1
|
Dahiya S, Sharma A, Chaudhary S. Eco-inspired synthesis of MgO-infused g-C 3N 4 nanocomposites from tulsi seeds for advanced photocatalytic environmental remediation. Phys Chem Chem Phys 2024. [PMID: 39494556 DOI: 10.1039/d4cp03673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
This study introduces a novel approach to synthesizing magnesium oxide (MgO) nanoparticles through the use of Ocimum sanctum (tulsi seed) extract combined with the thermal polymerization of MgO-doped graphitic carbon nitride (MgCN) nanocomposites. The nanocomposites were prepared at varying MgO concentrations (0.5 mM, 1.0 mM, 1.5 mM, and 2.0 mM) to optimize their properties. Comprehensive characterization of the synthesized MgO nanoparticles and MgCN nanocomposites was conducted using advanced analytical techniques, including UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray mapping (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The MgCN nanocomposite with 1.5 mM MgO demonstrated a high surface area of 98.287 m2 g-1, as determined by Brunauer-Emmett-Teller (BET) analysis. X-ray photoelectron spectroscopy (XPS) confirmed the presence of carbon and nitrogen elements, validating the integration of MgO into the nanocomposite matrix. High-resolution transmission electron microscopy (HRTEM) images depicted planar, stacked, and wrinkled structures characteristic of a graphitic-like material. Consistent with a Z-scheme heterojunction, the MgCN (1.5 mM) sample exhibited an enhanced morphology, increased surface area, improved visible light absorption, and reduced band gap. This particular nanocomposite displayed remarkable adsorption and photocatalytic degradation capabilities, achieving up to 98% removal of methylene blue and 54% removal of tetracycline antibiotics. Furthermore, it showed significant antibacterial activity against Escherichia coli. Notably, the MgCN (1.5 mM) nanocomposite maintained its performance over four cycles, underscoring its potential for sustained application in wastewater treatment and the elimination of organic contaminants. The scavenging activity of the nanocomposites was also explored, revealing additional environmental benefits. This research highlights a promising pathway for developing eco-friendly nanocomposites with robust capabilities in water purification and pollution control.
Collapse
Affiliation(s)
- Sweety Dahiya
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat 131039, Haryana, India.
| | - Anshu Sharma
- Department of Physics under School of Engineering and Technology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Sudesh Chaudhary
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat 131039, Haryana, India.
| |
Collapse
|
2
|
Merouani S, Dehane A, Hamdaoui O. Ultrasonic decomposition of endocrine disrupting Compounds - A review. ULTRASONICS SONOCHEMISTRY 2024; 110:107026. [PMID: 39167840 PMCID: PMC11381450 DOI: 10.1016/j.ultsonch.2024.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Endocrine disrupting compounds (EDCs) need to be removed by efficient treatment methods as they are a major concern for both human and environmental health. To reduce the impact of EDCs in water, this review examines the use of ultrasonic degradation processes. Following an overview of EDCs and their origins, the basic concepts of sonochemistry are examined, highlighting the potential of ultrasound in chemical reactions. An in-depth analysis of the variables that affect the ultrasonic degradation of EDCs, such as frequency, intensity/power, temperature and solution chemistry, prepares the reader for a case study investigation focusing on specific EDCs. The study also looks at synergistic methods, emphasizing how hybrid ultrasonic systems can improve removal efficiency. The study provides a comprehensive overview of the use of sonochemistry in the treatment of EDCs by addressing current issues and suggesting future research directions. The aim of this review paper is to provide insightful analysis and useful suggestions for scientists working on EDC remediation projects.
Collapse
Affiliation(s)
- Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider Constantine 3, P.O. Box 72, 25000 Constantine, Algeria
| | - Aissa Dehane
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider Constantine 3, P.O. Box 72, 25000 Constantine, Algeria
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Merouani S, Dehane A, Hamdaoui O. Ultrasonic destruction of surfactants. ULTRASONICS SONOCHEMISTRY 2024; 109:107009. [PMID: 39106667 PMCID: PMC11347850 DOI: 10.1016/j.ultsonch.2024.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
This study investigates the effectiveness of ultrasonic (US) treatment in removing and mineralizing surfactants in wastewater. It examines the complex mechanisms and variables (acoustic conditions, solution temperature, initial dose, etc.) that affect sonolytic processes. The effect of water matrix components (such as salts and the presence of secondary pollutants) on process performance is thoroughly investigated. Various treatments are analyzed through a detailed comparison of synergistic hybridization processes. The study also provides a comprehensive review of current environmental applications and explores potential directions for surfactant degradation using ultrasound. Insightful information is presented to advance sustainable wastewater treatment techniques. The literature review clearly reveals the promising future of sonotreatment for degrading various surfactants under different conditions. The use of multifrequency mechanisms and the integration of other advanced oxidation processes (AOPs) with the US process have significantly enhanced the energy efficiency of the sonochemical system. Additionally, the results highlight the need to focus on developing new sonoreactor designs, identifying degradation intermediates, and hybridizing the sonochemical system under innovative operating conditions.
Collapse
Affiliation(s)
- Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider Constantine 3, P.O. Box 72, 25000 Constantine, Algeria
| | - Aissa Dehane
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider Constantine 3, P.O. Box 72, 25000 Constantine, Algeria
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Luo J, Fu G, Xu W, Zhai Y, Bai L, Li J, Qu T. Experimental study on attenuation effect of liquid viscosity on shockwaves of cavitation bubbles collapse. ULTRASONICS SONOCHEMISTRY 2024; 111:107063. [PMID: 39293096 PMCID: PMC11421259 DOI: 10.1016/j.ultsonch.2024.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
How to precisely control and efficiently utilize the physical processes such as high temperature, high pressure, and shockwaves during the collapse of cavitation bubbles is a focal concern in the field of cavitation applications. The viscosity change of the liquid will affect the bubble dynamics in turn, and further affect the precise control of intensity of cavitation field. This study used high-speed photography technology and schlieren optical path system to observe the spatiotemporal evolution of shockwaves in liquid with different viscosities. It was found that as the viscosity of the liquid increased, the wave front of the collapse shockwave of the cavitation bubble gradually thickened. Furthermore, a high-frequency pressure testing system was used to quantitatively analyze the influence of viscosity on the intensity of the shockwave. It was found that the pressure peak of the shockwave in different viscous liquid was proportional to Lb (L represented the distance between the center of bubble and the sensor measuring point), and the larger the viscosity was, the smaller the value of b was. Through in-depth analysis, it was found that as the viscosity of the liquid increased, the proportion of the shockwave energy of first bubble collapse to the maximal mechanical energy of bubble gradually decreased. The proportion of the mechanical energy of rebounding bubble to the maximal mechanical energy of bubble gradually increased. These new findings have an important theoretical significance for the efficient utilization of ultrasonic cavitation.
Collapse
Affiliation(s)
- Jing Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Guihua Fu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Weilin Xu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| | - Yanwei Zhai
- Science and Technology Research Institute, China Three Gorges Corporation, Beijing 101199, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Lixin Bai
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Tong Qu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Ghose A, Nuzelu V, Gupta D, Kimoto H, Takashima S, Harlin EW, Ss S, Ueda H, Koketsu M, Rangan L, Mitra S. Micropollutants (ciprofloxacin and norfloxacin) remediation from wastewater through laccase derived from spent mushroom waste: Fate, toxicity, and degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121857. [PMID: 39029166 DOI: 10.1016/j.jenvman.2024.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Fluoroquinolone antibiotics frequently found in environmental matrices (wastewater treatment plants, hospital wastewater, industrial wastewater and surface wastewater) causes potential threat to the environment. Enzymatic treatment for degradation of antibiotics from environmental matrices is a green and sustainable approach. Focusing on this, this study aimed to degrade two frequently found fluroquinolone emergent pollutants, ciprofloxacin and norfloxacin from wastewater. The trinuclear cluster of copper ions present in laccase has the ability to effectively remove organic micropollutants (OMPs). The uniqueness of this study is that it utilizes laccase enzyme extracted from spent mushroom waste (SMW) of P. florida for degradation of ciprofloxacin and norfloxacin and to achieve highest degradation efficiency various parameters were tweaked such as pH (3-6), temperature (30 °C and 50 °C), and ABTS (0.05, 0.6, and 1 mM) concentration. The results showed that the most effective degradation of ciprofloxacin (86.12-75.94%) and norfloxacin (83.27-65.94%) was achieved in 3 h at pH 4.5, temperature 30 °C, and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 0.05 mM concentration. Nevertheless, achieving degradation at 50 °C for both antibiotics, indicates thermostability nature of laccase (P. florida). Further, the fate of transformed products obtained from laccase mediated degradation was confirmed by liquid chromatography (LC-MS). Both the antibiotics undergo decarboxylation, depiperylyzation, dealkylation and defluorination as a result of laccase-mediated bond breakage. Anti-microbial activity of the biodegraded products was monitored by residual anti-bacterial toxicity test (E. coli and Staphylococcus aureus). The biodegraded products were found to be non-toxic and resulted in the growth of E. coli and Staphylococcus aureus, as determined by the agar-diffusion method. Moreover, the storage stability of laccase was determined for 28-day duration at varying pH (3-10) and temperature (4-50 °C). The maximum storage stability was obtained at pH 4.5 and temperature 30 °C. Therefore, utilizing SMW for the degradation of OMPs from wastewater not only benefits in degradation but also reuses SMW agro waste, shedding light on agro waste management. Thus, SMW is a one-pot solution for both OMPs biodegradation and circularity in the economy.
Collapse
Affiliation(s)
- Anamika Ghose
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - V Nuzelu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Debaditya Gupta
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Hiroki Kimoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shigeo Takashima
- United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan; Division of Genomics Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Division of Cooperative Research Facility, Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Eka Wahyuni Harlin
- United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Sonu Ss
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Hiroshi Ueda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Latha Rangan
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India.
| |
Collapse
|
6
|
Georgin J, Franco DSP, Dehmani Y, Nguyen-Tri P, El Messaoudi N. Current status of advancement in remediation technologies for the toxic metal mercury in the environment: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174501. [PMID: 38971239 DOI: 10.1016/j.scitotenv.2024.174501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Currently, pollution due to heavy metals, in particular dissolved mercury, is a major concern for society and the environment. This work aims to evaluate the current scenario regarding the removal/elimination of mercury. Mercury removal through adsorption is mainly done through artificial resins and metallic-organic frameworks. In the case of the zinc organic framework, it was able to adsorb Hg2+, reaching an adsorption capacity of 802 mg g-1. As for the Hg(0) the coconut husk was found to have the lowest equilibrium time, 30 min, and the highest adsorption capacity of 956.2 mg g-1. Experimental reports and molecular simulation indicate that the adsorption of mercury and other chemical forms occurs due to electrostatic interactions, ion exchange, precipitation, complexation, chelation, and covalent bonds, according to the material nature. The reported thermodynamic results show that, in most cases, the mercury adsorption has an endothermic nature with enthalpy levels below 40 kJ mol-1. Thermal and chemical regeneration methods lead to a similar number of 5 cycles for different materials. The presence of other ions, in particular cadmium, lead, and copper, generates an antagonistic effect for mercury adsorption. Regarding the other current technologies, it was found that mercury removal is feasible through precipitation, phytoremediation, and marine microalgae; all these methods require constant chemicals or a slow rate of removal according to the conditions. Advanced oxidative processes have noteworthy removal of Hg(0); however, Fenton processes lead to mineralization, which leads to Fe2+ and Fe3+ in solution; sonochemical processes are impossible to scale up at the current technology level; and electrochemical processes consume more energy and require constant changes of the anode and cathode. Overall, it is possible to conclude that the adsorption process remains a more friendly, economical, and greener process in comparison with other processes.
