1
|
Zhao F, Liu X, Li X, Cai Z, Zhang Y. Two-dimensional photonic crystal acetylcholinesterase hydrogel and organohydrogel sensors for efficient detection of organophosphorus compounds. Biosens Bioelectron 2025; 267:116845. [PMID: 39406073 DOI: 10.1016/j.bios.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Sensors capable of detecting organophosphorus (OP) compounds have attracted the most attention owing to severe OP contamination worldwide. Despite many years of research, the developed OP sensors mainly focused on detecting water-soluble OPs in proper environments and the exploration of OP sensors suitable in resource-limited areas is extremely challenging. Here, a simple two-dimensional photonic crystal (2D PC) hydrogel featuring capabilities of effectively quantitative determination of OP compounds is facilely constructed by immobilizing the enzyme acetylcholinesterase (AChE) onto a bovine serum albumin (BSA) protein hydrogel. Owing to the specific interaction between AChE and OP compounds, the OP compounds are easily bound to the hydrogel, triggering volume phase transition and resulting in apparent Debye diffraction ring variations. The resulting hydrogel sensors show a limit of detection (LoD) of 2.23 nM for trichlorfon and 0.07 nM for diethyl methylphosphonate (DMPP), respectively. On the basis of the hydrogel, a responsive organohydrogel is facilely fabricated utilizing a solvent exchange strategy to meet the requirements of applications in harsh environments and detection of the non-water-soluble OP compounds. The organohydrogel sensors, however, demonstrated a LoD of 0.70 μM for trichlorfon and 4.46 μM for DMPP, respectively. This work provides new light on the development of next-generation stable, low-cost, and portable field sensing devices.
Collapse
Affiliation(s)
- Fangyuan Zhao
- School of Instrumentation and Optoelectronic Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
| | - Xinye Liu
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Xiaomin Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongyu Cai
- School of Instrumentation and Optoelectronic Engineering, School of Space and Environment, Beihang University, Beijing 100191, China.
| | - Yuqi Zhang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China.
| |
Collapse
|
2
|
Yan J, Cheng Q, Liu H, Wang L, Yu K. Sensitive and rapid detection of influenza A virus for disease surveillance using dual-probe electrochemical biosensor. Bioelectrochemistry 2023; 153:108497. [PMID: 37393678 DOI: 10.1016/j.bioelechem.2023.108497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Influenza A virus (IAV) can cause influenza, a highly infectious zoonotic respiratory disease, and early detection is essential to prevent and control its rapid spread in the population. Given the limitations of traditional detection methods in clinical laboratories, we report a large surface TPB-DVA COFs (TPB: 1,3,5-Tris(4-aminophenyl) benzene, DVA: 1,4-Benzenedicarboxaldehyd, COFs: Covalent organic frameworks) nanomaterial modified electrochemical DNA biosensor, which has dual-probe specific recognition and signal amplification. The biosensor enables quantitative detection of influenza A viruses' complementary DNA (cDNA) from 10 fM to 1 × 103 nM (LOD = 5.42 fM) with good specificity and high selectivity. The reliability of the biosensor and portable device was verified by comparing the virus concentrations in animal tissues with those measured by digital droplet PCR (ddPCR) (P > 0.05). Moreover, the potential for influenza surveillance in this work was demonstrated by detecting the tissue samples from mice at different stages of infection. In summary, the good performance of this electrochemical DNA biosensor we proposed suggested it has the potential to be a rapid detection device for the influenza A virus, which could assist doctors or other professionals in obtaining rapid and accurate results for outbreak investigation and disease diagnosis.
Collapse
Affiliation(s)
- Jianhua Yan
- Medical College, Guangxi University, Guangxi Nanning 530004, China
| | - Qian Cheng
- Medical College, Guangxi University, Guangxi Nanning 530004, China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
3
|
Rajagopalan V, Venkataraman S, Rajendran DS, Vinoth Kumar V, Kumar VV, Rangasamy G. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review. ENVIRONMENTAL RESEARCH 2023; 227:115724. [PMID: 36948285 DOI: 10.1016/j.envres.2023.115724] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Neurotoxic pesticides are a group of chemicals that pose a severe threat to both human health and the environment. These molecules are also known to accumulate in the food chain and persist in the environment, which can lead to long-term exposure and adverse effects on non-target organisms. The detrimental effects of these pesticides on neurotransmitter levels and function can lead to a range of neurological and behavioral symptoms, which are closely associated with neurodegenerative diseases. Hence, the accurate and reliable detection of these neurotoxic pesticides and associated neurotransmitters is essential for clinical applications, such as diagnosis and treatment. Over the past few decades, acetylcholinesterase (AchE) biosensors have emerged as a sensitive and reliable tool for the electrochemical detection of neurotoxic pesticides and acetylcholine. These biosensors can be tailored to utilize the high specificity and sensitivity of AchE, enabling the detection of these chemicals. Additionally, enzyme immobilization and the incorporation of nanoparticles have further improved the detection capabilities of these biosensors. AchE biosensors have shown tremendous potential in various fields, including environmental monitoring, clinical diagnosis, and pesticide residue analysis. This review summarizes the advancements in AchE biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine over the past two decades.
Collapse
Affiliation(s)
- Vahulabaranan Rajagopalan
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
| | - Vaithyanathan Vasanth Kumar
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
4
|
Innovations in the synthesis of graphene nanostructures for bio and gas sensors. BIOMATERIALS ADVANCES 2023; 145:213234. [PMID: 36502548 DOI: 10.1016/j.bioadv.2022.213234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Sensors play a significant role in modern technologies and devices used in industries, hospitals, healthcare, nanotechnology, astronomy, and meteorology. Sensors based upon nanostructured materials have gained special attention due to their high sensitivity, precision accuracy, and feasibility. This review discusses the fabrication of graphene-based biosensors and gas sensors, which have highly efficient performance. Significant developments in the synthesis routes to fabricate graphene-based materials with improved structural and surface properties have boosted their utilization in sensing applications. The higher surface area, better conductivity, tunable structure, and atom-thick morphology of these hybrid materials have made them highly desirable for the fabrication of flexible and stable sensors. Many publications have reported various modification approaches to improve the selectivity of these materials. In the current work, a compact and informative review focusing on the most recent developments in graphene-based biosensors and gas sensors has been designed and delivered. The research community has provided a complete critical analysis of the most robust case studies from the latest fabrication routes to the most complex challenges. Some significant ideas and solutions have been proposed to overcome the limitations regarding the field of biosensors and hazardous gas sensors.
Collapse
|
5
|
Thakur A, Kumar A. Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155219. [PMID: 35421493 DOI: 10.1016/j.scitotenv.2022.155219] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Environmental safety has become a significant issue for the safety of living species, humans, and the ecosystem as a consequence of the harmful and detrimental consequences of various pollutants such as pesticides, heavy metals, dyes, etc., emitted into the surroundings. To resolve this issue, various efforts, legal acts, scientific and technological perspectives have been embraced, but still remain a global concern. Furthermore, due to non-portability, complex detection, and inappropriate on-site recognition of sophisticated laboratory tools, the real-time analysis of these environmental contaminants has been limited. As a result of innovative nano bioconjugation and nanofabrication techniques, nanotechnology enables enhanced nanomaterials (NMs) based (bio)sensors demonstrating ultra-sensitivity and a short detection time in real-time analysis, as well as superior sensitivity, reliability, and selectivity have been developed. Several researchers have demonstrated the potent detection of pollutants such as Hg2+ ion by the usage of AgNP-MD in electronic and optoelectronic methods with a detection limit of 5-45 μM which is quite significant. Taking into consideration of such tremendous research, herein, the authors have highlighted 21st-century strategies towards NMs based biosensor technology for pollutants detection, including nano biosensors, enzyme-based biosensors, electrochemical-based biosensors, carbon-based biosensors and optical biosensors for on-site identification and detection of target analytes. This article will provide a brief overview of the significance of utilizing NMs-based biosensors for the detection of a diverse array of hazardous pollutants, and a thorough understanding of the detection processes of NMs-based biosensors, as well as the limit of quantification (LOQ) and limit of detection (LOD) values, rendering researchers to focus on the world's need for a sustainable earth.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India
| | - Ashish Kumar
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India; NCE, Department of Science and Technology, Government of Bihar, India.
| |
Collapse
|
6
|
Jara MDL, Alvarez LAC, Guimarães MCC, Antunes PWP, de Oliveira JP. Lateral flow assay applied to pesticides detection: recent trends and progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46487-46508. [PMID: 35507227 PMCID: PMC9067001 DOI: 10.1007/s11356-022-20426-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Devices based on lateral flow assay (LFA) have been gaining more and more space in the detection market mainly due to their simplicity, speed, and low cost. These devices have excellent sensing format versatility and make these strips an ideal choice for field applications. The COVID-19 pandemic boosted the democratization of this method as a "point of care testing" (POCT), and the trend is that these devices become protagonists for the monitoring of pesticides in the environment. However, designing LFA devices for detecting and monitoring pesticides in the environment is still a challenge. This is because analytes are small molecules and have only one antigenic determinant, which makes it difficult to apply direct immunoassays. Furthermore, most LFA devices provide only qualitative or semi-quantitative results and have a limited number of applications in multi-residue analysis. Here, we present the state of the art on the use of LFA in the environmental monitoring of pesticides. Based on well-documented results, we review all available LFA formats and strategies for pesticide detection, which may have important implications for the future of monitoring pesticides in the environment. The main advances, challenges, and perspectives of these devices for a direction in this field of study are also presented.
