1
|
Li XL, Li M, Yang H, Tian J, Shi ZW, Wang LZ, Song K. Chronic myelogenous leukemia secondary to colon cancer: A case report. World J Gastrointest Oncol 2025; 17:102021. [DOI: 10.4251/wjgo.v17.i4.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/26/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Colon cancer is a common malignancy of the digestive tract. An estimated 1148515 new cases of colon cancer were reported in 2020 worldwide. Chronic myeloid leukemia (CML) is a malignant tumor formed by the clonal proliferation of bone marrow hematopoietic stem cells, with an annual incidence rate of 1-2 cases per 100000 people worldwide. Leukemia can be secondary to solid tumors, and vice versa. Reports on CML secondary malignant tumors account for 8.7% but CML secondary to malignancy is extremely rare. Therapy-related CML is a rare but potentially fatal adverse event of chemotherapy or radiotherapy. Herein, we report a case of CML with colon cancer and discuss this unique patient population. Our findings can provide effective raw data and guidance for the diagnosis of this clinical disease.
CASE SUMMARY A 61-year-old male patient attended our hospital due to leukocytosis for 5 days. In February 2020, the patient was diagnosed with colon cancer and underwent radical surgery and conventional chemotherapy with a stable condition. He was diagnosis was CML-chronic phase (Sokal score of 0.72) after examination. He was treated with imatinib (400 mg daily). When his conditions improved, the patient was discharged from our hospital and visited the outpatient department for follow-up twice a month.
CONCLUSION CML in patients with colon cancer is extremely rare. Secondary hematological tumors may be multifactorial, and the exact mechanism is currently unknown. Owing to the slow progression of the disease, patients with CML show no symptoms in the early stage. However, with disease progression, obvious but non-specific symptoms may appear, including fever, anemia, bleeding tendency, and hypertrophy. Therefore, complete blood count monitoring for routine examination is recommended after cancer treatment for early detection of occult hematological tumors.
Collapse
Affiliation(s)
- Xiao-Lan Li
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou 416000, Hunan Province, China
| | - Min Li
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou 416000, Hunan Province, China
| | - Hua Yang
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou 416000, Hunan Province, China
| | - Juan Tian
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou 416000, Hunan Province, China
| | - Zi-Wei Shi
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou 416000, Hunan Province, China
| | - Ling-Zhi Wang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou 416000, Hunan Province, China
| | - Kui Song
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou 416000, Hunan Province, China
| |
Collapse
|
2
|
Shastri VM, Chauhan L, Gbadamosi M, Alonzo TA, Wang YC, Aplenc R, Hirsch BA, Kolb EA, Gamis AS, Meshinchi S, Lamba JK. DNA Damage Response Pharmacogenomic (DDR_PGx) Score Predicts Response to Chemotherapy Consisting of Gemtuzumab Ozogamicin in Pediatric AML: A Report from the Children's Oncology Group. Clin Cancer Res 2025; 31:890-898. [PMID: 38197878 PMCID: PMC11233425 DOI: 10.1158/1078-0432.ccr-23-2073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/08/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
PURPOSE Comprehensive pharmacogenomics (PGx) evaluation of calicheamicin pathway to identify predictive PGx markers of response to gemtuzumab ozogamicin (GO) treatment in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN SNPs in DNA damage response (DDR) pathway genes were tested for association with event-free survival (EFS), overall survival (OS), and risk of relapse after induction 1 (RR1) in patients treated with standard chemotherapy consisting of Ara-C, daunorubicin, and etoposide (ADE) with or without addition of GO on COG-AAML03P1 and COGAAAML0531 trials (ADE+GO, n = 755; ADE n = 470). SNPs with significant association with any endpoint within ADE+GO arm but not in the ADE arm were tested using multi-SNP modeling to develop DDR_PGx7 score. RESULTS Patients with low DDR_PGx7 score (<0) had significantly worse EFS [HR = 1.51, 95% confidence interval (CI: 1.21-1.89), P < 0.001], worse OS [HR = 1.59, 95% CI (1.22-2.08), P < 0.001], and higher RR1 [HR = 1.87, 95% CI (1.41-2.47), P < 0.0001] compared with patients with highDDR_PGx7 score (≥0)when treated withGO (ADE+GO cohort). However, no difference between low and high DDR_PGx7 score groups was observed for EFS, OS, and RR1 (all P > 0.3) in patients treated on ADE arm. CONCLUSIONS Our results suggest that DDR pathway-based pharmacogenomic score holds potential to predict outcome in patients treated with GO which consists of DNA damaging cytotoxin, calicheamicin. The potential clinical relevance for this score to personalize GO in AML requires further validation in independent and expanded cohorts.
Collapse
Affiliation(s)
- Vivek M. Shastri
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Lata Chauhan
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Mohammed Gbadamosi
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Todd A. Alonzo
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | | | - Richard Aplenc
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Betsy A. Hirsch
- Children’s Hospitals and Clinic of Minnesota, University of Minnesota, Minneapolis, MN USA
| | - Edward A Kolb
- Division of Oncology, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Alan S. Gamis
- Division of Hematology/Oncology/Bone Marrow Transplantation, Children’s Mercy Hospitals and Clinics, Kansas City, MO USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Jatinder K. Lamba
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL USA
- UF Health Cancer Center, University of Florida, Gainesville, FL USA
| |
Collapse
|
3
|
Esquer H, Zhou Q, LaBarbera DV. Targeted Inhibition of CHD1L by OTI-611 Reprograms Chemotherapy and Targeted Therapy-Induced Cell Cycle Arrest and Suppresses Proliferation to Produce Synergistic Antitumor Effects in Breast and Colorectal Cancer. Cells 2025; 14:318. [PMID: 40072047 PMCID: PMC11898988 DOI: 10.3390/cells14050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
The second and third most frequently diagnosed cancers worldwide are breast (2.3 million new cases) and colorectal (1.9 million new cases), respectively. Although advances in cancer therapies and early detection have improved the overall survival of patients, patients still develop resistance or cancer recurrence. Thus, the development of novel therapies that can affect multiple mechanisms of drug resistance and cell survival is ideal for the treatment of advanced and metastatic cancers. CHD1L is a novel oncogenic protein involved in regulating chromatin remodeling, DNA damage repair, epithelial-mesenchymal transition (EMT), and programmed cell death via PARthanatos. Herein, we assess in real-time how the CHD1L inhibitor (CHD1Li) OTI-611 modulates cell cycle progression in Colo678, SUM149PT, and SW620 cell lines. By utilizing a cell cycle reporter, we tracked the real-time cell cycle progression of cancer cells treated with OTI-611 alone and in combination with standard-of-care (SOC) therapies. Our results indicate that OTI-611 causes G1 phase cell cycle arrest through a CHD1L-mediated mechanism that regulates Cyclin D1 expression and localization. As a result of this mechanism, OTI-611 can reprogram the cell cycle effects of other antitumor agents to modulate and arrest cells in G1 when used in combination, including agents commonly known to arrest cells in the G2/M phase. Therefore, we conclude that OTI-611-induced G1 arrest represents a critical component of its unique mechanism of action, contributing significantly to its anticancer activity.
Collapse
Affiliation(s)
- Hector Esquer
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.E.); (Q.Z.)
- The Center for Drug Discovery, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, Aurora, CO 80045, USA
| | - Qiong Zhou
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.E.); (Q.Z.)
- The Center for Drug Discovery, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, Aurora, CO 80045, USA
| | - Daniel V. LaBarbera
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.E.); (Q.Z.)
- The Center for Drug Discovery, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Carli F, Di Chiaro P, Morelli M, Arora C, Bisceglia L, De Oliveira Rosa N, Cortesi A, Franceschi S, Lessi F, Di Stefano AL, Santonocito OS, Pasqualetti F, Aretini P, Miglionico P, Diaferia GR, Giannotti F, Liò P, Duran-Frigola M, Mazzanti CM, Natoli G, Raimondi F. Learning and actioning general principles of cancer cell drug sensitivity. Nat Commun 2025; 16:1654. [PMID: 39952993 PMCID: PMC11828915 DOI: 10.1038/s41467-025-56827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
High-throughput screening of drug sensitivity of cancer cell lines (CCLs) holds the potential to unlock anti-tumor therapies. In this study, we leverage such datasets to predict drug response using cell line transcriptomics, focusing on models' interpretability and deployment on patients' data. We use large language models (LLMs) to match drug to mechanisms of action (MOA)-related pathways. Genes crucial for prediction are enriched in drug-MOAs, suggesting that our models learn the molecular determinants of response. Furthermore, by using only LLM-curated, MOA-genes, we enhance the predictive accuracy of our models. To enhance translatability, we align RNAseq data from CCLs, used for training, to those from patient samples, used for inference. We validated our approach on TCGA samples, where patients' best scoring drugs match those prescribed for their cancer type. We further predict and experimentally validate effective drugs for the patients of two highly lethal solid tumors, i.e., pancreatic cancer and glioblastoma.
Collapse
Affiliation(s)
- Francesco Carli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy.
- Department of Computer Science, Univerisity of Pisa, Pisa, Italy.
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | | | - Chakit Arora
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Luisa Bisceglia
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | | | - Alice Cortesi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | | | | | | | | | | | | | | | - Giuseppe R Diaferia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- Botton-Champalimaud Pancreatic Cancer Center, Champalimaud Foundation, Lisbon, Portugal
| | | | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | | | | | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | | |
Collapse
|
5
|
Sochacka-Ćwikła A, Mączyński M. Oxazolo[5,4- d]pyrimidines as Anticancer Agents: A Comprehensive Review of the Literature Focusing on SAR Analysis. Molecules 2025; 30:666. [PMID: 39942770 PMCID: PMC11820477 DOI: 10.3390/molecules30030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Oxazolo[5,4-d]pyrimidines have been found to exhibit a wide range of biological activities, including the inhibition of various enzymes and signaling pathways associated with carcinogenesis. The objective of this review is to demonstrate that the oxazolo[5,4-d]pyrimidine scaffold represents a valuable structure for the design of novel anticancer therapies. The article provides a comprehensive overview of the chemical structure and pharmacological properties of oxazolo[5,4-d]pyrimidine derivatives, drawing upon the literature and international patents from 1974 until the present. Notably, the review explores structure-activity relationships (SAR) with a view to enhancing the therapeutic efficacy of oxazolo[5,4-d]pyrimidines.