Collapse
Affiliation(s)
- Jordana Georgin
- Department of Civil and Environmental. Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental. Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Younes Dehmani
- Laboratory of Chemistry/Biology Applied to the Environment, Faculty of Sciences, Moulay Ismaïl University, BP 11201-Zitoune, Meknes 50070, Morocco
| | - Phuong Nguyen-Tri
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| |
Collapse
|
7
|
Aouni SI, Ghodbane H, Merouani S, Lakikza I, Boublia A, Yadav KK, Djelloul C, Albakri GS, Elboughdiri N, Benguerba Y. Removal enhancement of persistent basic fuchsin dye from wastewater using an eco-friendly, cost-effective Fenton process with sodium percarbonate and waste iron catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43673-43686. [PMID: 38904874 DOI: 10.1007/s11356-024-33845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
In this comprehensive investigation, we evaluate the efficacy of the Fenton process in degrading basic fuchsin (BF), a resistant dye. Our primary focus is on the utilization of readily available, environmentally benign, and cost-effective reagents for the degradation process. Furthermore, we delve into various operational parameters, including the quantity of sodium percarbonate (SPC), pH levels, and the dimensions of waste iron bars, to optimize the treatment efficiency. In the course of our research, we employed an initial SPC concentration of 0.5 mM, a pH level of 3, a waste iron bar measuring 3.5 cm in length and 0.4 cm in diameter, and a processing time of 10 min. Our findings reveal the successful elimination of the BF dye, even when subjected to treatment with diverse salts and surfactants under elevated temperatures and acidic conditions (pH below 3). This underscores the robustness of the Fenton process in purifying wastewater contaminated with dye compounds. The outcomes of our study not only demonstrate the efficiency of the Fenton process but highlight its adaptability to address dye contamination challenges across various industries. Critically, this research pioneers the application of waste iron bars as a source of iron in the Fenton reaction, introducing a novel, sustainable approach that enhances the environmental and economic viability of the process. This innovative use of recycled materials as catalysts represents a significant advancement in sustainable chemical engineering practices.
Collapse
Affiliation(s)
- Saoussen Imene Aouni
- Laboratory of Physics for Matter and Radiation, Mohamed Cherif Messadia-Souk Ahras University, P.O. Box 1553, 41000, Souk Ahras, Algeria
| | - Houria Ghodbane
- Laboratory of Physics for Matter and Radiation, Mohamed Cherif Messadia-Souk Ahras University, P.O. Box 1553, 41000, Souk Ahras, Algeria
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine 3, P.O. Box 72, 25000, Constantine, Algeria
| | - Imane Lakikza
- Laboratory of Physics for Matter and Radiation, Mohamed Cherif Messadia-Souk Ahras University, P.O. Box 1553, 41000, Souk Ahras, Algeria
| | - Abir Boublia
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, 19000, Sétif, Algeria
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Chawki Djelloul
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, Algiers, Algeria
| | - Ghadah Shukri Albakri
- Department of Teaching and Learning, College of Education and Human Development, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il, 81441, Saudi Arabia
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, 6029, Gabes, Tunisia
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Ferhat Abbas Setif 1 University, Setif, Algeria.
| |
Collapse
|
8
|
Rosales Pérez A, Esquivel Escalante K. The Evolution of Sonochemistry: From the Beginnings to Novel Applications. Chempluschem 2024; 89:e202300660. [PMID: 38369655 DOI: 10.1002/cplu.202300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Sonochemistry is the use of ultrasonic waves in an aqueous medium, to generate acoustic cavitation. In this context, sonochemistry emerged as a focal point over the past few decades, starting as a manageable process such as a cleaning technique. Now, it is found in a wide range of applications across various chemical, physical, and biological processes, creating opportunities for analysis between these processes. Sonochemistry is a powerful and eco-friendly technique often called "green chemistry" for less energy use, toxic reagents, and residues generation. It is increasing the number of applications achieved through the ultrasonic irradiation (USI) method. Sonochemistry has been established as a sustainable and cost-effective alternative compared to traditional industrial methods. It promotes scientific and social well-being, offering non-destructive advantages, including rapid processes, improved process efficiency, enhanced product quality, and, in some cases, the retention of key product characteristics. This versatile technology has significantly contributed to the food industry, materials technology, environmental remediation, and biological research. This review is created with enthusiasm and focus on shedding light on the manifold applications of sonochemistry. It delves into this technique's evolution and current applications in cleaning, environmental remediation, microfluidic, biological, and medical fields. The purpose is to show the physicochemical effects and characteristics of acoustic cavitation in different processes across various fields and to demonstrate the extending application reach of sonochemistry. Also to provide insights into the prospects of this versatile technique and demonstrating that sonochemistry is an adapting system able to generate more efficient products or processes.
Collapse
Affiliation(s)
- Alicia Rosales Pérez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro Centro Universitario, Santiago de Querétaro, 76010, Mexico
| | - Karen Esquivel Escalante
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, 76010, Mexico
| |
Collapse
|
9
|
Gul S, Hussain S, Khan H, Arshad M, Khan JR, Motheo ADJ. Integrated AI-driven optimization of Fenton process for the treatment of antibiotic sulfamethoxazole: Insights into mechanistic approach. CHEMOSPHERE 2024; 357:141868. [PMID: 38593957 DOI: 10.1016/j.chemosphere.2024.141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Antibiotics, as a class of environmental pollutants, pose a significant challenge due to their persistent nature and resistance to easy degradation. This study delves into modeling and optimizing conventional Fenton degradation of antibiotic sulfamethoxazole (SMX) and total organic carbon (TOC) under varying levels of H2O2, Fe2+ concentration, pH, and temperature using statistical and artificial intelligence techniques including Multiple Regression Analysis (MRA), Support Vector Regression (SVR) and Artificial Neural Network (ANN). In statistical metrics, the ANN model demonstrated superior predictive accuracy compared to its counterparts, with lowest RMSE values of 0.986 and 1.173 for SMX and TOC removal, respectively. Sensitivity showcased H2O2/Fe2+ ratio, time and pH as pivotal for SMX degradation, while in simultaneous SMX and TOC reduction, fine tuning the time, pH, and temperature was essential. Leveraging a Hybrid Genetic Algorithm-Desirability Optimization approach, the trained ANN model revealed an optimal desirability of 0.941 out of 1000 solutions which yielded a 91.18% SMX degradation and 87.90% TOC removal under following specific conditions: treatment time of 48.5 min, Fe2+: 7.05 mg L-1, H2O2: 128.82 mg L-1, pH: 5.1, initial SMX: 97.6 mg L-1, and a temperature: 29.8 °C. LC/MS analysis reveals multiple intermediates with higher m/z (242, 270 and 288) and lower m/z (98, 108, 156 and 173) values identified, however no aliphatic hydrocarbon was isolated, because of the low mineralization performance of Fenton process. Furthermore, some inorganic fragments like NH4+ and NO3- were also determined in solution. This comprehensive research enriches AI modeling for intricate Fenton-based contaminant degradation, advancing sustainable antibiotic removal strategies.
Collapse
Affiliation(s)
- Saima Gul
- Department of Chemistry, Islamia College Peshawar, 25120, Peshawar, Khyber-Pakhtunkhwa, Pakistan; São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, SãoCarlos, SP, Brazil
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan; São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, SãoCarlos, SP, Brazil.
| | - Hammad Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Javaid Rabbani Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Artur de Jesus Motheo
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, 13566-590, SãoCarlos, SP, Brazil
| |
Collapse
|
10
|
Hübner U, Spahr S, Lutze H, Wieland A, Rüting S, Gernjak W, Wenk J. Advanced oxidation processes for water and wastewater treatment - Guidance for systematic future research. Heliyon 2024; 10:e30402. [PMID: 38726145 PMCID: PMC11079112 DOI: 10.1016/j.heliyon.2024.e30402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Advanced oxidation processes (AOPs) are a growing research field with a large variety of different process variants and materials being tested at laboratory scale. However, despite extensive research in recent years and decades, many variants have not been transitioned to pilot- and full-scale operation. One major concern are the inconsistent experimental approaches applied across different studies that impede identification, comparison, and upscaling of the most promising AOPs. The aim of this tutorial review is to streamline future studies on the development of new solutions and materials for advanced oxidation by providing guidance for comparable and scalable oxidation experiments. We discuss recent developments in catalytic, ozone-based, radiation-driven, and other AOPs, and outline future perspectives and research needs. Since standardized experimental procedures are not available for most AOPs, we propose basic rules and key parameters for lab-scale evaluation of new AOPs including selection of suitable probe compounds and scavengers for the measurement of (major) reactive species. A two-phase approach to assess new AOP concepts is proposed, consisting of (i) basic research and proof-of-concept (technology readiness levels (TRL) 1-3), followed by (ii) process development in the intended water matrix including a cost comparison with an established process, applying comparable and scalable parameters such as UV fluence or ozone consumption (TRL 3-5). Subsequent demonstration of the new process (TRL 6-7) is briefly discussed, too. Finally, we highlight important research tools for a thorough mechanistic process evaluation and risk assessment including screening for transformation products that should be based on chemical logic and combined with complementary tools (mass balance, chemical calculations).
Collapse
Affiliation(s)
- Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Stephanie Spahr
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Holger Lutze
- Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany
| | - Arne Wieland
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Steffen Rüting
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Jannis Wenk
- University of Bath, Department of Chemical Engineering and Water Innovation & Research Centre (WIRC@Bath), Bath, BA2 7AY, United Kingdom
| |
Collapse
|
11
|
Aneggi E, Hussain S, Baratta W, Zuccaccia D, Goi D. Enhanced Heterogeneous Fenton Degradation of Organic Dyes by Bimetallic Zirconia-Based Catalysts. Molecules 2024; 29:2074. [PMID: 38731565 PMCID: PMC11085515 DOI: 10.3390/molecules29092074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The qualitative impact of pollutants on water quality is mainly related to their nature and their concentration, but in any case, they determine a strong impact on the involved ecosystems. In particular, refractory organic compounds represent a critical challenge, and several degradation processes have been studied and developed for their removal. Among them, heterogeneous Fenton treatment is a promising technology for wastewater and liquid waste remediation. Here, we have developed mono- and bimetallic formulations based on Co, Cu, Fe, and Mn, which were investigated for the degradation of three model organic dyes (methylene blue, rhodamine B, and malachite green). The treated samples were then analyzed by means of UV-vis spectrophotometry techniques. Bimetallic iron-based materials achieved almost complete degradation of all three model molecules in very short time. The Mn-Fe catalyst resulted in the best formulation with an almost complete degradation of methylene blue and malachite green at pH 5 in 5 min and of rhodamine B at pH 3 in 30 min. The results suggest that these formulations can be applied for the treatment of a broad range of liquid wastes comprising complex and variable organic pollutants. The investigated catalysts are extremely promising when compared to other systems reported in the literature.
