1
|
Scriba TJ, Maseeme M, Young C, Taylor L, Leslie AJ. Immunopathology in human tuberculosis. Sci Immunol 2024; 9:eado5951. [PMID: 39671470 DOI: 10.1126/sciimmunol.ado5951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
Mycobacterium tuberculosis (M.tb) is a bacterial pathogen that has evolved in humans, and its interactions with the host are complex and best studied in humans. Myriad immune pathways are involved in infection control, granuloma formation, and progression to tuberculosis (TB) disease. Inflammatory cells, such as macrophages, neutrophils, conventional and unconventional T cells, B cells, NK cells, and innate lymphoid cells, interact via cytokines, cell-cell communication, and eicosanoid signaling to contain or eliminate infection but can alternatively mediate pathological changes required for pathogen transmission. Clinical manifestations include pulmonary and extrapulmonary TB, as well as post-TB lung disease. Risk factors for TB progression, in turn, largely relate to immune status and, apart from traditional chemotherapy, interventions primarily target immune mechanisms, highlighting the critical role of immunopathology in TB. Maintaining a balance between effector mechanisms to achieve protective immunity and avoid detrimental inflammation is central to the immunopathogenesis of TB. Many research gaps remain and deserve prioritization to improve our understanding of human TB immunopathogenesis.
Collapse
Affiliation(s)
- Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mahlatse Maseeme
- Africa Health Research Institute, Durban, South Africa
- College of Heath Sciences, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Carly Young
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Laura Taylor
- Forensic Pathology Services, Western Cape Government/University of Cape Town, Cape Town, South Africa
| | - Alasdair J Leslie
- Africa Health Research Institute, Durban, South Africa
- University College London, London, UK
| |
Collapse
|
2
|
Lyu J, Narum DE, Baldwin SL, Larsen SE, Bai X, Griffith DE, Dartois V, Naidoo T, Steyn AJC, Coler RN, Chan ED. Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals. Front Immunol 2024; 15:1427559. [PMID: 39717773 PMCID: PMC11663721 DOI: 10.3389/fimmu.2024.1427559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Granulomas, organized aggregates of immune cells which form in response to Mycobacterium tuberculosis (Mtb), are characteristic but not exclusive of tuberculosis (TB). Despite existing investigations on TB granulomas, the determinants that differentiate host-protective granulomas from granulomas that contribute to TB pathogenesis are often disputed. Thus, the goal of this narrative review is to help clarify the existing literature on such determinants. We adopt the a priori view that TB granulomas are host-protective organelles and discuss the molecular and cellular determinants that induce protective granulomas and those that promote their failure. While reports about protective TB granulomas and their failure may initially seem contradictory, it is increasingly recognized that either deficiencies or excesses of the molecular and cellular components in TB granuloma formation may be detrimental to the host. More specifically, insufficient or excessive expression/representation of the following components have been reported to skew granulomas toward the less protective phenotype: (i) epithelioid macrophages; (ii) type 1 adaptive immune response; (iii) type 2 adaptive immune response; (iv) tumor necrosis factor; (v) interleukin-12; (vi) interleukin-17; (vii) matrix metalloproteinases; (viii) hypoxia in the TB granulomas; (ix) hypoxia inducible factor-1 alpha; (x) aerobic glycolysis; (xi) indoleamine 2,3-dioxygenase activity; (xii) heme oxygenase-1 activity; (xiii) immune checkpoint; (xiv) leukotriene A4 hydrolase activity; (xv) nuclear-factor-kappa B; and (xvi) transforming growth factor-beta. Rather, more precise and timely coordinated immune responses appear essential for eradication or containment of Mtb infection. Since there are several animal models of infection with Mtb, other species within the Mtb complex, and the surrogate Mycobacterium marinum - whether natural (cattle, elephants) or experimental (zebrafish, mouse, guinea pig, rabbit, mini pig, goat, non-human primate) infections - we also compared the TB granulomatous response and other pathologic lung lesions in various animals infected with one of these mycobacteria with that of human pulmonary TB. Identifying components that dictate the formation of host-protective granulomas and the circumstances that result in their failure can enhance our understanding of the macrocosm of human TB and facilitate the development of novel remedies - whether they be direct therapeutics or indirect interventions - to efficiently eliminate Mtb infection and prevent its pathologic sequelae.
Collapse
Affiliation(s)
- Jiwon Lyu
- Division of Pulmonary and Critical Medicine, Soon Chun Hyang University Cheonan Hospital, Seoul, Republic of Korea
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Drew E. Narum
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Susan L. Baldwin
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Sasha E. Larsen
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xiyuan Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - David E. Griffith
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Threnesan Naidoo
- Departments of Forensic & Legal Medicine and Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rhea N. Coler
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
3
|
Scherer J, Mukasa SL, Wolmarans K, Guler R, Kotze T, Song T, Dunn R, Laubscher M, Pape HC, Held M, Thienemann F. Multi-level tuberculosis of the spine identified by 18 F-FDG-PET/CT and concomitant urogenital tuberculosis: a case report from the spinal TB X cohort. Infection 2024; 52:2507-2519. [PMID: 38896371 PMCID: PMC11621135 DOI: 10.1007/s15010-024-02327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and typically infects the lungs. However, extrapulmonary forms of TB can be found in approximately 20% of cases. It is suggested, that up to 10% of extrapulmonary TB affects the musculoskeletal system, in which spinal elements (spinal tuberculosis, STB) are involved in approximately 50% of the cases. STB is a debilitating disease with nonspecific symptoms and diagnosis is often delayed for months to years. In our Spinal TB X Cohort, we aim to describe the clinical phenotype of STB using whole-body 18 F-fluorodeoxyglucose positron emission tomography computed tomography (PET/CT) and to identify a specific gene expression profile for the different stages of dissemination on PET/CT. Here we report on the first patient recruited into our cohort who underwent PET/CT before treatment initiation, at 6-months and at 12-months - time of TB treatment completion. CASE PRESENTATION A 27-year-old immunocompetent male presented with severe thoracolumbar back pain for 9 months with severe antalgic gait and night sweats. Magnetic resonance imaging (MRI) of the whole spine revealed multilevel spinal disease (T5/6, T11/12, L3/4) in keeping with STB. After informed consent and recruitment into the Spinal TB X Cohort, the patient underwent PET/CT as per protocol, which revealed isolated multilevel STB (T4-7, T11/12, L3/4) with no concomitant lung or urogenital lesion. However, sputum and urine were Xpert MTB/RIF Ultra positive and Mtb was cultured from the urine sample. CT-guided biopsy of the T11/12 lesion confirmed drug-sensitive Mtb on Xpert MTB/RIF Ultra and the patient was started on TB treatment according to local guidelines for 12 months. The 6-month follow-up PET/CT revealed new and existing spinal lesions with increased FDG-uptake despite significant improvement of clinical features and laboratory markers. After 9 months of treatment, the patient developed an acute urethral stricture, most likely due to urogenital TB, and a suprapubic catheter was inserted. The 12-month PET/CT showed significantly decreased PET/CT values of all lesions, however, significant persistent spinal inflammation was present at the end of TB treatment. Clinically, the patient was considered cured by the TB control program and currently awaits urethroplasty. CONCLUSIONS In our case, PET/CT emerged as a valuable imaging modality for the initial assessment, surpassing MRI by revealing more comprehensive extensive disease. Subsequent PET/CT scans at 6-month uncovered new lesions and increased inflammation in existing ones, while by the end of TB treatment, all lesions exhibited improvement. However, the interpretation of FDG avidity remains ambiguous, whether it correlates with active infection and viable Mtb. or fibro- and osteoblast activity indicative of the healing process. Additionally, the absence of extraspinal TB lesions on PET/CT despite positive microbiology from sputum and urine maybe explained by paucibacillary, subclinical infection of extraspinal organs. The Spinal TB X Cohort endeavours to shed light on whole-body imaging patterns at diagnosis, their evolution midway through TB treatment, and upon treatment completion. Ultimately, this study aims to advance our understanding of the biology of this complex disease.
Collapse
Affiliation(s)
- Julian Scherer
- General Medicine & Global Health (GMGH), Department of Medicine and Orthopaedic Research Unit (ORU), Division of Orthopaedic Surgery, Faculty of Health Science, University of Cape Town, Cape Town, South Africa.
- Department of Traumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Sandra L Mukasa
- General Medicine & Global Health (GMGH), Department of Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Karen Wolmarans
- General Medicine & Global Health (GMGH), Department of Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Reto Guler
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Tessa Kotze
- Department of Medicine, CUBIC, PETCT, University of Cape Town, Cape Town, South Africa
| | - Taeksun Song
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert Dunn
- Orthopaedic Research Unit (ORU), Division of Orthopaedic Surgery, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Maritz Laubscher
- Orthopaedic Research Unit (ORU), Division of Orthopaedic Surgery, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Hans-Christoph Pape
- Department of Traumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Held
- Orthopaedic Research Unit (ORU), Division of Orthopaedic Surgery, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Friedrich Thienemann
- General Medicine & Global Health (GMGH), Department of Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Department of Internal Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Han X, Wang X, Han F, Yan H, Sun J, Zhang X, Moog C, Zhang C, Su B. The cGAS-STING pathway in HIV-1 and Mycobacterium tuberculosis coinfection. Infection 2024:10.1007/s15010-024-02429-0. [PMID: 39509013 DOI: 10.1007/s15010-024-02429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) infection is the most common opportunistic infection in human immunodeficiency virus-1 (HIV-1)-infected individuals, and the mutual reinforcement of these two pathogens may accelerate disease progression and lead to rapid mortality. Therefore, HIV-1/M. tuberculosis coinfection is one of the major global public health concerns. HIV-1 infection is the greatest risk factor for M. tuberculosis infection and increases the likelihood of endogenous relapse and exogenous reinfection with M. tuberculosis. Moreover, M. tuberculosis further increases HIV-1 replication and the occurrence of chronic immune activation, accelerating the progression of HIV-1 disease. Exploring the pathogenesis of HIV-1/M. tuberculosis coinfections is essential for the development of novel treatments to reduce the global burden of tuberculosis. Innate immunity, which is the first line of host immune defense, plays a critical role in resisting HIV-1 and M. tuberculosis infections. The role of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway, which is a major DNA-sensing innate immune signaling pathway, in HIV-1 infection and M. tuberculosis infection has been intensively studied. This paper reviews the role of the cGAS-STING signaling pathway in HIV-1 infection and M. tuberculosis infection and discusses the possible role of this pathway in HIV-1/M. tuberculosis coinfection to provide new insight into the pathogenesis of HIV-1/M. tuberculosis coinfection and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoxu Han
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Fangping Han
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Hongxia Yan
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jin Sun
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Christiane Moog
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Laboratoire d'ImmunoRhumatologie Moléculaire, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Transplantex, Strasbourg, NG, 67000, France
- Vaccine Research Institute (VRI), Créteil, 94000, France
| | - Conggang Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Xiao G, Huang W, Zhong Y, Ou M, Ye T, Wang Z, Zou X, Ding F, Yang Y, Zhang Z, Liu C, Liu A, Liu L, Lu S, Wu L, Zhang G. Uncovering the Bronchoalveolar Single-Cell Landscape of Patients With Pulmonary Tuberculosis With Human Immunodeficiency Virus Type 1 Coinfection. J Infect Dis 2024; 230:e524-e535. [PMID: 38412342 PMCID: PMC11420811 DOI: 10.1093/infdis/jiae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Coinfection of human immunodeficiency virus type 1 (HIV-1) is the most significant risk factor for tuberculosis (TB). The immune responses of the lung are essential to restrict the growth of Mycobacterium tuberculosis and avoid the emergence of the disease. Nevertheless, there is still limited knowledge about the local immune response in people with HIV-1-TB coinfection. METHODS We employed single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid from 9 individuals with HIV-1-TB coinfection and 10 with pulmonary TB. RESULTS A total of 19 058 cells were grouped into 4 major cell types: myeloid cells, T/natural killer (NK) cells, B cells, and epithelial cells. The myeloid cells and T/NK cells were further divided into 10 and 11 subsets, respectively. The proportions of dendritic cell subsets, CD4+ T cells, and NK cells were lower in the HIV-1-TB coinfection group compared to the TB group, while the frequency of CD8+ T cells was higher. Additionally, we identified numerous differentially expressed genes between the CD4+ and CD8+ T-cell subsets between the 2 groups. CONCLUSIONS HIV-1 infection not only affects the abundance of immune cells in the lungs but also alters their functions in patients with pulmonary TB.
