1
|
Hegazy GE, Abu-Serie MM, Abou-Elela GM, Ghozlan H, Sabry SA, Soliman NA, Teleb M, Abdel-Fattah YR. Bioprocess development for biosurfactant production by Natrialba sp. M6 with effective direct virucidal and anti-replicative potential against HCV and HSV. Sci Rep 2022; 12:16577. [PMID: 36195643 PMCID: PMC9531635 DOI: 10.1038/s41598-022-20091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Halophilic archaea is considered an promising natural source of many important metabolites. This study focused on one of the surface-active biomolecules named biosurfactants produced by haloarchaeon Natrialba sp. M6. The production trend was optimized and the product was partially purified and identified using GC-Mass spectrometry. Sequential optimization approaches, Plackett-Burman (PB) and Box-Behnken Designs (BBD) were applied to maximize the biosurfactants production from M6 strain by using 14 factors; pH, NaCl, agitation and glycerol; the most significant factors that influenced the biosurfactant production were used for Response Surface Methodology (RSM). The final optimal production conditions were agitation (150 rpm), glycerol (3%), NaCl (20.8%), pH (12) and cultivation temperature (37°C). GC-Mass spectrometry for the recovered extract revealed the presence of a diverse group of bipolar nature, hydrophobic hydrocarbon chain and charged function group. The majority of these compounds are fatty acids. Based on results of GC-MS, compositional analysis content and Zetasizer, it was proposed that the extracted biosurfactant produced by haloarchaeon Natrialba sp. M6 could be a cationic lipoprotein. The antiviral activity of such biosurfactant was investigated against hepatitis C (HCV) and herpes simplex (HSV1) viruses at its maximum safe doses (20 μg/mL and 8 μg/mL, respectively). Its mode of antiviral action was declared to be primarily via deactivating viral envelopes thus preventing viral entry. Moreover, this biosurfactant inhibited RNA polymerase- and DNA polymerase-mediated viral replication at IC50 of 2.28 and 4.39 μg/mL, respectively also. Molecular docking studies showed that surfactin resided well and was bound to the specified motif with low and accepted binding energies (ΔG = - 5.629, - 6.997 kcal/mol) respectively. Therefore, such biosurfactant could be presented as a natural safe and effective novel antiviral agent.
Collapse
Affiliation(s)
- Ghada E Hegazy
- National Institute of Oceanography & Fisheries, NIOF-Egypt, Qaitbay Sq, El-Anfousy, Alexandria, 11865, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, Alexandria, Egypt
| | - G M Abou-Elela
- National Institute of Oceanography & Fisheries, NIOF-Egypt, Qaitbay Sq, El-Anfousy, Alexandria, 11865, Egypt
| | - Hanan Ghozlan
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Soraya A Sabry
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, New Borg El-Arab City, Universities & Research Institutes Zone, Alexandria, 21934, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Yasser R Abdel-Fattah
- Bioprocess Development Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, New Borg El-Arab City, Universities & Research Institutes Zone, Alexandria, 21934, Egypt.
| |
Collapse
|
2
|
Manne V, Ryan J, Wong J, Vengayil G, Basit SA, Gish RG. Hepatitis C Vaccination: Where We Are and Where We Need to Be. Pathogens 2021; 10:pathogens10121619. [PMID: 34959574 PMCID: PMC8705661 DOI: 10.3390/pathogens10121619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus (HCV) is a common cause of chronic liver disease and liver cancer worldwide. Despite advances in curative therapies for HCV, the incidence of new infections is not decreasing at the expected rate to hit the World Health Organization (WHO) target for the elimination of HCV by 2030. In fact, there are still more new cases of infection in the United States and worldwide than are being cured. The reasons for the rise in new cases include poor access to care and the opioid epidemic. The clinical burden of HCV requires a multimodal approach to eradicating the infection. Vaccination would be an excellent tool to prevent incidence of new infections; however, the genetic diversity of HCV and its ability to generate quasispecies within an infected host make creating a broadly reactive vaccine difficult. Multiple vaccine candidates have been identified, but to date, there has not been a target that has led to a broadly reactive vaccine, though several of the candidates are promising. Additionally, the virus is very difficult to culture and testing candidates in humans or chimpanzees is ethically challenging. Despite the multiple barriers to creating a vaccine, vaccination still represents an important tool in the fight against HCV.