Collapse
Affiliation(s)
- Eleonora Aneggi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Sezione di Chimica, Università di Udine, e INSTM, 33100 Udine, Italy; (W.B.); (D.Z.)
| | - Sajid Hussain
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, e INSTM, 33100 Udine, Italy; (S.H.); (D.G.)
- Dipartimento di Ingegneria Industriale, Università di Padova, 35131 Padova, Italy
| | - Walter Baratta
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Sezione di Chimica, Università di Udine, e INSTM, 33100 Udine, Italy; (W.B.); (D.Z.)
| | - Daniele Zuccaccia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Sezione di Chimica, Università di Udine, e INSTM, 33100 Udine, Italy; (W.B.); (D.Z.)
| | - Daniele Goi
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, e INSTM, 33100 Udine, Italy; (S.H.); (D.G.)
| |
Collapse
|
12
|
Ioannidi AA, Bampos G, Antonopoulou M, Oulego P, Boczkaj G, Mantzavinos D, Frontistis Z. Sonocatalytic degradation of Bisphenol A from aquatic matrices over Pd/CeO 2 nanoparticles: Kinetics study, transformation products, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170820. [PMID: 38340814 DOI: 10.1016/j.scitotenv.2024.170820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
In this work, different ratios of palladium - cerium oxide (Pd/CeO2) catalyst were synthesized and characterized, while their sonocatalytic activity was evaluated for the degradation of the xenobiotic Bisphenol A (BPA) from aqueous solutions. Sonocatalytic activity expressed as BPA decomposition exhibited a volcano-type behavior in relation to the Pd loading, and the 0.25Pd/CeO2 catalyst characterized by the maximum Pd dispersion and lower crystallite size demonstrated the higher activity. Using 500 mg/L of 0.25 % Pd/CeO2 increased the kinetic constant for BPA destruction by more than two times compared to sonolysis alone (20 kHz at 71 W/L). Meanwhile, the simultaneous use of ultrasound and a catalyst enhanced the efficiency by 50.1 % compared to the sum of the individual processes, resulting in 95 % BPA degradation in 60 min. The sonocatalytic degradation of BPA followed pseudo-first-order kinetics, and the apparent kinetic constant was increased with ultrasound power and catalyst loading, while the efficiency was decreased in bottled water and secondary effluent. From the experiments that were conducted using appropriate scavengers, it was revealed that the degradation mainly occurred on the bubble/liquid interface of the formed cavities, while the reactive species produced from the thermal or light excitation of the prepared semiconductor also participated in the reaction. Five first-stage and four late-stage transformation products were identified using UHPLC/TOF-MS, and a pathway for the sonocatalytic degradation of BPA was proposed. According to ECOSAR software prediction, most transformation by-products (TBPs) present lower ecotoxicity than the parent compound, although some remain toxic to the indicators chosen.
Collapse
Affiliation(s)
- Alexandra A Ioannidi
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Georgios Bampos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Claverías, E-33071 Oviedo, Spain
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece.
| |
Collapse
|
13
|
Ngulube KF, Abdelhaleem A, Osman AI, Peng L, Nasr M. Advancing sustainable water treatment strategies: harnessing magnetite-based photocatalysts and techno-economic analysis for enhanced wastewater management in the context of SDGs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32680-9. [PMID: 38472580 DOI: 10.1007/s11356-024-32680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Herein, we explore the holistic integration of magnetite-based photocatalysts and techno-economic analysis (TEA) as a sustainable approach in wastewater treatment aligned with the Sustainable Development Goals (SDGs). While considerable attention has been devoted to photocatalytic dye degradation, the nexus between these processes and techno-economic considerations remains relatively unexplored. The review comprehensively examines the fundamental characteristics of magnetite-based photocatalysts, encompassing synthesis methods, composition, and unique properties. It investigates their efficacy in photocatalytic degradation, addressing homogeneous and heterogeneous aspects while discussing strategies to optimize photodegradation efficiency, including curbing electron-hole recombination and mitigating scavenging effects and interference by ions and humic acid. Moreover, the management aspects of magnetite-based photocatalysts are examined, focusing on their reusability and regeneration post-dye removal, along with the potential for reusing treated wastewater in relevant industrial applications. From a techno-economic perspective, the study evaluates the financial feasibility of deploying magnetite-based photocatalysts in wastewater treatment, correlating reduced pollution and the marketing of treated water with social, economic, and environmental objectives. By advocating the integration of magnetite-based photocatalysts and TEA, this paper contributes insights into scalable and profitable sustainable wastewater treatment practices. It underscores the alignment of these practices with SDGs, emphasizing a comprehensive and holistic approach to managing wastewater in ways that meet environmental, economic, and societal objectives.
Collapse
Affiliation(s)
- Khumbolake Faith Ngulube
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt
| | - Amal Abdelhaleem
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen's University Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Mahmoud Nasr
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| |
Collapse
|
14
|
Alhajeri NS, Tawfik A, Nasr M, Osman AI. Artificial intelligence-enabled optimization of Fe/Zn@biochar photocatalyst for 2,6-dichlorophenol removal from petrochemical wastewater: A techno-economic perspective. CHEMOSPHERE 2024; 352:141476. [PMID: 38382716 DOI: 10.1016/j.chemosphere.2024.141476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
While numerous studies have addressed the photocatalytic degradation of 2,6-dichlorophenol (2,6-DCP) in wastewater, an existing research gap pertains to operational factors' optimization by non-linear prediction models to ensure a cost-effective and sustainable process. Herein, we focus on optimizing the photocatalytic degradation of 2,6-DCP using artificial intelligence modeling, aiming at minimizing initial capital outlay and ongoing operational expenses. Hence, Fe/Zn@biochar, a novel material, was synthesized, characterized, and applied to harness the dual capabilities of 2,6-DCP adsorption and degradation. Fe/Zn@biochar exhibited an adsorption energy of -21.858 kJ/mol, effectively capturing the 2,6-DCP molecules. This catalyst accumulated photo-excited electrons, which, upon interaction with adsorbed oxygen and/or dissolved oxygen generated •O2-. The •OH radicals could also be produced from h+ in the Fe/Zn@biochar valence band, cleaving the C-Cl bonds to Cl- ions, dechlorinated byproducts, and phenols. An artificial neural network (ANN) model, with a 4-10-1 topology, "trainlm" training function, and feed-forward back-propagation algorithm, was developed to predict the 2,6-DCP removal efficiency. The ANN prediction accuracy was expressed as R2 = 0.967 and mean squared error = 5.56e-22. The ANN-based optimized condition depicted that over 90% of 2,6-DCP could be eliminated under C0 = 130 mg/L, pH = 2.74, and catalyst dosage = 168 mg/L within ∼4 h. This optimum condition corresponded to a total cost of $7.70/m3, which was cheaper than the price estimated from the unoptimized photocatalytic system by 16%. Hence, the proposed ANN could be employed to enhance the 2,6-DCP photocatalytic degradation process with reduced operational expenses, providing practical and cost-effective solutions for petrochemical wastewater treatment.
Collapse
Affiliation(s)
- Nawaf S Alhajeri
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Ahmed Tawfik
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, United Kingdom.
| |
Collapse
|
15
|
Salari M, Alahabadi A, Rahmani-Sani A, Miri M, Yazdani-Aval M, Lotfi H, Saghi MH, Rastegar A, Sepehr MN, Darvishmotevalli M. A comparative study of response surface methodology and artificial neural network based algorithm genetic for modeling and optimization of EP/US/GAC oxidation process in dexamethasone degradation: Application for real wastewater, electrical energy consumption. CHEMOSPHERE 2024; 349:140832. [PMID: 38042425 DOI: 10.1016/j.chemosphere.2023.140832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Dexamethasone (DXM) is a broadly used drug, which is frequently identified in the water environments due to its improper disposal and incomplete removal in wastewater treatment plant. The inability of conventional treatment processes of wastewater causes that researchers pay a great attention to study and develop effective wastewater treatment systems. This work deals with the study of integrated electro-peroxone/granular activated carbon (EP/US/GAC) process in the degradation of dexamethasone (DXM) from a water environment and the remediation of real pharmaceutical wastewater. Two approaches of response surface methodology based on central composite design (RSM-CCD) and artificial neural network based on algorithm genetic (ANN-GA) were employed for modeling and optimization of the process. Both the models presented significant adequacy for modeling and prediction of the process according to statistical linear and nonlinear metrics (R2 = 0.9998 and 0.9996 and RMSE = 0.2128 and 0.1784 for ANN-GA and RSM-CCD, respectively). The optimization study provided the same outcomes for both ANN-GA and RSM-CCD approaches, where approximately complete DEX oxidation was achieved at pH = 9.3, operating time = 10 min, US power = 300 W/L, applied current = 470 mA, and electrolyte concentration = 0.05 M. A synergistic study signified that the EP/US/GAC process made an 82% synergy index as compared to the individual US and EP processes. The calculated energy consumption for the integrated process was achieved to be 2.79 kW h/gCOD. Quenching test by tert-butanol and p-benzoquinone revealed that HO• radical possessed the largest contribution in DEX degradation. The efficiency of EP/US/GAC process in the remediation of real pharmaceutical wastewater showed a significant decline in COD content (92% removal after 180 min), and the ratio of initial BOD/COD ratio of 0.27 was elevated up to 0.7 after 100 min treatment time. The performance stability of EP/US/GAC system showed no remarkable drop in removal efficiency, and leakage of lead ions from the anode surface was negligible and below WHO guideline for drinking water. Generally, this research work manifested that the integrated EP/US/GAC system elevated the degradation efficiency and can be proposed as a pretreatment step before biological treatment processes for the remediation of recalcitrant wastewaters.