Collapse
Affiliation(s)
- Guohui Xiao
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen
| | - Waidong Huang
- BGI Research, Shenzhen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing
| | | | - Min Ou
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen
| | - Taosheng Ye
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen
| | | | - Xuanxuan Zou
- BGI Research, Shenzhen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing
| | - Feng Ding
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen
| | | | | | - Chuanyu Liu
- BGI Research, Shenzhen
- BGI Research, Hangzhou
| | - Aimei Liu
- Department of Tuberculosis, Guangxi Chest Hospital, Liuzhou
| | - Longqi Liu
- BGI Research, Shenzhen
- BGI Research, Hangzhou
| | - Shuihua Lu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen
| | - Liang Wu
- BGI Research, Shenzhen
- BGI Research, Chongqing, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen
| |
Collapse
|
6
|
Huang S, Liu M, Zhang H, Song W, Guo W, Feng Y, Ma X, Shi X, Liu J, Liu L, Qi T, Wang Z, Yan B, Shen Y. HIV-MTB Co-Infection Reduces CD4+ T Cells and Affects Granuloma Integrity. Viruses 2024; 16:1335. [PMID: 39205309 PMCID: PMC11360352 DOI: 10.3390/v16081335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Granuloma is a crucial pathological feature of tuberculosis (TB). The relationship between CD4+ T cells in both peripheral blood and granulomatous tissue, and the integrity of granulomas in Human Immunodeficiency Virus (HIV)-MTB co-infection, remains unexplored. This study collected biopsy specimens from 102 TB patients (53 with HIV-MTB co-infection and 49 only with TB). Hematoxylin and eosin (HE) staining and immunohistochemical staining were performed, followed by microscopic examination of the integrity of tuberculous granulomas. Through statistical analysis of peripheral blood CD4+ T cell counts, tissue CD4+ T cell proportion, and the integrity of granulomas, it was observed that HIV infection leads to poor formation of tuberculous granulomas. Peripheral blood CD4+ T cell counts were positively correlated with granuloma integrity, and there was a similar positive correlation between tissue CD4+ T cell proportions and granuloma integrity. Additionally, a positive correlation was found between peripheral blood CD4+ T cell counts and the proportion of CD4+ T cells in granuloma tissues. Therefore, HIV infection could impact the morphology and structure of tuberculous granulomas, with a reduced proportion of both peripheral blood and tissue CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Suyue Huang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Maoying Liu
- Department of Microbiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Hui Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Wenjuan Guo
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Xin Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Xia Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Jianjian Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Li Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Tangkai Qi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Zhenyan Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| | - Yinzhong Shen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (S.H.); (W.S.)
| |
Collapse
|
7
|
Moos PJ, Carey AF, Joseph J, Kialo S, Norrie J, Moyarelce JM, Amof A, Nogua H, Lim AL, Barrows LR. Description of Bacterial RNA Transcripts Detected in Mycobacterium tuberculosis - Infected Cells from Peripheral Human Granulomas using Single Cell RNA Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608852. [PMID: 39229107 PMCID: PMC11370423 DOI: 10.1101/2024.08.20.608852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mycobacterium tuberculosis (Mtb) remains a global human health threat and a significant cause of human morbidity and mortality. We document here the capture of Mtb transcripts in libraries designed to amplify eukaryotic mRNA. These reads are often considered spurious or nuisance and are rarely investigated. Because of early literature suggesting the possible presence of polyadenylated transcripts in Mtb RNA, we included the H37Rv Mtb reference genome when assembling scRNA seq libraries from fine needle aspirate samples from patients presenting at the TB clinic, Port Moresby General Hospital, Papua New Guinea. We used 10X Genomics single-cell RNA sequencing transcriptomics pipeline, which initiates mRNA amplification with poly-T primers on ~30-micron beads designed to capture, in this case, human mRNA associated with individual cells in the clinical samples. Utilizing the 10X Genomics Cell Ranger tool to align sequencing reads, we consistently detected bacterial small and large ribosomal subunit RNA sequences (rrs and rrl, respectively) and other bacterial gene transcripts in the cell culture and patient samples. We interpret Mtb reads associated with the host cell's unique molecular identifier (UMI) and transcriptome to indicate infection of that individual host cell. The Mtb transcripts detected showed frequent sequence variation from the reference genome, with greater than 90% of the rrs or rrl reads from many clinical samples having at least 1 sequence difference compared to the H37Rv reference genome. The data presented includes only bacterial sequences from patients with TB infections that were confirmed by the hospital pathology lab using acid-fast microscopy and/or GeneXpert analysis. The repeated, non-random nature of the sequence variations detected in Mtb rrs and rrl transcripts from multiple patients, suggests that, even though this appears to be a stochastic process, there is possibly some selective pressure that limits the types and locations of sequence variation allowed. The variation does not appear to be entirely artefactual, and it is hypothesized that it could represent an additional mechanism of adaptation to enhance bacterial fitness against host defenses or chemotherapy.
Collapse
Affiliation(s)
- Philip J. Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112 USA
| | - Allison F. Carey
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112 USA
| | - Jacklyn Joseph
- Coordinator of Pathology Services, Port Moresby General Hospital, Boroko Post, 111, Papua New Guinea
| | - Stephanie Kialo
- Division of Pathology, School of Medicine and Health Sciences, University of Papua New Guinea and Central Public Health Laboratory, Papua New Guinea National Department of Health, PMGH, P.O. Box 5623 Boroko, Papua New Guinea
| | - Joe Norrie
- Division of Pathology, School of Medicine and Health Sciences, University of Papua New Guinea and Central Public Health Laboratory, Papua New Guinea National Department of Health, PMGH, P.O. Box 5623 Boroko, Papua New Guinea
| | - Julie M. Moyarelce
- Division of Pathology, School of Medicine and Health Sciences, University of Papua New Guinea and Central Public Health Laboratory, Papua New Guinea National Department of Health, PMGH, P.O. Box 5623 Boroko, Papua New Guinea
| | - Anthony Amof
- Division of Pathology, School of Medicine and Health Sciences, University of Papua New Guinea and Central Public Health Laboratory, Papua New Guinea National Department of Health, PMGH, P.O. Box 5623 Boroko, Papua New Guinea
| | - Hans Nogua
- Division of Pathology, School of Medicine and Health Sciences, University of Papua New Guinea and Central Public Health Laboratory, Papua New Guinea National Department of Health, PMGH, P.O. Box 5623 Boroko, Papua New Guinea
| | - Albebson L. Lim
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 USA
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112 USA
| |
Collapse
|
8
|
Bohórquez JA, Jagannath C, Xu H, Wang X, Yi G. T Cell Responses during Human Immunodeficiency Virus/ Mycobacterium tuberculosis Coinfection. Vaccines (Basel) 2024; 12:901. [PMID: 39204027 PMCID: PMC11358969 DOI: 10.3390/vaccines12080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Coinfection with Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) is a significant public health concern. Individuals infected with Mtb who acquire HIV are approximately 16 times more likely to develop active tuberculosis. T cells play an important role as both targets for HIV infection and mediators of the immune response against both pathogens. This review aims to synthesize the current literature and provide insights into the effects of HIV/Mtb coinfection on T cell populations and their contributions to immunity. Evidence from multiple in vitro and in vivo studies demonstrates that T helper responses are severely compromised during coinfection, leading to impaired cytotoxic responses. Moreover, HIV's targeting of Mtb-specific cells, including those within granulomas, offers an explanation for the severe progression of the disease. Herein, we discuss the patterns of differentiation, exhaustion, and transcriptomic changes in T cells during coinfection, as well as the metabolic adaptations that are necessary for T cell maintenance and functionality. This review highlights the interconnectedness of the immune response and the pathogenesis of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|
9
|
Meintjes G, Maartens G. HIV-Associated Tuberculosis. N Engl J Med 2024; 391:343-355. [PMID: 39047241 DOI: 10.1056/nejmra2308181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Affiliation(s)
- Graeme Meintjes
- From the Department of Medicine, University of Cape Town and Groote Schuur Hospital (G. Meintjes), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (G. Meintjes, G. Maartens), and the Division of Clinical Pharmacology, Department of Medicine (G. Maartens), University of Cape Town - all in Cape Town, South Africa; and Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (G. Meintjes)
| | - Gary Maartens
- From the Department of Medicine, University of Cape Town and Groote Schuur Hospital (G. Meintjes), and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (G. Meintjes, G. Maartens), and the Division of Clinical Pharmacology, Department of Medicine (G. Maartens), University of Cape Town - all in Cape Town, South Africa; and Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (G. Meintjes)
| |
Collapse
|
10
|
Anes E, Azevedo-Pereira JM, Pires D. Role of Type I Interferons during Mycobacterium tuberculosis and HIV Infections. Biomolecules 2024; 14:848. [PMID: 39062562 PMCID: PMC11275242 DOI: 10.3390/biom14070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis and AIDS remain two of the most relevant human infectious diseases. The pathogens that cause them, Mycobacterium tuberculosis (Mtb) and HIV, individually elicit an immune response that treads the line between beneficial and detrimental to the host. Co-infection further complexifies this response since the different cytokines acting on one infection might facilitate the dissemination of the other. In these responses, the role of type I interferons is often associated with antiviral mechanisms, while for bacteria such as Mtb, their importance and clinical relevance as a suitable target for manipulation are more controversial. In this article, we review the recent knowledge on how these interferons play distinct roles and sometimes have opposite consequences depending on the stage of the pathogenesis. We highlight the dichotomy between the acute and chronic infections displayed by both infections and how type I interferons contribute to an initial control of each infection individually, while their chronic induction, particularly during HIV infection, might facilitate Mtb primo-infection and progression to disease. We expect that further findings and their systematization will allow the definition of windows of opportunity for interferon manipulation according to the stage of infection, contributing to pathogen clearance and control of immunopathology.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| |
Collapse
|
11
|
Hosseinian K, Gerami A, Bral M, Venketaraman V. Mycobacterium tuberculosis-Human Immunodeficiency Virus Infection and the Role of T Cells in Protection. Vaccines (Basel) 2024; 12:730. [PMID: 39066368 PMCID: PMC11281535 DOI: 10.3390/vaccines12070730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis (TB), primarily caused by Mycobacterium tuberculosis (M. tb), remains a widespread fatal health issue that becomes significantly detrimental when coupled with HIV. This study explores the host's innate and adaptive immune system response to TB in HIV immunocompromised patients, highlighting the significant role of CD8+ T cells. While the crucial role of macrophages and cytokines, like TNF-α and IFN-γ, in managing the host's immune response to M. tb is examined, the emphasis is on the changes that occur as a result of HIV coinfection. With the progression of HIV infection, the primary source of IFN-γ changes from CD4+ to CD8+ T cells, especially when latent TB advances to an active state. This study sheds light on the necessity of developing new preventative measures such as vaccines and new treatment approaches to TB, especially for immunocompromised patients, who are at a higher risk of life-threatening complications due to TB-HIV coinfection.
Collapse
Affiliation(s)
| | | | | | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Scherer J, Mukasa SL, Wolmarans K, Guler R, Kotze T, Song T, Dunn R, Laubscher M, Pape HC, Held M, Thienemann F. Comparing gene expression profiles of adults with isolated spinal tuberculosis to disseminated spinal tuberculosis identified by 18FDG-PET/CT at time of diagnosis, 6- and 12-months follow-up: classifying clinical stages of spinal tuberculosis and monitoring treatment response (Spinal TB X cohort study). J Orthop Surg Res 2024; 19:376. [PMID: 38918806 PMCID: PMC11202394 DOI: 10.1186/s13018-024-04840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) is one of the top ten causes of death worldwide, with approximately 10 million cases annually. Focus has been on pulmonary TB, while extrapulmonary TB (EPTB) has received little attention. Diagnosis of EPTB remains challenging due to the invasive procedures required for sample collection. Spinal TB (STB) accounts for 10% of EPTB and often leads to lifelong debilitating disease due to devastating spinal deformation and compression of neural structures. Little is known about the extent of disease, although both isolated STB and a disseminated form of STB have been described. In our Spinal TB X cohort study, we aim to describe the clinical phenotype of STB using whole-body 18FDG-PET/CT, identify a specific gene expression profile for different stages of dissemination and compare findings to previously described gene expression signatures for latent and active pulmonary TB. METHODS A single-centre, prospective cohort study will be established to describe the distributional pattern of STB detected by whole-body 18FDG-PET/CT and gene expression profile of patients with suspected STB on magnetic resonance imaging (MRI) at point of diagnosis, six months, and 12 months. Blood biobanking will be performed at these time points. Specimens for microbiology will be obtained from sputum/urine, from easily accessible sites of disease (e.g., lymph nodes, abscess) identified in the first 18FDG-PET/CT, from CT-guided biopsy and/or surgery. Clinical parameters and functional scores will be collected at every physical visit. Data will be entered into RedCap® database; data cleaning, validation and analysis will be performed by the study team. The University of Cape Town Ethics Committee approved the protocol (243/2022). DISCUSSION The Spinal TB X cohort study is the first prospective cohort study using whole-body 18FDG-PET/CT scans in patients with microbiologically confirmed spinal tuberculosis. Dual imaging techniques of the spine using 18FDG-PET/CT and magnetic resonance imaging as well as tissue diagnosis (microbiology and histopathology) will allow us to develop a virtual biopsy model. If successful, a distinct gene-expression profile will aid in blood-based diagnosis (point of care testing) as well as treatment monitoring and would lead to earlier diagnosis of this devastating disease. TRIAL REGISTRATION The study has been registered on ClinicalTrials.gov (NCT05610098).
