important ions: impairment of potassium exchangers disrupts chloroplast gene expression. THE PLANT CELL 2021; 33:2108-2109. [PMID: 35233603 PMCID: PMC8521740 DOI: 10.1093/plcell/koab126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Hanna Hõrak
- Institute of Technology, University of
Tartu, Tartu, Estonia
| |
Collapse
|
26
|
Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies. Biochem Soc Trans 2021; 48:2399-2414. [PMID: 33196096 DOI: 10.1042/bst20190492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing (NGS) technologies - Illumina RNA-seq, Pacific Biosciences isoform sequencing (PacBio Iso-seq), and Oxford Nanopore direct RNA sequencing (DRS) - have revealed the complexity of plant transcriptomes and their regulation at the co-/post-transcriptional level. Global analysis of mature mRNAs, transcripts from nuclear run-on assays, and nascent chromatin-bound mRNAs using short as well as full-length and single-molecule DRS reads have uncovered potential roles of different forms of RNA polymerase II during the transcription process, and the extent of co-transcriptional pre-mRNA splicing and polyadenylation. These tools have also allowed mapping of transcriptome-wide start sites in cap-containing RNAs, poly(A) site choice, poly(A) tail length, and RNA base modifications. The emerging theme from recent studies is that reprogramming of gene expression in response to developmental cues and stresses at the co-/post-transcriptional level likely plays a crucial role in eliciting appropriate responses for optimal growth and plant survival under adverse conditions. Although the mechanisms by which developmental cues and different stresses regulate co-/post-transcriptional splicing are largely unknown, a few recent studies indicate that the external cues target spliceosomal and splicing regulatory proteins to modulate alternative splicing. In this review, we provide an overview of recent discoveries on the dynamics and complexities of plant transcriptomes, mechanistic insights into splicing regulation, and discuss critical gaps in co-/post-transcriptional research that need to be addressed using diverse genomic and biochemical approaches.
Collapse
|
27
|
Li M, Ruwe H, Melzer M, Junker A, Hensel G, Tschiersch H, Schwenkert S, Chamas S, Schmitz-Linneweber C, Börner T, Stein N. The Arabidopsis AAC Proteins CIL and CIA2 Are Sub-functionalized Paralogs Involved in Chloroplast Development. FRONTIERS IN PLANT SCIENCE 2021; 12:681375. [PMID: 34163512 PMCID: PMC8215611 DOI: 10.3389/fpls.2021.681375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/06/2021] [Indexed: 05/22/2023]
Abstract
The Arabidopsis gene Chloroplast Import Apparatus 2 (CIA2) encodes a transcription factor that positively affects the activity of nuclear genes for chloroplast ribosomal proteins and chloroplast protein import machineries. CIA2-like (CIL) is the paralogous gene of CIA2. We generated a cil mutant by site-directed mutagenesis and compared it with cia2 and cia2cil double mutant. Phenotype of the cil mutant did not differ from the wild type under our growth conditions, except faster growth and earlier time to flowering. Compared to cia2, the cia2cil mutant showed more impaired chloroplast functions and reduced amounts of plastid ribosomal RNAs. In silico analyses predict for CIA2 and CIL a C-terminal CCT domain and an N-terminal chloroplast transit peptide (cTP). Chloroplast (and potentially nuclear) localization was previously shown for HvCMF3 and HvCMF7, the homologs of CIA2 and CIL in barley. We observed nuclear localization of CIL after transient expression in Arabidopsis protoplasts. Surprisingly, transformation of cia2 with HvCMF3, HvCMF7, or with a truncated CIA2 lacking the predicted cTP could partially rescue the pale-green phenotype of cia2. These data are discussed with respect to potentially overlapping functions between CIA2, CIL, and their barley homologs and to the function of the putative cTPs of CIA2 and CIL.