Collapse
Affiliation(s)
- Aleksandra Sochacka-Ćwikła
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland
| | | |
Collapse
|
6
|
Strus P, Sadowski K, Ploch W, Jazdzewska A, Oknianska P, Raniszewska O, Mlynarczuk-Bialy I. The Effects of Podophyllotoxin Derivatives on Noncancerous Diseases: A Systematic Review. Int J Mol Sci 2025; 26:958. [PMID: 39940726 PMCID: PMC11816842 DOI: 10.3390/ijms26030958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Podophyllotoxin (PPT) is commonly used for genital warts due to its antimitotic properties and relatively good accessibility since it can be extracted from plants in low-economy countries. However, due to relatively high toxicity, it cannot be used in a systematic way (intravenously). Thus, there is a need to find or create an equally effective derivative of PPT that will be less toxic. Natural PPT is a suitable and promising scaffold for the synthesis of its derivatives. Many of them have been studied in clinical and preclinical models. In this systematic review, we comprehensively assess the medical applications of PPT derivatives, focusing on their advantages and limitations in non-cancerous diseases. Most of the existing research focuses on their applications in cancerous diseases, leaving non-cancerous uses underexplored. To do that, we systematically reviewed the literature using PubMed, Embase, and Cochrane databases from January 2013 to January 2025. In total, 5333 unique references were identified in the initial search, of which 44 were included in the quantitative synthesis. The assessment of the quality of eligible studies was undertaken using the PRISMA criteria. The risk of bias was assessed using a predefined checklist based on PRISMA guidelines. Each study was independently reviewed by two researchers to evaluate bias in study design, reporting, and outcomes. Our analysis highlights the broad therapeutic potential of PPT derivatives, particularly in antiviral applications, including HPV, Dengue, and SARS-CoV-2 infections. Apart from their well-known anti-genital warts activity, these compounds exhibit significant anti-inflammatory, antimitotic, analgesic, and radioprotective properties. For instance, derivatives such as cyclolignan SAU-22.107 show promise in antiviral therapies, while compounds like G-003M demonstrate radioprotective effects by mitigating radiation-induced damage. To build on this, our review highlights that PPT derivatives, apart from anti-genital warts potential, exhibit four key properties-anti-inflammatory, antimitotic, analgesic, and radioprotective-making them promising candidates not only for treating viral infections such as HPV, Dengue, and SARS-CoV-2 but also for expanding their therapeutic potential beyond cancerous diseases. In conclusion, while PPT derivatives hold great potential across various medical domains, their applications in non-cancerous diseases remain limited by the scarcity of dedicated research. Continued exploration of these compounds is essential to unlock their full therapeutic value.
Collapse
Affiliation(s)
- Piotr Strus
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.); (W.P.)
| | - Karol Sadowski
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.); (W.P.)
| | - Weronika Ploch
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.); (W.P.)
| | - Adrianna Jazdzewska
- Student Scientific Circle of Rare Diseases at Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Paulina Oknianska
- Student Scientific Circle of Oncology and Radiotherapy at Department of Oncology and Radiotherapy, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Oliwia Raniszewska
- Student Scientific Circle of Child and Adolescent Psychiatry, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Izabela Mlynarczuk-Bialy
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.); (W.P.)
| |
Collapse
|
7
|
Jang JY, Kim D, Im E, Kim ND. Etoposide as a Key Therapeutic Agent in Lung Cancer: Mechanisms, Efficacy, and Emerging Strategies. Int J Mol Sci 2025; 26:796. [PMID: 39859509 PMCID: PMC11765581 DOI: 10.3390/ijms26020796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Topoisomerase II inhibitors, particularly etoposide, have long been integral to the treatment of lung cancer, especially small cell lung cancer. This review comprehensively examines the mechanisms of action of etoposide, its clinical efficacy, and its role in current lung cancer treatment regimens. Etoposide exerts its anticancer effects by inducing DNA strand breaks through the inhibition of topoisomerase II, leading to cancer cell apoptosis. Despite their widespread use, challenges such as drug resistance, toxicity, and limited efficacy in non-small cell lung cancer have spurred ongoing research on combination therapies and novel drug formulations. Emerging therapeutic strategies include the integration of etoposide with immunotherapy, targeted therapies, and novel drug delivery systems aimed at enhancing the therapeutic window and overcoming drug resistance. This article aims to inform the development of more effective treatment strategies by providing a critical overview of the clinical applications of etoposide and exploring future directions for lung cancer therapy.
Collapse
Affiliation(s)
- Jung Yoon Jang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Donghwan Kim
- Functional Food Materials Research Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea;
| | - Eunok Im
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
8
|
Liu YL, Praiss AM, Chiang S, Devereaux K, Huang J, Rizzuto G, Al-Rawi D, Weigelt B, Jewell E, Abu-Rustum NR, Aghajanian C. Gestational trophoblastic neoplasm: Patient outcomes and clinical pearls from a multidisciplinary referral center. Gynecol Oncol 2025; 192:171-177. [PMID: 39674133 PMCID: PMC11761376 DOI: 10.1016/j.ygyno.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/23/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIVES To describe clinical outcomes and pearls for patients with gestational trophoblastic neoplasm (GTN). METHODS Patients with GTN treated at a referral center from 1/2006 to 12/2022 were included. Clinical characteristics, World Health Organization risk score (low-risk 0-6, high-risk ≥7), and treatments/outcomes were evaluated using summary statistics, stratified by initial treatment at a referral center versus locally. Histologies included complete hydatidiform mole (CHM), partial hydatidiform mole (PHM), choriocarcinoma (CCA), placental site trophoblastic tumor (PSTT), and epithelioid trophoblastic tumor (ETT). RESULTS Of 189 patients with GTN, 125 were treated initially at a referral center and 64 locally. Median age at diagnosis was 34 years (range, 17-70). Most patients were White (n = 132, 70 %); 80 patients had CHM, 26 PHM, 52 CCA, 11 PSTT, 19 ETT, and 1 ETT/CCA. For low-risk GTN, first-line treatment was primarily methotrexate, although some were cured with repeat dilation and curettage. For high-risk disease, first-line therapy consisted of multiagent chemotherapy regimens at a referral center (n = 18/18) compared to 7 of 15 patients with high-risk GTN treated with methotrexate at local institutions. Patients with low-risk and high-risk disease who received initial care at a tertiary referral institution had cure rates of 100 % (n = 87/87) and 89 % (n = 16/18), respectively, while patients with initial care locally had cure rates of 87 % (n = 33/37) and 47 % (n = 7/15), respectively. CONCLUSION GTN is a rare gynecologic malignancy with high cure rates, particularly in low-risk disease. Treatment consolidation at a tertiary referral institution is critical for improved outcomes, particularly in those with high-risk disease or PSTT/ETT.
Collapse
Affiliation(s)
- Ying L Liu
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Weill Cornell Medical College, New York, NY, United States.
| | - Aaron M Praiss
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sarah Chiang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kelly Devereaux
- Currently at Merck, Rahway, NJ, United States. Work performed while at Memorial Sloan Kettering Cancer Center
| | - James Huang
- Thoracic Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Gabrielle Rizzuto
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Duaa Al-Rawi
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Elizabeth Jewell
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States
| | - Nadeem R Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
9
|
Mercado MEV, Huang KG, Lay ZM, Huang SY. Successful Pregnancy after Fertility-sparing Surgery and Treatment for Metachronous Multiple Primary Malignancies - A Case Report. Gynecol Minim Invasive Ther 2025; 14:89-93. [PMID: 40143987 PMCID: PMC11936391 DOI: 10.4103/gmit.gmit_20_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 03/28/2025] Open
Abstract
The occurrence of metachronous multiple primary malignancies remains relatively rare; however, its incidence is notably rising. We present the case of a 25-year-old woman who underwent fertility-sparing surgery, followed by chemotherapy for ovarian yolk sac tumor. Three years later, the patient was diagnosed with a large B-cell lymphoma in the cecum. She underwent bowel surgery and received chemotherapy postoperatively. Despite her condition, she was able to conceive spontaneously and had a successful pregnancy after treatment. This report highlights the importance of considering fertility-preserving treatment strategies in young patients and the possibility of spontaneous conception and successful pregnancy even in patients diagnosed with metachronous multiple primary malignancies who underwent extensive surgical procedures and heavily treated with chemotherapy.
Collapse
Affiliation(s)
- Mary Evangeline Villa Mercado
- Department of Obstetrics and Gynecology, N. L. Villa Memorial Medical Center, Lipa, Philippines
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
| | - Kuan-Gen Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zin Mar Lay
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Nyein Hospital, Mandalay, Myanmar
| | - Shih-Yin Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Keelung Branch, Taipei, Taiwan
| |
Collapse
|
10
|
Behera M, Singh L, Pradhan B, Behera KC. Seaweed-Derived Bioactive Compounds: Potent Modulators in Breast Cancer Therapy. Chem Biodivers 2024:e202401613. [PMID: 39652742 DOI: 10.1002/cbdv.202401613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Cancer remains a major global health concern, with breast cancer being particularly challenging. To address this, new therapeutic strategies are being explored, including natural alternatives. Seaweeds, rich in bioactive compounds, have gained attention for their therapeutic potential. Traditionally valued for their nutritional content, seaweed-derived compounds such as polysaccharides, polyphenols, sterols, vitamins, minerals, and carotenoids have shown anticancer properties. These compounds can modulate key cellular processes like apoptosis, angiogenesis, and inflammation-crucial in cancer progression. Their antioxidant, anti-inflammatory, and immunomodulatory effects make them promising candidates for complementary cancer therapies. Key bioactive components like fucoidans, laminarins, phlorotannins, and carotenoids exhibit antiproliferative, proapoptotic, antiangiogenic, and antimetastatic properties. Recent studies focus on the ability of these compounds to induce apoptosis in cancer cells. This review highlights the chemical constituents of various seaweed species with antitumor activity, their mechanisms of action, and the potential for integration into cancer treatments. It also addresses challenges in clinical applications and outlines future research directions for leveraging these marine resources in breast cancer therapy.
Collapse
Affiliation(s)
- Maheswari Behera
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Lakshmi Singh
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
11
|
Deng Y, Liu T, Scifo E, Li T, Xie K, Taschler B, Morsy S, Schaaf K, Ehninger A, Bano D, Ehninger D. Analysis of the senescence-associated cell surfaceome reveals potential senotherapeutic targets. Aging Cell 2024; 23:e14312. [PMID: 39228130 PMCID: PMC11634743 DOI: 10.1111/acel.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024] Open
Abstract
The accumulation of senescent cells is thought to play a crucial role in aging-associated physiological decline and the pathogenesis of various age-related pathologies. Targeting senescence-associated cell surface molecules through immunotherapy emerges as a promising avenue for the selective removal of these cells. Despite its potential, a thorough characterization of senescence-specific surface proteins remains to be achieved. Our study addresses this gap by conducting an extensive analysis of the cell surface proteome, or "surfaceome", in senescent cells, spanning various senescence induction regimes and encompassing both murine and human cell types. Utilizing quantitative mass spectrometry, we investigated enriched cell surface proteins across eight distinct models of senescence. Our results uncover significant changes in surfaceome expression profiles during senescence, highlighting extensive modifications in cell mechanics and extracellular matrix remodeling. Our research also reveals substantive heterogeneity of senescence, predominantly influenced by cell type and senescence inducer. A key discovery of our study is the identification of four unique cell surface proteins with extracellular epitopes. These proteins are expressed in senescent cells, absent or present at low levels in their proliferating counterparts, and notably upregulated in tissues from aged mice and an Alzheimer's disease mouse model. These proteins stand out as promising candidates for senotherapeutic targeting, offering potential pathways for the detection and strategic targeting of senescent cell populations in aging and age-related diseases.