Collapse
Affiliation(s)
- Julian Scherer
- General Medicine & Global Health (GMGH), Department of Medicine and Orthopaedic Research Unit (ORU), Division of Orthopaedic Surgery, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Traumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sandra L Mukasa
- Department of Medicine, Faculty of Health Science, General Medicine and Global Health (GMGH), University of Cape Town, 4Th Floor, Chris Barnard Building, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Karen Wolmarans
- Department of Medicine, Faculty of Health Science, General Medicine and Global Health (GMGH), University of Cape Town, 4Th Floor, Chris Barnard Building, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Reto Guler
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Tessa Kotze
- Department of Medicine, CUBIC, PETCT, University of Cape Town, Cape Town, South Africa
| | - Taeksun Song
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Robert Dunn
- Orthopaedic Research Unit (ORU), Division of Orthopaedic Surgery, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Maritz Laubscher
- Orthopaedic Research Unit (ORU), Division of Orthopaedic Surgery, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Hans-Christoph Pape
- Department of Traumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Held
- Orthopaedic Research Unit (ORU), Division of Orthopaedic Surgery, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Friedrich Thienemann
- Department of Medicine, Faculty of Health Science, General Medicine and Global Health (GMGH), University of Cape Town, 4Th Floor, Chris Barnard Building, Anzio Road, Observatory, Cape Town, 7925, South Africa.
- Department of Internal Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Matsuda R, Sorobetea D, Zhang J, Peterson ST, Grayczyk JP, Yost W, Apenes N, Kovalik ME, Herrmann B, O’Neill RJ, Bohrer AC, Lanza M, Assenmacher CA, Mayer-Barber KD, Shin S, Brodsky IE. A TNF-IL-1 circuit controls Yersinia within intestinal pyogranulomas. J Exp Med 2024; 221:e20230679. [PMID: 38363547 PMCID: PMC10873131 DOI: 10.1084/jem.20230679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic inflammatory cytokine that mediates antimicrobial defense and granuloma formation in response to infection by numerous pathogens. We previously reported that Yersinia pseudotuberculosis colonizes the intestinal mucosa and induces the recruitment of neutrophils and inflammatory monocytes into organized immune structures termed pyogranulomas (PG) that control Yersinia infection. Inflammatory monocytes are essential for the control and clearance of Yersinia within intestinal PG, but how monocytes mediate Yersinia restriction is poorly understood. Here, we demonstrate that TNF signaling in monocytes is required for bacterial containment following enteric Yersinia infection. We further show that monocyte-intrinsic TNFR1 signaling drives the production of monocyte-derived interleukin-1 (IL-1), which signals through IL-1 receptors on non-hematopoietic cells to enable PG-mediated control of intestinal Yersinia infection. Altogether, our work reveals a monocyte-intrinsic TNF-IL-1 collaborative inflammatory circuit that restricts intestinal Yersinia infection.
Collapse
Affiliation(s)
- Rina Matsuda
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Sorobetea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenna Zhang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan T. Peterson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James P. Grayczyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Winslow Yost
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolai Apenes
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria E. Kovalik
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beatrice Herrmann
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rosemary J. O’Neill
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Lanza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Igor E. Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Zhang L, Cai M, Su B, Ma Y, Zhang Y. Mitochondrial Metabolism in Alveolar Macrophages of Patients Infected with HIV, Tuberculosis, and HIV/Tuberculosis. AIDS Res Hum Retroviruses 2024; 40:148-157. [PMID: 37885217 DOI: 10.1089/aid.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Tuberculosis (TB) is one of the most common opportunistic infections and is a leading cause of mortality in patients with HIV and AIDS. HIV infection causes serious defects in the host immune system and increases the risk of active TB. TB infection promotes HIV replication and aggravates host damage in patients with HIV/AIDS. Alveolar macrophages (AMs) are essential immune cells during TB and HIV infections. AMs undergo a shift in mitochondrial metabolism during TB or HIV infection, that is, metabolic reprogramming, allowing them to act in the form of classical activated macrophages (M1) and alternative activated macrophages (M2) at different stages of infection. We reviewed the alterations in the mitochondrial energy metabolism of AMs in patients with HIV, TB, and HIV/TB to provide ideas for further research on the role of metabolic reprogramming by AMs in the pathogeneses of HIV, TB, and HIV/TB coinfection.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| |
Collapse
|
15
|
Navasardyan I, Miwalian R, Petrosyan A, Yeganyan S, Venketaraman V. HIV-TB Coinfection: Current Therapeutic Approaches and Drug Interactions. Viruses 2024; 16:321. [PMID: 38543687 PMCID: PMC10974211 DOI: 10.3390/v16030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 05/23/2024] Open
Abstract
The co-occurrence of human immunodeficiency virus (HIV) and tuberculosis (TB) infection poses a significant global health challenge. Treatment of HIV and TB co-infection often necessitates combination therapy involving antiretroviral therapy (ART) for HIV and anti-TB medications, which introduces the potential for drug-drug interactions (DDIs). These interactions can significantly impact treatment outcomes, the efficacy of treatment, safety, and overall patient well-being. This review aims to provide a comprehensive analysis of the DDIs between anti-HIV and anti-TB drugs as well as potential adverse effects resulting from the concomitant use of these medications. Furthermore, such findings may be used to develop personalized therapeutic strategies, dose adjustments, or alternative drug choices to minimize the risk of adverse outcomes and ensure the effective management of HIV and TB co-infection.
Collapse
Affiliation(s)
| | | | | | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (I.N.); (R.M.); (A.P.); (S.Y.)
| |
Collapse
|
16
|
Kalyan M, Sharma S, Kaur P, Sharma A, Verma I. Antibody response to mycobacterial Rpf B protein and its immunodominant peptides in HIV-TB co-infected individuals. Tuberculosis (Edinb) 2024; 144:102464. [PMID: 38141523 DOI: 10.1016/j.tube.2023.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Diagnosis of TB at early stages of HIV infection may lead to timely intervention for improving patient outcome. Antibodies to Mycobacterium tuberculosis recombinant RpfB protein and two immunodominant peptides of Rpf B protein were evaluated in the sera of HIV +TB+, HIV+ and HIV- pulmonary TB patients by ELISA. Serum antibodies from 90 % and 65 % of HIV+TB+ patients reacted to recombinant RpfB protein and synthetic peptide RpfP1 respectively. Overall, this study shows that resuscitation promoting factor B elicits humoral antibody response in HIV+TB+ co-infected individuals and be proposed as a potential biomarker for diagnosis of HIV+TB+ patients, however further longitudinal follow up studies are warranted.
Collapse
Affiliation(s)
- Madhur Kalyan
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Sumedha Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Prabhdeep Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Aman Sharma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Indu Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
17
|
Htun ZM, Gul MH, Sadikot RT. Bacterial Infections in Patients Living with HIV. Results Probl Cell Differ 2024; 73:537-549. [PMID: 39242392 DOI: 10.1007/978-3-031-62036-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Pneumonia, as well as other types of acute and chronic lung injuries, remain the leading causes of death in individuals living with HIV. Individuals with HIV who are on antiretroviral therapy continue to have a greater risk for pneumonia, including bacterial and mycobacterial infections. Alveolar macrophages and lung epithelial cells constitute the first line of host defense against invading pathogens. The predisposition of individuals living with HIV to infections despite ante-retroviral therapy is mechanistically related to HIV pro-viruses integrating into host cells, including airway epithelial cells and alveolar macrophages. Alveolar macrophages harbor latent HIV even when individuals appear to have complete suppression on ART. In parallel, pneumonia can irreversibly impair lung function in HIV-infected individuals. Cells that Macrophages exposed to HIV or HIV-related proteins have been shown to secrete exosomes that contain miRNAs. These exosomes can regulate several innate and acquired immune functions by stimulating cytokine production and inflammatory responses. Furthermore, these secreted exosomal miRNAs can shuttle between cells, causing cellular dysfunction in the case of epithelial cells; they disrupt lung epithelial barrier dysfunction, which leads to a predisposition to bacterial infections. We discuss the common bacterial infections that occur in patients living with HIV and provide mechanistic insights into how the intercellular communication of miRNAs results in cellular dysfunction.
Collapse
Affiliation(s)
- Zin Mar Htun
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of 0Nebraska Medical Center, Omaha, NE, USA
| | - Muhammad H Gul
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of 0Nebraska Medical Center, Omaha, NE, USA
| | - Ruxana T Sadikot
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of 0Nebraska Medical Center, Omaha, NE, USA.
- VA Nebraska Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
18
|
Kaul S, Kaur I, Mehta S, Singal A. Cutaneous tuberculosis. Part I: Pathogenesis, classification, and clinical features. J Am Acad Dermatol 2023; 89:1091-1103. [PMID: 35149149 DOI: 10.1016/j.jaad.2021.12.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/12/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022]
Abstract
Tuberculosis is an ancient disease that continues to affect an estimated 10 million people per year and is responsible for 1.4 million deaths per year. Additionally, the HIV epidemic and multidrug resistance present challenges to disease control. Cutaneous tuberculosis is an uncommon, often indolent, manifestation of mycobacterial infection that has a varied presentation. Its diagnosis is challenging, as lesions mimic other, more common conditions and microbiological confirmation is often not possible. Cutaneous tuberculosis can be broadly categorized into multibacillary and paucibacillary forms. Approximately one-third of skin tuberculosis is associated with systemic involvement. By recognizing cutaneous tuberculosis early, dermatologists can play an important role in disease control. The first article in this 2-part continuing medical education series describes the latest epidemiology, microbiology, and pathogenesis of tuberculosis. Furthermore, we review the classification, clinical manifestations, common clinical differentials, and systemic involvement that occur in cutaneous tuberculosis.
Collapse
Affiliation(s)
- Subuhi Kaul
- Department of Internal Medicine, John H Stroger Hospital of Cook County, Chicago, Illinois
| | | | - Shilpa Mehta
- Division of Dermatology, John H Stroger Hospital of Cook County, Chicago, Illinois.
| | - Archana Singal
- Department of Dermatology, University College of Medical Sciences & GTB Hospital, Delhi, India
| |
Collapse
|
19
|
Qi CC, Xu LR, Zhao CJ, Zhang HY, Li QY, Liu MJ, Zhang YX, Tang Z, Ma XX. Prevalence and risk factors of tuberculosis among people living with HIV/AIDS in China: a systematic review and meta-analysis. BMC Infect Dis 2023; 23:584. [PMID: 37674103 PMCID: PMC10481577 DOI: 10.1186/s12879-023-08575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
OBJECTIVE To estimate the prevalence and risk factors associated with tuberculosis (TB) among people living with human immunodeficiency virus (HIV) infection/acquired immunodeficiency syndrome (AIDS) in China. METHODS A systematic review and meta-analysis were conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. After the literature was screened based on the inclusion and exclusion criteria, STATA® version 17.0 software was used for the meta-analysis. The heterogeneity among study data was assessed using I2 statistics. Subgroup analysis and meta-regressions were performed to further explore the source of heterogeneity. RESULTS A total of 5241 studies were retrieved. Of these, 44 studies were found to be eligible. The pooled prevalence of HIV/TB co-infection was 6.0%. The risk factors for HIV/TB co-infection included a low CD4+ T cell count, smoking, intravenous drug use and several other sociodemographic and clinical factors. Bacillus Calmette-Guérin (BCG) vaccination history was a protective factor. CONCLUSION A high prevalence of TB was observed among people living with HIV/AIDS in China. Low CD4+ T cell count, smoking, and intravenous drug use were the primary risk factors for HIV/TB co-infection, whereas BCG vaccination history was a protective factor. Checking for TB should be prioritized in HIV screening and healthcare access. SYSTEMATIC REVIEW REGISTRATION Registered on PROSPERO, Identifier: CRD42022297754.
Collapse
Affiliation(s)
- Cong-Cong Qi
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Li-Ran Xu
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China.
- Key Laboratory in Chinese Medicine for the Prevention and Treatment of Viral Diseases in Henan Province, Zhengzhou, Henan Province, China.