Collapse
Affiliation(s)
- Mingjiu Li
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hannes Ruwe
- Molecular Genetics, Institute of Biology, Humboldt University, Rhoda Erdmann Haus, Berlin, Germany
| | - Michael Melzer
- Structural Cell Biology, Department of Physiology and Cell Biology, IPK, Gatersleben, Germany
| | - Astrid Junker
- Acclimation Dynamics and Phenotyping, Department of Molecular Genetics, IPK, Gatersleben, Germany
| | - Goetz Hensel
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Gatersleben, Germany
| | - Henning Tschiersch
- Acclimation Dynamics and Phenotyping, Department of Molecular Genetics, IPK, Gatersleben, Germany
| | - Serena Schwenkert
- Department of Biology I, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Sindy Chamas
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Gatersleben, Germany
| | | | - Thomas Börner
- Molecular Genetics, Institute of Biology, Humboldt University, Rhoda Erdmann Haus, Berlin, Germany
| | - Nils Stein
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research (CiBreed), Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
Dopp IJ, Yang X, Mackenzie SA. A new take on organelle-mediated stress sensing in plants. THE NEW PHYTOLOGIST 2021; 230:2148-2153. [PMID: 33704791 PMCID: PMC8214450 DOI: 10.1111/nph.17333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/10/2021] [Indexed: 05/25/2023]
Abstract
Plants are able to adjust phenotype in response to changes in the environment. This system depends on an internal capacity to sense environmental conditions and to process this information to plant response. Recent studies have pointed to mitochondria and plastids as important environmental sensors, capable of perceiving stressful conditions and triggering gene expression, epigenomic, metabolic and phytohormone changes in the plant. These processes involve integrated gene networks that ultimately modulate the energy balance between growth and plant defense. This review attempts to link several unusual recent findings into a comprehensive hypothesis for the regulation of plant phenotypic plasticity.
Collapse
Affiliation(s)
- Isaac J. Dopp
- Departments of Biology and Plant Science, University Park, PA 16802, USA
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaodong Yang
- Departments of Biology and Plant Science, University Park, PA 16802, USA
| | - Sally A. Mackenzie
- Departments of Biology and Plant Science, University Park, PA 16802, USA
| |
Collapse
|
29
|
Wu GZ, Bock R. GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. THE PLANT CELL 2021; 33:457-474. [PMID: 33955483 PMCID: PMC8136882 DOI: 10.1093/plcell/koaa048] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
Communication between cellular compartments is vital for development and environmental adaptation. Signals emanating from organelles, so-called retrograde signals, coordinate nuclear gene expression with the developmental stage and/or the functional status of the organelle. Plastids (best known in their green photosynthesizing differentiated form, the chloroplasts) are the primary energy-producing compartment of plant cells, and the site for the biosynthesis of many metabolites, including fatty acids, amino acids, nucleotides, isoprenoids, tetrapyrroles, vitamins, and phytohormone precursors. Signals derived from plastids regulate the accumulation of a large set of nucleus-encoded proteins, many of which localize to plastids. A set of mutants defective in retrograde signaling (genomes uncoupled, or gun) was isolated over 25 years ago. While most GUN genes act in tetrapyrrole biosynthesis, resolving the molecular function of GUN1, the proposed integrator of multiple retrograde signals, has turned out to be particularly challenging. Based on its amino acid sequence, GUN1 was initially predicted to be a plastid-localized nucleic acid-binding protein. Only recently, mechanistic information on the function of GUN1 has been obtained, pointing to a role in plastid protein homeostasis. This review article summarizes our current understanding of GUN-related retrograde signaling and provides a critical appraisal of the various proposed roles for GUNs and their respective pathways.
Collapse
Affiliation(s)
- Guo-Zhang Wu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
30
|
Ling Q, Sadali NM, Soufi Z, Zhou Y, Huang B, Zeng Y, Rodriguez-Concepcion M, Jarvis RP. The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato. NATURE PLANTS 2021; 7:655-666. [PMID: 34007040 DOI: 10.1038/s41477-021-00916-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The maturation of green fleshy fruit to become colourful and flavoursome is an important strategy for plant reproduction and dispersal. In tomato (Solanum lycopersicum) and many other species, fruit ripening is intimately linked to the biogenesis of chromoplasts, the plastids that are abundant in ripe fruit and specialized for the accumulation of carotenoid pigments. Chromoplasts develop from pre-existing chloroplasts in the fruit, but the mechanisms underlying this transition are poorly understood. Here, we reveal a role for the chloroplast-associated protein degradation (CHLORAD) proteolytic pathway in chromoplast differentiation. Knockdown of the plastid ubiquitin E3 ligase SP1, or its homologue SPL2, delays tomato fruit ripening, whereas overexpression of SP1 accelerates ripening, as judged by colour changes. We demonstrate that SP1 triggers broader effects on fruit ripening, including fruit softening, and gene expression and metabolism changes, by promoting the chloroplast-to-chromoplast transition. Moreover, we show that tomato SP1 and SPL2 regulate leaf senescence, revealing conserved functions of CHLORAD in plants. We conclude that SP1 homologues control plastid transitions during fruit ripening and leaf senescence by enabling reconfiguration of the plastid protein import machinery to effect proteome reorganization. The work highlights the critical role of chromoplasts in fruit ripening, and provides a theoretical basis for engineering crop improvements.