Collapse
Affiliation(s)
- Vignan Manne
- HCA Healthcare Graduate Medical Education, Las Vegas, NV 89148, USA; (V.M.); (J.W.); (G.V.)
| | - John Ryan
- Comprehensive Digestive Institute of Nevada, Las Vegas, NV 89148, USA; (J.R.); (S.A.B.)
| | - Jonathan Wong
- HCA Healthcare Graduate Medical Education, Las Vegas, NV 89148, USA; (V.M.); (J.W.); (G.V.)
| | - Gayatri Vengayil
- HCA Healthcare Graduate Medical Education, Las Vegas, NV 89148, USA; (V.M.); (J.W.); (G.V.)
| | - Syed Abdul Basit
- Comprehensive Digestive Institute of Nevada, Las Vegas, NV 89148, USA; (J.R.); (S.A.B.)
| | - Robert G. Gish
- Liver Transplant Clinic, Loma Linda University, Loma Linda, CA 92350, USA
- Correspondence: ; Tel.: +1-866-873-8877
| |
Collapse
|
3
|
Hartlage AS, Kapoor A. Hepatitis C Virus Vaccine Research: Time to Put Up or Shut Up. Viruses 2021; 13:1596. [PMID: 34452460 PMCID: PMC8402855 DOI: 10.3390/v13081596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022] Open
Abstract
Unless urgently needed to prevent a pandemic, the development of a viral vaccine should follow a rigorous scientific approach. Each vaccine candidate should be designed considering the in-depth knowledge of protective immunity, followed by preclinical studies to assess immunogenicity and safety, and lastly, the evaluation of selected vaccines in human clinical trials. The recently concluded first phase II clinical trial of a human hepatitis C virus (HCV) vaccine followed this approach. Still, despite promising preclinical results, it failed to protect against chronic infection, raising grave concerns about our understanding of protective immunity. This setback, combined with the lack of HCV animal models and availability of new highly effective antivirals, has fueled ongoing discussions of using a controlled human infection model (CHIM) to test new HCV vaccine candidates. Before taking on such an approach, however, we must carefully weigh all the ethical and health consequences of human infection in the absence of a complete understanding of HCV immunity and pathogenesis. We know that there are significant gaps in our knowledge of adaptive immunity necessary to prevent chronic HCV infection. This review discusses our current understanding of HCV immunity and the critical gaps that should be filled before embarking upon new HCV vaccine trials. We discuss the importance of T cells, neutralizing antibodies, and HCV genetic diversity. We address if and how the animal HCV-like viruses can be used for conceptualizing effective HCV vaccines and what we have learned so far from these HCV surrogates. Finally, we propose a logical but narrow path forward for HCV vaccine development.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
4
|
A conserved epitope III on hepatitis C virus E2 protein has alternate conformations facilitating cell binding or virus neutralization. Proc Natl Acad Sci U S A 2021; 118:2104242118. [PMID: 34260404 PMCID: PMC8285954 DOI: 10.1073/pnas.2104242118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epitope III, a highly conserved amino acid motif of 524APTYSW529 on the hepatitis C virus (HCV) E2 glycoprotein, resides in the critical loop that binds to the host receptor CD81, thus making it one of the most important antibody targets for blocking HCV infections. Here, we have determined the X-ray crystal structure of epitope III at a 2.0-Å resolution when it was captured by a site-specific neutralizing antibody, monoclonal antibody 1H8 (mAb1H8). The snapshot of this complex revealed that epitope III has a relatively rigid structure when confined in the binding grooves of mAb1H8, which confers the residue specificity at both ends of the epitope. Such a high shape complementarity is reminiscent of the "lock and key" mode of action, which is reinforced by the incompatibility of an antibody binding with an epitope bearing specific mutations. By subtly positioning the side chains on the three residues of Tyr527, Ser528, and Trp529 while preserving the spatial rigidity of the rest, epitope III in this cocrystal complex adopts a unique conformation that is different from previously described E2 structures. With further analyses of molecular docking and phage display-based peptide interactions, we recognized that it is the arrangements of two separate sets of residues within epitope III that create these discrete conformations for the epitope to interact selectively with either mAb1H8 or CD81. These observations thus raise the possibility that local epitope III conformational dynamics, in conjunction with sequence variations, may act as a regulatory mechanism to coordinate "mAb1H8-like" antibody-mediated immune defenses with CD81-initiated HCV infections.