Collapse
Affiliation(s)
- Mehdi Salari
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran; Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ahmad Alahabadi
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Rahmani-Sani
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Miri
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran; Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohsen Yazdani-Aval
- Leishmaniasis Research Center, Department of Occupational Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hadi Lotfi
- Department of Microbiology, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Hossien Saghi
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ayoob Rastegar
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Noori Sepehr
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Darvishmotevalli
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
16
|
Ghosh S, Sahu M. Ultrasound for the degradation of endocrine disrupting compounds in aqueous solution: A review on mechanisms, influence of operating parameters and cost estimation. CHEMOSPHERE 2024; 349:140864. [PMID: 38061558 DOI: 10.1016/j.chemosphere.2023.140864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Availability of drinking water is one of the basic humanitarian goals but remains as a grand challenge that the world is facing today. Currently, water bodies are contaminated not only with conventional pollutants but also with numerous recalcitrant pollutants, such as PPCPs, endocrine disrupting compounds, etc. These emerging pollutants require special attention because of their toxicity to living organisms, bio-resistant and can sustain even after primary and secondary treatments of wastewater. Among different treatment technologies, sonolysis is found to be an innovative and promising technique for the treatment of emerging pollutants present in aqueous solution. Sonolysis is the use of ultrasound to enhance or alter chemical reactions by the formation of free radicals and shock waves which ultimately helps in degradation of pollutants. This review summarizes several studies in the sonochemical literature, including mechanisms of sonochemical process, physical and chemical effects of ultrasound, and the influence of several process variables such as ultrasound frequency, power density, temperature and pH of the medium on degradation performance for endocrine disrupting compounds. In addition, this review highlighted techno-economic perspectives focusing on the total cost required for translating the ultrasound-based processes on a large scale. Overall, the objective of this study is to exhibit a critical review of information available in the literature to encourage and promote future research on sonolysis for the degradation of Endocrine Disrupting Compounds (EDCs).
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Aerosol and Nanoparticle Technology Laboratory, Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Manoranjan Sahu
- Aerosol and Nanoparticle Technology Laboratory, Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India; Inter-Disciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Machine Intelligence and Data Science, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
17
|
Shi P, Yue X, Teng X, Qu R, Rady A, Maodaa S, Allam AA, Wang Z, Huo Z. Degradation of Butylated Hydroxyanisole by the Combined Use of Peroxymonosulfate and Ferrate(VI): Reaction Kinetics, Mechanism and Toxicity Evaluation. TOXICS 2024; 12:54. [PMID: 38251010 PMCID: PMC10818440 DOI: 10.3390/toxics12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Butylated hydroxyanisole (BHA), a synthetic phenolic antioxidant (SPA), is now widely present in natural waters. To improve the degradation efficiency of BHA and reduce product toxicity, a combination of peroxymonosulfate (PMS) and Ferrate(VI) (Fe(VI)) was used in this study. We systematically investigated the reaction kinetics, mechanism and product toxicity in the degradation of BHA through the combined use of PMS and Fe(VI). The results showed that PMS and Fe(VI) have synergistic effects on the degradation of BHA. The effects of operational factors, including PMS dosage, pH and coexisting ions (Cl-, SO42-, HCO3-, K+, NH4+ and Mg2+), and different water matrices were investigated through a series of kinetic experiments. When T = 25 °C, the initial pH was 8.0, the initial BHA concentration was 100 μM, the initial concentration ratio of [PMS]0:[Fe(VI)]0:[BHA]0 was 100:1:1 and the degradation rate could reach 92.4% within 30 min. Through liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) identification, it was determined that the oxidation pathway of BHA caused by PMS/Fe(VI) mainly includes hydroxylation, ring-opening and coupling reactions. Density functional theory (DFT) calculations indicated that •OH was most likely to attack BHA and generate hydroxylated products. The comprehensive comparison of product toxicity results showed that the PMS/Fe(VI) system can effectively reduce the environmental risk of a reaction. This study contributes to the development of PMS/Fe(VI) for water treatment applications.
Collapse
Affiliation(s)
- Peiduan Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (P.S.); (X.Y.); (R.Q.); (Z.W.)
| | - Xin Yue
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (P.S.); (X.Y.); (R.Q.); (Z.W.)
| | - Xiaolei Teng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (P.S.); (X.Y.); (R.Q.); (Z.W.)
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (P.S.); (X.Y.); (R.Q.); (Z.W.)
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.R.); (S.M.)
| | - Saleh Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.R.); (S.M.)
| | - Ahmed A. Allam
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt;
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (P.S.); (X.Y.); (R.Q.); (Z.W.)
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, China
| |
Collapse
|
18
|
Espinosa-Barrera PA, Gómez-Gómez M, Vanegas J, Machuca-Martinez F, Torres-Palma RA, Martínez-Pachón D, Moncayo-Lasso A. Systematic analysis of the scientific-technological production on the use of the UV, H 2O 2, and/or Cl 2 systems in the elimination of bacteria and associated antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6782-6814. [PMID: 38165540 PMCID: PMC10821820 DOI: 10.1007/s11356-023-31435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
This study presents a systematic review of the scientific and technological production related to the use of systems based on UV, H2O2, and Cl2 for the elimination of antibiotic-resistant bacteria (ARB) and genes associated with antibiotic resistance (ARGs). Using the Pro Know-C (Knowledge Development Process-Constructivist) methodology, a portfolio was created and analyzed that includes 19 articles and 18 patents published between 2011 and 2022. The results show a greater scientific-technological production in UV irradiation systems (8 articles and 5 patents) and the binary combination UV/H2O2 (9 articles and 4 patents). It was emphasized that UV irradiation alone focuses mainly on the removal of ARB, while the addition of H2O2 or Cl2, either individually or in binary combinations with UV, enhances the removal of ARB and ARG. The need for further research on the UV/H2O2/Cl2 system is emphasized, as gaps in the scientific-technological production of this system (0 articles and 2 patents), especially in its electrochemically assisted implementation, have been identified. Despite the gaps identified, there are promising prospects for the use of combined electrochemically assisted UV/H2O2/Cl2 disinfection systems. This is demonstrated by the effective removal of a wide range of contaminants, including ARB, fungi, and viruses, as well as microorganisms resistant to conventional disinfectants, while reducing the formation of toxic by-products.
Collapse
Affiliation(s)
- Paula Andrea Espinosa-Barrera
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
- Doctorado en Ciencia Aplicada (DCA), Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Marcela Gómez-Gómez
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Javier Vanegas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Fiderman Machuca-Martinez
- Centro de Excelencia en Nuevos Materiales, Universidad del Valle, Calle 13 No. 100-00, Cali, Colombia
| | - Ricardo Antonio Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia.
| |
Collapse
|
19
|
Loreti Hupsel A, Borges CP, da Fonseca FV, Barbosa GM. Evaluation of pretreatment routes for seawater desalination by nanofiltration. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:454-469. [PMID: 39219141 PMCID: wst_2024_005 DOI: 10.2166/wst.2024.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nanofiltration (NF) has been used as the default sulfate removal process in platforms to treat seawater for water flooding. Seawater is generally pretreated by chlorination and cartridge filters to reduce fouling of the membranes; however, this pretreatment is insufficient to provide water quality high enough to maintain the productivity of the NF membranes. In this study, the performances of two different pretreatment routes were evaluated. Microfiltration (MF) was evaluated as a replacement for cartridge filters, and the advanced oxidation process UV/H2O2 was evaluated as an additional stage of pretreatment upstream of the cartridge filters. The permeability of the NF membranes after 12 h of seawater sulfate removal in a bench system was 4.4 L·h-1·m-2·bar-1 when the UV/H2O2 process was adopted as the pretreatment and 2.9 L·h-1·m-2·bar-1 when the MF process was adopted, compared to 1.6 L·h-1·m-2·bar-1 achieved for the pretreatment with the cartridge filter alone. These results indicate that NF membrane fouling was significantly higher when seawater was pretreated only by the cartridge filter in comparison to both proposed pretreatments. An economic analysis showed that both systems are economically viable and can potentially reduce the operational costs of the NF sulfate removal process on platforms.
Collapse
Affiliation(s)
- Amanda Loreti Hupsel
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, Horacio Macedo Av, 2030, Technology Center, G-115, University City - 21941450, Rio de Janeiro, RJ, Brazil E-mail:
| | - Cristiano Piacsek Borges
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, Horacio Macedo Av, 2030, Technology Center, G-115, University City - 21941450, Rio de Janeiro, RJ, Brazil
| | - Fabiana Valéria da Fonseca
- School of Chemistry, Federal University of Rio de Janeiro, Horacio Macedo Av, 2030, Technology Center, I-124, University City - 21941909, Rio de Janeiro, RJ, Brazil
| | - Gisele Mattedi Barbosa
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, Horacio Macedo Av, 2030, Technology Center, G-115, University City - 21941450, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
El Yagoubi Y, Lemieux B, Segura PA, Cabana H. Characterization of laccases from Trametes hirsuta in the context of bioremediation of wastewater treatment plant effluent. Enzyme Microb Technol 2023; 171:110308. [PMID: 37660578 DOI: 10.1016/j.enzmictec.2023.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
The bioremediation of pharmaceutical compounds contained in wastewater, in an ecological and sustainable way, is possible via the oxidative action of fungal laccases. The discovery of new fungal laccases with unique physico-chemical characteristics pushes researchers to identify suitable laccases for specific applications. The aim of this study is to purify and characterize laccase isoenzymes produced from the Trametes hirsuta IBB450 strain for the bioremediation of pharmaceutical compounds. Two main laccases mixtures were observed and purified in the extracts and were called Yn and Yg. Peptide fingerprinting analysis suggested that Yn was constituted mainly of laccase Q02497 and Yg of laccase A0A6M5CX58, respectively. Robustness tests, based on tolerance and stability, showed that both laccases were affected in a relatively similar way by salts (KCl, NaCl), organic solvents (ACN, MeOH), denaturing compounds (urea, trypsin, copper) and were virtually unaffected and stable in wastewater. Determination of kinetic constants (Michaelis (KM), catalytic constant (kcat) and kinetic efficiency (K=kcat/KM)) for the transformation of synthetic hormone 17α-ethynylestradiol and the anti-inflammatory agent diclofenac indicates a lower KM and kcat for laccase Yn but relative similar K constant compared to Yg. Synergistic effects were observed for the transformation of diclofenac, unlike 17α-ethynylestradiol. Transformation studies of 17α-ethynylestradiol at different temperatures (4 and 21 °C) indicate a transformation rate reduction of approximately 75-80% at 4 °C against 25% for diclofenac in less than an hour. Finally, the classification of laccases Yg and Yn into one of eight groups (group A-H) suggests that laccase Yg belongs to group A (constitutive laccase) and laccase Yn belongs to group B (inducible laccase).
Collapse
Affiliation(s)
- Younès El Yagoubi
- Université de Sherbrooke Water Research Group (GREAUS), 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada; Department of Chemistry, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Bruno Lemieux
- Plateforme de purification des protéines de l'Université de Sherbrooke, Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Pedro A Segura
- Université de Sherbrooke Water Research Group (GREAUS), 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada; Department of Chemistry, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Hubert Cabana
- Université de Sherbrooke Water Research Group (GREAUS), 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada; Department of Civil and Building Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
21
|
Banyal R, Khan AAP, Sudhaik A, Sonu, Raizada P, Khan A, Singh P, Rub MA, Azum N, Alotaibi MM, Asiri AM. Emergence of CuInS 2 derived photocatalyst for environmental remediation and energy conversion. ENVIRONMENTAL RESEARCH 2023; 238:117288. [PMID: 37797665 DOI: 10.1016/j.envres.2023.117288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Hydrogen production, catalytic organic synthesis, carbon dioxide reduction, environmental purification, and other major fields have all adopted photocatalytic technologies due to their eco-friendliness, ease of use, and reliance on sunlight as the driving force. Photocatalyst is the key component of photocatalytic technology. Thus, it is of utmost importance to produce highly efficient, stable, visible-light-responsive photocatalysts. CIS stands out among other visible-light-response photocatalysts for its advantageous combination of easy synthesis, non-toxicity, high stability, and suitable band structure. In this study, we took a brief glance at the synthesis techniques for CIS after providing a quick introduction to the fundamental semiconductor features, including the crystal and band structures of CIS. Then, we discussed the ways doping, heterojunction creation, p-n heterojunction, type-II heterojunction, and Z-scheme may be used to modify CIS's performance. Subsequently, the applications of CIS towards pollutant degradation, CO2 reduction, water splitting, and other toxic pollutants remediation are reviewed in detail. Finally, several remaining problems with CIS-based photocatalysts are highlighted, along with future potential for constructing more superior photocatalysts.