Collapse
Affiliation(s)
- Qihua Ling
- Department of Plant Sciences, University of Oxford, Oxford, UK
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Najiah Mohd Sadali
- Department of Plant Sciences, University of Oxford, Oxford, UK
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Ziad Soufi
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Yuan Zhou
- Department of Plant Sciences, University of Oxford, Oxford, UK
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Binquan Huang
- Department of Plant Sciences, University of Oxford, Oxford, UK
- School of Agriculture, Yunnan University, Kunming, China
| | - Yunliu Zeng
- Department of Plant Sciences, University of Oxford, Oxford, UK
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Manuel Rodriguez-Concepcion
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - R Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Tieu Ngoc LN, Jung Park S, Thi Huong T, Lee KH, Kang H. N4-methylcytidine ribosomal RNA methylation in chloroplasts is crucial for chloroplast function, development, and abscisic acid response in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:570-582. [PMID: 32876986 DOI: 10.1111/jipb.13009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Although the essential role of messenger RNA methylation in the nucleus is increasingly understood, the nature of ribosomal RNA (rRNA) methyltransferases and the role of rRNA methylation in chloroplasts remain largely unknown. A recent study revealed that CMAL (for Chloroplast mr aW- Like) is a chloroplast-localized rRNA methyltransferase that is responsible for N4-methylcytidine (m4 C) in 16S chloroplast rRNA in Arabidopsis thaliana. In this study, we further examined the role of CMAL in chloroplast biogenesis and function, development, and hormone response. The cmal mutant showed reduced chlorophyll biosynthesis, photosynthetic activity, and growth-defect phenotypes, including severely stunted stems, fewer siliques, and lower seed yield. The cmal mutant was hypersensitive to chloroplast translation inhibitors, such as lincomycin and erythromycin, indicating that the m4 C-methylation defect in the 16S rRNA leads to a reduced translational activity in chloroplasts. Importantly, the stunted stem of the cmal mutant was partially rescued by exogenous gibberellic acid or auxin. The cmal mutant grew poorer than wild type, whereas the CMAL-overexpressing transgenic Arabidopsis plants grew better than wild type in the presence of abscisic acid. Altogether, these results indicate that CMAL is an indispensable rRNA methyltransferase in chloroplasts and is crucial for chloroplast biogenesis and function, photosynthesis, and hormone response during plant growth and development.
Collapse
Affiliation(s)
- Le Nguyen Tieu Ngoc
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
- Faculty of Forestry Agriculture, Tay Nguyen University, BuonMaThuot, DakLak, 63000, Vietnam
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Trinh Thi Huong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kwang Ho Lee
- Center for Research Facilities, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
32
|
Grübler B, Cozzi C, Pfannschmidt T. A Core Module of Nuclear Genes Regulated by Biogenic Retrograde Signals from Plastids. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020296. [PMID: 33557197 PMCID: PMC7913978 DOI: 10.3390/plants10020296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 05/11/2023]
Abstract
Chloroplast biogenesis during seedling development of angiosperms is a rapid and highly dynamic process that parallels the light-dependent photomorphogenic programme. Pre-treatments of dark-grown seedlings with lincomyin or norflurazon prevent chloroplast biogenesis upon illumination yielding albino seedlings. A comparable phenotype was found for the Arabidopsis mutant plastid-encoded polymerase associated protein 7 (pap7) being defective in the prokaryotic-type plastid RNA polymerase. In all three cases the defect in plastid function has a severe impact on the expression of nuclear genes representing the influence of retrograde signaling pathway(s) from the plastid. We performed a meta-analysis of recently published genome-wide expression studies that investigated the impact of the aforementioned chemical and genetic blocking of chloroplast biogenesis on nuclear gene expression profiles. We identified a core module of 152 genes being affected in all three conditions. These genes were classified according to their function and analyzed with respect to their implication in retrograde signaling and chloroplast biogenesis. Our study uncovers novel genes regulated by retrograde biogenic signals and suggests the action of a common signaling pathway that is used by signals originating from plastid transcription, translation and oxidative stress.