Collapse
Affiliation(s)
- Marcia Daniela Lazo Jara
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil
| | | | - Marco C C Guimarães
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil
| | - Paulo Wagnner Pereira Antunes
- Bioengen Consulting, Engineering and Environmental Planning, R. Belo Horizonte, Lote 05-Quadra W - Alterosas, Serra, ES, 29168-068, Brazil
| | - Jairo Pinto de Oliveira
- Department of Morphology, Federal University of Espirito Santo, Av Marechal Campos1468, Vitória, ES, 29.040-090, Brazil.
| |
Collapse
|
7
|
Zhang W, Zhong H, Zhao P, Shen A, Li H, Liu X. Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and challenges. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Pan Y, Qin M, Wang P, Yang L, Zhang L, Yan C, Zhang C, Wang W. Interface and Sensitive Characteristics of the Viscoelastic Film Used in a Surface Acoustic Wave Gas Sensor. ACS Sens 2022; 7:612-621. [PMID: 35084169 DOI: 10.1021/acssensors.1c02509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The surface morphology of viscoelastic-sensitive films significantly affects sensing characteristics of surface acoustic wave (SAW) sensors. Uniformity and compactness of the film surface directly influences detectability of the SAW sensor toward target gases. Viscoelastic fluoroalcoholpolysiloxane (SXFA) was prepared in this work using spin coating technology on an SAW delay line of 200 MHz and then used as coating for detection of dimethyl methylphosphonate (DMMP). Polarizing, atomic force, and scanning electron microscopies confirmed the uniformity of the SXFA surface. The particle diameter in the cluster region was 10-15 μm. The contact angle (5.72-26.69°), surface tension (21.053-29.155 mN/m), Gibbs free energy (-160.68 to -153.45 J/m2), and spreading coefficient (0.3028-6.9453 J/m2) of different concentrations of SXFA were obtained through experiments, and their relation was analyzed using the Young T equation and Gibbs adsorption isotherm. The glass transition temperature (-19.7 °C) and elasticity of SXFA were also discussed. The consistency of sensor preparation was confirmed by detecting DMMP with five SAW sensors prepared simultaneously. Seven consecutive tests showed that the SAW sensor presents satisfactory repeatability (standard deviation, s, 1.134; coefficient of variance, v, 0.065; and population mean deviation, δ, 0.913) at a concentration of 1.71 mg/m3 and acceptable linear relationship at a concentration range of 0.058-1.92 mg/m3, with a sensitivity of around 1.21 mv/(mg/m3). The sensor exhibited outstanding sensitivity and satisfactory linearity and repeatability to DMMP. Meanwhile, the sensing mechanism in gas adsorption was also discussed in terms of LSER formulation and hydrogen bonding formation between SXFA and DMMP.
Collapse
Affiliation(s)
- Yong Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Molin Qin
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Puhong Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Liu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Lin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Cancan Yan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Chao Zhang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Wang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Soy S, Sharma SR, Nigam VK. Bio-fabrication of thermozyme-based nano-biosensors: their components and present scenario. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2022; 33:5523-5533. [PMID: 38624939 PMCID: PMC8800403 DOI: 10.1007/s10854-022-07741-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/06/2022] [Indexed: 05/30/2023]
Abstract
An amalgamation of microbiology, biocatalysis, recombinant molecular biology, and nanotechnology is crucial for groundbreaking innovation in developing nano-biomedicines and sensoristics. Enzyme-based nano-biosensor finds prospective applications in various sectors (environmental, pharmaceutical, food, biorefineries). These applications demand reliable catalytic efficiency and functionality of the enzyme under an extreme operational environment for a prolonged period. Over the last few years, bio-fabrication of nano-biosensors in conjunction with thermozymes from thermophilic microbes is being sought after as a viable design. Thermozymes are known for their robustness, are chemically resistant toward organic solvents, possess higher durability for constant use, catalytic ability, and stability at elevated temperatures. Additionally, several other attributes of thermozymes like substrate specificity, selectivity, and sensitivity make them desirable in developing a customized biosensor. In this review, crucial designing aspects of enzyme-based nano-biosensors like enzyme immobilization on an electrode surface, new materials derived from microbial sources (biopolymers based nanocomposites), improvisation measures for sensitivity, and selectivity have been addressed. It also covers microbial biosynthesis of nanomaterials used to develop sensoristic devices and its numerous applications such as wastewater treatment, biorefineries, and diagnostics. The knowledge will pave the way toward creating consistent eco-friendly, economically viable nanostructured-based technologies with broad applicability and exploitation for industrial use in the near future.
Collapse
Affiliation(s)
- Snehi Soy
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Shubha Rani Sharma
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Vinod Kumar Nigam
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| |
Collapse
|
10
|
Shi F, Li J, Xiao J, Ma X, Xue Y, Li J, Shen M, Yang Z. Urchin-like PtNPs@Bi 2S 3: synthesis and application in electrochemical biosensor. Analyst 2022; 147:430-435. [DOI: 10.1039/d1an01922h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel urchin-like Pt nanoparticles@Bi2S3 composite materials were prepared by a simple route. The composite nanomaterial was used to modify an electrode for the immobilization of enzyme molecules to construct a sensitive electrochemical biosensor.
Collapse
Affiliation(s)
- Feng Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Jiayin Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Jiaxiang Xiao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xinxi Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Yadong Xue
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Juan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Ming Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
- Guangling College, Yangzhou University, Yangzhou 225002, PR China
| |
Collapse
|
11
|
Huang Y, Tang X, Zheng L, Huang J, Zhang Q, Liu H. Development of Generic Immuno-Magnetic Bead-Based Enzyme-Linked Immunoassay for Ustiloxins in Rice Coupled with Enrichment. Toxins (Basel) 2021; 13:toxins13120907. [PMID: 34941744 PMCID: PMC8705705 DOI: 10.3390/toxins13120907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Ustiloxins are a group of mycotoxins produced by rice false smut pathogen. Previous studies have shown that the false smut balls contain six types of ustiloxins, and these toxins are toxic to living organisms. Thus, immunoassay for on-site monitoring of ustiloxins in rice is urgently required. The current immunoassays are only for detecting single ustiloxin, and they cannot meet the demand for synchronous and rapid detection of the group toxins. Therefore, this study designed and synthesized a generic antigen with ustiloxin G as material based on the common structure of the mycotoxins. Ustiloxin G was conjugated to two carrier proteins including bovine serum albumin (BSA) and ovalbvmin (OVA) by carbon diimide method. The mice were immunized with ustiloxin-G-BSA to generate the antibody serum, which was further purified to obtain the generic antibody against ustiloxins. The conjugated ustiloxin G-OVA and generic antibodies were used for establishing the enzyme-linked immunosorbent assay (ELISA) for ustiloxin detection and optimizing experiment conditions. The characterization of the antibody showed that the semi-inhibitory concentrations (IC50) of ustiloxin A, B, and G were 0.53, 0.34, and 0.06 µg/mL, respectively, and that their corresponding cross-reactivities were 11.9%, 18.4%, and 100%, respectively. To increase ELISA detection efficiency, generic antibody was combined with magnetic beads to obtain sensitive and class-specific immune-magnetic beads. Based on these immuno-magnetic beads, a high-efficiency enzyme-linked immunoassay method was developed for ustiloxin detection, whose sensitivity to ustiloxin A, B, and G was improved to 0.15 µg/mL, 0.14 µg/mL, and 0.04 µg/mL, respectively. The method accuracy was evaluated by spiking ustiloxin G as standard, and the spiked samples were tested by the immune-magnetic bead-based ELISA. The result showed the ustiloxin G recoveries ranged from 101.9% to 116.4% and were accepted by a standard HPLC method, indicating that our developed method would be promising for on-site monitoring of ustiloxins in rice.