Collapse
Affiliation(s)
- Rahul Banyal
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Anish Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India.
| | - Malik A Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha M Alotaibi
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
22
|
Siebenmorgen C, Poortinga A, van Rijn P. Sono-processes: Emerging systems and their applicability within the (bio-)medical field. ULTRASONICS SONOCHEMISTRY 2023; 100:106630. [PMID: 37826890 PMCID: PMC10582584 DOI: 10.1016/j.ultsonch.2023.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Sonochemistry, although established in various fields, is still an emerging field finding new effects of ultrasound on chemical systems and are of particular interest for the biomedical field. This interdisciplinary area of research explores the use of acoustic waves with frequencies ranging from 20 kHz to 1 MHz to induce physical and chemical changes. By subjecting liquids to ultrasonic waves, sonochemistry has demonstrated the ability to accelerate reaction rates, alter chemical reaction pathways, and change physical properties of the system while operating under mild reaction conditions. It has found its way into diverse industries including food processing, pharmaceuticals, material science, and environmental remediation. This review provides an overview of the principles, advancements, and applications of sonochemistry with a particular focus on the domain of (bio-)medicine. Despite the numerous benefits sonochemistry has to offer, most of the research in the (bio-)medical field remains in the laboratory stage. Translation of these systems into clinical practice is complex as parameters used for medical ultrasound are limited and toxic side effects must be minimized in order to meet regulatory approval. However, directing attention towards the applicability of the system in clinical practice from the early stages of research holds significant potential to further amplify the role of sonochemistry in clinical applications.
Collapse
Affiliation(s)
- Clio Siebenmorgen
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| | - Albert Poortinga
- Technical University Eindhoven, Department of Mechanical Engineering, Gemini Zuid, de Zaale, Eindhoven 5600 MB, The Netherlands.
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| |
Collapse
|
23
|
Lee D, Kang J, Son Y. Effect of violent mixing on sonochemical oxidation activity under various geometric conditions in 28-kHz sonoreactor. ULTRASONICS SONOCHEMISTRY 2023; 101:106659. [PMID: 39491264 PMCID: PMC10630164 DOI: 10.1016/j.ultsonch.2023.106659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The effects of violent mixing and reactor geometric conditions were investigated using the overhead stirrer and high-speed homogenizer in 28-kHz sonoreactors. The sonochemical oxidation activity was quantified using the KI dosimetry method, and the sonochemical active zone was visually observed using the luminol method. Higher mixing rates resulted in a significant enhancement of the sonochemical oxidation activity, primarily due to a significant change in the sonochemical active zone. When using the overhead stirrer (0-2,000 rpm), the highest activity for 2λ and 3λ occurred at 500 rpm, whereas the highest activity for 4λ was obtained at 250 rpm. For the high-speed homogenizer (0-12,000 rpm), the highest activity was consistently obtained at 3,500 rpm across all liquid height conditions. The impact of mixing position (Top, Mid, and Bot positions) on sonochemical activity was analyzed. The results revealed that the lowest activity was obtained for the bottom position, likely attributed to significant ultrasound attenuation. The reactor size effect was investigated using the high-speed homogenizer in five cylindrical sonoreactors with different diameters (12-27 cm). It was found that very low activity could be observed due to unexpected geometric conditions, and the application of mixing (3,500 rpm in this study) could result in high sonochemical activity regardless of geometric conditions.
Collapse
Affiliation(s)
- Dukyoung Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jumin Kang
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
24
|
Wilsey MK, Taseska T, Meng Z, Yu W, Müller AM. Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants. Chem Commun (Camb) 2023; 59:11895-11922. [PMID: 37740361 DOI: 10.1039/d3cc03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Halogenated organic compounds are widespread, and decades of heavy use have resulted in global bioaccumulation and contamination of the environment, including water sources. Here, we introduce the most common halogenated organic water pollutants, their classification by type of halogen (fluorine, chlorine, or bromine), important policies and regulations, main applications, and environmental and human health risks. Remediation techniques are outlined with particular emphasis on carbon-halogen bond strengths. Aqueous advanced redox processes are discussed, highlighting mechanistic details, including electrochemical oxidations and reductions of the water-oxygen system, and thermodynamic potentials, protonation states, and lifetimes of radicals and reactive oxygen species in aqueous electrolytes at different pH conditions. The state of the art of aqueous advanced redox processes for brominated, chlorinated, and fluorinated organic compounds is presented, along with reported mechanisms for aqueous destruction of select PFAS (per- and polyfluoroalkyl substances). Future research directions for aqueous electrocatalytic destruction of organohalogens are identified, emphasizing the crucial need for developing a quantitative mechanistic understanding of degradation pathways, the improvement of analytical detection methods for organohalogens and transient species during advanced redox processes, and the development of new catalysts and processes that are globally scalable.
Collapse
Affiliation(s)
- Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Teona Taseska
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
25
|
Bao J, Guo S, Fan D, Cheng J, Zhang Y, Pang X. Sonoactivated Nanomaterials: A potent armament for wastewater treatment. ULTRASONICS SONOCHEMISTRY 2023; 99:106569. [PMID: 37657369 PMCID: PMC10495678 DOI: 10.1016/j.ultsonch.2023.106569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
The world is currently facing a critical issue of water pollution, with wastewater being a major contributor. It comes from different types of pollutants, including industrial, medical, agricultural, and domestic. Effective treatment of wastewater requires efficient degradation of pollutants and carcinogens prior to discharge. Commonly used methods for wastewater treatment include filtration, adsorption, biodegradation, advanced oxidation processes, and Fenton oxidation, among others.The sonochemical effect refers to the decomposition, oxidation, reduction, and other reactions of pollutant molecules in wastewater upon ultrasound activation, achieving pollutants removal. Furthermore, the micro-flow effect generated by ultrasonic waves creates tiny bubbles and eddies. This significantly increases the contact area and exchange speed of pollutants and dissolved oxygen, thereby accelerating pollutant degradation. Currently, ultrasonic-assisted technology has emerged as a promising approach due to its strong oxidation ability, simple and cheap equipments, and minimal secondary pollution. However, the use of ultrasound in wastewater treatment has some limitations, such as high energy consumption, lengthy treatment time, limited water treatment capacity, stringent water quality requirements, and unstable treatment effects. To address these issues, the combination of enhanced ultrasound with nanotechnology is proposed and has shown great potential in wastewater treatment. Such a combination can greatly improve the efficiency of ultrasonic oxidation, resulting in an improved performance of wastewater purification. This article presents recent progress in the development of sonoactivated nanomaterials for enhanced wastewater disposal. Such nanomaterials are systematically classified and discussed. Potential challenges and future prospects of this emerging technology are also highlighted.
Collapse
Affiliation(s)
- Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Shuangshaung Guo
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dandan Fan
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Yong Zhang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Xin Pang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
26
|
Ghamsari ARG, Mohseni M, Esmaeilian N, Naderifar A, Dabir B. Design of a new fountain reactor for contamination degradation using advanced oxidation processes with hybrid techniques and modeling evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94097-94111. [PMID: 37525080 DOI: 10.1007/s11356-023-28491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/24/2023] [Indexed: 08/02/2023]
Abstract
Due to the water and energy crises, wastewater treatment systems that are more energy efficient and capable of large volume degradation are a priority. Photochemical decomposition methods have a significant impact on pollutant treatment. The use of these methods in conjunction with a novel designed reactor and hybridization processes can result in considerable treatment results. This research used a fountain system in a UV/H2O2 process to generate a belt-type liquid film with a low thickness and high mixing to remove methyl orange as a model pollutant. The flow rate, H2O2 concentration, temperature, and UV intensity were the parameters evaluated in this series of tests. After 90 minutes under optimum conditions, the maximum degradation of methyl orange was 99.73 percent. The efficiency of the purification process was increased to 99 percent in 75 minutes by using the optimum state of hybridization of UV/US/H2O2 processes. Two deep neural network models and a pseudo-first-order kinetic model were created to fit the experimental data. The results reveal a good fit between the experimental data and the model prediction. The discovered synergistic factor (1.168) and energy yield (2.65 g/kWh) demonstrated the high efficiency of the hybridization process and the outstanding function of the designed system, respectively.
Collapse
Affiliation(s)
- Amir Reza Ghannayi Ghamsari
- Department of Chemical Engineering, School of Material Engineering and Advanced Processes, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360, East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Nima Esmaeilian
- Department of Chemical Engineering, School of Material Engineering and Advanced Processes, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Abbas Naderifar
- Department of Chemical Engineering, School of Material Engineering and Advanced Processes, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Bahram Dabir
- Department of Chemical Engineering, School of Material Engineering and Advanced Processes, Amirkabir University of Technology, Tehran, 15875-4413, Iran.
| |
Collapse
|
27
|
Yang B, Ma Q, Hao J, Huang J, Wang Q, Wang D, Zhang J. Periodate-based advanced oxidation processes: A review focusing on the overlooked role of high-valent iron and manganese species. CHEMOSPHERE 2023:139442. [PMID: 37422211 DOI: 10.1016/j.chemosphere.2023.139442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Periodate-based advanced oxidation processes (AOPs) have received mounting attention in scientific research in the past two decades due to their fair oxidizing capability for satisfactory decontamination performance. Unlike iodyl (IO3•) and hydroxyl (•OH) radicals are widely recognized as the predominant species generated from periodate activation, the role of high-valent metal as a dominant reactive oxidant has been proposed recently. Although several excellent reviews concerning periodate-based AOPs have been reported, there are still prevalent knowledge roadblocks to high-valent metals' formation and reaction mechanisms. Therefore, this work aims to provide a comprehensive overview of high-valent metals, especially concerning the identification methods (e.g., direct and indirect strategies), formation mechanisms (e.g., formation pathways and interpretation based on density functional theory calculation), reaction mechanisms (e.g., nucleophilic attack, electron transfer, oxygen-atom transfer, electrophilic addition, and hydride and hydrogen-atom transfer), and reactivity performance (e.g., chemical properties, influencing factors, and practical applications). Furthermore, points for critical thinking and further prospects for high-valent metal-mediated oxidation processes are suggested, emphasizing the need for parallel efforts to enhance the stability and reproducibility of high-valent metal-mediated oxidation processes in real world applications.