Collapse
|
33
|
Shimizu T, Masuda T. The Role of Tetrapyrrole- and GUN1-Dependent Signaling on Chloroplast Biogenesis. PLANTS 2021; 10:plants10020196. [PMID: 33494334 PMCID: PMC7911674 DOI: 10.3390/plants10020196] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Chloroplast biogenesis requires the coordinated expression of the chloroplast and nuclear genomes, which is achieved by communication between the developing chloroplasts and the nucleus. Signals emitted from the plastids, so-called retrograde signals, control nuclear gene expression depending on plastid development and functionality. Genetic analysis of this pathway identified a set of mutants defective in retrograde signaling and designated genomes uncoupled (gun) mutants. Subsequent research has pointed to a significant role of tetrapyrrole biosynthesis in retrograde signaling. Meanwhile, the molecular functions of GUN1, the proposed integrator of multiple retrograde signals, have not been identified yet. However, based on the interactions of GUN1, some working hypotheses have been proposed. Interestingly, GUN1 contributes to important biological processes, including plastid protein homeostasis, through transcription, translation, and protein import. Furthermore, the interactions of GUN1 with tetrapyrroles and their biosynthetic enzymes have been revealed. This review focuses on our current understanding of the function of tetrapyrrole retrograde signaling on chloroplast biogenesis.
Collapse
|
34
|
GUN1 and Plastid RNA Metabolism: Learning from Genetics. Cells 2020; 9:cells9102307. [PMID: 33081381 PMCID: PMC7602965 DOI: 10.3390/cells9102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for the correct development and functioning of chloroplasts. Multiple genetic and biochemical findings indicate that GUN1 is important for protein homeostasis in the chloroplast; however, a clear and unified view of GUN1′s role in the chloroplast is still missing. Recently, GUN1 has been reported to modulate the activity of the nucleus-encoded plastid RNA polymerase (NEP) and modulate editing of plastid RNAs upon activation of retrograde communication, revealing a major role of GUN1 in plastid RNA metabolism. In this opinion article, we discuss the recently identified links between plastid RNA metabolism and retrograde signaling by providing a new and extended concept of GUN1 activity, which integrates the multitude of functional genetic interactions reported over the last decade with its primary role in plastid transcription and transcript editing.
Collapse
|
35
|
Yang Y, Liu X, Wang K, Li J, Zhu G, Ren S, Deng Z, Zhu B, Fu D, Qu G, Luo Y, Zhu H. Molecular and functional diversity of organelle RNA editing mediated by RNA recognition motif-containing protein ORRM4 in tomato. THE NEW PHYTOLOGIST 2020; 228:570-585. [PMID: 32473605 DOI: 10.1111/nph.16714] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Plant organellar RNA editing is a distinct type of post-transcriptional RNA modification that is critical for plant development. We showed previously that the RNA editing factor SlORRM4 is required for mitochondrial function and fruit ripening in tomato (Solanum lycopersicum). However, a comprehensive atlas of the RNA editing mediated by SlORRM4 is lacking. We observed that SlORRM4 is targeted to both chloroplasts and mitochondria, and its knockout results in pale-green leaves and delayed fruit ripening. Using high-throughput sequencing, we identified 12 chloroplast editing sites and 336 mitochondrial editing sites controlled by SlORRM4, accounting for 23% of chloroplast sites in leaves and 61% of mitochondrial sites in fruits, respectively. Analysis of native RNA immunoprecipitation sequencing revealed that SlORRM4 binds to 31 RNA targets; 19 of these targets contain SlORRM4-dependent editing sites. Large-scale analysis of putative SlORRM4-interacting proteins identified SlRIP1b, a RIP/MORF protein. Moreover, functional characterization demonstrated that SlRIP1b is involved in tomato fruit ripening. Our results indicate that SlORRM4 binds to RNA targets and interacts with SlRIP1b to broadly affect RNA editing in tomato organelles. These results provide insights into the molecular and functional diversity of RNA editing factors in higher plants.
Collapse
Affiliation(s)
- Yongfang Yang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiuying Liu
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Keru Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guoning Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuang Ren
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guiqin Qu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
36
|
Mielecki J, Gawroński P, Karpiński S. Retrograde Signaling: Understanding the Communication between Organelles. Int J Mol Sci 2020; 21:E6173. [PMID: 32859110 PMCID: PMC7503960 DOI: 10.3390/ijms21176173] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding how cell organelles and compartments communicate with each other has always been an important field of knowledge widely explored by many researchers. However, despite years of investigations, one point-and perhaps the only point that many agree on-is that our knowledge about cellular-signaling pathways still requires expanding. Chloroplasts and mitochondria (because of their primary functions in energy conversion) are important cellular sensors of environmental fluctuations and feedback they provide back to the nucleus is important for acclimatory responses. Under stressful conditions, it is important to manage cellular resources more efficiently in order to maintain a proper balance between development, growth and stress responses. For example, it can be achieved through regulation of nuclear and organellar gene expression. If plants are unable to adapt to stressful conditions, they will be unable to efficiently produce energy for growth and development-and ultimately die. In this review, we show the importance of retrograde signaling in stress responses, including the induction of cell death and in organelle biogenesis. The complexity of these pathways demonstrates how challenging it is to expand the existing knowledge. However, understanding this sophisticated communication may be important to develop new strategies of how to improve adaptability of plants in rapidly changing environments.