- The First Affiliated Hospital of Henan University of Chinese Medicine, Renmin Road 19, Jinshui District, Zhengzhou City, Henan Province, 450000, China.
| | - Chang-Jia Zhao
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Hai-Yan Zhang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Qing-Ya Li
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Mei-Jun Liu
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Ye-Xuan Zhang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Zhou Tang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Xiu-Xia Ma
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| |
Collapse
|
20
|
Wu R, Li S, Liu Y, Zhang H, Liu D, Liu Y, Chen W, Wang F. A high proportion of caseous necrosis, abscess, and granulation tissue formation in spinal tuberculosis. Front Microbiol 2023; 14:1230572. [PMID: 37645226 PMCID: PMC10461047 DOI: 10.3389/fmicb.2023.1230572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
The special blood circulation, anatomy, and tissue structure of the spine may lead to significant differences in pathological features and drug resistance between spinal tuberculosis and pulmonary tuberculosis. Here, we collected 168 spinal tuberculosis cases and 207 pulmonary tuberculosis cases, and compared their clinical and pathological features as well as drug resistance. From the anatomical location, the highest incidence was of lumbar tuberculosis, followed by thoracic tuberculosis. PET-CT scans showed increased FDG uptake in the diseased vertebrae, discernible peripheral soft tissue shadow, visible internal capsular shadow, and an abnormal increase in FDG uptake. MRI showed infectious lesions in the diseased vertebral body, formation of paravertebral and bilateral psoas muscle abscess, and edema of surrounding soft tissues. As with control tuberculosis, the typical pathological features of spinal tuberculosis were chronic granulomatous inflammation with caseous necrosis. The incidence of granulomas was not statistically different between the groups. However, the proportions of caseous necrosis, acute inflammation, abscess, exudation, and granulation tissue formation in the spinal tuberculosis group were all significantly increased relative to the control tuberculosis group. Compared to the control tuberculosis group, the incidences of resistance to rifampicin (RFP) + isoniazid (INH) + streptomycin (STR) and INH + ethambutol (EMB) were lower in the spinal tuberculosis group, while the incidences of resistance to RFP + INH + EMB and RFP + EMB were higher. Moreover, we also found some differences in drug-resistance gene mutations. In conclusion, there are noticeable differences between spinal Mycobacterium tuberculosis and pulmonary tuberculosis in pathological characteristics, drug resistance, and drug resistance gene mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen Chen
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fenghua Wang
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Adeoye B, Nakiyingi L, Moreau Y, Nankya E, Olson AJ, Zhang M, Jacobson KR, Gupta A, Manabe YC, Hosseinipour MC, Kumwenda J, Sagar M. Mycobacterium tuberculosis disease associates with higher HIV-1-specific antibody responses. iScience 2023; 26:106631. [PMID: 37168567 PMCID: PMC10165194 DOI: 10.1016/j.isci.2023.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the most common infection among people with HIV (PWH). Mtb disease-associated inflammation could affect HIV-directed immune responses in PWH. We show that HIV antibodies are broader and more potent in PWH in the presence as compared to the absence of Mtb disease. With co-existing Mtb disease, the virus in PWH also encounters unique antibody selection pressure. The Mtb-linked HIV antibody enhancement associates with specific mediators important for B cell and antibody development. This Mtb humoral augmentation does not occur due to cross-reactivity, a generalized increase in all antibodies, or differences in duration or amount of antigen exposure. We speculate that the co-localization of Mtb and HIV in lymphatic tissues leads to the emergence of potent HIV antibodies. PWH's Mtb disease status has implications for the future use of HIV broadly neutralizing antibodies as prophylaxis or treatment and the induction of better humoral immunity.
Collapse
Affiliation(s)
- Bukola Adeoye
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lydia Nakiyingi
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Yvetane Moreau
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Ethel Nankya
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alex J. Olson
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Mo Zhang
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Karen R. Jacobson
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Amita Gupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yukari C. Manabe
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Manish Sagar
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - AIDS Clinical Trials Group A5274 (REMEMBER) Study Team
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
- University of Malawi College of Medicine, Blantyre, Malawi
| |
Collapse
|
22
|
Larson EC, Ellis AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, Menezes YK, Ameel CL, Fillmore DJ, Pergalske SM, Juno JA, Maiello P, White AG, Borish HJ, Godfrey DI, Kent SJ, Ndhlovu LC, O’Connor SL, Scanga CA. Host Immunity to Mycobacterium tuberculosis Infection Is Similar in Simian Immunodeficiency Virus (SIV)-Infected, Antiretroviral Therapy-Treated and SIV-Naïve Juvenile Macaques. Infect Immun 2023; 91:e0055822. [PMID: 37039653 PMCID: PMC10187125 DOI: 10.1128/iai.00558-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic mechanisms involved in TB progression in both HIV-naive and HIV-infected children have not been explored. Much of our current understanding is based on human studies in adults and adult animal models. In this study, we sought to model childhood HIV/Mycobacterium tuberculosis (Mtb) coinfection in the setting of ART and characterize T cells during TB progression. Macaques equivalent to 4 to 8 year-old children were intravenously infected with SIVmac239M, treated with ART 3 months later, and coinfected with Mtb 3 months after initiating ART. SIV-naive macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden did not differ between SIV-infected, ART-treated and SIV-naive macaques, although lung Mtb burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies of CD4+ and CD8+ T cells and unconventional T cell subsets (Vγ9+ γδ T cells, MAIT cells, and NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naive macaques over the course of Mtb infection, with the exception of CCR5+ CD4+ and CD8+ T cells which were slightly lower. CD4+ and CD8+ T cell frequencies did not differ in the lung granulomas. Immune checkpoint marker levels were similar, although ki-67 levels in CD8+ T cells were elevated. Thus, ART treatment of juvenile macaques, 3 months after SIV infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-naive macaques.
Collapse
Affiliation(s)
- Erica C. Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy L. Ellis
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abigail K. Gubernat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Janelle L. Gleim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Yonne K. Menezes
- Department of Immunobiology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel J. Fillmore
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Skyler M. Pergalske
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Centre Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Disease, Weill Cornell Medicine, New York, New York, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Wisconsin, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Motlhaoleng K, Moropeng L, Abraham P, Moloantoa T. Healthcare workers' knowledge and practice of the South African national tuberculosis management guidelines. S Afr Med J 2023; 113:54-58. [PMID: 37170603 DOI: 10.7196/samj.2023.v113i5.16658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) remains a global public health concern. The 2014 South African (SA) national TB management guidelines were developed to decrease the burden of TB, but implementation remains a challenge. OBJECTIVES To estimate healthcare workers' level of knowledge about the national TB management guidelines and to assess the implementation of these guidelines. METHODS A cross-sectional descriptive study was conducted in four randomly selected health facilities in Dr Kenneth Kaunda district, North West Province, SA. We administered a TB knowledge questionnaire and reviewed TB registers and 204 patient files. RESULTS A total of 38 participants completed the TB knowledge questionnaire. The majority were professional nurses (89%). The participants' mean (standard deviation) age was 46 (8) years, and the median (interquartile range) career length was 10 (8 - 17) years. Inadequate knowledge of the national TB management guidelines was revealed in 12 participants (32%). The review of the TB register showed that 163 153 patients were screened for TB. Of these, 9 308 (6%) had presumptive TB, 8 116 (87%) had an Xpert test and 1 292 (16%) had positive Xpert results. Overall, 1 150 (12%) of the patients with presumptive TB were diagnosed with drug-sensitive TB and started treatment based on laboratory results and a clinical diagnosis. Of this sample, 999 patients (87%) were treated successfully. The patient file review showed that a total of 197 patients (97%) received the correct treatment dose according to body weight and treatment phase. Smear microscopy was consistently done throughout the intensive and continuation phases of TB treatment. Body weight was monitored in 199 patients (98%). Contact investigation was conducted for 133 patients (65%), and there was evidence that child contacts aged <5 years were started on isoniazid preventive therapy. Only 110 patients (54%) had documented HIV status. Of these, 66 (60%) were HIV positive, and 39 (59%) of them received antiretroviral therapy. Body mass index was monitored in 55 patients (27%). Eighty (39%) of the patients with TB were women of childbearing potential, and only 8 (10%) of them had their pregnancy test results recorded. Treatment side-effects were reported in 17 patient files (8%); 13 (76%) were managed and 8 (62%) had resolved side-effects. CONCLUSION Most participants had adequate knowledge of the national TB management guidelines. A high TB treatment success rate was noted, along with some good practices. The study also highlights several knowledge and practice gaps that can be overcome by measures such as quality audits to improve record keeping. Adequate training of healthcare workers, sustaining and updating knowledge through continuous training, and strengthened supervision mechanisms to ensure compliance with the guidelines are recommended.
Collapse
Affiliation(s)
- K Motlhaoleng
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa; Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - L Moropeng
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - P Abraham
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - T Moloantoa
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
24
|
Chetty C, Musekwa E, Chapanduka ZC. The value of bone marrow examinations performed in the investigation of HIV infected patients with cytopenias. Int J Lab Hematol 2023. [PMID: 37129086 DOI: 10.1111/ijlh.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Bone marrow examination (BME) is a reliable and effective tool in the diagnosis of many haematological and non-haematological diseases and may be used to investigate unexplained cytopenia in human immunodeficiency virus (HIV) infected patients. The objective of this study was to determine the diagnoses made, diagnostic yield and unique diagnostic yield of BMEs performed to investigate cytopenias in HIV infected patients. METHOD A retrospective cross-sectional descriptive study was performed involving all BMEs performed on HIV-infected adult patients with the main indication of unexplained cytopenia over a period of 5 years and 4 months. Data was extracted from the National Health Laboratory Service's laboratory information system and clinicians' BME request forms. RESULTS The study included 128 BMEs, performed on 124 patients. The diagnostic yield was 32% and the unique diagnostic yield was 30.5%. The most common diagnosis was pure red cell aplasia (10.9%), followed by immune thrombocytopenic purpura (ITP) (7%), iron deficiency anaemia (6.3%), malignancy (4.7%) and disseminated infection (3.9%). CONCLUSION BME is a useful investigation for unexplained cytopenia in HIV-infected patients. Less invasive investigations to exclude haematinic deficiencies, haemolysis and sepsis are recommended on an individualised basis prior to BME. In HIV-infected patients with therapy refractory ITP or ITP with atypical clinicopathological findings, BME is strongly recommended. As Mycobacterial and other infections are common in this group of patients, staining and culture of specimens are advised if BME is undertaken.
Collapse
Affiliation(s)
- Carissa Chetty
- Division of Haematological Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service (NHLS), Tygerberg Hospital, South Africa
| | - Ernest Musekwa
- Division of Haematological Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service (NHLS), Tygerberg Hospital, South Africa
| | - Zivanai Cuthbert Chapanduka
- Division of Haematological Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service (NHLS), Tygerberg Hospital, South Africa
| |
Collapse
|
25
|
Matsuda R, Sorobetea D, Zhang J, Peterson ST, Grayczyk JP, Herrmann B, Yost W, O’Neill R, Bohrer AC, Lanza M, Assenmacher CA, Mayer-Barber KD, Shin S, Brodsky IE. A TNF-IL-1 circuit controls Yersinia within intestinal granulomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537749. [PMID: 37197029 PMCID: PMC10176537 DOI: 10.1101/2023.04.21.537749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tumor necrosis factor (TNF) is a pleiotropic inflammatory cytokine that mediates antimicrobial defense and granuloma formation in response to infection by numerous pathogens. Yersinia pseudotuberculosis colonizes the intestinal mucosa and induces recruitment of neutrophils and inflammatory monocytes into organized immune structures termed pyogranulomas that control the bacterial infection. Inflammatory monocytes are essential for control and clearance of Yersinia within intestinal pyogranulomas, but how monocytes mediate Yersinia restriction is poorly understood. Here, we demonstrate that TNF signaling in monocytes is required for bacterial containment following enteric Yersinia infection. We further show that monocyte-intrinsic TNFR1 signaling drives production of monocyte-derived interleukin-1 (IL-1), which signals through IL-1 receptor on non-hematopoietic cells to enable pyogranuloma-mediated control of Yersinia infection. Altogether, our work reveals a monocyte-intrinsic TNF-IL-1 collaborative circuit as a crucial driver of intestinal granuloma function, and defines the cellular target of TNF signaling that restricts intestinal Yersinia infection.
Collapse
Affiliation(s)
- Rina Matsuda
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Daniel Sorobetea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jenna Zhang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Stefan T. Peterson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - James P. Grayczyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Beatrice Herrmann
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Winslow Yost
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Rosemary O’Neill
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Lanza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Igor E. Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
26
|
Carrisoza-Urbina J, Bedolla-Alva MA, Hernández-Pando R, López-Macías C, Huerta-Yepez S, Baay-Guzmán G, Juárez-Ramírez M, Gutiérrez-Pabello JA. Mycobacterium bovis naturally infected calves present a higher bacterial load and proinflammatory response than adult cattle. Front Vet Sci 2023; 10:1105716. [PMID: 37180066 PMCID: PMC10172680 DOI: 10.3389/fvets.2023.1105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Granulomas are characteristic bovine tuberculosis lesions; studying this structure has improved our understanding of tuberculosis pathogenesis. However, the immune response that develops in granulomas of young cattle naturally infected with Mycobacterium bovis (M. bovis) has not been fully studied. Our previous work described an atypical pattern in granulomatous lesions of cattle younger than 4 months (calves) naturally infected previously M. bovis that did not correspond to the histological classification previously proposed. Histologically, granulomas from calves lack a connective tissue capsule and have fewer multinucleated giant cells (MGCs) and more acid-fast bacilli (AFB) than the classic tuberculosis lesions found in cattle older than 1 year (adults); this suggests a deficient immune response against M. bovis infection in young animals. Therefore, we used IHC and digital pathology analysis to characterize the in situ immune response of granulomas from young and adult cattle. The immunolabeling quantification showed that granulomas from calves had more mycobacteria, CD3+ cells, IFN-γ, TNF-α, and inducible nitric oxide synthase (iNOS) than those of adult cattle. Furthermore, calf granulomas showed lower immunolabeling of MAC387+, CD79+, and WC1+ cells without connective tissue surrounding the lesion and were associated with less vimentin, Alpha Smooth Muscle Actin (α-SMA), and TGF-β compared with granulomas from adult cattle. Our results suggest that the immune responses in granulomas of cattle naturally infected with M. bovis may be age dependent. This implies that an exacerbated proinflammatory response may be associated with active tuberculosis, producing more necrosis and a lower microbicidal capacity in the granulomas of calves naturally infected with M. bovis.