Collapse
Affiliation(s)
- Bowen Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Qiang Ma
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Qingyuan Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Dunqiu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
28
|
Mojiri A, Zhou JL, Ozaki N, KarimiDermani B, Razmi E, Kasmuri N. Occurrence of per- and polyfluoroalkyl substances in aquatic environments and their removal by advanced oxidation processes. CHEMOSPHERE 2023; 330:138666. [PMID: 37068615 DOI: 10.1016/j.chemosphere.2023.138666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), one of the main categories of emerging contaminants, are a family of fluorinated organic compounds of anthropogenic origin. PFAS can endanger the environment and human health because of their wide application in industries, long-term persistence, unique properties, and bioaccumulation potential. This study sought to explain the accumulation of different PFAS in water bodies. In aquatic environments, PFAS concentrations range extensively from <0.03 (groundwater; Melbourne, Australia) to 51,000 ng/L (Groundwater, Sweden). Additionally, bioaccumulation of PFAS in fish and water biota has been stated to range from 0.2 (Burbot, Lake Vättern, Sweden) to 13,900 ng/g (Bluegill samples, U.S.). Recently, studies have focused on PFAS removal from aqueous solutions; one promising technique is advanced oxidation processes (AOPs), including microwaves, ultrasound, ozonation, photocatalysis, UV, electrochemical oxidation, the Fenton process, and hydrogen peroxide-based and sulfate radical-based systems. The removal efficiency of PFAS ranges from 3% (for MW) to 100% for UV/sulfate radical as a hybrid reactor. Therefore, a hybrid reactor can be used to efficiently degrade and remove PFAS. Developing novel, efficient, cost-effective, and sustainable AOPs for PFAS degradation in water treatment systems is a critical area of research.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Bahareh KarimiDermani
- Department of Geological Sciences, Hydrogeology, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Elham Razmi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Norhafezah Kasmuri
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
29
|
Choi J, Son Y. Effect of dissolved gases on sonochemical oxidation in a 20 kHz probe system: Continuous monitoring of dissolved oxygen concentration and sonochemical oxidation activity. ULTRASONICS SONOCHEMISTRY 2023; 97:106452. [PMID: 37245263 DOI: 10.1016/j.ultsonch.2023.106452] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Dissolved gases have a substantial influence on acoustic cavitation and sonochemical oxidation reactions. Little research on the changes in dissolved gases and the resultant changes in sonochemical oxidation has been reported, and most studies have focused only on the initial dissolved gas conditions. In this study, the dissolved oxygen (DO) concentration was measured continuously during ultrasonic irradiation using an optical sensor in different gas modes (saturation/open, saturation/closed, and sparging/closed modes). Simultaneously, the resulting changes in sonochemical oxidation were quantified using KI dosimetry. In the saturation/open mode using five gas conditions of Ar and O2, the DO concentration decreased rapidly when O2 was present because of active gas exchange with the atmosphere, and the DO concentration increased when 100% Ar was used. As a result, the order of the zero-order reaction constant for the first 10 min (k0-10) decreased in the order Ar:O2 (75:25) > 100% Ar ≈ Ar:O2 (50:50) > Ar:O2 (25:75) > 100% O2, whereas that during the last 10 min (k20-30) when the DO concentration was relatively stable, decreased in the order 100% Ar > Ar:O2 (75:25) > Ar:O2 (50:50) ≈ Ar:O2 (20:75) > 100% O2. In the saturation/closed mode, the DO concentration decreased to approximately 70-80% of the initial level because of ultrasonic degassing, and there was no influence of gases other than Ar and O2. Consequently, k0-10 and k20-30 decreased in the order Ar:O2 (75:25) > Ar:O2 (50:50) > Ar:O2 (25:75) > 100% Ar > 100% O2. In the sparging/closed mode, the DO concentration was maintained at approximately 90% of the initial level because of the more active gas adsorption induced by gas sparging, and the values of k0-10 and k20-30 were almost the same as those in the saturation/closed mode. In the saturation/open and sparging/closed modes, the Ar:O2 (75:25) condition was most favorable for enhancing sonochemical oxidation. However, a comparison of k0-10 and k20-30 indicated that there would be an optimal dissolved gas condition that was different from the initial gas condition. In addition, the mass-transfer and ultrasonic-degassing coefficients were calculated using changes in the DO concentration in the three modes.
Collapse
Affiliation(s)
- Jongbok Choi
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
30
|
Poblete R, Bakit J. Technical and economical assessment of the treatment of vinasse from Pisco production using the advanced oxidation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27390-7. [PMID: 37145363 DOI: 10.1007/s11356-023-27390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
The removal of organic matter from Pisco production wastewater was evaluated using coagulation/flocculation, filtration as a pre-treatment, and solar photo-Fenton, with the use of two types of photoreactors: compound parabolic collectors (CPC) and flat plate (FP), with and without utilizing the ozonation process. The overall removal efficiency for chemical oxygen demand (COD) was 63% and 15% using FP and CPC, respectively. Also, for the overall removal efficiency of polyphenols, a percentage of 73% and 43% were obtained using FP and CPC, respectively. When ozone was used in the solar photoreactors, the resulting trends were similar. COD and polyphenol removal, using an FP photoreactor in the solar photo-Fenton/O3 process, resulted in values of 98.8% and 86.2% after the process. COD and polyphenol removal, using solar photo-Fenton/O3 process in a CPC, resulted in values of 49.5% and 72.4%, respectively. The economic indicators of annual worth and economic treatment capacity established that FP reactors represent lower costs than CPCs. These results were corroborated by the economic analyses of the evolution of costs versus COD removed as well as by the cash flow diagrams projected for 5, 10, and 15 years.
Collapse
Affiliation(s)
- Rodrigo Poblete
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Escuela de Prevención de Riesgos Y Medioambiente, Universidad Católica del Norte, Larrondo 1281, 1780000, Coquimbo, Chile.
| | - José Bakit
- Universidad Católica del Norte, Facultad de Ciencias del Mar, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, 1780000, Coquimbo, Chile
| |
Collapse
|
31
|
Arifin MN, Jusoh R, Abdullah H, Ainirazali N, Setiabudi HD. Recent advances in advanced oxidation processes (AOPs) for the treatment of nitro- and alkyl-phenolic compounds. ENVIRONMENTAL RESEARCH 2023; 229:115936. [PMID: 37080279 DOI: 10.1016/j.envres.2023.115936] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The presence of phenolic compounds in the aquatic environment has posed severe risks due to their toxicity. Among the phenolic families, nitro- and alkyl-phenolic compounds have been categorized as precedence contaminants by the United States Environmental Protection Agency (US EPA). Therefore, efficient treatment methods for wastewater containing nitro- and alkyl-phenolic compounds are urgently needed. Due to the advantages of creating reactive species and generating efficient degradation of hazardous contaminants in wastewater, advanced oxidation processes (AOPs) are well-known in the field of treating toxic contaminants. In this review paper, the recent directions in AOPs, catalysts, mechanisms, and kinetics of AOPs are comprehensively reviewed. Furthermore, the conclusion summarizes the research findings, future prospects, and opportunities for this study. The main direction of AOPs lies on the optimization of catalyst and operating parameters, with industrial applications remain as the main challenge. This review article is expected to present a summary and in-depth understanding of AOPs development; and thus, inspiring scientists to accelerate the evolution of AOPs in industrial applications.
Collapse
Affiliation(s)
- M N Arifin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - R Jusoh
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - H Abdullah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - N Ainirazali
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid & Processes, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - H D Setiabudi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid & Processes, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
32
|
Wang M, Huang Y, Liu H. Removal of trichloroethene by glucose oxidase immobilized on magnetite nanoparticles. RSC Adv 2023; 13:11853-11864. [PMID: 37082720 PMCID: PMC10111148 DOI: 10.1039/d3ra01168b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
To overcome the safety risks and low utilization efficiency of H2O2 in traditional Fenton processes, in situ production of H2O2 by enzymatic reactions has attracted increasing attention recently. In this study, magnetite-immobilized glucose oxidase (MIG) was prepared to catalyze the heterogeneous Fenton reaction for the removal of trichloroethene from water. The successful immobilization of glucose oxidase on magnetite was achieved with a loading efficiency of 70.54%. When combined with substrate glucose, MIG could efficiently remove 5-50 mg L-1 trichloroethene from water with a final removal efficiency of 76.2% to 94.1% by 192 h. This system remained effective in the temperature range of 15-45 °C and pH range of 3.6-9.0. The removal was slightly inhibited by different cations and anions (influencing degree Ca2+ > Mg2+ > Cu2+ and H2PO4 - > Cl- > SO4 2-) and humic acid. Meanwhile, the MIG could be recycled for 4 cycles and was applicable to other chlorinated hydrocarbons. The results of reactive oxidative species generation monitoring and quenching experiments indicated that H2O2 generated by the enzymatic reaction was almost completely decomposed by magnetite to produce ·OH with a final cumulative concentration of 129 μM, which played a predominant role in trichloroethene degradation. Trichloroethene was almost completely dechlorinated into Cl-, CO2 and H2O without production of any detectable organic chlorinated intermediates. This work reveals the potential of immobilized enzymes for in situ generation of ROS and remediation of organic chlorinated contaminants.
Collapse
Affiliation(s)
- Mengyang Wang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences Wuhan 430078 China +86-15972160186
| | - Yao Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences Wuhan 430078 China +86-15972160186
| | - Hui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences Wuhan 430078 China +86-15972160186
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan 430078 China
| |
Collapse
|
33
|
Hassanzadeh S, Farhadi S, Moradifard F. Synthesis of magnetic graphene-like carbon nitride-cobalt ferrite (g-C 3N 4/CoFe 2O 4) nanocomposite for sonocatalytic remediation of toxic organic dyes. RSC Adv 2023; 13:10940-10955. [PMID: 37033431 PMCID: PMC10077340 DOI: 10.1039/d3ra00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023] Open
Abstract
A novel magnetic g-C3N4/CoFe2O4 nanocomposite was successfully synthesized by a simple hydrothermal method and applied as a new graphene-like carbon nitride-based sonocatalyst for sonodegradation of pollutant dyes. The as-prepared samples were characterized by using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS), BET surface area measurements and photoluminescence (PL) spectroscopy. The results indicate that the nanocomposite sample is composed of spherical CoFe2O4 nanoparticles adhered to g-C3N4 naosheets. The g-C3N4/CoFe2O4 nanocomposites were used as a new magnetically separable sonocatalyst in H2O2-assisted sonodegradation of methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) dyes in aqueous media. The results showed complete degradation (ca. 100%) of dyes within short times (30-35 min). The sonocatalytic activity of graphitic carbon nitride (g-C3N4) was greatly enhanced with CoFe2O4 modification. Trapping experiments indicated that the g-C3N4/CoFe2O4 nanocomposites serves as a generator of hydroxyl radical (˙OH) via activation of H2O2 for degradation of dyes under ultrasound irradiation. Furthermore, the magnetic sonocatalyst can be separated from solution by an external magnet and reused several times without observable loss of activity. The possible mechanism of sonocatalytic activity was also proposed according to experimental results.