Collapse
Affiliation(s)
- Yushuang Deng
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Ting Liu
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Enzo Scifo
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Tao Li
- Department of Neurodegenerative Disease and Geriatric Psychiatry/NeurologyUniversity of Bonn Medical CenterBonnGermany
| | - Kan Xie
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Sarah Morsy
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
- AvenCell Europe GmbHDresdenGermany
| | - Kristina Schaaf
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Daniele Bano
- Aging and Neurodegeneration LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Dan Ehninger
- Translational Biogerontology LabGerman Center for Neurodegenerative Diseases (DZNE)BonnGermany
| |
Collapse
|
12
|
Oancea OL, Gâz ȘA, Marc G, Lungu IA, Rusu A. In Silico Evaluation of Some Computer-Designed Fluoroquinolone-Glutamic Acid Hybrids as Potential Topoisomerase II Inhibitors with Anti-Cancer Effect. Pharmaceuticals (Basel) 2024; 17:1593. [PMID: 39770435 PMCID: PMC11679884 DOI: 10.3390/ph17121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Fluoroquinolones (FQs) are topoisomerase II inhibitors with antibacterial activity, repositioned recently as anti-cancer agents. Glutamic acid (GLA) is an amino acid that affects human metabolism. Since an anti-cancer mechanism of FQs is human topoisomerase II inhibition, it is expected that FQ-GLA hybrids can act similarly. Methods: We designed 27 hypothetical hybrids of 6 FQs and GLA through amide bonds at the 3- and 7-position groups of FQs or via ethylenediamine/ethanolamine linkers at the carboxyl group of the FQ. Hydroxamic acid derivatives were also theoretically formulated. Computational methods were used to predict their physicochemical, pharmacokinetic, or toxicological properties and their anti-cancer activity. For comparison, etoposide was used as an anti-cancer agent inhibiting topoisomerase II. Molecular docking assessed whether the hybrids could interact with the human topoisomerase II beta in the same binding site and interaction sites as etoposide. Results: All the hybrids acted as potential topoisomerase II inhibitors, demonstrating possible anti-cancer activity on several cancer cell lines. Among all the proposed hybrids, MF-7-GLA would be the ideal candidate as a lead compound. The hybrid OF-3-EDA-GLA and the hydroxamic acid derivatives also stood out. Conclusions: Both FQs and GLA have advantageous structures for obtaining hybrids with favourable properties. Improvements in the hybrids' structure could lead to promising results.
Collapse
Affiliation(s)
- Octavia-Laura Oancea
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Șerban Andrei Gâz
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Gabriel Marc
- Organic Chemistry Department, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
13
|
Arora M, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Yadav JP, Verma A, Kumar P. Semisynthetic phytochemicals in cancer treatment: a medicinal chemistry perspective. RSC Med Chem 2024; 15:3345-3370. [PMID: 39430100 PMCID: PMC11484407 DOI: 10.1039/d4md00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer is the uncontrolled proliferation of abnormal cells that invade other areas, spread to other organs, and cause metastases, which is the most common cause of death. A review of all FDA-approved new molecular entities (NMEs) shows that natural products and derivatives account for over one-third of all NMEs. Before 1940, unmodified products and derivatives accounted for 43% and 14% of NME registrations, respectively. Since then, the share of unmodified products has decreased to 9.5% of all approved NMEs, while the share of derivatives has increased to 28%. Since the 1940s, semi-synthetic and synthetic derivatives of natural substances have gained importance, and this trend continues to date. In this study, we have discussed in detail isolated phytoconstituents with chemical modifications that are either FDA-approved or under clinical trials, such as podophyllotoxin, Taxol (paclitaxel, docetaxel), vinca alkaloids (vincristine, vinblastine), camptothecin, genistein, cephalotaxine, rohitukine, and many more, which may act as essential leads to the development of novel anticancer agents. Furthermore, we have also discussed recent developments in the most potent semisynthetic phytoconstituents, their unique properties, and their importance in cancer treatment.
Collapse
Affiliation(s)
- Meghna Arora
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to be University) Hyderabad Campus India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University Kanpur 209217 India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
14
|
Nitiss KC, Bandak A, Berger JM, Nitiss JL. Genome Instability Induced by Topoisomerase Misfunction. Int J Mol Sci 2024; 25:10247. [PMID: 39408578 PMCID: PMC11477040 DOI: 10.3390/ijms251910247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Topoisomerases alter DNA topology by making transient DNA strand breaks (DSBs) in DNA. The DNA cleavage reaction mechanism includes the formation of a reversible protein/DNA complex that allows rapid resealing of the transient break. This mechanism allows changes in DNA topology with minimal risks of persistent DNA damage. Nonetheless, small molecules, alternate DNA structures, or mutations in topoisomerase proteins can impede the resealing of the transient breaks, leading to genome instability and potentially cell death. The consequences of high levels of enzyme/DNA adducts differ for type I and type II topoisomerases. Top1 action on DNA containing ribonucleotides leads to 2-5 nucleotide deletions in repeated sequences, while mutant Top1 enzymes can generate large deletions. By contrast, small molecules that target Top2, or mutant Top2 enzymes with elevated levels of cleavage lead to small de novo duplications. Both Top1 and Top2 have the potential to generate large rearrangements and translocations. Thus, genome instability due to topoisomerase mis-function is a potential pathogenic mechanism especially leading to oncogenic progression. Recent studies support the potential roles of topoisomerases in genetic changes in cancer cells, highlighting the need to understand how cells limit genome instability induced by topoisomerases. This review highlights recent studies that bear on these questions.
Collapse
Affiliation(s)
- Karin C. Nitiss
- Pharmaceutical Sciences Department, University of Illinois Chicago, Rockford, IL 61107, USA;
| | - Afif Bandak
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 20215, USA; (A.B.); (J.M.B.)
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 20215, USA; (A.B.); (J.M.B.)
| | - John L. Nitiss
- Pharmaceutical Sciences Department, University of Illinois Chicago, Rockford, IL 61107, USA;
| |
Collapse
|
15
|
Favatella N, Dalton D, Byon W, Merali SJ, Klem C. Clinical Implications of Co-administering Apixaban with Key Interacting Medications. Clin Pharmacol Drug Dev 2024; 13:961-973. [PMID: 39046333 DOI: 10.1002/cpdd.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/17/2024] [Indexed: 07/25/2024]
Abstract
With many available data sources, clinicians need to consider the benefit-risk profile of individual anticoagulants when balancing the need for anticoagulation, including evaluating the risks in patients with comorbidities and potential drug-drug interactions. This narrative review presents clinical data across multiple phases of drug development for the use of apixaban, a selective factor Xa inhibitor, when taken concomitantly with other agents, and evaluates the benefit-risk profile of apixaban with these interacting medications. Key subgroup analyses from the phase 3 ARISTOTLE trial (NCT00412984) are presented using data from patients who received either concomitant inhibitors or inducers of cytochrome P450 3A4 and/or P‑glycoprotein. We also review the available evidence for the use of apixaban in patients with cancer-associated thromboembolism, as well as the use of apixaban in patients with COVID-19.
Collapse
|
16
|
Nian Q, Liu R, Zeng J. Unraveling the pathogenesis of myelosuppression and therapeutic potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155810. [PMID: 38905848 DOI: 10.1016/j.phymed.2024.155810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Myelosuppression is a serious and common complication of radiotherapy and chemotherapy in cancer patients and is characterized by a reduction of peripheral blood cells. This condition not only compromises the efficacy of treatment but also increases the risk of patient death. Natural products are emerging as promising adjuvant therapies due to their antioxidant properties, ability to modulate immune responses, and capacity to stimulate haematopoietic stem cell proliferation. These therapies demonstrate significant potential in ameliorating myelosuppression. METHODS A systematic review of the literature was performed utilizing the search terms "natural products," "traditional Chinese medicine," and "myelosuppression" across prominent databases, including Google Scholar, PubMed, and Web of Science. All pertinent literature was meticulously analysed and summarized. The objective of this study was to perform a pertinent analysis to elucidate the mechanisms underlying myelosuppression and to categorize and synthesize information on natural products and traditional Chinese medicines employed for the therapeutic management of myelosuppression. RESULTS Myelosuppression resulting from drug and radiation exposure, viral infections, and exosomes is characterized by multiple underlying mechanisms involving immune factors, target genes, and the activation of diverse signalling pathways, including the (TGF-β)/Smad pathway. Recently, traditional Chinese medicine monomers and compounds, including more than twenty natural products, such as Astragalus and Angelica, have shown promising potential as therapeutics for ameliorating myelosuppression. These natural products exert their effects by modulating haematopoietic stem cells, immune factors, and critical signalling pathways. CONCLUSIONS Understanding the various mechanisms of myelosuppression facilitates the exploration of natural product therapies and biological target identification for evaluating herbal medicine efficacy. This study aimed to establish a foundation for the clinical application of natural products and provide methodologies and technical support for exploring additional treatments for myelosuppression.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
17
|
Peron G, Mastinu A, Peña-Corona SI, Hernández-Parra H, Leyva-Gómez G, Calina D, Sharifi-Rad J. Silvestrol, a potent anticancer agent with unfavourable pharmacokinetics: Current knowledge on its pharmacological properties and future directions for the development of novel drugs. Biomed Pharmacother 2024; 177:117047. [PMID: 38959604 DOI: 10.1016/j.biopha.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer remains a leading cause of death, with increasing incidence. Conventional treatments offer limited efficacy and cause significant side effects, hence novel drugs with improved pharmacological properties and safety are required. Silvestrol (SLV) is a flavagline derived from some plants of the Aglaia genus that has shown potent anticancer effects, warranting further study. Despite its efficacy in inhibiting the growth of several types of cancer cells, SLV is characterized by an unfavorable pharmacokinetics that hamper its use as a drug. A consistent research over the recent years has led to develop novel SLV derivatives with comparable pharmacodynamics and an ameliorated pharmacokinetic profile, demonstrating potential applications in the clinical management of cancer. This comprehensive review aims to highlight the most recent data available on SLV and its synthetic derivatives, addressing their pharmacological profile and therapeutic potential in cancer treatment. A systematic literature review of both in vitro and in vivo studies focusing on anticancer effects, pharmacodynamics, and pharmacokinetics of these compounds is presented. Overall, literature data highlight that rationale chemical modifications of SLV are critical for the development of novel drugs with high efficacy on a broad variety of cancers and improved bioavailability in vivo. Nevertheless, SLV analogues need to be further studied to better understand their mechanisms of action, which can be partially different to SLV. Furthermore, clinical research is still required to assess their efficacy in humans and their safety.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy.