Collapse
|
5
|
Abstract
Enzyme-linked immunosorbent assays (ELISAs) enable rapid detection and quantitation of antibodies in samples. Such assays can be highly sensitive and can be performed in most laboratories with basic equipment. Although detecting binding antibodies to the surface proteins of most pathogens by ELISA is not always indicative of antibody function, i.e., neutralizing activity of antibodies, the results can be used as a first step toward more in-depth analysis of antibody responses. Here we describe a method that can be used to standardize ELISAs for the detection of HCV envelope antibodies across laboratories and provide adaptations of the method to further characterize antibody responses in serum samples.
Collapse
|
6
|
Guo X, Zhong JY, Li JW. Hepatitis C Virus Infection and Vaccine Development. J Clin Exp Hepatol 2018; 8:195-204. [PMID: 29892184 PMCID: PMC5992307 DOI: 10.1016/j.jceh.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
In the twenty-seven years since the discovery of hepatitis C virus (HCV) the majority of individuals exposed to HCV establish a persistent infection, which is a leading cause of chronic liver disease, cirrhosis and hepatocellular carcinoma. In developed nations, the cure rates of HCV infection could be over 90% with direct-acting antiviral (DAA) regimens, which has made the great progress in global eradication. However, the cost of these treatments is so expensive that the patients in developing nations, where the disease burden is the most severe, could not afford it, which highly restricted its access. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in risk groups due to limited surveillance. Consequently a protective vaccine and likely emergence of drug-resistant viral variants call for further studies of HCV biology. In the current review, the development and the progress of preventive and therapeutic vaccines against the HCV have been reviewed in the context of peptide vaccines, recombinant protein vaccines, HCV-like particle, DNA vaccines and viral vectors expressing HCV genes.
Collapse
Affiliation(s)
- Xuan Guo
- Research Institute of Chemical Defense, No.1 Huaiyin Road, Beijing 102205, China
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, No.1 Dali Road, Tianjin 300050, China
| | - Jin-Yi Zhong
- Research Institute of Chemical Defense, No.1 Huaiyin Road, Beijing 102205, China
| | - Jun-Wen Li
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, No.1 Dali Road, Tianjin 300050, China
| |
Collapse
|
7
|
Yokokawa H, Higashino A, Suzuki S, Moriyama M, Nakamura N, Suzuki T, Suzuki R, Ishii K, Kobiyama K, Ishii KJ, Wakita T, Akari H, Kato T. Induction of humoural and cellular immunity by immunisation with HCV particle vaccine in a non-human primate model. Gut 2018; 67:372-379. [PMID: 27797937 DOI: 10.1136/gutjnl-2016-312208] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Although HCV is a major cause of chronic liver disease worldwide, there is currently no prophylactic vaccine for this virus. Thus, the development of an HCV vaccine that can induce both humoural and cellular immunity is urgently needed. To create an effective HCV vaccine, we evaluated neutralising antibody induction and cellular immune responses following the immunisation of a non-human primate model with cell culture-generated HCV (HCVcc). DESIGN To accomplish this, 10 common marmosets were immunised with purified, inactivated HCVcc in combination with two different adjuvants: the classically used aluminum hydroxide (Alum) and the recently established adjuvant: CpG oligodeoxynucleotide (ODN) wrapped by schizophyllan (K3-SPG). RESULTS The coadministration of HCVcc with K3-SPG efficiently induced immune responses against HCV, as demonstrated by the production of antibodies with specific neutralising activity against chimaeric HCVcc with structural proteins from multiple HCV genotypes (1a, 1b, 2a and 3a). The induction of cellular immunity was also demonstrated by the production of interferon-γ mRNA in spleen cells following stimulation with the HCV core protein. These changes were not observed following immunisation with HCVcc/Alum preparation. No vaccination-related abnormalities were detected in any of the immunised animals. CONCLUSIONS The current preclinical study demonstrated that a vaccine included both HCVcc and K3-SPG induced humoural and cellular immunity in marmosets. Vaccination with this combination resulted in the production of antibodies exhibiting cross-neutralising activity against multiple HCV genotypes. Based on these findings, the vaccine created in this study represents a promising, potent and safe prophylactic option against HCV.