Collapse
Affiliation(s)
- Saeedeh Hassanzadeh
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran +986633120618 +986633120611
| | - Saeed Farhadi
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran +986633120618 +986633120611
| | - Farzaneh Moradifard
- Department of Chemistry, Lorestan University Khorramabad 68151-44316 Iran +986633120618 +986633120611
| |
Collapse
|
34
|
Sahoo TP, Kumar MA. Remediation of phthalate acid esters from contaminated environment—Insights on the bioremedial approaches and future perspectives. Heliyon 2023; 9:e14945. [PMID: 37025882 PMCID: PMC10070671 DOI: 10.1016/j.heliyon.2023.e14945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Phthalates are well-known emerging pollutants that are toxic to the environment and human health. Phthalates are lipophilic chemicals used as plasticizers in many of the items for improving their material properties. These compounds are not chemically bound and are released to the surroundings directly. Phthalate acid esters (PAEs) are endocrine disruptors and can interfere with hormones, which can cause issues with development and reproduction, thus there is a huge concern over their existence in various ecological surroundings. The purpose of this review is to explore the occurrence, fate, and concentration of phthalates in various environmental matrices. This article also covers the phthalate degradation process, mechanism, and outcomes. Besides the conventional treatment technology, the paper also aims at the recent advancements in various physical, chemical, and biological approaches developed for phthalate degradation. In this paper, a special focus has been given on the diverse microbial entities and their bioremedial mechanisms executes the PAEs removal. Critically, the analyses method for determining intermediate products generated during phthalate biotransformation have been discussed. Concluisvely, the challenges, limitations, knowledge gaps and future opportunities of bioremediation and their significant role in ecology have also been highlighted.
Collapse
|
35
|
Manna M, Sen S. Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25477-25505. [PMID: 35287196 DOI: 10.1007/s11356-022-19435-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The world faces tremendous challenges and environmental crises due to the rising strength of wastewater. The conventional technologies fail to achieve the quality water that can be reused after treatment means "zero effluent" discharge of the industrial effluent. Therefore, now the key challenge is to develop improved technologies which will have no contribution to secondary pollution and at the same time more efficient for the socio-economic growth of the environment. Sustainable technologies are needed for wastewater treatment, reducing footprint by recycling, reusing, and recovering resources. Advanced oxidation process (AOP) is one of the sustainable emerging technologies for treating refractory organic contaminants present in different industrial wastewaters like textile, paper and pulp, pharmaceuticals, petrochemicals, and refineries. This critical review emerges details of advanced oxidation processes (AOPs), mentioning all possible permutations and combinations of components like ozone, UV, the catalyst used in the process. Non-conventional AOP systems, microwave, ultrasound, and plasma pulse assisted are the future of the oxidation process. This review aims to enlighten the role of AOPs for the mineralization of refractory organic contaminants (ROC) to readily biodegradable organics that cannot be either possible by conventional treatment. The integrated AOPs can improve the biodegradability of recalcitrant organic compounds and reduce the toxicity of wastewater, making them suitable for further biological treatment.
Collapse
Affiliation(s)
- Madhumita Manna
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India
| | - Sujit Sen
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India.
| |
Collapse
|
36
|
Taha A, Mehany T, Pandiselvam R, Anusha Siddiqui S, Mir NA, Malik MA, Sujayasree OJ, Alamuru KC, Khanashyam AC, Casanova F, Xu X, Pan S, Hu H. Sonoprocessing: mechanisms and recent applications of power ultrasound in food. Crit Rev Food Sci Nutr 2023; 64:6016-6054. [PMID: 36591874 DOI: 10.1080/10408398.2022.2161464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
- Department of Chemistry, University of La Rioja, Logroño, Spain
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- DIL e.V.-German Institute of Food Technologies, Quakenbrück, Germany
| | - Nisar A Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering (UIE), Chandigarh University, Mohali, India
| | - Mudasir Ahmad Malik
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, India
| | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| |
Collapse
|
37
|
Djellabi R, Aboagye D, Galloni MG, Vilas Andhalkar V, Nouacer S, Nabgan W, Rtimi S, Constantí M, Medina Cabello F, Contreras S. Combined conversion of lignocellulosic biomass into high-value products with ultrasonic cavitation and photocatalytic produced reactive oxygen species - A review. BIORESOURCE TECHNOLOGY 2023; 368:128333. [PMID: 36403911 DOI: 10.1016/j.biortech.2022.128333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The production of high-value products from lignocellulosic biomass is carried out through the selective scission of crosslinked CC/CO bonds. Nowadays, several techniques are applied to optimize biomass conversion into desired products with high yields. Photocatalytic technology has been proven to be a valuable tool for valorizing biomass at mild conditions. The photoproduced reactive oxygen species (ROSs) can initiate the scission of crosslinked bonds and form radical intermediates. However, the low mass transfer of the photocatalytic process could limit the production of a high yield of products. The incorporation of ultrasonic cavitation in the photocatalytic system provides an exceptional condition to boost the fragmentation and transformation of biomass into the desired products within a lesser reaction time. This review critically discusses the main factors governing the application of photocatalysis for biomass valorization and tricks to boost the selectivity for enhancing the yield of desired products. Synergistic effects obtained through the combination of sonolysis and photocatalysis were discussed in depth. Under ultrasonic vibration, hot spots could be produced on the surface of the photocatalysts, improving the mass transfer through the jet phenomenon. In addition, shock waves can assist the dissolution and mixing of biomass particles.
Collapse
Affiliation(s)
- Ridha Djellabi
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain.
| | - Dominic Aboagye
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Melissa Greta Galloni
- Chemistry Department, Università degli Studi di Milano, Via Golgi 19, Milano, 20133, Italy
| | | | - Sana Nouacer
- Laboratory of Water Treatment and Valorization of Industrial Wastes, Chemistry Department, Faculty of Sciences, Badji-Mokhtar University, Annaba BP12 2300, Algeria; École Nationale Supérieure des Mines et Métallurgie, ENSMM, Ex CEFOS Chaiba BP 233 RP Annaba, Sidi Amar W129, Algeria
| | - Walid Nabgan
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Sami Rtimi
- Global Institute for Water, Environment and Health, Geneva 1201, Switzerland
| | - Magda Constantí
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | | | - Sandra Contreras
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain
| |
Collapse
|
38
|
Ghosh S, Othmani A, Malloum A, Ke Christ O, Onyeaka H, AlKafaas SS, Nnaji ND, Bornman C, Al-Sharify ZT, Ahmadi S, Dehghani MH, Mubarak NM, Tyagi I, Karri RR, Koduru JR, Suhas. Removal of mercury from industrial effluents by adsorption and advanced oxidation processes: A comprehensive review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Peroxymonosulfate Activation by BaTiO3 Piezocatalyst. Catalysts 2022. [DOI: 10.3390/catal12111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Peroxymonosulfate (PMS) plays an important role in the advanced oxidation process for environmental remediation. In this study, barium titanate (BTO) piezocatalyst was selected for the activation of PMS driven by ultrasonic power. The degradation of Rhodamine B (RhB) by BTO single component, PMS single component, and BTO/PMS double components were investigated. The results indicated that PMS can be efficiently activated by BTO under an ultrasound with an RhB degradation rate of 98% within 20 min. The ultrasound not only promoted the activation of the PMS itself, but the surface charge carriers of BTO induced by the ultrasound also contributed to the activation of PMS. ·O2−, ·OH, and ·SO4− radicals were found to be the main active species that participated in the reaction. In order to verify the reaction’s environmental applicability, amoxicillin (AMX) as a typical environmental pollutant was studied. BTO/PMS displayed 80% removal efficiency of AMX, and the products generated were less toxic as demonstrated by eco-toxicity comparison. This work provides a promising strategy to improve the utilization of ultrasonic energy and apply it to the field of environmental pollutants treatment.
Collapse
|
40
|
Jiao J, Li Y, Song Q, Wang L, Luo T, Gao C, Liu L, Yang S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) by Free Radicals in Advanced Oxidation Processes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8152. [PMID: 36431636 PMCID: PMC9695708 DOI: 10.3390/ma15228152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
As emerging pollutants, pharmaceutical and personal care products (PPCPs) have received extensive attention due to their high detection frequency (with concentrations ranging from ng/L to μg/L) and potential risk to aqueous environments and human health. Advanced oxidation processes (AOPs) are effective techniques for the removal of PPCPs from water environments. In AOPs, different types of free radicals (HO·, SO4·-, O2·-, etc.) are generated to decompose PPCPs into non-toxic and small-molecule compounds, finally leading to the decomposition of PPCPs. This review systematically summarizes the features of various AOPs and the removal of PPCPs by different free radicals. The operation conditions and comprehensive performance of different types of free radicals are summarized, and the reaction mechanisms are further revealed. This review will provide a quick understanding of AOPs for later researchers.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yihua Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qi Song
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Liujin Wang
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Tianlie Luo
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Changfei Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
41
|
Pirsaheb M, Moradi N, Hossini H. Sonochemical processes for antibiotics removal from water and wastewater: A systematic review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Hong F, Tian H, Yuan X, Liu S, Peng Q, Shi Y, Jin L, Ye L, Jia J, Ying D, Ramsey TS, Huang Y. CFD-assisted modeling of the hydrodynamic cavitation reactors for wastewater treatment - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115982. [PMID: 36104886 DOI: 10.1016/j.jenvman.2022.115982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Hydrodynamic cavitation has been a promising method and technology in wastewater treatment, while the principles based on the design of cavitational reactors to optimize cavitation yield and performance remains lacking. Computational fluid dynamics (CFD), a supplementation of experimental optimization, has become an essential tool for this issue, owing to the merits of low investment and operating costs. Nevertheless, researchers with a non-engineering background or few CFD fundamentals used straightforward numerical strategies to treat cavitating flows, and this might result in many misinterpretations and consequently poor computations. This review paper presents the rationale behind hydrodynamic cavitation and application of cavitation modeling specific to the reactors in wastewater treatment. In particular, the mathematical models of multiphase flow simulation, including turbulence closures and cavitation models, are comprehensively described, whilst the advantages and shortcomings of each model are also identified and discussed. Examples and methods of the coupling of CFD technology, with experimental observations to investigate into the hydrodynamic behavior of cavitating devices that feature linear and swirling flows, are also critically summarized. Modeling issues, which remain unaddressed, i.e., the implementation strategies of numerical models, and the definition of cavitation numbers are identified and discussed. Finally, the advantages of CFD modeling are discussed and the future of CFD applications in this research area is also outlined. It is expected that the present paper would provide decision-making support for CFD beginners to efficiently perform CFD modeling and promote the advancement of cavitation simulation of reactors in the field of wastewater treatment.