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Centro de Estudios Tenológicos y Universitarios del Golfo, Veracruz, Mexico.
| |
Collapse
|
18
|
Moukhtari SHE, Muñoz-Juan A, Del Campo-Montoya R, Laromaine A, Blanco-Prieto MJ. Biosafety evaluation of etoposide lipid nanomedicines in C. elegans. Drug Deliv Transl Res 2024; 14:2158-2169. [PMID: 38363484 PMCID: PMC11208201 DOI: 10.1007/s13346-023-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 02/17/2024]
Abstract
Neuroblastoma is a pediatric tumor that originates during embryonic development and progresses into aggressive tumors, primarily affecting children under two years old. Many patients are diagnosed as high-risk and undergo chemotherapy, often leading to short- and long-term toxicities. Nanomedicine offers a promising solution to enhance drug efficacy and improve physical properties. In this study, lipid-based nanomedicines were developed with an average size of 140 nm, achieving a high encapsulation efficiency of over 90% for the anticancer drug etoposide. Then, cytotoxicity and apoptosis-inducing effects of these etoposide nanomedicines were assessed in vitro using human cell lines, both cancerous and non-cancerous. The results demonstrated that etoposide nanomedicines exhibited high toxicity and selectively induced apoptosis only in cancerous cells.Next, the biosafety of these nanomedicines in C. elegans, a model organism, was evaluated by measuring survival, body size, and the effect on dividing cells. The findings showed that the nanomedicines had a safer profile than the free etoposide in this model. Notably, nanomedicines exerted etoposide's antiproliferative effect only in highly proliferative germline cells. Therefore, the developed nanomedicines hold promise as safe drug delivery systems for etoposide, potentially leading to an improved therapeutic index for neuroblastoma treatment.
Collapse
Affiliation(s)
- Souhaila H El Moukhtari
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008, Pamplona, Spain
| | - Amanda Muñoz-Juan
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Rubén Del Campo-Montoya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008, Pamplona, Spain
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008, Pamplona, Spain.
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008, Pamplona, Spain.
| |
Collapse
|
19
|
Vitale DL, Parnigoni A, Viola M, Karousou E, Sevic I, Moretto P, Passi A, Alaniz L, Vigetti D. Deciphering Drug Resistance: Investigating the Emerging Role of Hyaluronan Metabolism and Signaling and Tumor Extracellular Matrix in Cancer Chemotherapy. Int J Mol Sci 2024; 25:7607. [PMID: 39062846 PMCID: PMC11276752 DOI: 10.3390/ijms25147607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronan (HA) has gained significant attention in cancer research for its role in modulating chemoresistance. This review aims to elucidate the mechanisms by which HA contributes to chemoresistance, focusing on its interactions within the tumor microenvironment. HA is abundantly present in the extracellular matrix (ECM) and binds to cell-surface receptors such as CD44 and RHAMM. These interactions activate various signaling pathways, including PI3K/Akt, MAPK, and NF-κB, which are implicated in cell survival, proliferation, and drug resistance. HA also influences the physical properties of the tumor stroma, enhancing its density and reducing drug penetration. Additionally, HA-mediated signaling contributes to the epithelial-mesenchymal transition (EMT), a process associated with increased metastatic potential and resistance to apoptosis. Emerging therapeutic strategies aim to counteract HA-induced chemoresistance by targeting HA synthesis, degradation, metabolism, or its binding to CD44. This review underscores the complexity of HA's role in chemoresistance and highlights the potential for HA-targeted therapies to improve the efficacy of conventional chemotherapeutics.
Collapse
Affiliation(s)
- Daiana L. Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Arianna Parnigoni
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden;
| | - Manuela Viola
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Evgenia Karousou
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Paola Moretto
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Davide Vigetti
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| |
Collapse
|
20
|
Zhang Y, Qian HS, Hu G, Wang L, Zhu Y. ARID1A is involved in DNA double-strand break repair in gastric cancer. J Gastrointest Oncol 2024; 15:862-872. [PMID: 38989399 PMCID: PMC11231857 DOI: 10.21037/jgo-24-283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
Background Defects in DNA damage repair can cause genetic mutations, which in turn can cause different types of cancers. Chromatin remodeling complexes, which help repair damaged DNA, can cause the chromatin structure to change as a result of DNA damage. ARID1A may play a role in the process of DNA damage repair, and arid1a may be related to the occurrence and development of gastric cancer (GC). This study aimed to investigate the mechanism of ARID1A regulating the DNA damage repair of gastric adenocarcinoma cell lines AGS and SGC-7901 and its effect on migration, proliferation and apoptosis. Methods The expression of ARID1A plasmid was detected by Western blot and real-time polymerase chain reaction (PCR). The effect of etoposide (ETO) on the survival rate of AGS and SGC-7901 gastric adenocarcinoma cell lines was detected by MTT assay. The DNA double-strand break model was established by ETO and then passed through the comet assay and immunofluorescence co-localization to observe DNA damage; western blot method was used to detect the effect of ARID1A on the expression of related proteins in DNA damage repair pathway in gastric adenocarcinoma cells; scratch test and colony formation experiments were used to observe ARID1A migration and proliferation of gastric adenocarcinoma cells. The flow cytometry was used to detect the effect of ARID1A on apoptosis of gastric adenocarcinoma cells. Results The expression of mRNA and protein was increased after transfection of ARID1A plasmid. ETO was confirmed by MTT assay to inhibit cell survival in a dose-dependent manner. After the DNA double-strand break model was established by ETO, the expression levels of phospho-ataxia telangiectasia mutated (p-ATM) protein increased in the overexpressed ARID1A group. Meanwhile, the overexpressed ARID1A group had a shortened tail moment, and γ-H2AX and ARID1A co-localized in the DNA damage site of the nucleus. The over-expressed ARID1A group had weaker wound healing ability, reduced number of clone formation, and increased apoptosis rate. Conclusions ARID1A may repair DNA double-strand breaks caused by ETO by p-ATM pathway; ARID1A can inhibit the migration and proliferation of gastric adenocarcinoma cells and promote apoptosis. Our findings indicate that ARID1A could serve as a therapeutic target and biomarker for GC patients.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Oncology, Fuyang Cancer Hospital, Fuyang, China
| | - He-Sheng Qian
- Department of Oncology, Fuyang Cancer Hospital, Fuyang, China
| | - Gengwei Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lu Wang
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yiping Zhu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
21
|
Pham TD, Tsunoyama T. Exploring Extravasation in Cancer Patients. Cancers (Basel) 2024; 16:2308. [PMID: 39001371 PMCID: PMC11240416 DOI: 10.3390/cancers16132308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Extravasation, the unintended leakage of intravenously administered substances, poses significant challenges in cancer treatment, particularly during chemotherapy and radiotherapy. This comprehensive review explores the pathophysiology, incidence, risk factors, clinical presentation, diagnosis, prevention strategies, management approaches, complications, and long-term effects of extravasation in cancer patients. It also outlines future directions and research opportunities, including identifying gaps in the current knowledge and proposing areas for further investigation in extravasation prevention and management. Emerging technologies and therapies with the potential to improve extravasation prevention and management in both chemotherapy and radiotherapy are highlighted. Such innovations include advanced vein visualization technologies, smart catheters, targeted drug delivery systems, novel topical treatments, and artificial intelligence-based image analysis. By addressing these aspects, this review not only provides healthcare professionals with insights to enhance patient safety and optimize clinical practice but also underscores the importance of ongoing research and innovation in improving outcomes for cancer patients experiencing extravasation events.
Collapse
Affiliation(s)
- Tuan D. Pham
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK
| | | |
Collapse
|
22
|
Petrucci GN, Magalhães TR, Dias M, Queiroga FL. Metronomic chemotherapy: bridging theory to clinical application in canine and feline oncology. Front Vet Sci 2024; 11:1397376. [PMID: 38903691 PMCID: PMC11187343 DOI: 10.3389/fvets.2024.1397376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Veterinary oncology has experienced significant evolution over the last few decades, with chemotherapy being currently applied to several neoplasms with therapeutic success. Traditionally, chemotherapy protocols are based on classic cytostatic drugs under the concept of maximum tolerated dose (MTD), which has been associated with a greater risk of toxicity and resistance. Thus, new therapeutic alternatives have emerged, such as metronomic chemotherapy (MC), introducing a new paradigm in cancer treatment. MC consists of administering low doses of chemotherapy drugs continuously over a long period of time, modulating the tumour microenvironment (TME) due to the combination of cytotoxic, antiangiogenic and immunomodulatory effects. This multi-targeted therapy has been described as a treatment option in several canine and feline cancers since 2007, with positive results already published in the literature, particularly in mammary carcinomas and soft tissue sarcomas in dogs. The aim of this review article is to describe the current knowledge about the use of MC in small animal oncology, with emphasis on its mechanisms of action, the most commonly used drugs and clinical outcome.
Collapse
Affiliation(s)
- Gonçalo N. Petrucci
- Onevet Hospital Veterinário do Porto, Porto, Portugal
- Animal and Veterinary Department, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, Center for Investigation Vasco da Gama (CIVG), Vasco da Gama University School (EUVG), Coimbra, Portugal
| | - Tomás Rodrigues Magalhães
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Márcia Dias
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Felisbina Luísa Queiroga
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Wang H, Wang Y, Liu H, Li X, Sun C, Pang Z, Zhang B, Hu Y. Ruxolitinib-loaded cytokine nanosponge alleviated the cytokine storm and dampened macrophage overactivation for the treatment of hemophagocytic lymphohistiocytosis. Int J Pharm 2024; 657:124127. [PMID: 38621611 DOI: 10.1016/j.ijpharm.2024.124127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by a positive feedback loop between cytokine storm and macrophages and lymphocytes overactivation, which could serve as a valid therapeutic target for HLH treatment. In this study, the clinically extensively used JAK1/2 inhibitor ruxolitinib was encapsulated into macrophage membrane-coated nanoparticles (M@NP-R) with high drug-loading efficiency for targeted HLH treatment. In vitro and in vivo studies demonstrated that M@NP-R not only efficiently adsorbed extracellular proinflammation cytokines, like IFN-γ and IL-6 to alleviate the cytokine storm, but also effectively dampened macrophage activation and proliferation by intracellular JAK/STAT signaling pathway inhibition. M@NP-R treatment significantly ameliorated the clinical and laboratory manifestations of HLH in mouse models, including trilineage cytopenia, hypercytokinemia, organomegaly, hepatorenal dysfunction, and tissue inflammation. Importantly, M@NP-R significantly enhanced the survival of the lethal HLH mice. Altogether, M@NP-R successfully blocked the positive feedback loop between the cytokine storm and macrophage overactivation by depleting extracellular inflammatory cytokines and inhibiting the intracellular JAK/STAT signaling pathway, both of which worked synergistically in HLH treatment. As ruxolitinib has already been extensively used in clinics with favorable safety, and M@NP is biodegradable and highly biocompatible, M@NP-R has good prospects for clinical translation.