Collapse
Affiliation(s)
- Hiroshi Yokokawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc, Kanagawa, Japan.,Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsunori Higashino
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan.,Laboratory of Infectious Disease Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Saori Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan.,Laboratory of Infectious Disease Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masaki Moriyama
- Pharmaceutical Research Laboratories, Toray Industries, Inc, Kanagawa, Japan
| | - Noriko Nakamura
- Pharmaceutical Research Laboratories, Toray Industries, Inc, Kanagawa, Japan
| | - Tomohiko Suzuki
- Pharmaceutical Research Laboratories, Toray Industries, Inc, Kanagawa, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Ishii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Akari
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Japan.,Laboratory of Infectious Disease Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Lanford RE, Walker CM, Lemon SM. The Chimpanzee Model of Viral Hepatitis: Advances in Understanding the Immune Response and Treatment of Viral Hepatitis. ILAR J 2017; 58:172-189. [PMID: 29045731 PMCID: PMC5886334 DOI: 10.1093/ilar/ilx028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Chimpanzees (Pan troglodytes) have contributed to diverse fields of biomedical research due to their close genetic relationship to humans and in many instances due to the lack of any other animal model. This review focuses on the contributions of the chimpanzee model to research on hepatitis viruses where chimpanzees represented the only animal model (hepatitis B and C) or the most appropriate animal model (hepatitis A). Research with chimpanzees led to the development of vaccines for HAV and HBV that are used worldwide to protect hundreds of millions from these diseases and, where fully implemented, have provided immunity for entire generations. More recently, chimpanzee research was instrumental in the development of curative therapies for hepatitis C virus infections. Over a span of 40 years, this research would identify the causative agent of NonA,NonB hepatitis, validate the molecular tools for drug discovery, and provide safety and efficacy data on the therapies that now provide a rapid and complete cure of HCV chronic infections. Several cocktails of antivirals are FDA approved that eliminate the virus following 12 weeks of once-per-day oral therapy. This represents the first cure of a chronic viral disease and, once broadly implemented, will dramatically reduce the occurrence of cirrhosis and liver cancer. The recent contributions of chimpanzees to our current understanding of T cell immunity for HCV, development of novel therapeutics for HBV, and the biology of HAV are reviewed. Finally, a perspective is provided on the events leading to the cessation of the use of chimpanzees in research and the future of the chimpanzees previously used to bring about these amazing breakthroughs in human healthcare.
Collapse
Affiliation(s)
- Robert E Lanford
- Robert E. Lanford, PhD, is director at Southwest National Primate Research Center, Texas Biomedical Research Institute in San Antonio, Texas. Christopher M. Walker, PhD, is at the Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University in Columbus, Ohio. Stanley M. Lemon, MD, is at thea Department of Medicine, Division of Infectious Diseases; Lineberger Comprehensive Cancer Center; and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill in Chapel Hill, North Carolina.
| | - Christopher M Walker
- Robert E. Lanford, PhD, is director at Southwest National Primate Research Center, Texas Biomedical Research Institute in San Antonio, Texas. Christopher M. Walker, PhD, is at the Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University in Columbus, Ohio. Stanley M. Lemon, MD, is at thea Department of Medicine, Division of Infectious Diseases; Lineberger Comprehensive Cancer Center; and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill in Chapel Hill, North Carolina.
| | - Stanley M Lemon
- Robert E. Lanford, PhD, is director at Southwest National Primate Research Center, Texas Biomedical Research Institute in San Antonio, Texas. Christopher M. Walker, PhD, is at the Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University in Columbus, Ohio. Stanley M. Lemon, MD, is at thea Department of Medicine, Division of Infectious Diseases; Lineberger Comprehensive Cancer Center; and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill in Chapel Hill, North Carolina.