Collapse
Affiliation(s)
- Jacobo Carrisoza-Urbina
- Laboratorio de Investigación en Tuberculosis y Brucelosis, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mario A. Bedolla-Alva
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Guillermina Baay-Guzmán
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Mireya Juárez-Ramírez
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José A. Gutiérrez-Pabello
- Laboratorio de Investigación en Tuberculosis y Brucelosis, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: José A. Gutiérrez-Pabello,
| |
Collapse
|
27
|
Hoerter A, Arnett E, Schlesinger LS, Pienaar E. Systems biology approaches to investigate the role of granulomas in TB-HIV coinfection. Front Immunol 2022; 13:1014515. [PMID: 36405707 PMCID: PMC9670175 DOI: 10.3389/fimmu.2022.1014515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 09/29/2023] Open
Abstract
The risk of active tuberculosis disease is 15-21 times higher in those coinfected with human immunodeficiency virus-1 (HIV) compared to tuberculosis alone, and tuberculosis is the leading cause of death in HIV+ individuals. Mechanisms driving synergy between Mycobacterium tuberculosis (Mtb) and HIV during coinfection include: disruption of cytokine balances, impairment of innate and adaptive immune cell functionality, and Mtb-induced increase in HIV viral loads. Tuberculosis granulomas are the interface of host-pathogen interactions. Thus, granuloma-based research elucidating the role and relative impact of coinfection mechanisms within Mtb granulomas could inform cohesive treatments that target both pathogens simultaneously. We review known interactions between Mtb and HIV, and discuss how the structure, function and development of the granuloma microenvironment create a positive feedback loop favoring pathogen expansion and interaction. We also identify key outstanding questions and highlight how coupling computational modeling with in vitro and in vivo efforts could accelerate Mtb-HIV coinfection discoveries.
Collapse
Affiliation(s)
- Alexis Hoerter
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Eusondia Arnett
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Larry S. Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
28
|
Burger Z, Aung HT, Seifert M, Mar TT, Harris V, Colman RE, Rodwell TC, Aung ST. Contributions of GeneXpert ® to TB diagnosis in Myanmar. Int J Tuberc Lung Dis 2022; 26:875-879. [PMID: 35996278 PMCID: PMC9423018 DOI: 10.5588/ijtld.22.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: Xpert® MTB/RIF, a rapid, molecular TB diagnostic assay, can detect Mycobacterium tuberculosis and rifampin resistance directly from clinical sputum samples in <2 h with high sensitivity and specificity. The added diagnostic value of Xpert over smear microscopy at a national level in Myanmar has not been previously reported.METHODS: We evaluated 339,358 Xpert and demographic records captured from January 2015 to December 2018 as part of the Myanmar National TB Program Data Utilization and Connectivity Project to examine the additional diagnostic yield of Xpert relative to smear for the detection of M. tuberculosis for TB diagnosis in Myanmar, with a focus on people living with HIV (PLHIV) and sample type.RESULTS: Use of Xpert increased TB case detection by 40% compared to smear microscopy results. Among PLHIV, use of Xpert increased TB case detection by almost 100% compared to smear microscopy results.CONCLUSION: Xpert testing identified more patients with TB than smear microscopy alone, particularly in cohorts with significant proportions of PLHIV. The use of Xpert as a screening tool in countries with a high burden of TB could lead to significantly increased diagnosis of TB at a regional and national level.
Collapse
Affiliation(s)
- Z Burger
- University of California San Diego, La Jolla, CA, USA
| | - H T Aung
- Clinton Health Access Initiative, Yangon, Myanmar
| | - M Seifert
- University of California San Diego, La Jolla, CA, USA
| | - T T Mar
- Ministry of Health and Sports, Naypyitaw, Myanmar
| | - V Harris
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - R E Colman
- University of California San Diego, La Jolla, CA, USA
| | - T C Rodwell
- University of California San Diego, La Jolla, CA, USA
| | - S T Aung
- Ministry of Health and Sports, Naypyitaw, Myanmar
| |
Collapse
|
29
|
Costales C, Crump JA, Mremi AR, Amsi PT, Kalengo NH, Kilonzo KG, Kinabo G, Lwezaula BF, Lyamuya F, Marandu A, Mbwasi R, Mmbaga BT, Mosha C, Carugati M, Madut DB, Nelson AM, Maze MJ, Matkovic E, Zaki SR, Maro VP, Rubach MP. Performance of Xpert Ultra nasopharyngeal swab for identification of tuberculosis deaths in northern Tanzania. Clin Microbiol Infect 2022; 28:1150.e1-1150.e6. [PMID: 35358686 PMCID: PMC11566265 DOI: 10.1016/j.cmi.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Numerous tuberculosis (TB) deaths remain undetected in low-resource endemic settings. With autopsy-confirmed tuberculosis as our standard, we assessed the diagnostic performance of Xpert MTB/RIF Ultra (Ultra; Cepheid) on nasopharyngeal specimens collected postmortem. METHODS From October 2016 through May 2019, we enrolled pediatric and adult medical deaths to a prospective autopsy study at two referral hospitals in northern Tanzania with next-of-kin authorization. We swabbed the posterior nasopharynx prior to autopsy and tested the samples later by Ultra. At autopsy we collected lung, liver, and, when possible, cerebrospinal fluid for mycobacterial culture and histopathology. Confirmed tuberculosis was defined as Mycobacterium tuberculosis complex recovery by culture with consistent tissue histopathology findings; decedents with only histopathology findings, including acid-fast staining or immunohistochemistry, were defined as probable tuberculosis. RESULTS Of 205 decedents, 78 (38.0%) were female and median (range) age was 45 (0,96) years. Twenty-seven (13.2%) were found to have tuberculosis at autopsy, 22 (81.5%) confirmed and 5 (18.5%) probable. Ultra detected M. tuberculosis complex from the nasopharynx in 21 (77.8%) of 27 TB cases (sensitivity 70.4% [95% confidence interval {CI} 49.8-86.2%], specificity 98.9% [95% CI 96.0-99.9%]). Among confirmed TB, the sensitivity increased to 81.8% (95% CI 59.7-94.8%). Tuberculosis was not included as a death certificate diagnosis in 14 (66.7%) of the 21 MTBc detections by Ultra. DISCUSSION Nasopharyngeal Ultra was highly specific for identifying in-hospital tuberculosis deaths, including unsuspected tuberculosis deaths. This approach may improve tuberculosis death enumeration in high-burden countries.
Collapse
Affiliation(s)
- Cristina Costales
- Division of Infectious Diseases and International Health, Duke University, Durham, NC, USA; Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - John A Crump
- Division of Infectious Diseases and International Health, Duke University, Durham, NC, USA; Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Duke Global Health Institute, Duke University, Durham, NC, USA; Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Alex R Mremi
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Patrick T Amsi
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | | | - Kajiru G Kilonzo
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Grace Kinabo
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | | | - Furaha Lyamuya
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | | | - Ronald Mbwasi
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Blandina T Mmbaga
- Duke Global Health Institute, Duke University, Durham, NC, USA; Kilimanjaro Christian Medical University College, Moshi, Tanzania; Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Calvin Mosha
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Manuela Carugati
- Division of Infectious Diseases and International Health, Duke University, Durham, NC, USA
| | - Deng B Madut
- Division of Infectious Diseases and International Health, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA
| | | | - Michael J Maze
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Eduard Matkovic
- Infectious Disease Pathology Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sherif R Zaki
- Infectious Disease Pathology Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Venance P Maro
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Matthew P Rubach
- Division of Infectious Diseases and International Health, Duke University, Durham, NC, USA; Kilimanjaro Christian Medical Centre, Moshi, Tanzania; Duke Global Health Institute, Duke University, Durham, NC, USA; Kilimanjaro Clinical Research Institute, Moshi, Tanzania; Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore.
| |
Collapse
|
30
|
Moriarty RV, Rodgers MA, Ellis AL, Balgeman AJ, Larson EC, Hopkins F, Chase MR, Maiello P, Fortune SM, Scanga CA, O’Connor SL. Spontaneous Control of SIV Replication Does Not Prevent T Cell Dysregulation and Bacterial Dissemination in Animals Co-Infected with M. tuberculosis. Microbiol Spectr 2022; 10:e0172421. [PMID: 35467372 PMCID: PMC9241861 DOI: 10.1128/spectrum.01724-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/08/2022] [Indexed: 12/27/2022] Open
Abstract
Individuals co-infected with HIV and Mycobacterium tuberculosis (Mtb) are more likely to develop severe tuberculosis (TB) disease than HIV-naive individuals. To understand how a chronic pre-existing Simian immunodeficiency virus (SIV) infection impairs the early immune response to Mtb, we used the Mauritian cynomolgus macaque (MCM) model of SIV/Mtb co-infection. We examined the relationship between peripheral viral control and Mtb burden, Mtb dissemination, and T cell function between SIV+ spontaneous controllers, SIV+ non-controllers, and SIV-naive MCM who were challenged with a barcoded Mtb Erdman strain 6 months post-SIV infection and necropsied 6 weeks post-Mtb infection. Mycobacterial burden was highest in the SIV+ non-controllers in all assessed tissues. In lung granulomas, the frequency of TNF-α-producing CD4+ T cells was reduced in all SIV+ MCM, but IFNγ-producing CD4+ T cells were only lower in the SIV+ non-controllers. Further, while all SIV+ MCM had more PD1+ and TIGIT+ T cells in the lung granulomas relative to SIV-naive MCM, SIV+ controllers exhibited the highest frequency of cells expressing these markers. To measure the effect of SIV infection on within-host bacterial dissemination, we sequenced the molecular barcodes of Mtb present in each tissue and characterized the Mtb population complexity. While Mtb population complexity was not associated with SIV infection group, lymph nodes had increased complexity when compared with lung granulomas across all groups. These results provide evidence that SIV+ animals, independent of viral control, exhibit a dysregulated T cell immune response and enhanced dissemination of Mtb, likely contributing to the poor TB disease course across all SIV/Mtb co-infected animals. IMPORTANCE HIV and TB remain significant global health issues, despite the availability of treatments. Individuals with HIV, including those who are virally suppressed, are at an increased risk to develop and succumb to severe TB disease when compared with HIV-naive individuals. Our study aims to understand the relationship between the extent of SIV replication, mycobacterial growth, and T cell function in the tissues of co-infected Mauritian cynomolgus macaques during the first 6 weeks of Mtb infection. Here we demonstrate that increased viral replication is associated with increased bacterial burden in the tissues and impaired T cell responses, and that the immunological damage attributed to virus infection is not fully eliminated when animals spontaneously control virus replication.
Collapse
Affiliation(s)
- Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amy L. Ellis
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erica C. Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Forrest Hopkins
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Michael R. Chase
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Cronan MR. In the Thick of It: Formation of the Tuberculous Granuloma and Its Effects on Host and Therapeutic Responses. Front Immunol 2022; 13:820134. [PMID: 35320930 PMCID: PMC8934850 DOI: 10.3389/fimmu.2022.820134] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The defining pathology of tuberculosis is the granuloma, an organized structure derived from host immune cells that surrounds infecting Mycobacterium tuberculosis. As the location of much of the bacteria in the infected host, the granuloma is a central point of interaction between the host and the infecting bacterium. This review describes the signals and cellular reprogramming that drive granuloma formation. Further, as a central point of host-bacterial interactions, the granuloma shapes disease outcome by altering host immune responses and bacterial susceptibility to antibiotic treatment, as discussed herein. This new understanding of granuloma biology and the signaling behind it highlights the potential for host-directed therapies targeting the granuloma to enhance antibiotic access and tuberculosis-specific immune responses.
Collapse
Affiliation(s)
- Mark R. Cronan
-
In Vivo Cell Biology of Infection Group, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
32
|
Abdullah I, Subramony N, Musekwa E, Nell EM, Alzanad F, Chetty C, Gantana E, Lohlun RK, Cerfontein W, Cochrane B, Chapanduka ZC. Indications and diagnostic value of bone marrow examination in HIV-positive individuals: A 3-year review at Tygerberg Hospital. S Afr J Infect Dis 2021; 36:273. [PMID: 34522695 PMCID: PMC8424746 DOI: 10.4102/sajid.v36i1.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/06/2021] [Indexed: 11/01/2022] Open
Abstract
Background Bone marrow examination is a useful diagnostic tool in human immunodeficiency virus (HIV)-positive patients presenting with cytopenias and fever. However, its role in the afebrile and asymptomatic patient presenting with an isolated cytopenia is not well established. This study was conducted to determine the indications for bone marrow examination and its diagnostic yield, in HIV-positive patients at Tygerberg Hospital. Methods A retrospective, cross-sectional descriptive study was performed over a 3-year period from 01 September 2015 to 31 August 2018. The bone marrow examination reports for the HIV-positive patients who had a bone marrow examination during the study period were retrieved. Clinical and laboratory information was captured. Results Altogether 374 bone marrow reports for HIV-positive patients were found. The indication of the bone marrow examination included investigation of unexplained cytopenias, suspected haematological malignancies, follow-up examination for patients with known haematological diseases, staging of haematological or non-haematological malignancies and investigation of suspected disseminated infection. The patients' median age was 43 years and the interquartile range was 27-60 years. There was a slight female predominance with females 51% and males 49%. The diagnostic yield was 33.7%. Acute leukaemia and lymphoma were the most common diagnoses. Haematinic deficiency and pure red cell aplasia were found in the majority of cases with isolated anaemia. All cases with isolated thrombocytopenia were due to immune thrombocytopenia. Conclusion Bone marrow examination is a useful investigation for HIV-positive patients with cytopenias, suspected haematological malignancy and lymphoma staging. However, its early use in patients with isolated anaemia and isolated thrombocytopenia is questionable.