Collapse
Affiliation(s)
- Honglan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education
| | - Yiwei Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education
| | - Huiwen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education
| | - Xuejing Li
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China.
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education.
| |
Collapse
|
24
|
Wang Z, Yang L. Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy. Pharmacol Res 2024; 203:107150. [PMID: 38521285 DOI: 10.1016/j.phrs.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
25
|
Roohani S, Ehret F, Beck M, Veltsista DP, Nadobny J, Zschaeck S, Abdel-Rahman S, Eckert F, Flörcken A, Issels RD, Klöck S, Krempien R, Lindner LH, Notter M, Ott OJ, Pink D, Potkrajcic V, Reichardt P, Riesterer O, Spałek MJ, Stutz E, Wessalowski R, Zilli T, Zips D, Ghadjar P, Kaul D. Regional hyperthermia for soft tissue sarcoma - a survey on current practice, controversies and consensus among 12 European centers. Int J Hyperthermia 2024; 41:2342348. [PMID: 38653548 DOI: 10.1080/02656736.2024.2342348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE To analyze the current practice of regional hyperthermia (RHT) for soft tissue sarcoma (STS) at 12 European centers to provide an overview, find consensuses and identify controversies necessary for future guidelines and clinical trials. METHODS In this cross-sectional survey study, a 27-item questionnaire assessing clinical subjects and procedural details on RHT for STS was distributed to 12 European cancer centers for RHT. RESULTS We have identified seven controversies and five consensus points. Of 12 centers, 6 offer both, RHT with chemotherapy (CTX) or with radiotherapy (RT). Two centers only offer RHT with CTX and four centers only offer RHT with RT. All 12 centers apply RHT for localized, high-risk STS of the extremities, trunk wall and retroperitoneum. However, eight centers also use RHT in metastatic STS, five in palliative STS, eight for superficial STS and six for low-grade STS. Pretherapeutic imaging for RHT treatment planning is used by 10 centers, 9 centers set 40-43 °C as the intratumoral target temperature, and all centers use skin detectors or probes in body orifices for thermometry. DISCUSSION There is disagreement regarding the integration of RHT in contemporary interdisciplinary care of STS patients. Many clinical controversies exist that require a standardized consensus guideline and innovative study ideas. At the same time, our data has shown that existing guidelines and decades of experience with the technique of RHT have mostly standardized procedural aspects. CONCLUSIONS The provided results may serve as a basis for future guidelines and inform future clinical trials for RHT in STS patients.
Collapse
Affiliation(s)
- Siyer Roohani
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) Clinician Scientist Program, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danai P Veltsista
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jacek Nadobny
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) Clinician Scientist Program, Berlin, Germany
| | - Sultan Abdel-Rahman
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, AKH, Comprehensive Cancer Center Vienna, Medical University Vienna, Vienna, Austria
| | - Anne Flörcken
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Rolf D Issels
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stephan Klöck
- Department of Radiation Oncology, Lindenhofspital Bern, Bern, Switzerland
| | - Robert Krempien
- Clinic for Radiotherapy, HELIOS Klinikum Berlin-Buch, Berlin, Germany
- MSB Medical School Berlin, Fakultät für Medizin, Berlin, Germany
| | - Lars H Lindner
- Department of Medicine III, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Notter
- Department of Radiation Oncology, Lindenhofspital Bern, Bern, Switzerland
| | - Oliver J Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Daniel Pink
- Department of Medical Oncology, Helios Klinikum Bad Saarow, Bad Saarow, Germany
- Cinic for Internal Medicine C - Haematology and Oncology, Stem Cell Transplantation and Palliative Care, University Medicine Greifswald, Greifswald, Germany
| | - Vlatko Potkrajcic
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Peter Reichardt
- Department of Medical Oncology, Helios Klinikum Berlin-Buch, and Medical School Berlin, Berlin, Germany
| | - Oliver Riesterer
- Center for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Mateusz Jacek Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Radiotherapy I, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Emanuel Stutz
- Department of Radiation Oncology, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rüdiger Wessalowski
- Department of Paediatric Haematology and Oncology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thomas Zilli
- Department of Radiation Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona, Switzerland
- Facoltà di Scienze Biomediche, Università Della Svizzera Italiana (USI), Lugano, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Zips
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
26
|
Jaskulska A, Szymański J, Lipiński PFJ, Modranka J, Janecka AE, Janecki T, Gach-Janczak K. Synthesis And Anticancer Activity Of New Hybrid 3-Methylidene-2,3-Dihydro-1,8-Naphthyridinones. ChemMedChem 2024; 19:e202300519. [PMID: 38126948 DOI: 10.1002/cmdc.202300519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Synthesis of molecular hybrids, obtained by combination of two or more pharmacophoric groups of different bioactive substances in order to produce more efficient drugs, is now a frequently used approach in medicinal chemistry. Following this strategy, we synthetized a library of 3-methylidene-1-tosyl-2,3-dihydro-1,8-naphthyridin-4(1H)-ones, combining a 1,8-naphthyridin-4-one motif with an exo-methylidene bond conjugated with a carbonyl group, pharmacophoric units that are present in many natural, biologically active compounds with anticancer potential. We reasoned that such bifunctional conjugates may have enhanced cytotoxic activity. The title compounds were synthesized in a four step reaction sequence. β-Ketophosphonate, obtained from methyl N-tosylnicotinate and diethyl methylphosphonate, was reacted with various aldehydes giving 3-diethoxyphosphoryl-2,3-dihydro-1,8-naphthyridin-4(1H)-ones as keto-enol tautomers. Later, these compounds were transformed into 3-methylidene-1-tosyl-2,3-dihydro-1,8-naphthyridin-4(1H)-ones applying the Horner-Wadsworth-Emmons methodology. Then, the cytotoxicity of the new compounds was assessed on two cancer cell lines, promyelocytic leukemia HL-60 and breast cancer adenocarcinoma MCF-7, and for comparison, on human umbilical vein endothelial cells HUVEC. The most active and selective analog, 2-ethyl-3-methylidene-1-tosyl-2,3-dihydro-1,8-naphthyridin-4(1H)-one 4 a was chosen for more detailed studies on HL-60 cell line, to determine molecular mechanisms of its anticancer activity. It was shown that 4 a strongly inhibited proliferation and induced apoptosis which could be attributed to its ability to cause DNA damage.
Collapse
Affiliation(s)
- Agata Jaskulska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland
| | - Jacek Szymański
- Research Laboratory CoreLab, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Jakub Modranka
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland
| | - Anna E Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Tomasz Janecki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
27
|
Karnan S, Hanamura I, Ota A, Vu LQ, Uchino K, Horio T, Murakami S, Mizuno S, Rahman ML, Wahiduzzaman M, Hasan MN, Biswas M, Hyodo T, Ito H, Suzuki A, Konishi H, Tsuzuki S, Hosokawa Y, Takami A. ARK5 enhances cell survival associated with mitochondrial morphological dynamics from fusion to fission in human multiple myeloma cells. Cell Death Discov 2024; 10:56. [PMID: 38282096 PMCID: PMC10822851 DOI: 10.1038/s41420-024-01814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
5' adenosine monophosphate-activated protein kinase-related kinase 5 (ARK5) is involved in mitochondrial ATP production and associated with poor prognosis of multiple myeloma (MM). However, the molecular mechanisms of ARK5 in MM remain largely unknown. This study examined the pathogenic role of ARK5 in mitochondria by using genetically modified isogenic cell clones with or without ARK5 in human myeloma cell lines, KMS-11 and Sachi, which overexpress ARK5. The biallelic knockout of ARK5 (ARK5-KO) inhibited cell proliferation, colony formation, and migration with increased apoptosis. Mitochondrial fusion was enhanced in ARK5-KO cells, unlike in ARK5 wild-type (ARK5-WT) cells, which exhibited increased mitochondrial fission. Furthermore, ARK5-KO cells demonstrated a lower phosphorylated dynamin-related protein 1 at serine 616, higher protein expression of mitofusin-1 (MFN1) and MFN2, optic atrophy 1 with a lower level of ATP, and higher levels of lactate and reactive oxygen species than ARK5-WT cells. Our findings suggest that ARK5-enhanced myeloma cells can survive associated mitochondrial fission and activity. This study first revealed the relationship between ARK5 and mitochondrial morphological dynamics. Thus, our outcomes show novel aspects of mitochondrial biology of ARK5, which can afford a more advanced treatment approach for unfavorable MM expressing ARK5.
Collapse
Grants
- 19K08825, 22K08516[Hanamura] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K09292, 22K08985 [Karnan] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21K08426 [Ota] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
- Department of Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya, 463-8521, Japan
| | - Lam Quang Vu
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kaori Uchino
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomohiro Horio
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Satsuki Murakami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Md Lutfur Rahman
- EuGEF Research Foundation, Chattogram, Bangladesh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Md Wahiduzzaman
- EuGEF Research Foundation, Chattogram, Bangladesh
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY, 11501, USA
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Mrityunjoy Biswas
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Atsushi Suzuki
- Hematology Medical Franchise, Department of Medical Affairs, Novartis Japan, Tokyo, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
28
|
Chunarkar-Patil P, Kaleem M, Mishra R, Ray S, Ahmad A, Verma D, Bhayye S, Dubey R, Singh HN, Kumar S. Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies. Biomedicines 2024; 12:201. [PMID: 38255306 PMCID: PMC10813144 DOI: 10.3390/biomedicines12010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, malignancies cause one out of six mortalities, which is a serious health problem. Cancer therapy has always been challenging, apart from major advances in immunotherapies, stem cell transplantation, targeted therapies, hormonal therapies, precision medicine, and palliative care, and traditional therapies such as surgery, radiation therapy, and chemotherapy. Natural products are integral to the development of innovative anticancer drugs in cancer research, offering the scientific community the possibility of exploring novel natural compounds against cancers. The role of natural products like Vincristine and Vinblastine has been thoroughly implicated in the management of leukemia and Hodgkin's disease. The computational method is the initial key approach in drug discovery, among various approaches. This review investigates the synergy between natural products and computational techniques, and highlights their significance in the drug discovery process. The transition from computational to experimental validation has been highlighted through in vitro and in vivo studies, with examples such as betulinic acid and withaferin A. The path toward therapeutic applications have been demonstrated through clinical studies of compounds such as silvestrol and artemisinin, from preclinical investigations to clinical trials. This article also addresses the challenges and limitations in the development of natural products as potential anti-cancer drugs. Moreover, the integration of deep learning and artificial intelligence with traditional computational drug discovery methods may be useful for enhancing the anticancer potential of natural products.