Collapse
Affiliation(s)
- Yi Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (L.Z.); (J.H.)
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Xiaoqian Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (L.Z.); (J.H.)
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (L.Z.); (J.H.)
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
- Correspondence: (Q.Z.); (H.L.)
| | - Hao Liu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (L.Z.); (J.H.)
- Correspondence: (Q.Z.); (H.L.)
| |
Collapse
|
12
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
13
|
Ding S, Lyu Z, Li S, Ruan X, Fei M, Zhou Y, Niu X, Zhu W, Du D, Lin Y. Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection. Biosens Bioelectron 2021; 191:113434. [PMID: 34225056 DOI: 10.1016/j.bios.2021.113434] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
An electrochemical sensor based on molecularly imprinted polypyrrole nanotubes (MIPNs) has been developed for the detection of glyphosate (Gly) with high sensitivity and specificity. Herein, the MIPNs are prepared by imprinting Gly sites on the surface of polypyrrole (PPy) nanotubes. The synthesized MIPNs have high electrical conductivity and exhibit rapid adsorption rate, enhanced affinity and specificity to Gly. An electrochemical sensor for Gly detection is fabricated by assembling MIPNs-modified screen-printed electrodes with a 3D-printed electrode holder, which is highly portable and suitable for real-time detection. The results demonstrate that the MIPNs-based electrochemical sensor for Gly exhibits a wide detection range of 2.5-350 ng/mL with a limit of detection (LOD) of 1.94 ng/mL. Besides, the Gly sensor possessed good stability, reproducibility, and excellent selectivity against other interferents. The practicability of the sensor is verified by detecting Gly in orange juice and rice beverages, indicating that the sensor is suitable for monitoring pesticides in actual food and environmental samples.
Collapse
Affiliation(s)
- Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Suiqiong Li
- DL ADV-Tech, Pullman, WA, 99163, United States
| | - Xiaofan Ruan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Mingen Fei
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Yang Zhou
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Xiangheng Niu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, United States.
| |
Collapse
|
14
|
Zhu H, Liu P, Xu L, Li X, Hu P, Liu B, Pan J, Yang F, Niu X. Nanozyme-Participated Biosensing of Pesticides and Cholinesterases: A Critical Review. BIOSENSORS 2021; 11:382. [PMID: 34677338 PMCID: PMC8534276 DOI: 10.3390/bios11100382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
To improve the output and quality of agricultural products, pesticides are globally utilized as an efficient tool to protect crops from insects. However, given that most pesticides used are difficult to decompose, they inevitably remain in agricultural products and are further enriched into food chains and ecosystems, posing great threats to human health and the environment. Thus, developing efficient methods and tools to monitor pesticide residues and related biomarkers (acetylcholinesterase and butylcholinesterase) became quite significant. With the advantages of excellent stability, tailorable catalytic performance, low cost, and easy mass production, nanomaterials with enzyme-like properties (nanozymes) are extensively utilized in fields ranging from biomedicine to environmental remediation. Especially, with the catalytic nature to offer amplified signals for highly sensitive detection, nanozymes were finding potential applications in the sensing of various analytes, including pesticides and their biomarkers. To highlight the progress in this field, here the sensing principles of pesticides and cholinesterases based on nanozyme catalysis are definitively summarized, and emerging detection methods and technologies with the participation of nanozymes are critically discussed. Importantly, typical examples are introduced to reveal the promising use of nanozymes. Also, some challenges in the field and future trends are proposed, with the hope of inspiring more efforts to advance nanozyme-involved sensors for pesticides and cholinesterases.
Collapse
Affiliation(s)
- Hengjia Zhu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.L.); (X.L.); (P.H.); (B.L.); (J.P.)
| | - Peng Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.L.); (X.L.); (P.H.); (B.L.); (J.P.)
| | - Lizhang Xu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Xin Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.L.); (X.L.); (P.H.); (B.L.); (J.P.)
| | - Panwang Hu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.L.); (X.L.); (P.H.); (B.L.); (J.P.)
| | - Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.L.); (X.L.); (P.H.); (B.L.); (J.P.)
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.L.); (X.L.); (P.H.); (B.L.); (J.P.)
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (P.L.); (X.L.); (P.H.); (B.L.); (J.P.)
- Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Yadav N, Garg VK, Chhillar AK, Rana JS. Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review. CHEMOSPHERE 2021; 280:130792. [PMID: 34162093 DOI: 10.1016/j.chemosphere.2021.130792] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 06/13/2023]
Abstract
Environmental deterioration due to anthropogenic activities is a threat to sustainable, clean and green environment. Accumulation of hazardous chemicals pollutes soil, water and air and thus significantly affects all the ecosystems. This article highlight the challenges associated with various conventional techniques such as filtration, absorption, flocculation, coagulation, chromatographic and mass spectroscopic techniques. Environmental nanotechnology has provided an innovative frontier to combat the aforesaid issues of sustainable environment by reducing the non-requisite use of raw materials, electricity, excessive use of agrochemicals and release of industrial effluents into water bodies. Various nanotechnology based approaches including surface enhance scattering, surface plasmon resonance; and distinct types of nanoparticles like silver, silicon oxide and zinc oxide have contributed significantly in detection of environmental pollutants. Biosensing technology has also gained significant attention for detection and remediation of pollutants. Furthermore, nanoparticles of gold, ferric oxide and manganese oxide have been used for the on-site remediation of antibiotics, organic dyes, pesticides, and heavy metals. Recently, green nanomaterials have been given more attention to address toxicity issues of chemically synthesized nanomaterials. Hence, nanotechnology has provided a platform with tremendous applications to have sustainable environment for present as well as future generations. This review article will help to understand the fundamentals for achieving the goals of sustainable development, and healthy environment.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Vinod Kumar Garg
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 151001, India.
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India
| |
Collapse
|
16
|
Ulloa AM, Glassmaker N, Oduncu MR, Xu P, Wei A, Cakmak M, Stanciu L. Roll-to-Roll Manufactured Sensors for Nitroaromatic Organophosphorus Pesticides Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35961-35971. [PMID: 34313121 DOI: 10.1021/acsami.1c08700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A fully roll-to-roll manufactured electrochemical sensor with high sensing and manufacturing reproducibility has been developed for the detection of nitroaromatic organophosphorus pesticides (NOPPs). This sensor is based on a flexible, screen-printed silver electrode modified with a graphene nanoplatelet (GNP) coating and a zirconia (ZrO2) coating. The combination of the metal oxide and the 2-D material provided advantageous electrocatalytic activity toward NOPPs. Manufacturing, scanning electron microscopy-scanning transmission electron microscopy image analysis, electrochemical surface characterization, and detection studies illustrated high sensitivity, selectivity, and stability (∼89% current signal retention after 30 days) of the platform. The enzymeless sensor enabled rapid response time (10 min) and noncomplex detection of NOPPs through voltammetry methods. Furthermore, the proposed platform was highly group-sensitive toward NOPPs (e.g., methyl parathion (MP) and fenitrothion) with a detection limit as low as 1 μM (0.2 ppm). The sensor exhibited a linear correlation between MP concentration and current response in a range from 1 μM (0.2 ppm) to 20 μM (4.2 ppm) and from 20 to 50 μM with an R2 of 0.992 and 0.991, respectively. Broadly, this work showcases the first application of GNPs/ZrO2 complex on flexible silver screen-printed electrodes fabricated by entirely roll-to-roll manufacturing for the detection of NOPPs.