Collapse
Affiliation(s)
- Ibtisam Abdullah
- Department of Haematological Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Nadhiya Subramony
- Department of Haematological Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Ernest Musekwa
- Department of Haematological Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Erica-Mari Nell
- Department of Haematological Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Fatima Alzanad
- Department of Haematological Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Carissa Chetty
- Department of Haematological Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Ethan Gantana
- Department of Haematological Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Robert K Lohlun
- Department of Haematological Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Wardah Cerfontein
- Department of Haematological Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Bridget Cochrane
- Department of Haematological Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Zivanai C Chapanduka
- Department of Haematological Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
33
|
Wells G, Glasgow JN, Nargan K, Lumamba K, Madansein R, Maharaj K, Hunter RL, Naidoo T, Coetzer L, le Roux S, du Plessis A, Steyn AJC. Micro-Computed Tomography Analysis of the Human Tuberculous Lung Reveals Remarkable Heterogeneity in Three-dimensional Granuloma Morphology. Am J Respir Crit Care Med 2021; 204:583-595. [PMID: 34015247 PMCID: PMC8491258 DOI: 10.1164/rccm.202101-0032oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Our current understanding of tuberculosis (TB) pathophysiology is limited by a reliance on animal models, the paucity of human TB lung tissue, and traditional histopathological analysis, a destructive two-dimensional approach that provides limited spatial insight. Determining the three-dimensional (3D) structure of the necrotic granuloma, a characteristic feature of TB, will more accurately inform preventive TB strategies.Objectives: To ascertain the 3D shape of the human tuberculous granuloma and its spatial relationship with airways and vasculature within large lung tissues.Methods: We characterized the 3D microanatomical environment of human tuberculous lungs by using micro computed tomography, histopathology, and immunohistochemistry. By using 3D segmentation software, we accurately reconstructed TB granulomas, vasculature, and airways in three dimensions and confirmed our findings by using histopathology and immunohistochemistry.Measurements and Main Results: We observed marked heterogeneity in the morphology, volume, and number of TB granulomas in human lung sections. Unlike depictions of granulomas as simple spherical structures, human necrotic granulomas exhibit complex, cylindrical, branched morphologies that are connected to the airways and shaped by the bronchi. The use of 3D imaging of human TB lung sections provides unanticipated insight into the spatial organization of TB granulomas in relation to the airways and vasculature.Conclusions: Our findings highlight the likelihood that a single, structurally complex lesion could be mistakenly viewed as multiple independent lesions when evaluated in two dimensions. In addition, the lack of vascularization within obstructed bronchi establishes a paradigm for antimycobacterial drug tolerance. Lastly, our results suggest that bronchogenic spread of Mycobacterium tuberculosis reseeds the lung.
Collapse
Affiliation(s)
- Gordon Wells
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Kievershen Nargan
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Kapongo Lumamba
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Kameel Maharaj
- Department of Cardiothoracic Surgery, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Robert L. Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Threnesan Naidoo
- Department of Anatomical Pathology, National Health Laboratory Service, Inkosi Albert Luthuli Central Hospital, Durban, South Africa; and
| | - Llelani Coetzer
- Computed Tomography Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa
| | - Stephan le Roux
- Computed Tomography Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa
| | - Anton du Plessis
- Computed Tomography Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
34
|
Trunfio M, Scabini S, Mornese Pinna S, Rugge W, Alcantarini C, Pirriatore V, Di Perri G, Bonora S, Castelnuovo B, Calcagno A. The Manifesto of Pharmacoenosis: Merging HIV Pharmacology into Pathocoenosis and Syndemics in Developing Countries. Microorganisms 2021; 9:microorganisms9081648. [PMID: 34442727 PMCID: PMC8399770 DOI: 10.3390/microorganisms9081648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Pathocoenosis and syndemics theories have emerged in the last decades meeting the frequent need of better understanding interconnections and reciprocal influences that coexistent communicable and non-communicable diseases play in a specific population. Nevertheless, the attention to pharmacokinetic and pharmacodynamics interactions of co-administered drugs for co-present diseases is to date limitedly paid to alert against detrimental pharmacological combos. Low and middle-income countries are plagued by the highest burden of HIV, tuberculosis, malaria, and helminthiasis, and they are experiencing an alarming rise in non-communicable disorders. In these settings, co-infections and comorbidities are common, but no tailored prescribing nor clinical trials are used to assess and exploit existing opportunities for the simultaneous and potentially synergistic treatment of intertwined diseases. Pharmacoenosis is the set of interactions that take place within a host as well as within a population due to the compresence of two or more diseases and their respective treatments. This framework should pilot integrated health programmes and routine clinical practice to face drug–drug interaction issues, avoiding negative co-administrations but also exploiting potential favourable ones to make the best out of the worst situations; still, to date, guiding data on the latter possibility is limited. Therefore, in this narrative review, we have briefly described both detrimental and favourable physiopathological interactions between HIV and other common co-occurring pathologies (malaria, tuberculosis, helminths, and cardiovascular disorders), and we have presented examples of advantageous potential pharmacological interactions among the drugs prescribed for these diseases from a pharmacokinetics, pharmacodynamics, and pharmacogenetics standpoint.
Collapse
Affiliation(s)
- Mattia Trunfio
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
- Correspondence: ; Tel.: +39-011-439-3884
| | - Silvia Scabini
- Department of Medical Sciences, University of Torino, Città della Salute e della Scienza, 10150 Torino, Italy; (S.S.); (S.M.P.)
| | - Simone Mornese Pinna
- Department of Medical Sciences, University of Torino, Città della Salute e della Scienza, 10150 Torino, Italy; (S.S.); (S.M.P.)
| | - Walter Rugge
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
| | - Chiara Alcantarini
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
| | - Veronica Pirriatore
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
| | - Giovanni Di Perri
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
| | - Stefano Bonora
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
| | - Barbara Castelnuovo
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala 22418, Uganda;
| | - Andrea Calcagno
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
| |
Collapse
|
35
|
Mousquer GT, Peres A, Fiegenbaum M. Pathology of TB/COVID-19 Co-Infection: The phantom menace. Tuberculosis (Edinb) 2021; 126:102020. [PMID: 33246269 PMCID: PMC7669479 DOI: 10.1016/j.tube.2020.102020] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB) and coronavirus disease 2019 (COVID-19) are currently the two main causes of death among infectious diseases. There is an increasing number of studies trying to elucidate the interactions between Mycobacterium tuberculosis and SARS-CoV-2. Some of the first case reports point to a worsening of respiratory symptoms in co-infected TB/COVID-19 individuals. However, data from the cohort studies has shown some conflicting results. This study proposes to conduct a systematic review on the current literature on TB/COVID-19 co-infection cohorts, evaluating clinical and epidemiological data, focusing on its implications to the immune system. From an immunological perspective, the TB/COVID-19 co-infection has the potential to converge in a "perfect storm". The disorders induced by each pathogen to the immunomodulation tend to induce an unbalanced inflammatory response, which can promote the progression and worsening of both diseases. Understanding the nature of the interactions between M. tuberculosis and SARS-CoV-2 will be crucial for the development of therapeutic strategies against co-infection.
Collapse
Affiliation(s)
- Gabriel Tassi Mousquer
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| | - Alessandra Peres
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil; Basic Health Sciences Department, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| | - Marilu Fiegenbaum
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil; Basic Health Sciences Department, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
36
|
Echeverría I, de Miguel R, Asín J, Rodríguez-Largo A, Fernández A, Pérez M, de Andrés D, Luján L, Reina R. Replication of Small Ruminant Lentiviruses in Aluminum Hydroxide-Induced Granulomas in Sheep: a Potential New Factor for Viral Dissemination. J Virol 2020; 95:e01859-20. [PMID: 33115880 PMCID: PMC7944437 DOI: 10.1128/jvi.01859-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022] Open
Abstract
Aluminum (Al)-based salts are widely used adjuvants in ruminants and other species to strengthen the immune response elicited against vaccine antigen(s). However, they can lead to the formation of long-lasting granulomas composed of abundant activated macrophages. Small ruminant lentiviruses (SRLV) are widely distributed macrophage-tropic retroviruses that cause persistent infections in sheep and goats. Infected monocytes/macrophages and dendritic cells establish an inflammatory microenvironment that eventually leads to clinical manifestations. The aim of this work was to study the effect of Al-induced granulomas in the replication and pathogenesis of SRLV. Eleven adult, naturally SRLV-infected sheep showing clinical arthritis were distributed in vaccine (n = 6), adjuvant-only (n = 3), and control (n = 2) groups and inoculated with commercial Al-based vaccines, Al hydroxide adjuvant alone, or phosphate-buffered saline, respectively. In vitro studies demonstrated viral replication in Al-induced granulomas in 5 out of 10 sheep. Immunohistochemistry (IHC) evinced granular, intracytoplasmic SRLV presence in macrophages within granulomas. Viral sequences obtained from granulomas, blood monocytes, and other tissues were highly similar in most animals, suggesting virus circulation among body compartments. However, notable differences between isolated strains in granulomas and other tissues in specific animals were also noted. Interestingly, the B2 subtype was the most commonly found SRLV genotype, reaching a wider body distribution than previously described. Recombination events between genotypes B2 and A3 along the gag region were identified in two sheep. Our results indicate that Al-hydroxide-derived granulomas may represent an ideal compartment for SRLV replication, perhaps altering natural SRLV infection by providing a new, suitable target tissue.IMPORTANCE Granulomas are inflammation-derived structures elicited by foreign bodies or certain infections. Aluminum adjuvants included in vaccines induce granulomas in many species. In sheep, these are persistent and consist of activated macrophages. Small ruminant lentiviruses (SRLV), which are macrophage-tropic lentiviruses, cause a chronic wasting disease affecting animal welfare and production. Here, we studied the occurrence of SRLV in postvaccination granulomas retrieved from naturally infected ewes after vaccination or inoculation with aluminum only. SRLV infection was confirmed in granulomas by identification of viral proteins, genomic fragments, and enzymatic activity. The infecting SRLV strain, previously found exclusively in carpal joints, reached the central nervous system, suggesting that occurrence of SRLV in postvaccination granulomas may broaden tissue tropism. SRLV recombination was detected in inoculated animals, a rare event in sheep lentiviruses. Potentially, virus-host interactions within granulomas may modify viral pathogenesis and lead to more widespread infection.
Collapse
Affiliation(s)
- Irache Echeverría
- Institute of Agrobiotechnology, CSIC-Government of Navarra, Mutilva, Spain
| | - Ricardo de Miguel
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Javier Asín
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | | | - Antonio Fernández
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Marta Pérez
- Department of Animal Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
- AgriFood Institute of Aragon (IA2), Zaragoza, Spain
| | - Damián de Andrés
- Institute of Agrobiotechnology, CSIC-Government of Navarra, Mutilva, Spain
| | - Lluís Luján
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
- AgriFood Institute of Aragon (IA2), Zaragoza, Spain
| | - Ramsés Reina
- Institute of Agrobiotechnology, CSIC-Government of Navarra, Mutilva, Spain
| |
Collapse
|
37
|
Wong K, Nguyen J, Blair L, Banjanin M, Grewal B, Bowman S, Boyd H, Gerstner G, Cho HJ, Panfilov D, Tam CK, Aguilar D, Venketaraman V. Pathogenesis of Human Immunodeficiency Virus- Mycobacterium tuberculosis Co-Infection. J Clin Med 2020; 9:E3575. [PMID: 33172001 PMCID: PMC7694603 DOI: 10.3390/jcm9113575] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Given that infection with Mycobacterium tuberculosis (Mtb) is the leading cause of death amongst individuals living with HIV, understanding the complex mechanisms by which Mtb exacerbates HIV infection may lead to improved treatment options or adjuvant therapies. While it is well-understood how HIV compromises the immune system and leaves the host vulnerable to opportunistic infections such as Mtb, less is known about the interplay of disease once active Mtb is established. This review explores how glutathione (GSH) depletion, T cell exhaustion, granuloma formation, and TNF-α upregulation, as a result of Mtb infection, leads to an increase in HIV disease severity. This review also examines the difficulties of treating coinfected patients and suggests further research on the clinical use of GSH supplementation.