Collapse
Affiliation(s)
- Pritee Chunarkar-Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune 411046, Maharashtra, India
| | - Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande, College of Pharmacy, Nagpur 440037, Maharashtra, India;
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India;
| | - Subhasree Ray
- Department of Life Science, Sharda School of Basic Sciences and Research, Greater Noida 201310, Uttar Pradesh, India
| | - Aftab Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarkhand, India;
| | - Sagar Bhayye
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune 411046, Maharashtra, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
29
|
Kakali B. Natural Compounds as Protease Inhibitors in Therapeutic Focus on Cancer Therapy. Anticancer Agents Med Chem 2024; 24:1167-1181. [PMID: 38988167 DOI: 10.2174/0118715206303964240708095110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Proteases are implicated in every hallmark of cancer and have complicated functions. For cancer cells to survive and thrive, the process of controlling intracellular proteins to keep the balance of the cell proteome is essential. Numerous natural compounds have been used as ligands/ small molecules to target various proteases that are found in the lysosomes, mitochondria, cytoplasm, and extracellular matrix, as possible anticancer therapeutics. Promising protease modulators have been developed for new drug discovery technology through recent breakthroughs in structural and chemical biology. The protein structure, function of significant tumor-related proteases, and their natural compound inhibitors have been briefly included in this study. This review highlights the most current frontiers and future perspectives for novel therapeutic approaches associated with the list of anticancer natural compounds targeting protease and the mode and mechanism of proteinase-mediated molecular pathways in cancer.
Collapse
Affiliation(s)
- Bhadra Kakali
- Department of Zoology, University of Kalyani, Kalyani, 741235, India
| |
Collapse
|
30
|
Horgan MJ, Zell L, Siewert B, Stuppner H, Schuster D, Temml V. Identification of Novel β-Tubulin Inhibitors Using a Combined In Silico/ In Vitro Approach. J Chem Inf Model 2023; 63:6396-6411. [PMID: 37774242 PMCID: PMC10598795 DOI: 10.1021/acs.jcim.3c00939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 10/01/2023]
Abstract
Due to their potential as leads for various therapeutic applications, including as antimitotic and antiparasitic agents, the development of tubulin inhibitors offers promise for drug discovery. In this study, an in silico pharmacophore-based virtual screening approach targeting the colchicine binding site of β-tubulin was employed. Several structure- and ligand-based models for known tubulin inhibitors were generated. Compound databases were virtually screened against the models, and prioritized hits from the SPECS compound library were tested in an in vitro tubulin polymerization inhibition assay for their experimental validation. Out of the 41 SPECS compounds tested, 11 were active tubulin polymerization inhibitors, leading to a prospective true positive hit rate of 26.8%. Two novel inhibitors displayed IC50 values in the range of colchicine. The most potent of which was a novel acetamide-bridged benzodiazepine/benzimidazole derivative with an IC50 = 2.9 μM. The screening workflow led to the identification of diverse inhibitors active at the tubulin colchicine binding site. Thus, the pharmacophore models show promise as valuable tools for the discovery of compounds and as potential leads for the development of cancer therapeutic agents.
Collapse
Affiliation(s)
- Mark James Horgan
- Institute
of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Lukas Zell
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Bianka Siewert
- Institute
of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hermann Stuppner
- Institute
of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Veronika Temml
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| |
Collapse
|
31
|
Bailly C. Etoposide: A rider on the cytokine storm. Cytokine 2023; 168:156234. [PMID: 37269699 DOI: 10.1016/j.cyto.2023.156234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023]
Abstract
For more than 40 years, the epipodophyllotoxin drug etoposide is prescribed to treat cancer. This semi-synthetic compound remains extensively used to treat advanced small-cell lung cancer and in various chemotherapy regimen for autologous stem cell transplantation, and other anticancer protocols. Etoposide is a potent topoisomerase II poison, causing double-stranded DNA breaks which lead to cell death if they are not repaired. It is also a genotoxic compound, responsible for severe side effects and secondary leukemia occasionally. Beyond its well-recognized function as an inducer of cancer cell death (a "killer on the road"), etoposide is also useful to treat immune-mediated inflammatory diseases associated with a cytokine storm syndrome. The drug is essential to the treatment of hemophagocytic lymphohistiocytosis (HLH) and the macrophage activation syndrome (MAS), in combination with a corticosteroid and other drugs. The use of etoposide to treat HLH, either familial or secondary to a viral or parasitic infection, or treatment-induced HLH and MAS is reviewed here. Etoposide dampens inflammation in HLH patients via an inhibition of the production of pro-inflammatory mediators, such as IL-6, IL-10, IL-18, IFN-γ and TNF-α, and reduction of the secretion of the alarmin HMGB1. The modulation of cytokines production by etoposide contributes to deactivate T cells and to dampen the immune stimulation associated to the cytokine storm. This review discussed the clinical benefits and mechanism of action of etoposide (a "rider on the storm") in the context of immune-mediated inflammatory diseases, notably life-threatening HLH and MAS. The question arises as to whether the two faces of etoposide action can apply to other topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France.
| |
Collapse
|
32
|
Chin HK, Lu MC, Hsu KC, El-Shazly M, Tsai TN, Lin TY, Shih SP, Lin TE, Wen ZH, Yang YCSH, Liu YC. Exploration of anti-leukemic effect of soft coral-derived 13-acetoxysarcocrassolide: Induction of apoptosis via oxidative stress as a potent inhibitor of heat shock protein 90 and topoisomerase II. Kaohsiung J Med Sci 2023. [PMID: 37052190 DOI: 10.1002/kjm2.12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
13-Acetoxysarcocrassolide (13-AC) is a marine cembranoid derived from the aquaculture soft coral of Lobophytum crassum. The cytotoxic effect of 13-AC against leukemia cells was previously reported but its mechanism of action is still unexplored. In the current study, we showed that 13-AC induced apoptosis of human acute lymphoblastic leukemia Molt4 cells, as evidenced by the cleavage of PARP and caspases, phosphatidylserine externalization, as well as the disruption of mitochondrial membrane potential. The use of N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, attenuated the cytotoxic effect induced by 13-AC. Molecular docking and thermal shift assay indicated that the cytotoxic mechanism of action of 13-AC involved the inhibition of heat shock protein 90 (Hsp 90) activity by eliciting the level of Hsp 70 and topoisomerase IIα in Molt4 cells. 13-AC also exhibited potent antitumor activity by reducing the tumor volume (48.3%) and weight (72.5%) in the in vivo Molt4 xenograft mice model. Our findings suggested that the marine cembranoid, 13-AC, acted as a dual inhibitor of Hsp 90 and topoisomerase IIα, exerting more potent apoptotic activity via the enhancement of ROS generation.
Collapse
Affiliation(s)
- Hsien-Kuo Chin
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Tsen-Ni Tsai
- Graduate Institute of Marine Biology, National Dong Hwa University, Hualien, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tzu-Yung Lin
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Tony Eight Lin
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cellular Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Nofal AE, Elmongy EI, Hassan EA, Tousson E, Ahmed AAS, El Sayed IET, Binsuwaidan R, Sakr M. Impact of Synthesized Indoloquinoline Analog to Isolates from Cryptolepis sanguinolenta on Tumor Growth Inhibition and Hepatotoxicity in Ehrlich Solid Tumor-Bearing Female Mice. Cells 2023; 12:cells12071024. [PMID: 37048097 PMCID: PMC10093181 DOI: 10.3390/cells12071024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The study evaluated the antitumor efficacy of APAN, “synthesized indoloquinoline analog derived from the parent neocryptolepine isolated from the roots of Cryptolepis sanguinolenta”, versus the chemotherapeutic drug etoposide (ETO) in Ehrlich solid tumor (EST)-bearing female mice as well as its protective effect against etoposide-triggered hepatic disorders. APAN showed an ameliorative activity against Ehrlich solid tumor and hepatic toxicity, and the greatest improvement was found in the combined treatment of APAN with ETO. The results indicated that EST altered the levels of tumor markers (AFP, CEA, and anti-dsDNA) and liver biomarker function (ALT, AST, ALP, ALB, and T. protein). Furthermore, EST elevated CD68 and anti-survivin proteins immuno-expressions in the solid tumor and liver tissue. Molecular docking studies were demonstrated to investigate their affinity for both TNF-α and topoisomerase II as target proteins, as etoposide is based on the inhibition of topoisomerase II, and TNF-α is quite highly expressed in the solid tumor and liver tissues of EST-bearing animals, which prompted the authors’ interest to explore APAN affinity to its binding site. Treatment of mice bearing EST with APAN and ETO nearly regularized serum levels of the altered parameters and ameliorated the impact of EST on the tissue structure of the liver better than that by treatment with each of them separately.
Collapse
Affiliation(s)
- Amany E. Nofal
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Elshaymaa I. Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
- Correspondence:
| | - Engy Abo Hassan
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (E.A.H.); (A.A.S.A.); (I.E.T.E.S.); (M.S.)
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31511, Egypt;
| | - Abdullah A. S. Ahmed
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (E.A.H.); (A.A.S.A.); (I.E.T.E.S.); (M.S.)
| | - Ibrahim El Tantawy El Sayed
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (E.A.H.); (A.A.S.A.); (I.E.T.E.S.); (M.S.)
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Manar Sakr
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (E.A.H.); (A.A.S.A.); (I.E.T.E.S.); (M.S.)
| |
Collapse
|
34
|
Cytokine nanosponges suppressing overactive macrophages and dampening systematic cytokine storm for the treatment of hemophagocytic lymphohistiocytosis. Bioact Mater 2023; 21:531-546. [PMID: 36185750 PMCID: PMC9508173 DOI: 10.1016/j.bioactmat.2022.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a highly fatal condition with the positive feedback loop between continued immune cell activation and cytokine storm as the core mechanism to mediate multiple organ dysfunction. Inspired by macrophage membranes harbor the receptors with special high affinity for proinflammation cytokines, lipopolysaccharide (LPS)-stimulated macrophage membrane-coated nanoparticles (LMNP) were developed to show strong sponge ability to both IFN-γ and IL-6 and suppressed overactivation of macrophages by inhibiting JAK/STAT signaling pathway both in vitro and in vivo. Besides, LMNP also efficiently alleviated HLH-related symptoms including cytopenia, hepatosplenomegaly and hepatorenal dysfunction and save the life of mouse models. Furthermore, its sponge effect also worked well for five human HLH samples in vitro. Altogether, it's firstly demonstrated that biocompatible LMNP could dampen HLH with high potential for clinical transformation, which also provided alternative insights for the treatment of other cytokine storm-mediated pathologic conditions such as COVID-19 infection and cytokine releasing syndrome during CAR-T therapy. LMNP functioned better as a multiple-cytokine sponging tool when compared with conventional macrophage coated nanoparticles. LMNP sponged inflammation cytokines and suppressed macrophage overactivation by inhibiting JAK/STAT signaling pathway. LMNP calmed down systematic cytokine storm and dampened HLH in HLH mice models. LMNP also worked well in sponging cytokines in human HLH samples which indicated high potential of clinical transformation.