Collapse
Affiliation(s)
| | | | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.M.); (P.G.)
| |
Collapse
|
37
|
Jarad M, Antoniou-Kourounioti R, Hepworth J, Qüesta JI. Unique and contrasting effects of light and temperature cues on plant transcriptional programs. Transcription 2020; 11:134-159. [PMID: 33016207 PMCID: PMC7714439 DOI: 10.1080/21541264.2020.1820299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Plants have adapted to tolerate and survive constantly changing environmental conditions by reprogramming gene expression in response to stress or to drive developmental transitions. Among the many signals that plants perceive, light and temperature are of particular interest due to their intensely fluctuating nature which is combined with a long-term seasonal trend. Whereas specific receptors are key in the light-sensing mechanism, the identity of plant thermosensors for high and low temperatures remains far from fully addressed. This review aims at discussing common as well as divergent characteristics of gene expression regulation in plants, controlled by light and temperature. Light and temperature signaling control the abundance of specific transcription factors, as well as the dynamics of co-transcriptional processes such as RNA polymerase elongation rate and alternative splicing patterns. Additionally, sensing both types of cues modulates gene expression by altering the chromatin landscape and through the induction of long non-coding RNAs (lncRNAs). However, while light sensing is channeled through dedicated receptors, temperature can broadly affect chemical reactions inside plant cells. Thus, direct thermal modifications of the transcriptional machinery add another level of complexity to plant transcriptional regulation. Besides the rapid transcriptome changes that follow perception of environmental signals, plant developmental transitions and acquisition of stress tolerance depend on long-term maintenance of transcriptional states (active or silenced genes). Thus, the rapid transcriptional response to the signal (Phase I) can be distinguished from the long-term memory of the acquired transcriptional state (Phase II - remembering the signal). In this review we discuss recent advances in light and temperature signal perception, integration and memory in Arabidopsis thaliana, focusing on transcriptional regulation and highlighting the contrasting and unique features of each type of cue in the process.
Collapse
Affiliation(s)
- Mai Jarad
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | | | - Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Julia I. Qüesta
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
38
|
Jiang D, Tang R, Shi Y, Ke X, Wang Y, Che Y, Luan S, Hou X. Arabidopsis Seedling Lethal 1 Interacting With Plastid-Encoded RNA Polymerase Complex Proteins Is Essential for Chloroplast Development. FRONTIERS IN PLANT SCIENCE 2020; 11:602782. [PMID: 33391315 PMCID: PMC7772139 DOI: 10.3389/fpls.2020.602782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 05/16/2023]
Abstract
Mitochondrial transcription termination factors (mTERFs) are highly conserved proteins in metazoans. Plants have many more mTERF proteins than animals. The functions and the underlying mechanisms of plants' mTERFs remain largely unknown. In plants, mTERF family proteins are present in both mitochondria and plastids and are involved in gene expression in these organelles through different mechanisms. In this study, we screened Arabidopsis mutants with pigment-defective phenotypes and isolated a T-DNA insertion mutant exhibiting seedling-lethal and albino phenotypes [seedling lethal 1 (sl1)]. The SL1 gene encodes an mTERF protein localized in the chloroplast stroma. The sl1 mutant showed severe defects in chloroplast development, photosystem assembly, and the accumulation of photosynthetic proteins. Furthermore, the transcript levels of some plastid-encoded proteins were significantly reduced in the mutant, suggesting that SL1/mTERF3 may function in the chloroplast gene expression. Indeed, SL1/mTERF3 interacted with PAP12/PTAC7, PAP5/PTAC12, and PAP7/PTAC14 in the subgroup of DNA/RNA metabolism in the plastid-encoded RNA polymerase (PEP) complex. Taken together, the characterization of the plant chloroplast mTERF protein, SL1/mTERF3, that associated with PEP complex proteins provided new insights into RNA transcription in the chloroplast.
Collapse
Affiliation(s)
- Deyuan Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yafei Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangsheng Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yetao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yufen Che
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Sheng Luan,
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Xin Hou,
| |
Collapse
|