Collapse
Affiliation(s)
- Kevin Wong
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - James Nguyen
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Lillie Blair
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Marina Banjanin
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Bunraj Grewal
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Shane Bowman
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Hailey Boyd
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Grant Gerstner
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Hyun Jun Cho
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - David Panfilov
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Cho Ki Tam
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Delaney Aguilar
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific-NorthWest, Western University of Health Sciences, Lebanon, OR 97355, USA; (K.W.); (J.N.); (L.B.); (M.B.); (B.G.); (S.B.); (H.B.); (G.G.); (H.J.C.); (D.P.); (C.K.T.); (D.A.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
38
|
Jolobe OMP. Similarities and contrasts between paraneoplastic sarcoidosis and paraneoplastic tuberculosis. QJM 2020; 113:767-768. [PMID: 31584673 DOI: 10.1093/qjmed/hcz246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- O M P Jolobe
- Division of Medicine, Manchester Medical Society, Simon Building, Brunswick Street, Manchester, M13 9PL, UK
| |
Collapse
|
39
|
Hanberg JS, Akgün KM, Hsieh E, Fraenkel L, Justice AC. Incidence and Presentation of Sarcoidosis With and Without HIV Infection. Open Forum Infect Dis 2020; 7:ofaa441. [PMID: 33123611 DOI: 10.1093/ofid/ofaa441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
Background Case reports describe incident sarcoidosis in persons with HIV (PWH). The association between HIV and risk of sarcoidosis, and differences in presentation in PWH, have not been systematically assessed. Methods Subjects were selected from the Veterans Aging Cohort Study (VACS), a longitudinal cohort study including veterans with HIV and matched uninfected veterans. This was a prospective observational analysis in which we evaluated both the incidence (via incidence rate ratio) and presentation and treatment (by comparison of rates of organ involvement and use of medications) of sarcoidosis in PWH compared with HIV-negative controls. We also assessed risk factors (via Cox regression) associated with the development of sarcoidosis including CD4 count and viral load trajectory. Results Of 1614 patients evaluated via chart review, 875 (54%) had prevalent sarcoidosis and 325 (20%) had confirmed incident sarcoidosis. Incident sarcoidosis occurred in 59 PWH and 266 uninfected. The incidence of sarcoidosis was lower in PWH than uninfected (incidence rate ratio [IRR], 0.61; 95% CI, 0.46-0.81) and especially low in patients with unsuppressed viremia (IRR, 0.04; 95% CI, 0.02-0.08) compared with uninfected). At diagnosis of sarcoidosis, the median CD4 count among PWH was 409 cells/mm3; 77% had HIV-1 RNA <500 copies/mL. No significant differences were observed between PWH and uninfected in terms of organ involvement, disease severity, or use of oral glucocorticoids. Conclusions HIV, particularly with persistent viremia, was associated with decreased risk of incident sarcoidosis; severity and treatment were similar between PWH and uninfected.
Collapse
Affiliation(s)
- Jennifer S Hanberg
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Kathleen M Akgün
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Evelyn Hsieh
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,VA Connecticut Healthcare System, West Haven, Connecticut, USA.,Section of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Liana Fraenkel
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,VA Connecticut Healthcare System, West Haven, Connecticut, USA.,Section of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amy C Justice
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,VA Connecticut Healthcare System, West Haven, Connecticut, USA.,Yale University School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
40
|
Diedrich CR, Rutledge T, Maiello P, Baranowski TM, White AG, Borish HJ, Karell P, Hopkins F, Brown J, Fortune SM, Flynn JL, Ambrose Z, Lin PL. SIV and Mycobacterium tuberculosis synergy within the granuloma accelerates the reactivation pattern of latent tuberculosis. PLoS Pathog 2020; 16:e1008413. [PMID: 32730321 PMCID: PMC7419014 DOI: 10.1371/journal.ppat.1008413] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/11/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Human immunodeficiency virus infection is the most common risk factor for severe forms of tuberculosis (TB), regardless of CD4 T cell count. Using a well-characterized cynomolgus macaque model of human TB, we compared radiographic, immunologic and microbiologic characteristics of early (subclinical) reactivation of latent M. tuberculosis (Mtb) infection among animals subsequently infected with simian immunodeficiency virus (SIV) or who underwent anti-CD4 depletion by a depletion antibody. CD4 depleted animals had significantly fewer CD4 T cells within granulomas compared to Mtb/SIV co-infected and Mtb-only control animals. After 2 months of treatment, subclinical reactivation occurred at similar rates among CD4 depleted (5 of 7 animals) and SIV infected animals (4 of 8 animals). However, SIV-induced reactivation was associated with more dissemination of lung granulomas that were permissive to Mtb growth resulting in greater bacterial burden within granulomas compared to CD4 depleted reactivators. Granulomas from Mtb/SIV animals displayed a more robust T cell activation profile (IFN-α, IFN-γ, TNF, IL-17, IL-2, IL-10, IL-4 and granzyme B) compared to CD4 depleted animals and controls though these effectors did not protect against reactivation or dissemination, but instead may be related to increased viral and/or Mtb antigens. SIV replication within the granuloma was associated with reactivation, greater overall Mtb growth and reduced Mtb killing resulting in greater overall Mtb burden. These data support that SIV disrupts protective immune responses against latent Mtb infection beyond the loss of CD4 T cells, and that synergy between SIV and Mtb occurs within granulomas.
Collapse
Affiliation(s)
- Collin R. Diedrich
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tara Rutledge
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Pauline Maiello
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tonilynn M. Baranowski
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Alexander G. White
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - H. Jacob Borish
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Paul Karell
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Forrest Hopkins
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jessica Brown
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - JoAnne L. Flynn
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Philana Ling Lin
- Department of Pediatrics, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Fevereiro J, Sajjadi N, Fraga AG, Teixeira PM, Pedrosa J. Individual and clinical variables associated with the risk of Buruli ulcer acquisition: A systematic review and meta-analysis. PLoS Negl Trop Dis 2020; 14:e0008161. [PMID: 32267838 PMCID: PMC7170268 DOI: 10.1371/journal.pntd.0008161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/20/2020] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Buruli ulcer (BU) is a necrotizing skin disease, caused by Mycobacterium ulcerans, with poorly understood acquisition risk factors. This review aims at evaluating the importance of individual-sex, age, family ties with history of BU, gene variants-and clinical-Bacillus Calmette-Guérin (BCG) immunization, Human Immunodeficiency Virus (HIV) infection-variables in this process. METHODS A systematic review was performed considering the following databases: ClinicalTrials.gov, Cochrane Controlled Register of Trials (CENTRAL), Current Contents Connect, Embase, MEDLINE, SciELO, Scopus and Web of Science. Eligible studies were critically appraised with The Joanna Briggs Institute checklists and heterogeneity was assessed with Cochran Q-test and I2 statistic. Published demographic data was descriptively analysed and clinical data pooled within random-effects modelling for meta-analysis. RESULTS A total of 29 studies were included in the systematic review. Two randomized controlled trials (RCTs) and 21 case-control studies were selected for meta-analysis. Studies show that BU mainly affects age extremes, more preponderately males among children. Data pooled from RCTs do not reveal BCG to be protective against BU (odds ratio (OR) = 0.63; 95% CI = 0.38-1.05; I2 = 56%), a finding case-control studies appear to corroborate. HIV infection (OR = 6.80; 95% CI = 2.33-19.85; I2 = 0%) and SLC11A1 rs17235409 A allele (OR = 1.86; 95% CI = 1.25-2.77; I2 = 0%) are associated with increased prevalence of the disease. No definite conclusions can be drawn regarding the influence of previous family history of BU. DISCUSSION While available evidence warrants further robustness, these results have direct implications on current interventions and future research programs, and foster the development of more cost-effective preventive and screening measures. REGISTRATION The study was registered at PROSPERO with number CRD42019123611.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nikta Sajjadi
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro M. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
42
|
Howlett P, Du Bruyn E, Morrison H, Godsent IC, Wilkinson KA, Ntsekhe M, Wilkinson RJ. The immunopathogenesis of tuberculous pericarditis. Microbes Infect 2020; 22:172-181. [PMID: 32092538 DOI: 10.1016/j.micinf.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Tuberculous pericarditis is a severe form of extrapulmonary tuberculosis and is the commonest cause of pericardial effusion in high incidence settings. Mortality ranges between 8 and 34%, and it is the leading cause of pericardial constriction in Africa and Asia. Current understanding of the disease is based on models derived from studies performed in the 1940-50s. This review summarises recent advances in the histology, microbiology and immunology of tuberculous pericarditis, with special focus on the effect of Human Immunodeficiency Virus (HIV) and the determinants of constriction.
Collapse
Affiliation(s)
- Patrick Howlett
- National Heart & Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, United Kingdom; Department of Medicine, University of Cape Town, Observatory 7925, South Africa.
| | - Elsa Du Bruyn
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Hazel Morrison
- The Jenner Institute, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, United Kingdom
| | - Isiguzo C Godsent
- National Heart & Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, United Kingdom; Department of Medicine, Federal Teaching Hospital Abakaliki, Nigeria
| | - Katalin A Wilkinson
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom
| | - Mpiko Ntsekhe
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Robert J Wilkinson
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa; Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom; Department of Infectious Diseases, Imperial College London, W2 1PG, United Kingdom
| |
Collapse
|
43
|
Waters R, Ndengane M, Abrahams MR, Diedrich CR, Wilkinson RJ, Coussens AK. The Mtb-HIV syndemic interaction: why treating M. tuberculosis infection may be crucial for HIV-1 eradication. Future Virol 2020; 15:101-125. [PMID: 32273900 PMCID: PMC7132588 DOI: 10.2217/fvl-2019-0069] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accelerated tuberculosis and AIDS progression seen in HIV-1 and Mycobacterium tuberculosis (Mtb)-coinfected individuals indicates the important interaction between these syndemic pathogens. The immunological interaction between HIV-1 and Mtb has been largely defined by how the virus exacerbates tuberculosis disease pathogenesis. Understanding of the mechanisms by which pre-existing or subsequent Mtb infection may favor the replication, persistence and progression of HIV, is less characterized. We present a rationale for the critical consideration of ‘latent’ Mtb infection in HIV-1 prevention and cure strategies. In support of this position, we review evidence of the effect of Mtb infection on HIV-1 acquisition, replication and persistence. We propose that ‘latent’ Mtb infection may have considerable impact on HIV-1 pathogenesis and the continuing HIV-1 epidemic in sub-Saharan Africa.
Collapse
Affiliation(s)
- Robyn Waters
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Medicine, University of Cape Town, Observatory 7925, WC, South Africa
| | - Mthawelanga Ndengane
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Pathology, University of Cape Town, Observatory 7925, WC, South Africa
| | - Melissa-Rose Abrahams
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Pathology, University of Cape Town, Observatory 7925, WC, South Africa
| | - Collin R Diedrich
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Infectious Diseases, Imperial College London, London W2 1PG, United Kingdom.,The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Anna K Coussens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory 7925, WC, South Africa.,Department of Pathology, University of Cape Town, Observatory 7925, WC, South Africa.,Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia.,Division of Medical Biology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville 3279, VIC, Australia
| |
Collapse
|
44
|
Dlamini GS, Muller SJ, Meraba RL, Young RA, Mashiyane J, Chiwewe T, Mapiye DS. Classification of COVID-19 and Other Pathogenic Sequences: A Dinucleotide Frequency and Machine Learning Approach. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:195263-195273. [PMID: 34976561 PMCID: PMC8675546 DOI: 10.1109/access.2020.3031387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 05/08/2023]
Abstract
The world is grappling with the COVID-19 pandemic caused by the 2019 novel SARS-CoV-2. To better understand this novel virus and its relationship with other pathogens, new methods for analyzing the genome are required. In this study, intrinsic dinucleotide genomic signatures were analyzed for whole genome sequence data of eight pathogenic species, including SARS-CoV-2. The genome sequences were transformed into dinucleotide relative frequencies and classified using the extreme gradient boosting (XGBoost) model. The classification models were trained to a) distinguish between the sequences of all eight species and b) distinguish between sequences of SARS-CoV-2 that originate from different geographic regions. Our method attained 100% in all performance metrics and for all tasks in the eight-species classification problem. Moreover, the models achieved 67% balanced accuracy for the task of classifying the SARS-CoV-2 sequences into the six continental regions and achieved 86% balanced accuracy for the task of classifying SARS-CoV-2 samples as either originating from Asia or not. Analysis of the dinucleotide genomic profiles of the eight species revealed a similarity between the SARS-CoV-2 and MERS-CoV viral sequences. Further analysis of SARS-CoV-2 viral sequences from the six continents revealed that samples from Oceania had the highest frequency of TT dinucleotides as well as the lowest CG frequency compared to the other continents. The dinucleotide signatures of AC, AG,CA, CT, GA, GT, TC, and TG were well conserved across most genomes, while the frequencies of other dinucleotide signatures varied considerably. Altogether, the results from this study demonstrate the utility of dinucleotide relative frequencies for discriminating and identifying similar species.