Collapse
|
35
|
Mohammed AS, Al-Hassani AN, Alrawi RA, Tawfeeq RD. The protective effect of taurine, piracetam and vinpocetine on etoposide-induced inflammation and brain injury in the serum of female albino rats. Ecancermedicalscience 2023; 17:1499. [PMID: 36816786 PMCID: PMC9937074 DOI: 10.3332/ecancer.2023.1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 01/24/2023] Open
Abstract
Etoposide (ETP) is one of the leading antitumour agents in cancer chemotherapy. Many studies have reported on ETP-induced peripheral neuropathy; however, few reports have focused on its brain toxicity. The current research investigates the protective potential of taurine, piracetam and vinpocetine on serum biomarkers associated with inflammation and brain injury induced by ETP in a rodent model. A total of 30 female albino rats were equally divided into five groups; the 1st and 2nd groups were the control and ETP-treated groups, respectively, while the 3rd, 4th and 5th groups were ETP-treated rats cotreated with taurine, piracetam and vinpocetine, respectively. Administration of ETP reduced body weight significantly, enhanced production of serum proinflammatory cytokines including tumour necrosis factor-alpha, interleukin-1 beta (IL-1β) and IL-6 and decreased glutathione serum levels. Moreover, ETP treatment resulted in upregulation of glial fibrillary acidic protein expression and histopathological alterations in the rats' brain compared to the control group. Co-treatment with taurine, piracetam and vinpocetine counteracted ETP-induced brain injury and altered serum biomarkers levels. We concluded that co-treatment with vinpocetine could serve as a complementary therapeutic agent in reducing brain injury and toxicity induced by ETP.
Collapse
Affiliation(s)
- Arwa Salam Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq
| | - Ansam N Al-Hassani
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq
| | - Rafal Abdulrazaq Alrawi
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq
| | - Rawaz D Tawfeeq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq
| |
Collapse
|
36
|
Zhang J, Liu P, Chen J, Yao D, Liu Q, Zhang J, Zhang HW, Leung ELH, Yao XJ, Liu L. Upgrade of chrysomycin A as a novel topoisomerase II inhibitor to curb KRAS-mutant lung adenocarcinoma progression. Pharmacol Res 2023; 187:106565. [PMID: 36414124 DOI: 10.1016/j.phrs.2022.106565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/20/2022]
Abstract
A primary strategy employed in cancer therapy is the inhibition of topoisomerase II (Topo II), implicated in cell survival. However, side effects and adverse reactions restrict the utilization of Topo II inhibitors. Thus, investigations focus on the discovery of novel compounds that are capable of inhibiting the Topo II enzyme and feature safer toxicological profiles. Herein, we upgrade an old antibiotic chrysomycin A from Streptomyces sp. 891 as a compelling Topo II enzyme inhibitor. Our results show that chrysomycin A is a new chemical entity. Notably, chrysomycin A targets the DNA-unwinding enzyme Topo II with an efficient binding potency and a significant inhibition of intracellular enzyme levels. Intriguingly, chrysomycin A kills KRAS-mutant lung adenocarcinoma cells and is negligible cytotoxic to normal cells at the cellular level, thus indicating a capability of potential treatment. Furthermore, mechanism studies demonstrate that chrysomycin A inhibits the Topo II enzyme and stimulates the accumulation of reactive oxygen species, thereby inducing DNA damage-mediated cancer cell apoptosis. Importantly, chrysomycin A exhibits excellent control of cancer progression and excellent safety in tumor-bearing models. Our results provide a chemical scaffold for the synthesis of new types of Topo II inhibitors and reveal a novel target for chrysomycin A to meet its further application.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Jianwei Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Dahong Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau
| | - Juanhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Hua-Wei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310000, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau.
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau.
| |
Collapse
|
37
|
de Campos Nebel M, Palmitelli M, Pérez Maturo J, González-Cid M. Alternative end-joining originates stable chromosome aberrations induced by etoposide during targeted inhibition of DNA-PKcs in ATM-deficient tumor cells. Chromosome Res 2022; 30:459-476. [PMID: 35604590 DOI: 10.1007/s10577-022-09700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023]
Abstract
ATM and DNA-PKcs coordinate the DNA damage response at multiple levels following the exposure to chemotherapy. The Topoisomerase II poison etoposide (ETO) is an effective chemotherapeutic agent that induces DNA double-strand breaks (DSB), but it is responsible from the chromosomal rearrangements frequently found in therapy-related secondary tumors. Targeted inhibition of DNA-PKcs in ATM-defective tumors combined with radio- or chemotherapy has been proposed as relevant therapies. Here, we explored the DNA repair mechanisms and the genetic consequences of targeting the non-oncogenic addiction to DNA-PKcs of ATM-defective tumor cells after exposure to ETO. We demonstrated that chemical inhibition of DNA-PKcs followed by treatment with ETO resulted in the accumulation of chromatid breaks and decreased mitotic index in both A-T cells and ATM-knocked-down (ATMkd) tumor cells. The HR repair process in DNA-PKcs-inhibited ATMkd cells amplified the RAD51 foci number, with no correlated increase in sister chromatid exchanges. The analysis of post-mitotic DNA lesions presented an augmented number of persistent unresolved DSB, without alterations in the cell cycle progression. Long-term examination of chromosome aberrations revealed a strikingly high number of chromatid and chromosome exchanges. By using genetic and pharmacological abrogation of PARP-1, we demonstrated that alternative end-joining (alt-EJ) repair pathway is responsible for those chromosome abnormalities generated by limiting c-NHEJ activities during directed inhibition of DNA-PKcs in ATM-deficient cells. Targeting the non-oncogenic addiction to DNA-PKcs of ATM-defective tumors stimulates the DSB repair by alt-EJ, which is liable for the origin of cells carrying stable chromosome aberrations that may eventually restrict the therapeutic strategy.
Collapse
Affiliation(s)
- Marcelo de Campos Nebel
- Laboratorio de Mutagénesis, Instituto de Medicina Experimental (IMEX), CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina.
| | - Micaela Palmitelli
- Laboratorio de Mutagénesis, Instituto de Medicina Experimental (IMEX), CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Josefina Pérez Maturo
- Programa de Medicina de Precisión Y Genómica Clínica, Facultad de Ciencias Biomédicas,, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-CONICET, Pilar, Argentina
- Consultorio Y Laboratorio de Neurogenética, Facultad de Medicina, Centro Universitario de Neurología "José María Ramos Mejía" Y División Neurología, Hospital J.M. Ramos Mejía, Universidad de Buenos Aires, Buenos Aires,, Argentina
| | - Marcela González-Cid
- Laboratorio de Mutagénesis, Instituto de Medicina Experimental (IMEX), CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
38
|
Gao L, Wang J, Chen J, Zhang X, Zhang M, Wang S, Zhao C. Anlotinib plus etoposide increases survival in patients with small-cell lung cancer after chemoradiotherapy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Wang H, He Y, Jian M, Fu X, Cheng Y, He Y, Fang J, Li L, Zhang D. Breaking the Bottleneck in Anticancer Drug Development: Efficient Utilization of Synthetic Biology. Molecules 2022; 27:7480. [PMID: 36364307 PMCID: PMC9656990 DOI: 10.3390/molecules27217480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2024] Open
Abstract
Natural products have multifarious bioactivities against bacteria, fungi, viruses, cancers and other diseases due to their diverse structures. Nearly 65% of anticancer drugs are natural products or their derivatives. Thus, natural products play significant roles in clinical cancer therapy. With the development of biosynthetic technologies, an increasing number of natural products have been discovered and developed as candidates for clinical cancer therapy. Here, we aim to summarize the anticancer natural products approved from 1950 to 2021 and discuss their molecular mechanisms. We also describe the available synthetic biology tools and highlight their applications in the development of natural products.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Meiling Jian
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingang Fu
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuheng Cheng
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jun Fang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Dan Zhang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
40
|
Liao M, Chu W, Sun X, Zheng W, Gao S, Li D, Pei D. Reduction of H3K27cr Modification During DNA Damage in Colon Cancer. Front Oncol 2022; 12:924061. [PMID: 35936700 PMCID: PMC9353715 DOI: 10.3389/fonc.2022.924061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
DNA damage plays an essential role in the initiation and development of colon cancer. Histone crotonylation is a newly discovered post-translational modification that is thought to promote gene expression. Whether histone crotonylation plays a role in DNA damage of cancer remains unknown, as does the putative underlying molecular mechanism. This study aimed to investigate the relationship between histone crotonylation and DNA damage of colon cancer using multiple bioinformatics analysis and western blotting. We discovered that genes with promoter occupied by histone crotonylation were associated with the activity of DNA damage in colon cancer patients. Additionally, we uncovered that the level of crotonylation on Lys27 of histone H3 (H3K27cr) decreased during camptothecin and etoposide treatment. Interestingly, sirtuin 6 was found to regulate the cellular level of H3K27cr. Taking these data together, our study provided a new perspective about histone crotonylation and DNA damage in colon cancer.
Collapse
Affiliation(s)
- Meijian Liao
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Meijian Liao, ; Dongsheng Pei,
| | - Weiwei Chu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiaolin Sun
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Wendan Zheng
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Shoucui Gao
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Danhua Li
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Meijian Liao, ; Dongsheng Pei,
| |
Collapse
|
41
|
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem 2022; 239:114542. [PMID: 35751979 DOI: 10.1016/j.ejmech.2022.114542] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Chemotherapy is one of the most common treatments for cancer that uses one or more anti-cancer drugs as a part of the standardized chemotherapy regimen. Cytotoxic chemicals delay and prevent cancer cells from multiplying, invading, and metastasizing. However, the significant drawbacks of cancer chemotherapy are the lack of selectivity of the cytotoxic drugs to tumour cells and normal cells and the development of resistance by cells for the particular drug or the combination of drugs. Multidrug resistance (MDR) is the low sensitivity of specific cells against drugs associated with cancer chemotherapy. The most common mechanisms of anticancer drug resistance are: (a) drug-dependent MDR (b) target-dependent MDR, and (c) drug target-independent MDR. In all the factors, the overexpression of multidrug efflux systems contributes significantly to the increased resistance in the cancer cells. Multidrug resistance due to efflux of anticancer drugs by membrane ABC transporters includes ABCB1, ABCC1, and ABCG2. ABCB1 inhibition can restore the sensitivity of the cancerous cells toward chemotherapeutic drugs. In this review, we discussed ABCB1 inhibitors under clinical studies with their mode of action, potency and selectivity. Also, we have highlighted the contribution of repurposing drugs, biologics and nano formulation strategies to combat multidrug resistance by modulating the ABCB1 activity.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
42
|
Shi RJ, Fan HY, Yu XH, Tang YL, Jiang J, Liang XH. Advances of podophyllotoxin and its derivatives: patterns and mechanisms. Biochem Pharmacol 2022; 200:115039. [DOI: 10.1016/j.bcp.2022.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
|
43
|
Abdelgawad MA, Mohamed FEA, Lamie PF, Bukhari SNA, Al-Sanea MM, Musa A, Elmowafy M, Nayl AA, Karam Farag A, Ali SM, Shaker ME, Omar HA, Abdelhameid MK, Kandeel MM. Design, synthesis, and biological evaluation of novel pyrido-dipyrimidines as dual topoisomerase II/FLT3 inhibitors in leukemia cells. Bioorg Chem 2022; 122:105752. [PMID: 35339926 DOI: 10.1016/j.bioorg.2022.105752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Dual inhibition of topoisomerase (topo) II and FLT3 kinase, as in the case of C-1311, was shown to overcome the shortcomings of using topo II inhibitors solely. In the present study, we designed and synthesized two series of pyrido-dipyrimidine- and pseudo-pyrido-acridone-containing compounds. The two series were evaluated against topo II and FLT3 as well as the HL-60 promyelocytic leukemia cell line in vitro. Compounds 6, 7, and 20 showed higher potency against topo II than the standard amsacrine (AMSA), whereas compounds 19 and 20 were stronger FLT3 inhibitors than the standard DACA. Compounds 19 and 20 showed to be dual inhibitors of both enzymes. Compounds 6, 7, 19, and 20 were more potent inhibitors of the HL-60 cell line than the standard AMSA. The results of the in vitro DNA flow cytometry analysis assay and Annexin V-FITC apoptosis analysis showed that 19 and 20 induced cell cycle arrest at the G2/M phase, significantly higher total percentage of apoptosis, and late-stage apoptosis in HL-60 cell lines than AMSA. Furthermore, 19 and 20 upregulated several apoptosis biomarkers such as p53, TNFα, caspase 3/7 and increased the Bax/Bcl-2 ratio. These results showed that 19 and 20 deserve further evaluation of their antiproliferative activities, particularly in leukemia. Molecular docking studies were performed for selected compounds against topo II and FLT3 enzymes to investigate their binding patterns. Compound 19 exerted dual fitting inside the active site of both enzymes.