Collapse
Affiliation(s)
- Ana M Ulloa
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicholas Glassmaker
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Muhammed R Oduncu
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pengyu Xu
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander Wei
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mukerrem Cakmak
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lia Stanciu
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Teodoro KBR, Sanfelice RC, Migliorini FL, Pavinatto A, Facure MHM, Correa DS. A Review on the Role and Performance of Cellulose Nanomaterials in Sensors. ACS Sens 2021; 6:2473-2496. [PMID: 34182751 DOI: 10.1021/acssensors.1c00473] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sensors and biosensors play a key role as an analytical tool for the rapid, reliable, and early diagnosis of human diseases. Such devices can also be employed for monitoring environmental pollutants in air and water in an expedited way. More recently, nanomaterials have been proposed as an alternative in sensor fabrication to achieve gains in performance in terms of sensitivity, selectivity, and portability. In this direction, the use of cellulose nanomaterials (CNM), such as cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC), has experienced rapid growth in the fabrication of varied types of sensors. The advantageous properties are related to the supramolecular structures that form the distinct CNM, their biocompatibility, and highly reactive functional groups that enable surface functionalization. The CNM can be applied as hydrogels and xerogels, thin films, nanopapers and other structures interesting for sensor design. Besides, CNM can be combined with other materials (e.g., nanoparticles, enzymes, carbon nanomaterials, etc.) and varied substrates to advanced sensors and biosensors fabrication. This review explores recent advances on CNM and composites applied in the fabrication of optical, electrical, electrochemical, and piezoelectric sensors for detecting analytes ranging from environmental pollutants to human physiological parameters. Emphasis is given to how cellulose nanomaterials can contribute to enhance the performance of varied sensors as well as expand novel sensing applications, which could not be easily achieved using standard materials. Finally, challenges and future trends on the use of cellulose-based materials in sensors and biosensors are also discussed.
Collapse
Affiliation(s)
- Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Rafaela C. Sanfelice
- Science and Technology Institute, Federal University of Alfenas, Rodovia José Aurélio Vilela, 11999, BR 267, Km 533, CEP 37715-400, Poços de Caldas, Minas Gerais, Brazil
| | - Fernanda L. Migliorini
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Adriana Pavinatto
- Scientific and Technological Institute of Brazil University, 235 Carolina Fonseca Street, São Paulo 08230-030, São Paulo, Brazil
| | - Murilo H. M. Facure
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| |
Collapse
|
18
|
Çubuk S, Kök Yetimoğlu E, Çalışkan A, Vezir Kahraman M. A novel polymer based fluorimetric sensor for fast and selective determination of chlorpyrifos. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Abstract
The present study demonstrates a simple approach to enhancing thermal stability of butyrylcholinesterase (BChE) by using natural polymers. Analysis of thermal inactivation of the tetrameric BChE in starch and gelatin gels at 50–64 °C showed that thermal inactivation followed second-order kinetics and involved two alternating processes of BChE inactivation, which occurred at different rates (fast and slow processes). The activation enthalpy ΔH# and the activation entropy ΔS# for BChE in starch and gelatin gels were evaluated. The values of ΔH# for the fast and the slow thermal inactivation of BChE in starch gel were 61 ± 3, and 22 ± 2 kcal/mol, respectively, and the values of ΔS# were 136 ± 12 and −2.03 ± 0.05 cal∙K−1∙mol−1, respectively. Likewise, the values of ΔH# for BChE in gelatin gel were 58 ± 6 and 109 ± 11 kcal/mol, and the values of ΔS# were 149 ± 16 and 262 ± 21 cal∙K−1∙mol−1, respectively. The values of the activation parameters obtained in this study suggest that starch gel produced a stronger stabilizing effect on BChE exposed to elevated temperatures over long periods compared with gelatin gel.
Collapse
|
20
|
Li Y, Luan P, Zhou L, Xue S, Liu Y, Liu Y, Jiang Y, Gao J. Purification and immobilization of His-tagged organophosphohydrolase on yolk−shell Co/C@SiO2@Ni/C nanoparticles for cascade degradation and detection of organophosphates. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim KH, Kumar S. Emerging nanobiotechnology in agriculture for the management of pesticide residues. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123369. [PMID: 32763682 DOI: 10.1016/j.jhazmat.2020.123369] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 05/18/2023]
Abstract
Utilization of pesticides is often necessary for meeting commercial requirements for crop quality and yield. However, incessant global pesticide use poses potential risks to human and ecosystem health. This situation increases the urgency of developing nano-biotechnology-assisted pesticide formulations that have high efficacy and low risk of side effects. The risks associated with both conventional and nanopesticides are summarized in this review. Moreover, the management of residual pesticides is still a global challenge. The contamination of soil and water resources with pesticides has adverse impact over agricultural productivity and food security; ultimately posing threats to living organisms. Pesticide residues in the eco-system may be treated via several biological and physicochemical processes, such as microbe-based degradation and advanced oxidation processes. With these issues in mind, we present a review that explores both existing and emerging techniques for management of pesticide residues and environmental risks. These techniques can offer a sustainable solution to revitalize the tarnished water/soil resources. Further, state-of-the-art research approaches to investigate biotechnological alternatives to conventional pesticides are discussed along with future prospects and mitigation techniques are recommended.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
22
|
de Sousa PAR, Squissato AL, Munoz RAA, Coelho LM, de Melo EI, da Silva RAB. Cloud-point extraction associated with voltammetry: preconcentration and elimination of the sample matrix for trace determination of methyl parathion in honey. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5801-5814. [PMID: 33319873 DOI: 10.1039/d0ay02057e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work presents the association of cloud point extraction (CPE) and electroanalysis for the selective and sensitive determination of methyl parathion (MP) in honey. The CPE step provided the pre-concentration of MP from a complex sample, in which the optimized extraction parameters (Triton X-100 concentration of 0.75% w/v, NaCl concentration of 1.0% w/v and heating time of 30 min) were investigated using a factorial design (23). The detection of MP was performed using a cathodically pre-treated boron-doped diamond (BDD) working electrode and square wave voltammetry (SWV), after a suitable dilution of the CPE extract in Britton-Robinson buffer pH 6.0 as the supporting electrolyte. MP presented three electrochemical processes over the BDD surface, but only the reduction peak at around -0.7 V was monitored for the MP determination (higher detectability). Improved reproducibility was reached by applying an in situ cleaning step (+2.0 V for 15 s) followed by a re-activation process (-2.0 V for 15 s) between measurements. Using the optimized variables, a linear range between 0.1 and 2.0 μmol L-1 was obtained for MP with a limit of detection of 0.006 μmol L-1, a 6-fold lower value when compared with the value attained without the CPE step. The experimental enrichment factor of MP was 6.1. Also, the optimized CPE allowed the determination of MP in honey samples with good accuracy (recovery between 94 and 106%), which was not possible using direct detection (without CPE) due to the matrix interference. This is the first paper that demonstrates the combination of CPE and electroanalysis for the determination of an organic compound.
Collapse
Affiliation(s)
- Priscila A R de Sousa
- Federal University of Goias, Av. Dr. Lamartine Pinto de Avelar, 1120, Catalão, GO, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical review. TALANTA OPEN 2020. [DOI: 10.1016/j.talo.2020.100006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
24
|
Yaari Z, Cheung JM, Baker HA, Frederiksen RS, Jena PV, Horoszko CP, Jiao F, Scheuring S, Luo M, Heller DA. Nanoreporter of an Enzymatic Suicide Inactivation Pathway. NANO LETTERS 2020; 20:7819-7827. [PMID: 33119310 PMCID: PMC8177003 DOI: 10.1021/acs.nanolett.0c01858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Enzymatic suicide inactivation, a route of permanent enzyme inhibition, is the mechanism of action for a wide array of pharmaceuticals. Here, we developed the first nanosensor that selectively reports the suicide inactivation pathway of an enzyme. The sensor is based on modulation of the near-infrared fluorescence of an enzyme-bound carbon nanotube. The nanosensor responded selectively to substrate-mediated suicide inactivation of the tyrosinase enzyme via bathochromic shifting of the nanotube emission wavelength. Mechanistic investigations revealed that singlet oxygen generated by the suicide inactivation pathway induced the response. We used the nanosensor to quantify the degree of enzymatic inactivation by measuring response rates to small molecule tyrosinase modulators. This work resulted in a new capability of interrogating a specific route of enzymatic death. Potential applications include drug screening and hit-validation for compounds that elicit or inhibit enzymatic inactivation and single-molecule measurements to assess population heterogeneity in enzyme activity.