Collapse
Affiliation(s)
- Feng Hong
- College of Mechanical and Power Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Hailin Tian
- Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Xi Yuan
- College of Hydraulic &Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Shuchang Liu
- College of Hydraulic &Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Qintian Peng
- College of Hydraulic &Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Yan Shi
- College of Hydraulic &Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Lei Jin
- College of Hydraulic &Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Liqun Ye
- Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Diwen Ying
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Thomas Stephen Ramsey
- Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China; College of Economics & Management, China Three Gorges University, Yichang, 443002, China
| | - Yingping Huang
- College of Hydraulic &Environmental Engineering, China Three Gorges University, Yichang, 443002, China; Engineering Research Center of Eco-environmental in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
43
|
Wang Y, Wang X, Zheng K, Guo H, Tian L, Zhu T, Liu Y. Ultrasound-sodium percarbonate effectively promotes short-chain carboxylic acids production from sewage sludge through anaerobic fermentation. BIORESOURCE TECHNOLOGY 2022; 364:128024. [PMID: 36174896 DOI: 10.1016/j.biortech.2022.128024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Short-chain carboxylic acids (SCCAs) production from sewage sludge via anaerobic fermentation is usually restricted by low substrates availability and rapid products consumption. Therefore, the ultrasound (US)-sodium percarbonate (SPC) technique was proposed to effectively break the bottlenecks. Results showed the total SCCAs yield, acetate yield and particulate organics reduction respectively attained 392.8 mg COD/g VSS, 204.6 mg COD/g VSS and 47.4 % under the optimal condition. Mechanistic explorations disclosed that US + SPC largely reduced biodegradation resistances of particulate organics and improved sludge biodegradability. The destruction of spatial structure was the inherent mechanisms for initial solubilization and further degradation of solid-phase sludge. Besides, US + SCP up-regulated hydrolytic and SCCAs-forming enzymes, but downregulated the key enzyme for methanation. Meanwhile, US + SPC altered the microbial structure and stimulated functional microorganism enrichment, well correlated with substrate biotransformation and products output. Overall, this strategy could effectively enhance SCCAs production from WAS and reduce the environmental risk for subsequent sludge disposal.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
44
|
Parsa JB, Alamdar M, Jafari F. Integrated ozone-sono-Fenton for the enhanced degradation of acid orange 7: process optimization and kinetic evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78444-78456. [PMID: 35689772 DOI: 10.1007/s11356-022-21249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The performance of novel hybrid advanced oxidation, ozone-sono-Fenton process in degradation of acid orange 7 (AO7), as a model of azo dyes was modelled and optimized using response surface methodology (RSM) based on central composite design (CCD). Utilizing a bubbling reactor equipped with an ultrasound probe and in the presence of Fenton reagents, a promising hybrid homogeneous AOP, ozone-sono-Fenton, was investigated. According to the experimental results, the variation trend of degradation efficiency (DE%) with pH, reaction time and Fe2+/H2O2 molar ratio was modelled with the reduced quadratic model. Additionally, the suitability of the model was indicated with close to unity regression coefficient [Formula: see text]. Furthermore, the comparative study of degradation efficiency and COD removal for the individual methods including ozonation, sonication and Fenton reagents as well as their hybrid processes reveals that the novel proposed technique, ozone-sono-Fenton process, is able to rapid and complete degradation of acid orange 7 with initial concentration of 300 mg L-1, 100% in only 12 min. The complete degradation was obtained under optimum conditions such as pH = 6, reaction time = 12 min and Fe2+/H2O2 molar ratio = 0.0040. The kinetics evaluation of the acid orange 7 concentration during the processing implied the first-order reaction. Considering the synergetic effect and cost-effectiveness of the hybrid method, the promising ozone-sono-Fenton method could effectively degrade using a wide range of organic contaminants.
Collapse
Affiliation(s)
- Jalal Basiri Parsa
- Applied Chemistry Department, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65178-38683, Iran.
| | - Mahya Alamdar
- Applied Chemistry Department, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Farnaz Jafari
- Applied Chemistry Department, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| |
Collapse
|
45
|
Yang B, Ma Q, Hao J, Sun X. Peroxymonosulfate Activation by Palladium(II) for Pollutants Degradation: A Study on Reaction Mechanism and Molecular Structural Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13036. [PMID: 36293612 PMCID: PMC9603282 DOI: 10.3390/ijerph192013036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Compared with certain transition metals (e.g., iron, cobalt, and manganese), noble metals are less frequently applied in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). Palladium (Pd), as one of noble metals, has been reported to possess the possibility of both radical mechanisms and electron transfer mechanisms in a heterogeneous Pd/PMS system, however, data are still sparse on the homogeneous Pd/PMS system. Therefore, this work aims to explore the homogeneous reactivity of PMS by Pd(II) ions from the aspects of reaction parameters, radical or non-radical oxidation mechanisms, and the relationship between pollutants' degradation rate and their molecular descriptors based on both experimental data and density functional theory (DFT) calculation results. As a result, the reaction mechanism of Pd(II)/PMS followed a radical-driven oxidation process, where sulfate radicals (SO4•-), rather than hydroxyl radicals (HO•), were the primary reactive oxidant species. BOx and EHOMO played significant roles in pollutant degradation during the Pd(II)/PMS system. It turned out that the bond's stability and electron donation ability of the target compound was responsible for its degradation performance. This finding provides an insight into PMS activation by a noble metal, which has significant implications for scientific research and technical development.
Collapse
Affiliation(s)
- Bowen Yang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Qiang Ma
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
46
|
Senthilkumar A, Ganeshbabu M, Karuppiah Lazarus J, Sevugarathinam S, John J, Ponnusamy SK, Velayudhaperumal Chellam P, Sillanpää M. Thermal and Radiation Based Catalytic Activation of Persulfate Systems in the Removal of Micropollutants: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Abiramasundari Senthilkumar
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Madhubala Ganeshbabu
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Jesintha Karuppiah Lazarus
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Shalini Sevugarathinam
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Juliana John
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | | | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus, Denmark
| |
Collapse
|
47
|
Study on ultrasonic enhanced ozone oxidation of cyanide-containing wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Salari M, Nikoo MR, Al-Mamun A, Rakhshandehroo GR, Mooselu MG. Optimizing Fenton-like process, homogeneous at neutral pH for ciprofloxacin degradation: Comparing RSM-CCD and ANN-GA. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115469. [PMID: 35751268 DOI: 10.1016/j.jenvman.2022.115469] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are considered among the most non-biodegradable environmental contaminants due to their genetic resistance. Considering the importance of antibiotics removal, this study was aimed at multi-objective modeling and optimization of the Fenton-like process, homogeneous at initial circumneutral pH. Two main issues, including maximizing Ciprofloxacin (CIP) removal and minimizing sludge to iron ratio (SIR), were modeled by comparing central composite design (CCD) based on Response Surface Methodology (RSM) and hybrid Artificial Neural Network-Genetic Algorithm (ANN-GA). Results of simultaneous optimization using ethylene diamine tetraacetic acid (EDTA) revealed that at pH ≅ 7, optimal conditions for initial CIP concentration, Fe2+ concentration, [H2O2]/[Fe2+] molar ratio, initial EDTA concentration, and reaction time were 14.9 mg/L, 9.2 mM, 3.2, 0.6 mM, and 25 min, respectively. Under these optimal conditions, CIP removal and SIR were predicted at 85.2% and 2.24 (gr/M). In the next step, multilayer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANN) were developed to model CIP and SIR. It was concluded that ANN, especially multilayer perceptron (MLP-ANN) has a decent performance in predicting response values. Additionally, multi-objective optimization of the process was performed using Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to maximize CIP removal efficiencies while minimizing SIR. NSGA-II optimization algorithm showed a reliable performance in the interaction between conflicting goals and yielded a better result than the GA algorithm. Finally, TOPSIS method with equal weights of the criteria was applied to choose the best alternative on the Pareto optimal solutions of the NSGA-II. Comparing the optimal values obtained by the multi-objective response surface optimization models (RSM-CCD) with the NSGA-II algorithm showed that the optimal variables in both models were close and, according to the absolute relative error criterion, possessed almost the same performance in the prediction of variables.
Collapse
Affiliation(s)
- Marjan Salari
- Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran
| | - Mohammad Reza Nikoo
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Abdullah Al-Mamun
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman
| | | | | |
Collapse
|
49
|
Ran J, Duan H, Srinivasakannan C, Yao J, Yin S, Zhang L. Effective removal of organics from Bayer liquor through combined sonolysis and ozonation: Kinetics and mechanism. ULTRASONICS SONOCHEMISTRY 2022; 88:106106. [PMID: 35921714 PMCID: PMC9352555 DOI: 10.1016/j.ultsonch.2022.106106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The presence of organic compounds in the waste liquor is of serious environmental concern that has plagued the development of alumina industry (Bayer Process). The present work attempts to develop a green and efficient process for removal of organics utilizing combined effect of sonolysis and ozonation (US/O3). The effects of reaction duration, ozone concentration and ultrasonic power are assessed for sonolysis (US), ozonation (O3) and combination of sonolysis and ozonation (US/O3). The optimal conditions for US/O3 treatment system is identified to be a reaction duration of 7 h, ozone concentration of 7.65 g/h, and ultrasonic power of 600 W. The total organic carbon (TOC) removal and decolorization are 60.13% and 87.1%, respectively. The process can be scaled-up to industrial scale, which could potentially serve to be a convenient, safe and sustainable alternative to the exisiting treatment technologies. Additionally, the treated waste water can be reused contributing to an improvement in the overall economics.
Collapse
Affiliation(s)
- Jianfeng Ran
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Haisheng Duan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; Yunnan Wenshan Aluminum Co., Ltd., Wenshan, Yunnan 663000, China
| | - C Srinivasakannan
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jiashu Yao
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Shaohua Yin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| |
Collapse
|
50
|
Ultrasonic Energy as an Agent to Aid Water Treatment in the Coagulation Process. ENERGIES 2022. [DOI: 10.3390/en15145186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the study was to estimate the effectiveness of ultrasonic coagulation aiding. The effect of ultrasound exposure alone and associated systems (ultrasound exposure/coagulant) on the contamination of natural water was examined. The evaluation of the test results was based on changes in indicators, such as TOC, color, turbidity, and electrokinetic potential. Three different coagulants were used in the tests of associated systems. The tests included basic processes related to volumetric coagulation, such as agitation, flocculation, and sedimentation. Sonication of water samples was carried out at a constant frequency of 22 kHz, variable vibration amplitude of 8–16 μm, and an exposure time of 1–5 min. The most efficient removal of organic contaminants from the water tested was achieved at a maximum amplitude of A = 16 μm, with effectiveness reaching 29% (TOC). In the tests of the associated systems, the effect of ultrasound exposure on the removal of water turbidity (an increase in the effectiveness of 25–35%) was generally greater than that on water color (8–21%). This relationship reflects the differentiated effect of ultrasonic energy on colloids of different stability. In removing turbidity, ultrasound exposure had the most favorable effect on aluminum sulfate. In respect of color, a better result was obtained using the modified coagulant. The possibility of reducing the coagulant dose confirmed the aiding effect of ultrasound. In the coagulation process, ultrasound exposure has a positive effect on the course of flocculation and the sedimentation of suspensions. In addition to the reduction in the doses of chemical reagents, it also leads to the modification of the post-coagulation sludge structure.
Collapse
|