Collapse
Affiliation(s)
- Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia.
| | - Fatma E A Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Phoebe F Lamie
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Syed N A Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, 72341 Sakaka, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - A A Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Ahmed Karam Farag
- Manufacturing Department, Curachem Inc., Chungcheongbuk-do 28161, Republic of Korea
| | - Sameeha M Ali
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, United Arab Emirates
| | - Mohammed K Abdelhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Manal M Kandeel
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
44
|
Molinaro C, Wambang N, Bousquet T, Vercoutter-Edouart AS, Pélinski L, Cailliau K, Martoriati A. A Novel Copper(II) Indenoisoquinoline Complex Inhibits Topoisomerase I, Induces G2 Phase Arrest, and Autophagy in Three Adenocarcinomas. Front Oncol 2022; 12:837373. [PMID: 35280788 PMCID: PMC8908320 DOI: 10.3389/fonc.2022.837373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
Topoisomerases, targets of inhibitors used in chemotherapy, induce DNA breaks accumulation leading to cancer cell death. A newly synthesized copper(II) indenoisoquinoline complex WN197 exhibits a cytotoxic effect below 0.5 µM, on MDA-MB-231, HeLa, and HT-29 cells. At low doses, WN197 inhibits topoisomerase I. At higher doses, it inhibits topoisomerase IIα and IIβ, and displays DNA intercalation properties. DNA damage is detected by the presence of γH2AX. The activation of the DNA Damage Response (DDR) occurs through the phosphorylation of ATM/ATR, Chk1/2 kinases, and the increase of p21, a p53 target. WN197 induces a G2 phase arrest characterized by the unphosphorylated form of histone H3, the accumulation of phosphorylated Cdk1, and an association of Cdc25C with 14.3.3. Cancer cells die by autophagy with Beclin-1 accumulation, LC3-II formation, p62 degradation, and RAPTOR phosphorylation in the mTOR complex. Finally, WN197 by inhibiting topoisomerase I at low concentration with high efficiency is a promising agent for the development of future DNA damaging chemotherapies.
Collapse
Affiliation(s)
- Caroline Molinaro
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | - Till Bousquet
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, Lille, France
| | | | - Lydie Pélinski
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, Lille, France
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
45
|
Calzada F, Garcia-Hernandez N, Hidalgo-Figueroa S, Bautista E, Barbosa E, Velázquez C, Hernández-Caballero ME. Expanding the Study of the Cytotoxicity of Incomptines A and B against Leukemia Cells. Molecules 2022; 27:1687. [PMID: 35268788 PMCID: PMC8911839 DOI: 10.3390/molecules27051687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Heliangolide-type sesquiterpene lactones (HTSLs) are phytocompounds with several pharmacological activities including cytotoxic and antitumor activity. Both bioactivities are related to an α-methylene-γ-lactone moiety and an ester group on carbon C-8 in the sesquiterpene lactone (SL) structure. Two HTSLs, incomptines A (AI) and B (IB) isolated from Decachaeta incompta, were evaluated for their cytotoxic activity on three leukemia cell lines: HL-60, K-562, and REH cells. Both compounds were subjected to a molecular docking study using target proteins associated with cancer such as topoisomerase IIα, topoisomerase IIβ, dihydrofolate reductase, methylenetetrahydrofolate dehydrogenase, and Bcl-2-related protein A1. Results show that IA and IB exhibit cytotoxic activity against all cell lines used. The CC50 value of IA was 2-4-fold less than etoposide and methotrexate, two anticancer drugs used as positive controls. The cytotoxic activity of IB was close to that of etoposide and methotrexate. The molecular docking analysis showed that IA and IB have important interaction on all targets used. These findings suggest that IA and IB may serve as scaffolds for the development of new treatments for different types of leukemia.
Collapse
Affiliation(s)
- Fernando Calzada
- Unidad de Investigación Médica en Farmacología, Unidad Médica de Alta Especialidad, Hospital de Especialidades-2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de México 06725, Mexico
| | - Normand Garcia-Hernandez
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de México 06725, Mexico
| | - Sergio Hidalgo-Figueroa
- CONACyT-Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Lomas 4ª Sección, San Luis Potosí 78216, Mexico; (S.H.-F.); (E.B.)
| | - Elihú Bautista
- CONACyT-Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Lomas 4ª Sección, San Luis Potosí 78216, Mexico; (S.H.-F.); (E.B.)
| | - Elizabeth Barbosa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - Claudia Velázquez
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Km 4.5, Carretera Pachuca-Tulancingo, Unidad Universitaria, Pachuca 42076, Mexico;
| | | |
Collapse
|
46
|
Panggabean JA, Adiguna SP, Murniasih T, Rahmawati SI, Bayu A, Putra MY. Structure-Activity Relationship of Cytotoxic Natural Products from Indonesian Marine Sponges. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2022; 32:12-38. [PMID: 35034994 PMCID: PMC8740879 DOI: 10.1007/s43450-021-00195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
Indonesian marine natural products have been one of the most promising sources in the race to obtain potential drugs for cancer treatment. One of the primary producers of cytotoxic compounds is sponges. However, there are still limited sources of comprehensive reviews related to the relationship between the structure of isolated compounds and their cytotoxic activity. This review remarks the attempt to provide a preliminary guidance from the perspective of structure-activity relationship and its participation on marine natural products research. This guidance is segregated by the compound's classes and their cytotoxic targets to obtain and organized a reliable summary of inter-study of the isolated compounds and their cytotoxicity. Structure-activity relationship is well-known for its ability to tune the bioactivity of a specific compound, especially on synthetic organic chemistry and in silico study but rarely used on natural product chemistry. The present review is intended to narrow down the endless possibilities of cytotoxicity by giving a predictable structure-activity relationship for active compounds. In addition, bioactive framework leads were selected by uncovering a noticeable structure-activity relationship with the intervention of cytotoxic agents from natural sources, especially Indonesian marine sponge. Graphical abstract
Collapse
Affiliation(s)
- Jonathan A. Panggabean
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, 55281 Indonesia
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Sya’ban P. Adiguna
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, 55281 Indonesia
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Tutik Murniasih
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Siti I. Rahmawati
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Asep Bayu
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Masteria Y. Putra
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| |
Collapse
|
47
|
Li QM, Lin GS, Duan WG, Cui YC, Li FY, Lei FH, Li DP. Design, synthesis, and antiproliferative evaluation of novel longifolene-derived tetraline pyrimidine derivatives with fluorescence properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj01054b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the search for novel compounds with both survivin inhibitory activity and fluorescence properties, 18 novel longifolene-derived tetralin pyrimidine compounds were designed using survivin as the target and synthesized from the sustainable natural resource longifolene.
Collapse
Affiliation(s)
- Qing-Min Li
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue Dong Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Gui-Shan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue Dong Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Wen-Gui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue Dong Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Yu-Cheng Cui
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue Dong Road, Nanning, Guangxi, 530004, People's Republic of China
| | - Fang-Yao Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, 530004, People's Republic of China
| | - Fu-Hou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, Guangxi, 530004, People's Republic of China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| |
Collapse
|
48
|
Hill RM, Plasschaert SLA, Timmermann B, Dufour C, Aquilina K, Avula S, Donovan L, Lequin M, Pietsch T, Thomale U, Tippelt S, Wesseling P, Rutkowski S, Clifford SC, Pfister SM, Bailey S, Fleischhack G. Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers (Basel) 2021; 14:126. [PMID: 35008290 PMCID: PMC8750207 DOI: 10.3390/cancers14010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Relapsed medulloblastoma (rMB) accounts for a considerable, and disproportionate amount of childhood cancer deaths. Recent advances have gone someway to characterising disease biology at relapse including second malignancies that often cannot be distinguished from relapse on imaging alone. Furthermore, there are now multiple international early-phase trials exploring drug-target matches across a range of high-risk/relapsed paediatric tumours. Despite these advances, treatment at relapse in pre-irradiated patients is typically non-curative and focuses on providing life-prolonging and symptom-modifying care that is tailored to the needs and wishes of the individual and their family. Here, we describe the current understanding of prognostic factors at disease relapse such as principal molecular group, adverse molecular biology, and timing of relapse. We provide an overview of the clinical diagnostic process including signs and symptoms, staging investigations, and molecular pathology, followed by a summary of treatment modalities and considerations. Finally, we summarise future directions to progress understanding of treatment resistance and the biological mechanisms underpinning early therapy-refractory and relapsed disease. These initiatives include development of comprehensive and collaborative molecular profiling approaches at relapse, liquid biopsies such as cerebrospinal fluid (CSF) as a biomarker of minimal residual disease (MRD), modelling strategies, and the use of primary tumour material for real-time drug screening approaches.
Collapse
Affiliation(s)
- Rebecca M. Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Sabine L. A. Plasschaert
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany;
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France;
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK;
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK;
| | - Laura Donovan
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Maarten Lequin
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, 53127 Bonn, Germany;
| | - Ulrich Thomale
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Stephan Tippelt
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
- Department of Pathology, Amsterdam University Medical Centers/VUmc, 1081 HV Amsterdam, The Netherlands
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Stefan M. Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Gudrun Fleischhack
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| |
Collapse
|