Collapse
Affiliation(s)
- Zvi Yaari
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Justin M. Cheung
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Hanan A. Baker
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
| | - Rune S. Frederiksen
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Prakrit V. Jena
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Christopher, P. Horoszko
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
| | - Fang Jiao
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
| | - Simon Scheuring
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
| | - Minkui Luo
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, United States
| |
Collapse
|
25
|
Tang J, Ma X, Yang J, Feng DD, Wang XQ. Recent advances in metal-organic frameworks for pesticide detection and adsorption. Dalton Trans 2020; 49:14361-14372. [PMID: 33030153 DOI: 10.1039/d0dt02623a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The large-scale use of pesticides such as organophosphate pesticides (OPPs) and organochlorine pesticides (OCPs) has led to serious environmental problems worldwide, and their high toxicity could cause serious damage to human health. It is crucial to remove and track them precisely in the environment and food resources. As novel nanomaterials, metal-organic frameworks (MOFs) have attracted significant attention in the fields of adsorption and luminescence sensing due to their rich topology, tunable pore size and shape, high surface area, and abundant active sites. Luminescent metal-organic frameworks (LMOFs) have sprung up as great potential chemical sensors to detect pesticides with fast response, high sensitivity, high selectivity and easy operation. Therefore, in this highlight, we focus on recent progress of MOFs in sensing and adsorbing pesticides, as well as in the possible mechanism of sensing, so as to attract more attention to pesticide detection and adsorption.
Collapse
Affiliation(s)
- Jing Tang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Xuehui Ma
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Jie Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Dou-Dou Feng
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Xiao-Qing Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| |
Collapse
|
26
|
Al Yahyai I, Al-Lawati HAJ. A review of recent developments based on chemiluminescence detection systems for pesticides analysis. LUMINESCENCE 2020; 36:266-277. [PMID: 32909300 DOI: 10.1002/bio.3947] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
Chemiluminescence is one of the most coveted methods for sensitive determination of pesticides in food and environmental samples. To date, many methods have been developed for qualitative and quantitative analysis of pesticides, ranging from traditional to advanced methods. This study outlines the progress in the conventional and advanced analytical methods, coupled to a chemiluminescence detection system, that are employed for the determination of pesticides in food and environmental samples. Different analytical methods including chromatographic methods, flow-based systems, and paper-based systems are reviewed in this paper. As well, new advances in the application of nanomaterials, aptamer, and molecularly imprinted polymers are highlighted. We also address the challenges and difficulties associated with these methods. Finally, we highlight the future direction in this active field of research.
Collapse
Affiliation(s)
- Iman Al Yahyai
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, Oman
| | - Haider A J Al-Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, Oman
| |
Collapse
|
27
|
López Dávila E, Houbraken M, Gil Unday Z, Romero Romero O, Du Laing G, Spanoghe P. ELISA, a feasible technique to monitor organophosphate, carbamate, and pyrethroid residues in local vegetables. Cuban case study. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
28
|
Kumar V, Vaid K, Bansal SA, Kim KH. Nanomaterial-based immunosensors for ultrasensitive detection of pesticides/herbicides: Current status and perspectives. Biosens Bioelectron 2020; 165:112382. [PMID: 32729507 DOI: 10.1016/j.bios.2020.112382] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023]
Abstract
The increasing level of pesticides and herbicides in food and water sources is a growing threat to human health and the environment. The development of portable, sensitive, specific, simple, and cost-effective sensors is hence in high demand to avoid exposure or consumption of these chemicals through efficient monitoring of their levels in food as well as water samples. The use of nanomaterials (NMs) for the construction of an immunosensing system was demonstrated to be an efficient and effective option to realize selective sensing against pesticides/herbicides. The potential of such applications has hence been demonstrated for a variety of NMs including graphene, carbon nanotubes (CNTs), metal nanoparticles, and nano-polymers either in pristine or composite forms based on diverse sensing principles (e.g., electrochemical, optical, and quartz crystal microbalance (QCM)). This article evaluates the development, applicability, and performances of NM-based immunosensors for the measurement of pesticides and herbicides in water, food, and soil samples. The performance of all the surveyed sensors has been evaluated on the basis of key parameters, e.g., detection limit (DL), sensing range, and response time.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| | - Kalyan Vaid
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India; Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh, 160014, India
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, South Korea.
| |
Collapse
|
29
|
Elewi AS, Al-Shammaree SAW, AL Sammarraie AKM. Hydrogen peroxide biosensor based on hemoglobin-modified gold nanoparticles–screen printed carbon electrode. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Li M, Lin H, Paidi SK, Mesyngier N, Preheim S, Barman I. A Fluorescence and Surface-Enhanced Raman Spectroscopic Dual-Modal Aptasensor for Sensitive Detection of Cyanotoxins. ACS Sens 2020; 5:1419-1426. [PMID: 32314582 DOI: 10.1021/acssensors.0c00307] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to detect trace analytes without necessitating solid surface attachment or complicated processing steps would facilitate the translation of sensors for monitoring environmental toxins in the field. To address a critical unmet need in fresh water ecology, we have developed a dual-modal aptamer-based biosensor (aptasensor), featuring fluorescence and surface-enhanced Raman spectroscopy (SERS), for sensitive and selective detection of hepatotoxin microcystin-LR (MC-LR). The rational sensor design is based on the high affinity of the cyanine (Cy3) dye-modified complementary DNA (Cy3-cDNA) strand toward the plasmonic gold nanostars (GNSs) in comparison to the Cy3-cDNA/aptamer duplex. The preferential binding of MC-LR toward the MC-LR-specific aptamer triggers the dissociation of Cy3-cDNA/aptamer duplexes, which switches the Cy3's fluorescence "off" and SERS "on" due to the proximity of Cy3 dye to the GNS surface. Both fluorescence and SERS intensities are observed to vary linearly with the MC-LR concentration over the range of investigation. We have achieved high sensitivity and excellent specificity with the aptasensor toward MC-LR, which can be attributed to the fluorescence quenching effect, significant SERS enhancement by the GNSs, and the high affinity of the aptamer toward the MC-LR analytes. We further demonstrate the applicability of the present aptasensor for detection of MC-LR in a diverse set of real water samples with high accuracy and excellent reproducibility. With further refinement, we believe that the aptamer-driven complementary assembly of the SERS and fluorescence sensing constructs can be applied for rapid, multiplexed, and robust measurements of environmental toxins in the field.
Collapse
Affiliation(s)
- Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hangduo Lin
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Santosh Kumar Paidi
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Nicolas Mesyngier
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sarah Preheim
- Department of Environmental Health and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ishan Barman
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
31
|
Fluorescent and visual detection of methyl-paraoxon by using boron-and nitrogen-doped carbon dots. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104547] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Cortes-Hernandez P, Vázquez Nuñez R, Domínguez-Ramírez L. Docking and Molecular Dynamics Predictions of Pesticide Binding to the Calyx of Bovine β-Lactoglobulin. Int J Mol Sci 2020; 21:ijms21061988. [PMID: 32183317 PMCID: PMC7139891 DOI: 10.3390/ijms21061988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 11/16/2022] Open
Abstract
Pesticides are used extensively in agriculture, and their residues in food must be monitored to prevent toxicity. The most abundant protein in cow’s milk, β-lactoglobulin (BLG), shows high affinity for diverse hydrophobic ligands in its central binding pocket, called the calyx. Several of the most frequently used pesticides are hydrophobic. To predict if BLG may be an unintended carrier for pesticides, we tested its ability to bind 555 pesticides and their isomers, for a total of 889 compounds, in a rigid docking screen. We focused on the analysis of 60 unique molecules belonging to the five pesticide classes defined by the World Health Organization, that docked into BLG’s calyx with ΔGs ranging from −8.2 to −12 kcal mol−1, chosen by statistical criteria. These “potential ligands” were further analyzed using molecular dynamic simulations, and the binding energies were explored with Molecular Mechanics/Generalized Born/Surface Area (MMGBSA). Hydrophobic pyrethroid insecticides, like cypermethrin, were found to bind as deeply and tightly into the calyx as BLG’s natural ligand, palmitate; while polar compounds, like paraquat, were expelled. Our results suggest that BLG could be a carrier for pesticides, in particular for pyrethroid insecticides, allowing for their accumulation in cow’s milk beyond their solubility restrictions. This analysis opens possibilities for pesticide biosensor design based on BLG.