Collapse
|
45
|
Reeve BWP, Centis R, Theron G. Still dying in plain sight: missed and misclassified deaths due to tuberculosis in hospitals. Eur Respir J 2019; 54:54/3/1901578. [PMID: 31575725 DOI: 10.1183/13993003.01578-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Byron William Patrick Reeve
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rosella Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Grant Theron
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
46
|
Garcia-Basteiro AL, Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, Quintó L, Jordao D, Ismail MR, Lorenzoni C, Carrilho C, Sanz A, Rakislova N, Mira A, Alvarez-Martínez MJ, Cossa A, Cobelens F, Mandomando I, Vila J, Bassat Q, Menendez C, Ordi J, Martínez MJ. Unmasking the hidden tuberculosis mortality burden in a large post mortem study in Maputo Central Hospital, Mozambique. Eur Respir J 2019; 54:13993003.00312-2019. [PMID: 31346005 PMCID: PMC6769353 DOI: 10.1183/13993003.00312-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/17/2019] [Indexed: 01/21/2023]
Abstract
Sensitive tools are needed to accurately establish the diagnosis of tuberculosis (TB) at death, especially in low-income countries. The objective of this study was to evaluate the burden of TB in a series of patients who died in a tertiary referral hospital in sub-Saharan Africa using an in-house real time PCR (TB-PCR) and the Xpert MTB/RIF Ultra (Xpert Ultra) assay. Complete diagnostic autopsies were performed in a series of 223 deaths (56.5% being HIV-positive), including 54 children, 57 maternal deaths and 112 other adults occurring at the Maputo Central Hospital, Mozambique. TB-PCR was performed in all lung, cerebrospinal fluid and central nervous system samples in HIV-positive patients. All samples positive for TB-PCR or showing histological findings suggestive of TB were analysed with the Xpert Ultra assay. TB was identified as the cause of death in 31 patients: three out of 54 (6%) children, five out of 57 (9%)maternal deaths and 23 out of 112 (21%) other adults. The sensitivity of the main clinical diagnosis to detect TB as the cause of death was 19.4% (95% CI 7.5–37.5) and the specificity was 97.4% (94.0–99.1) compared to autopsy findings. Concomitant TB (TB disease in a patient dying of other causes) was found in 31 additional cases. Xpert Ultra helped to identify 15 cases of concomitant TB. In 18 patients, Mycobacterium tuberculosis DNA was identified by TB-PCR and Xpert Ultra in the absence of histological TB lesions. Overall, 62 (27.8%) cases had TB disease at death and 80 (35.9%) had TB findings. The use of highly sensitive, easy to perform molecular tests in complete diagnostic autopsies may contribute to identifying TB cases at death that would have otherwise been missed. Routine use of these tools in certain diagnostic algorithms for hospitalised patients needs to be considered. Clinical diagnosis showed poor sensitivity for the diagnosis of TB at death. This study shows the usefulness of molecular assays in ascertaining TB diagnosis at death. It questions the information of clinical diagnoses obtained from hospital registries as a reliable tool for TB mortality estimation.http://bit.ly/2KrzTBJ
Collapse
Affiliation(s)
- Alberto L Garcia-Basteiro
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Contributed equally to this work and share primary authorship
| | - Juan Carlos Hurtado
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Dept of Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Contributed equally to this work and share primary authorship
| | - Paola Castillo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Dept of Pathology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Contributed equally to this work and share primary authorship
| | - Fabiola Fernandes
- Dept of Pathology, Faculty of Medicine/Eduardo Mondlane University and Maputo Central Hospital, Maputo, Mozambique
| | - Mireia Navarro
- Dept of Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Lucilia Lovane
- Dept of Pathology, Faculty of Medicine/Eduardo Mondlane University and Maputo Central Hospital, Maputo, Mozambique
| | - Isaac Casas
- Dept of Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Llorenç Quintó
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Dercio Jordao
- Dept of Pathology, Faculty of Medicine/Eduardo Mondlane University and Maputo Central Hospital, Maputo, Mozambique
| | - Mamudo R Ismail
- Dept of Pathology, Faculty of Medicine/Eduardo Mondlane University and Maputo Central Hospital, Maputo, Mozambique
| | - Cesaltina Lorenzoni
- Dept of Pathology, Faculty of Medicine/Eduardo Mondlane University and Maputo Central Hospital, Maputo, Mozambique.,Ministry of Health - National Cancer Control Programme, Mozambique
| | - Carla Carrilho
- Dept of Pathology, Faculty of Medicine/Eduardo Mondlane University and Maputo Central Hospital, Maputo, Mozambique
| | - Ariadna Sanz
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Natalia Rakislova
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Dept of Pathology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Aurea Mira
- Biomedical Diagnostic Centre (CDB), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Miriam J Alvarez-Martínez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Dept of Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Anélsio Cossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Frank Cobelens
- Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Jordi Vila
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Dept of Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Dept, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Contributed equally to this work and share senior authorship
| | - Clara Menendez
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Contributed equally to this work and share senior authorship
| | - Jaume Ordi
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Dept of Pathology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Contributed equally to this work and share senior authorship
| | - Miguel J Martínez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain .,Dept of Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Contributed equally to this work and share senior authorship
| |
Collapse
|
47
|
Sannigrahi A, Nandi I, Chall S, Jawed JJ, Halder A, Majumdar S, Karmakar S, Chattopadhyay K. Conformational Switch Driven Membrane Pore Formation by Mycobacterium Secretory Protein MPT63 Induces Macrophage Cell Death. ACS Chem Biol 2019; 14:1601-1610. [PMID: 31241303 DOI: 10.1021/acschembio.9b00327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Virulent Mycobacterium tuberculosis (MTB) strains cause cell death of macrophages (Mϕ) inside TB granuloma using a mechanism which is not well understood. Many bacterial systems utilize toxins to induce host cell damage, which occurs along with immune evasion. These toxins often use chameleon sequences to generate an environment-sensitive conformational switch, facilitating the process of infection. The presence of toxins is not yet known for MTB. Here, we show that MTB-secreted immunogenic MPT63 protein undergoes a switch from β-sheet to helix in response to mutational and environmental stresses. MPT63 in its helical form creates pores in both synthetic and Mϕ membranes, while the native β-sheet protein remains inert toward membrane interactions. Using fluorescence correlation spectroscopy and atomic force microscopy, we show further that the helical form undergoes self-association to produce toxic oligomers of different morphology. Trypan blue and flow cytometry analyses reveal that the helical state can be utilized by MTB for killing Mϕ cells. Collectively, our study emphasizes for the first time a toxin-like behavior of MPT63 induced by an environment-dependent conformational switch, resulting in membrane pore formation by toxic oligomers and Mϕ cell death.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Indrani Nandi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayantani Chall
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | | | - Animesh Halder
- Department of Physics, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Sanat Karmakar
- Department of Physics, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
48
|
Stošić MB, Simić DM, Babić DD, Ristić L, Kuruc V. HIV prevalence, knowledge and self-perceived risk of HIV infection among tuberculosis patients in Serbia. Cent Eur J Public Health 2019; 27:99-105. [PMID: 31241283 DOI: 10.21101/cejph.a4950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/07/2019] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of the study was to estimate the seroprevalence of HIV infection among TB patients, knowledge, self-perceived risks and testing practices related to HIV. METHODS We performed cross-sectional study from 10 May to 15 July 2011. Cluster sampling method was used to select 27 hospitals where 289 TB patients were consecutively recruited. Descriptive statistics and multivariable logistic regression methods were used to identify the factors associated with correct comprehensive knowledge of HIV/AIDS. RESULTS HIV prevalence among TB patients was 0.3%. Only 25.2% of the respondents presented comprehensive correct knowledge of HIV/AIDS. The percentage of correct answers to all questions related to knowledge about HIV/AIDS increases with educational status (χ2 = 5.42; p < 0.05) and decreases with the age of respondents (χ2 = 8.53; p > 0.05). The independent predictors of correct comprehensive knowledge were living without partner (OR = 4.45; CI = 1.59-12.95) and self-awareness of HIV risk (OR = 4.43; CI = 1.20-16.52). CONCLUSION HIV prevalence among TB patients is higher than among general population in Serbia. The level of comprehensive correct knowledge of HIV/AIDS is low. There is a need for continuous implementation of public health strategy to successfully manage HIV and HIV/TB co-infection in Serbia.
Collapse
Affiliation(s)
- Maja B Stošić
- Department for HIV infection, STIs, Viral Hepatitis and TB, Public Health Institute of Serbia "Dr Milan Jovanovic Batut", Belgrade, Serbia
| | - Danijela M Simić
- Department for HIV infection, STIs, Viral Hepatitis and TB, Public Health Institute of Serbia "Dr Milan Jovanovic Batut", Belgrade, Serbia
| | - Dragan D Babić
- Institute of Medical Statistics and Informatics, School of Medicine, Belgrade, Serbia
| | - Lidija Ristić
- Clinic for Pulmonary Disease, Clinical Centre of Nis, Nis, Serbia
| | - Vesna Kuruc
- Institute for Pulmonary Diseases of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
49
|
Jadhav M, Khan T, Bhavsar C, Momin M, Omri A. Novel therapeutic approaches for targeting TB and HIV reservoirs prevailing in lungs. Expert Opin Drug Deliv 2019; 16:687-699. [PMID: 31111766 DOI: 10.1080/17425247.2019.1621287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Coinfection with Mycobacterium tuberculosis is the leading cause of death in HIV positive patients. In 2017, about 0.3 million HIV positive people died of tuberculosis. There is high load of mycobacteria and HIV in the lungs and eradication of the same is vital for patient survival. AREAS COVERED This review focuses on the pathogenesis of HIV-TB coinfection and the current management approaches of this coinfection. It presents a detailed discussion of current investigations in novel drug delivery systems for effective targeting of HIV-TB lung reservoirs, especially via pulmonary drug delivery. Additionally, emphasis is given to the need of HIV-TB cotargeting, an unmet need in management of HIV-TB coinfection. EXPERT OPINION To achieve the goal of complete eradication of HIV-TB reservoirs in lungs requires focused research strategies to be undertaken in the area of pulmonary delivery systems. These endeavors could eventually lead to better patient compliance and improved treatment outcomes. The treatment regimen of HIV-TB coinfection is associated with a major drawback of low therapeutic concentration of drugs in lungs. Nanotechnology provides an excellent platform for delivery of anti-TB and anti-HIV drugs via the pulmonary route thereby serving as a viable and effective means of managing the mycobacterial and HIV reservoirs in the lungs.
Collapse
Affiliation(s)
- Mrunal Jadhav
- a Department of pharmaceutical chemistry and QA , SVKM's Dr. Bhanuben nanavati college of pharmacy , Mumbai , India
| | - Tabassum Khan
- a Department of pharmaceutical chemistry and QA , SVKM's Dr. Bhanuben nanavati college of pharmacy , Mumbai , India
| | - Chintan Bhavsar
- a Department of pharmaceutical chemistry and QA , SVKM's Dr. Bhanuben nanavati college of pharmacy , Mumbai , India
| | - Munira Momin
- a Department of pharmaceutical chemistry and QA , SVKM's Dr. Bhanuben nanavati college of pharmacy , Mumbai , India
| | - Abdelwahab Omri
- b Department of chemistry & biochemistry , Laurentian university , Sudbury , ON , Canada
| |
Collapse
|
50
|
Foresti S, Perego MR, Carugati M, Casati A, Malafronte C, Manzoni M, Badolato R, Gori A, Achilli F. The hidden hypothesis: A disseminated tuberculosis case. Int J Infect Dis 2019; 85:88-91. [PMID: 31150844 DOI: 10.1016/j.ijid.2019.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022] Open
Abstract
CASE PRESENTATION 77-year-old former smoker admitted because of fatigue and abdominal distention. Past medical history positive for two previous hospitalizations for pericardial and pleural effusions (no diagnosis achieved). At admission erythrocyte sedimentation rate was 122mm per hour. Baseline investigations revealed ascitic, pleural and pericardial effusion. Effusions were tapped: neoplastic cells and acid-fast bacilli (AFB) were not identified, aerobic and mycobacterial culture resulted negative. QuantiFERON TB-Gold test was negative. Total body PET-CT and autoimmunity panel were negative. A neoplastic process was considered the most likely explanation. Before signing off the patient to comfort care, a reassessment was performed and an exposure to tuberculosis during childhood was documented. Because of constrictive pericarditis, pericardiectomy was performed: histologic examination showed chronic pericardial inflammation without granulomas, but Ziehl-Neelsen stain identified AFB and PCR was positive for Mycobacterium tuberculosis complex. Patient was started on anti-TB therapy with resolution of the effusions in the following months. Genes associated with defects in innate immunity were sequences and dentritic cells were studied, but no alterations were identified. DISCUSSION A Bayesian approach to clinical decision making should be recommended. Interpretation of diagnostic tests should take into account the imperfect diagnostic performance of the majority of these tests. Further studies to investigate genetic susceptibility to tuberculosis are needed.
Collapse
Affiliation(s)
- Sergio Foresti
- Division of Infectious Diseases, Ospedale San Gerardo ASST Monza, Via Pergolesi 33, Monza, Italy.
| | - Maria Rita Perego
- Division of Internal Medicine, Ospedale San Gerardo ASST Monza, Via Pergolesi 33, Monza, Italy.
| | - Manuela Carugati
- Division of Infectious Diseases, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy; Division of Infectious Diseases, Duke University, 300 Trent Drive, Durham, USA.
| | - Anna Casati
- Division of Cardiology, Ospedale San Gerardo ASST Monza, Via Pergolesi 33, Monza, Italy.
| | - Cristina Malafronte
- Division of Cardiology, Ospedale San Gerardo ASST Monza, Via Pergolesi 33, Monza, Italy.
| | - Marco Manzoni
- Department of Medicine and Surgery, Pathology Section, University of Milano-Bicocca, Milan, Italy.
| | - Raffaele Badolato
- Division of Paediatrics, Università degli Studi di Brescia, P.le Ospedali Civili di Brescia 1, Brescia, Italy.
| | - Andrea Gori
- Division of Infectious Diseases, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Festa del Perdono 7, Milan, Italy.
| | - Felice Achilli
- Division of Cardiology, Ospedale San Gerardo ASST Monza, Via Pergolesi 33, Monza, Italy.
| |
Collapse
|