Collapse
Affiliation(s)
- Paulina Cortes-Hernandez
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica de Oriente (CIBIOR), Cellular Biology Laboratory, 74360 Metepec, Puebla, Mexico;
| | - Roberto Vázquez Nuñez
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Lenin Domínguez-Ramírez
- Department of Chemical and Biological Sciences, School of Sciences, Universidad de las Américas Puebla, Santa Catarina Mártir Cholula, 72810 San Andrés Cholula, Puebla, Mexico
- Correspondence:
| |
Collapse
|
33
|
Abd-Elsalam KA, Ramadan MM, Hassanien MK. Nanocarbon-based sensors for pesticide detection: Recent trends. CARBON NANOMATERIALS FOR AGRI-FOOD AND ENVIRONMENTAL APPLICATIONS 2020:401-428. [DOI: 10.1016/b978-0-12-819786-8.00018-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
34
|
Wang J, Wu X, Cao X, Jiang Y, Zhang D, Yang T, Zhang F, Luo Y. Synthesis of self-assembled spindle-like CePO 4 with electrochemical sensing performance. CrystEngComm 2020. [DOI: 10.1039/c9ce01380f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three different morphologies of CePO4 nanocrystals (rods, columns, and spindle-like assembled nanosheets), spindle-like LaPO4, spindle-like PrPO4, and TbPO4 microspheres were successfully synthesized using a hydrothermal method.
Collapse
Affiliation(s)
- Jie Wang
- Department of Chemical Engineering
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Xiujuan Wu
- Department of Chemical Engineering
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Xiang Cao
- Department of Chemical Engineering
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Youxiang Jiang
- Department of Chemical Engineering
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Dongen Zhang
- Department of Chemical Engineering
- Jiangsu Ocean University
- Lianyungang 222005
- China
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials
| | - Tang Yang
- Department of Chemical Engineering
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Fan Zhang
- Department of Chemical Engineering
- Jiangsu Ocean University
- Lianyungang 222005
- China
| | - Yuhui Luo
- Department of Chemical Engineering
- Jiangsu Ocean University
- Lianyungang 222005
- China
| |
Collapse
|
35
|
Ranđelović MS, Momčilović MZ, Milićević JS, Đurović-Pejčev RD, Mofarah SS, Sorrel CC. Voltammetric sensor based on Pt nanoparticles suported MWCNT for determination of pesticide clomazone in water samples. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Ge X, Zhou P, Zhang Q, Xia Z, Chen S, Gao P, Zhang Z, Gu L, Guo S. Palladium Single Atoms on TiO
2
as a Photocatalytic Sensing Platform for Analyzing the Organophosphorus Pesticide Chlorpyrifos. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoxiao Ge
- Department of Materials Science & Engineering College of Engineering Peking University Beijing 100871 China
| | - Peng Zhou
- Department of Materials Science & Engineering College of Engineering Peking University Beijing 100871 China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhonghong Xia
- Department of Materials Science & Engineering College of Engineering Peking University Beijing 100871 China
| | - Shulin Chen
- Electron Microscopy Laboratory, and International Center for Quantum Materials School of Physics Peking University Beijing 100871 China
- State Key Laboratory of Advanced Welding and Joining Harbin Institute of Technology Harbin 150001 China
| | - Peng Gao
- Electron Microscopy Laboratory, and International Center for Quantum Materials School of Physics Peking University Beijing 100871 China
- Collaborative Innovation Centre of Quantum Matter Beijing 100871 China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou University Guangzhou 510006 China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Shaojun Guo
- Department of Materials Science & Engineering College of Engineering Peking University Beijing 100871 China
- BIC-ESAT College of Engineering Peking University Beijing 100871 China
- Department of Energy and Resources Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
37
|
Ge X, Zhou P, Zhang Q, Xia Z, Chen S, Gao P, Zhang Z, Gu L, Guo S. Palladium Single Atoms on TiO
2
as a Photocatalytic Sensing Platform for Analyzing the Organophosphorus Pesticide Chlorpyrifos. Angew Chem Int Ed Engl 2019; 59:232-236. [DOI: 10.1002/anie.201911516] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaoxiao Ge
- Department of Materials Science & Engineering College of Engineering Peking University Beijing 100871 China
| | - Peng Zhou
- Department of Materials Science & Engineering College of Engineering Peking University Beijing 100871 China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhonghong Xia
- Department of Materials Science & Engineering College of Engineering Peking University Beijing 100871 China
| | - Shulin Chen
- Electron Microscopy Laboratory, and International Center for Quantum Materials School of Physics Peking University Beijing 100871 China
- State Key Laboratory of Advanced Welding and Joining Harbin Institute of Technology Harbin 150001 China
| | - Peng Gao
- Electron Microscopy Laboratory, and International Center for Quantum Materials School of Physics Peking University Beijing 100871 China
- Collaborative Innovation Centre of Quantum Matter Beijing 100871 China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou University Guangzhou 510006 China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Shaojun Guo
- Department of Materials Science & Engineering College of Engineering Peking University Beijing 100871 China
- BIC-ESAT College of Engineering Peking University Beijing 100871 China
- Department of Energy and Resources Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
38
|
Luo D, Chen H, Zhou P, Tao H, Wu Y. Oligonucleotides and pesticide regulated peroxidase catalytic activity of hemin for colorimetric detection of isocarbophos in vegetables by naked eyes. Anal Bioanal Chem 2019; 411:7857-7868. [PMID: 31705220 DOI: 10.1007/s00216-019-02185-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 01/27/2023]
Abstract
A novel colorimetric sensing platform based on the peroxidase activity of hemin regulated by oligonucleotide and pesticide was reported for the ultrasensitive and selective detection of isocarbophos. Oligonucleotides can accumulate on the surface of hemin in acid condition and temporarily inhibit its catalytic activity, which results in the loss of one electron of TMB molecule and produce the blue products. With the addition of isocarbophos, the pesticide molecules can interact with oligonucleotides to form some complexes, which relieve the inhibition of ssDNA to hemin and further enhance its catalytic activity. Thus, the TMB molecules are further oxidized to lose another electron and produce the yellow product in a few minutes, which has the characteristic absorption peak at 450 nm. The color change of the sensing system is related to the amount of isocarbophos, so this method can quickly discriminate whether the target pesticide exceeds the maximal residue limit just by naked eyes. To improve the performance of sensing platform, some important parameters like buffer condition and ssDNA have been investigated, and the peroxidase activity of hemin was further studied to verify the catalytic mechanism. The proposed sensing platform has a detection limit as low as 0.6 μg/L and displays good selectivity against other competitive pesticides. Moreover, the developed sensing platform also exhibits favorable accuracy and stability, indicating that it has potential applications in the detection of pesticide residues in agricultural products. Graphical abstract A novel colorimetric sensing platform based on oligonucleotides and pesticide regulation; the peroxidase catalytic activity of hemin was firstly reported for the ultrasensitive and selective detection of isocarbophos pesticide.
Collapse
Affiliation(s)
- Danqiu Luo
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Huayun Chen
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Pei Zhou
- Key Laboratory of Urban Agriculture Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Tao
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China
| | - Yuangen Wu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, China. .,Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Cuiping District, Yibin, 644007, Sichuan, China.
| |
Collapse
|
39
|
Monitoring Nicotinamide Adenine Dinucleotide and its phosphorylated redox metabolism using genetically encoded fluorescent biosensors. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
40
|
Huang S, Yao J, Chu X, Liu Y, Xiao Q, Zhang Y. One-Step Facile Synthesis of Nitrogen-Doped Carbon Dots: A Ratiometric Fluorescent Probe for Evaluation of Acetylcholinesterase Activity and Detection of Organophosphorus Pesticides in Tap Water and Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11244-11255. [PMID: 31532667 DOI: 10.1021/acs.jafc.9b03624] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Evaluation of acetylcholinesterase (AChE) activity and determination of organophosphorus pesticides (OPs) are of great importance for the clinical diagnosis of several serious diseases correlated with their variations in human blood serum. In this study, a highly selective and sensitive ratiometric fluorescent probe was innovatively fabricated for the evaluation of AChE activity and the determination of OPs in tap water and food on the basis of the inner filter effect (IFE) between nitrogen-doped carbon dots (N-CDs) and 2,3-diaminophenazine (DAP). N-CDs were synthesized via a one-pot hydrothermal method by using pancreatin and 1,2-ethanediamine as precursors. N-CDs showed excellent fluorescence properties and negligible cytotoxicity on human cervical carcinoma HeLa cells and human embryonic kidney 293T cells, suggesting their further biological applications. Upon the addition of AChE and choline oxidase, acetylcholine was catalyzed to produce choline that was further oxidized to produce H2O2. In the presence of horseradish peroxidase, o-phenylenediamine reacted with H2O2 to produce fluorescent DAP. Therefore, a ratiometric fluorescent probing platform existed via IFE between N-CDs with a fluorescence signal at 450 nm and DAP with a fluorescence signal at 574 nm. OPs irreversibly impeded the catalytic activity of AChE, finally leading to the decrease of DAP amount and the variation of ratiometric fluorescent signal. Under optimal conditions, such a fluorescent probe showed relatively low detection limits of 0.38 U/L for AChE, 3.2 ppb for dichlorvos, and 13 ppb for methyl-parathion. Practical application of this ratiometric fluorescent probe to detect OPs was further verified in tap water and food samples with satisfying results that were highly consisted with the results obtained by GC-MS.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials , Nanning Normal University , Nanning 530001 , P. R. China
- Department of Food Science and Technology , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Jiandong Yao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials , Nanning Normal University , Nanning 530001 , P. R. China
| | - Xu Chu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials , Nanning Normal University , Nanning 530001 , P. R. China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials , Nanning Normal University , Nanning 530001 , P. R. China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials , Nanning Normal University , Nanning 530001 , P. R. China
| | - Yue Zhang
- Department of Food Science and Technology , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
- School of Food Science and Biotechnology , Zhejiang Gongshang University , Hangzhou 310018 , P. R. China
| |
Collapse
|
41
|
Ouyang L, Dai P, Yao L, Zhou Q, Tang H, Zhu L. A functional Au array SERS chip for the fast inspection of pesticides in conjunction with surface extraction and coordination transferring. Analyst 2019; 144:5528-5537. [PMID: 31402359 DOI: 10.1039/c9an01123d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The fast inspection of the pesticide residues on fruits and vegetables requires the development of facile, sensitive and accurate methods. Surface enhanced Raman scattering (SERS) is a promising way to provide a fast inspection method, which requires significant improvements in the reproducibility and feasibility. In the present work, an SERS method was developed for the fast inspection of pesticides on fruit peels in conjunction with surface extraction and coordination transferring. In this new method, the residual pesticides were directly extracted from fruit peels with an appropriate extraction solution and then quantitatively transferred onto an organic solvent-compatible Au array SERS chip through the strong chemical interactions between the heteroatoms in the pesticides and the gold surface. The functional SERS chip was fabricated by the interfacial assembly of an Au array on a membrane, which produced dense and uniformly distributed SERS hot spots and enabled compatibility with random curvature surfaces and handheld Raman spectrometers. As a proof of concept, sulfur atoms containing thiram on apples were detected at a concentration as low as 5 ng cm-2 with good reproducibility (relative standard deviation lower than 10%). The strong interactions between the sulfur atoms and gold surface during the coordination transferring process were confirmed by the enhanced vibrations of the specified bands occurring in both the Raman and IR spectra. This surface extraction-coordination transferring-based method holds wide applicability for heteroatom-containing pesticides, as demonstrated by the detection of various S- and P-containing pesticides.
Collapse
Affiliation(s)
- Lei Ouyang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
42
|
Pundir C, Malik A, Preety. Bio-sensing of organophosphorus pesticides: A review. Biosens Bioelectron 2019; 140:111348. [DOI: 10.1016/j.bios.2019.111348] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
|
43
|
Mahmoudi E, Fakhri H, Hajian A, Afkhami A, Bagheri H. High-performance electrochemical enzyme sensor for organophosphate pesticide detection using modified metal-organic framework sensing platforms. Bioelectrochemistry 2019; 130:107348. [PMID: 31437810 DOI: 10.1016/j.bioelechem.2019.107348] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
A practical electrochemical biosensor with high sensitivity was developed for detecting organophosphorus (OP). Initially, Ce metal was introduced into an UiO-66-template to form Ce/UiO-66. Later, graphene oxide (GO), carbon black (CB) and multi-walled carbon nanotubes (MWCNTs) were separately added to Ce/UiO-66 to compare the effect of different carbon-based material types on the performance of the biosensor. Exclusively, Ce/UiO-66/MWCNTs with a Ce (7%) and MWCNT (30%) matrix was found to not only load more acetylcholinesterase (AChE) onto vacant sites but also increase electron transfer and decrease the number of diffusion pathways between the thiocholine and electrode surface. Moreover, the appropriate oxophilicity of Ce coupled with the high surface area and good conductivity of MWCNTs in the UiO-66 structure revealed a high affinity to acetylthiocholine chloride (ATCl) and possible catalysis of the hydrolysis of ATCl with a Michaelis-Menten constant of 0.258 mM. This biosensor, under optimal conditions, demonstrated a rapid and sensitive detection of paraoxon over a wide linear range of 0.01-150 nM, with a low detection limit of 0.004 nM. As a result, the AChE/Ce/UiO-66/MWCNTs/GCE biosensor can be employed in laboratory and field experiments to determine paraoxon levels.
Collapse
Affiliation(s)
- Ehsan Mahmoudi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hanieh Fakhri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Hajian
- Institute of Sensor and Actuatwor Systems, TU Wien, 1040 Vienna, Austria
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Jin R, Kong D, Yan X, Zhao X, Li H, Liu F, Sun P, Lin Y, Lu G. Integrating Target-Responsive Hydrogels with Smartphone for On-Site ppb-Level Quantitation of Organophosphate Pesticides. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27605-27614. [PMID: 31291083 DOI: 10.1021/acsami.9b09849] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Precise on-site profiling of organophosphate pesticides (OPs) is of significant importance for monitoring pollution and estimating poisoning. Herein, we designed a simple and convenient portable kit based on Ag+-responsive hydrogels for accurate detection of OPs. The newly developed hydrogels employed o-phenylenediamine (OPD) and silicon quantum dots (SiQDs) as indicator, which possessed ratiometric response. In this sensor, OPs as inhibitor of acetylcholinesterase prevented the generation of thiocholine, which blocked the formation of metal-polymer with Ag+, further triggered the oxidation of OPD to yield yellow 2,3-diaminophenazine (DAP) with fluorescence emission at 557 nm. The fluorescence intensity of SiQDs (444 nm) was quenched by DAP through inner filter effect (IFE) process, emerging a typical ratiometric response. Interestingly, the ratiometric signal of kit, which was recorded by smartphone's camera, can be transduced by ImageJ software into the hue parameter that was linearly proportional to the concentration of OPs. The simplicity of portable kit combined with smartphone operation, which possessed high sensitivity (detection limit <10 ng mL-1) and rapid sample-to-answer detection time (45 min) in agricultural sample, indicating that the methodology offered a new sight for portable monitoring of food safety and human health.
Collapse
Affiliation(s)
- Rui Jin
- State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Deshuai Kong
- State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Xu Yan
- State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Xu Zhao
- State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Hongxia Li
- State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Fangmeng Liu
- State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Peng Sun
- State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| |
Collapse
|
45
|
Wu Q, Wu P, Duan H, Liu B, Shao Y, Li P, Zhang C, Xiong Y. Quantum dot bead-based immunochromatographic assay for the quantitative detection of triazophos. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1649638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Qin Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Peiman Wu
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Beibei Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Yanna Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Pan Li
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
- School of Food and Biological Engineering, Jiangshu University, Zhenjiang, People’s Republic of China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
46
|
He K, Li Z, Wang L, Fu Y, Quan H, Li Y, Wang X, Gunasekaran S, Xu X. A Water-Stable Luminescent Metal-Organic Framework for Rapid and Visible Sensing of Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26250-26260. [PMID: 31251555 DOI: 10.1021/acsami.9b06151] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Metal-organic frameworks (MOFs) have shown considerable prospects for sensing pesticide residues. However, the low stability of MOFs in water hinders them from testing food and environmental samples. Herein, we report an easy and cost-efficient synthesis of a water-stable zirconium luminescent MOF (Zr-LMOF) and its application for rapid, sensitive, and in situ detection of organophosphorous pesticides (OPPs). The Zr-MOF is prepared using Zr(IV) and 1,2,4,5-tetrakis(4-carboxyphenyl)benzene. The synthesized Zr-LMOF rapidly absorbs trace amounts of OPP parathion-methyl and indicates its presence. A low limit of detection of 0.115 μg kg-1 (0.438 nM) with a wide linear range from 70 μg kg-1 to 5.0 mg kg-1 was achieved. Satisfactory recoveries ranging from 78% to 107% were obtained for spiked food and environmental samples. Further, the Zr-LMOF was applied to imitate rapid and in situ imaging detection of pesticide residue on fresh produce nondestructively; visual signals appeared under ultraviolet light within 5 min. These results suggest that the Zr-LMOF has the potential for low-cost, rapid, and in situ imaging detection of OPPs contamination via easy-to-read visual signal.
Collapse
Affiliation(s)
- Kaiyu He
- State Key Laboratory for Quality and Safety of Agro-products , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Zhishang Li
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Liu Wang
- State Key Laboratory for Quality and Safety of Agro-products , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Haoran Quan
- State Key Laboratory for Quality and Safety of Agro-products , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Yanbin Li
- College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Xinquan Wang
- State Key Laboratory for Quality and Safety of Agro-products , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering , University of Wisconsin-Madison , 460 Henry Mall , Madison , Wisconsin 53706 , United States
| | - Xiahong Xu
- State Key Laboratory for Quality and Safety of Agro-products , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| |
Collapse
|
47
|
Cheng N, Shi Q, Zhu C, Li S, Lin Y, Du D. Pt-Ni(OH) 2 nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides. Biosens Bioelectron 2019; 142:111498. [PMID: 31319328 DOI: 10.1016/j.bios.2019.111498] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
Excessive use of herbicide and insecticide causes bioaccumulation in the environment and increases potential toxicity for people and animals. Portable systems for rapid assays of herbicide and insecticide residues have attracted prominent interests. Here, we developed a two-dimensional (2D) Pt-Ni(OH)2 nanosheets (NSs) amplified two-way lateral flow immunoassay (LFI) with a smartphone-based readout for simultaneous detection of acetochlor and fenpropathrin. The 2D Pt-Ni(OH)2 NSs were synthesized and used as the enhanced signal label in the immunoassay due to their high peroxidase-like activity and low migration speed. The two-way LFI was designed to eliminate potential cross-reaction between two targets. Portable detection system was developed based on a smartphone-based readout, which scans the LFI and provides the accurate testing result. The universal use of smartphones makes the developed platform suitable for cheap and on-site applications. Using the integrated platform, detection of acetochlor and fenpropathrin simultaneously was successfully achieved with the detection limits of 0.63 ng/mL and 0.24 ng/mL, respectively. To confirm the performance of the on-site application, we detected 10 non-spiked samples and 3 spiked samples. The obtained detection results were consistent with the data from gas chromatography analysis. The estimated recoveries ranged from 97.12% to 111.46%, indicating the practical reliability of our developed assay. The developed smartphone-based platform exhibits enhanced sensitivity, which provides a promising technique for on-site, multiplex, highly sensitive detection of pesticides.
Collapse
Affiliation(s)
- Nan Cheng
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Qiurong Shi
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Chengzhou Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Suiqiong Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
48
|
Mehta J, Dhaka S, Paul AK, Dayananda S, Deep A. Organophosphate hydrolase conjugated UiO-66-NH 2 MOF based highly sensitive optical detection of methyl parathion. ENVIRONMENTAL RESEARCH 2019; 174:46-53. [PMID: 31029941 DOI: 10.1016/j.envres.2019.04.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The hexahistidine-tagged organophosphorus hydrolase (OPH6His) has been immobilized on a Zr-MOF, namely UiO-66-NH2. The resulting enzyme-MOF composite was used as a carrier to facilitate the hydrolysis of an organophosphate pesticide, i.e., methyl parathion in to p-nitrophenol (PNP). The formation of PNP took place in direct proportion to the added pesticide concentration. Coumarin1 (7-diethylamino-4-methylcoumarin) was then introduced in the reaction mixture as a reporter fluorescent molecule. As PNP acted to quench the fluorescence of coumarin1, it became possible to detect methyl parathion over a wide concentration range of 10-106 ng/mL with an achievable limit of quantification as 10 ng/mL. The immobilization of OPH6His on the surface of UiO-66-NH2 was found to endow an improvement in the enzymatic activity by about 37%. The OPH6His/UiO-66-NH2 conjugate was reusable for at least up to eight times and also found stable toward long-term storage (minimum 60 days). The potential practical utility of the above proposed sensing method has been demonstrated by employing it for an accurate analysis of pesticide-spiked food samples.
Collapse
Affiliation(s)
- Jyotsana Mehta
- Nanoscience and Nanotechnology Lab (Division: H-1), Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30C, Chandigarh, 160030, India; Academy of Scientific and Innovative Research (AcSIR-CSIO), Sector 30C, Chandigarh, 160030, India
| | - Sarita Dhaka
- Nanoscience and Nanotechnology Lab (Division: H-1), Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30C, Chandigarh, 160030, India
| | - Ashok K Paul
- Desh Bhagat University, Mandi Gobindgarh, Punjab, India
| | | | - Akash Deep
- Nanoscience and Nanotechnology Lab (Division: H-1), Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30C, Chandigarh, 160030, India; Academy of Scientific and Innovative Research (AcSIR-CSIO), Sector 30C, Chandigarh, 160030, India.
| |
Collapse
|
49
|
Wu Y, Jiao L, Xu W, Gu W, Zhu C, Du D, Lin Y. Polydopamine-Capped Bimetallic AuPt Hydrogels Enable Robust Biosensor for Organophosphorus Pesticide Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900632. [PMID: 30938485 DOI: 10.1002/smll.201900632] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/14/2019] [Indexed: 05/28/2023]
Abstract
Noble metal hydrogels/aerogels with macroscopic nanoassemblies characterized by ultralow density, profuse continuous porosity, and extremely large surface area have gained abundant interest due to not only their tunable physicochemical properties, but also promising applications in catalysis and sensing. Coupling the increased reaction temperature with dopamine-induced effect, herein, a one-step synthetic approach with accelerated gelation kinetics is reported for the synthesis of polydopamine-capped bimetallic AuPt hydrogels. 3D porous nanowire networks with surface functionalization of polydopamine make them a promising biocompatible microenvironment for immobilizing acetylcholinesterase (AChE) and constructing enzyme-based biosensors for sensitive detection of organophosphorus compounds. Taking advantage of their favorable structure and composition, the optimized product exhibits superior electrochemical activity toward thiocholine produced by AChE-catalyzed hydrolysis of acetylthiocholine. Based on the inhibition of organophosphorus pesticide on the enzymatic activity of AChE, the inhibition mode for the detection of paraoxon-ethyl is established, displaying linear regions over the range of 0.5-1000 ng L-1 with a low detection limit of 0.185 ng L-1 .
Collapse
Affiliation(s)
- Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
50
|
Sheet SK, Sen B, Khatua S. Organoiridium(III) Complexes as Luminescence Color Switching Probes for Selective Detection of Nerve Agent Simulant in Solution and Vapor Phase. Inorg Chem 2019; 58:3635-3645. [PMID: 30843684 DOI: 10.1021/acs.inorgchem.8b03044] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, cationic organoiridium(III) complex based photoluminescent (PL) probes have been developed to selectively detect the chemical warfare nerve agent mimic, diethyl chlorophosphate(DCP) at nanomolar range by distinct bright green to orange-red luminescence color switching (on-off-on) in solution as well as in the vapor phase. Interference of other chemical warfare agents (CWAs) and their mimics was not observed either by PL spectroscopy or with the naked-eye in solution and gas phase. The detection was attained via a simultaneous nucleophilic attack of two -OH groups of the 4,7-dihydroxy-1,10-phenanthroline ligand with DCP by forming bulkier phosphotriester. The detailed reaction mechanism was established through extensive 1H NMR titration, 31P NMR, and ESI-MS analysis. Finally, a test paper strip and solid poly(ethylene oxide) (PEO) film with iridium(III) complex 1[PF6] were fabricated for the vapor-phase detection of DCP. The solution and vapor-phase detection properties of these luminescent Ir(III) complexes can offer a worthy approach into the design of new metal complex based PL switching probes for chemical warfare agents.
Collapse
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced Studies, Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| |
Collapse
|