| |
Collapse
|
9
|
Li D, Wang X, von Schaewen M, Tao W, Zhang Y, Heller B, Hrebikova G, Deng Q, Sun Q, Ploss A, Zhong J, Huang Z. Immunization With a Subunit Hepatitis C Virus Vaccine Elicits Pan-Genotypic Neutralizing Antibodies and Intrahepatic T-Cell Responses in Nonhuman Primates. J Infect Dis 2017; 215:1824-1831. [PMID: 28398489 DOI: 10.1093/infdis/jix180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022] Open
Abstract
Background The global control of hepatitis C virus (HCV) infection remains a great burden, owing to the high prices and potential drug resistance of the new direct-acting antivirals (DAAs), as well as the risk of reinfection in DAA-cured patients. Thus, a prophylactic vaccine for HCV is of great importance. We previously reported that a single recombinant soluble E2 (sE2) vaccine produced in insect cells was able to induce broadly neutralizing antibodies (NAbs) and prevent HCV infection in mice. Here the sE2 vaccine was evaluated in non-human primates. Methods Rhesus macaques were immunized with sE2 vaccine in combination with different adjuvants. Vaccine-induced NAbs in antisera were tested for neutralization activities against a panel of cell culture-derived HCV (HCVcc), while T-cell responses were evaluated in splenocytes, peripheral blood mononuclear cells, and hepatic lymphocytes. Results sE2 is able to elicit NAbs against HCVcc harboring structural proteins from multiple HCV genotypes in rhesus macaques. Moreover, sE2-immunized macaques developed systemic and intrahepatic memory T cells specific for E2. A significant correlation between the sE2-specific immunoglobulin G titers and neutralization spectrum was observed, highlighting the essential role of sE2 immunogenicity on achieving broad NAbs. Conclusions sE2 is a promising HCV vaccine candidate that warrants further preclinical and clinical development.
Collapse
Affiliation(s)
- Dapeng Li
- Unit of Vaccinology and Antiviral Strategies.,Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai
| | - Xuesong Wang
- Unit of Vaccinology and Antiviral Strategies.,Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai
| | | | - Wanyin Tao
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai
| | | | - Brigitte Heller
- Department of Molecular Biology, Princeton University, New Jersey
| | | | - Qiang Deng
- Unit of Vaccinology and Antiviral Strategies
| | - Qiang Sun
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai.,Suzhou Nonhuman Primate Facility, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Suzhou, China
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, New Jersey
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai
| | - Zhong Huang
- Unit of Vaccinology and Antiviral Strategies
| |
Collapse
|
10
|
Deng K, Liu R, Rao H, Jiang D, Wang J, Xie X, Wei L. Antibodies Targeting Novel Neutralizing Epitopes of Hepatitis C Virus Glycoprotein Preclude Genotype 2 Virus Infection. PLoS One 2015; 10:e0138756. [PMID: 26406225 PMCID: PMC4583415 DOI: 10.1371/journal.pone.0138756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/03/2015] [Indexed: 01/07/2023] Open
Abstract
Currently, there is no effective vaccine to prevent hepatitis C virus (HCV) infection, partly due to our insufficient understanding of the virus glycoprotein immunology. Most neutralizing antibodies (nAbs) were identified using glycoprotein immunogens, such as recombinant E1E2, HCV pseudoparticles or cell culture derived HCV. However, the fact that in the HCV acute infection phase, only a small proportion of patients are self-resolved accompanied with the emergence of nAbs, indicates the limited immunogenicity of glycoprotein itself to induce effective antibodies against a highly evolved virus. Secondly, in previous reports, the immunogen sequence was mostly the genotype of the 1a H77 strain. Rarely, other genotypes/subtypes have been studied, although theoretically one genotype/subtype immunogen is able to induce cross-genotype neutralizing antibodies. To overcome these drawbacks and find potential novel neutralizing epitopes, 57 overlapping peptides encompassing the full-length glycoprotein E1E2 of subtype 1b were synthesized to immunize BALB/c mice, and the neutralizing reactive of the induced antisera against HCVpp genotypes 1–6 was determined. We defined a domain comprising amino acids (aa) 192–221, 232–251, 262–281 and 292–331 of E1, and 421–543, 564–583, 594–618 and 634–673 of E2, as the neutralizing regions of HCV glycoprotein. Peptides PUHI26 (aa 444–463) and PUHI45 (aa 604–618)-induced antisera displayed the most potent broad neutralizing reactive. Two monoclonal antibodies recognizing the PUHI26 and PUHI45 epitopes efficiently precluded genotype 2 viral (HCVcc JFH and J6 strains) infection, but they did not neutralize other genotypes. Our study mapped a neutralizing epitope region of HCV glycoprotein using a novel immunization strategy, and identified two monoclonal antibodies effective in preventing genotype 2 virus infection.
Collapse
Affiliation(s)
- Kai Deng
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Ruyu Liu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huiying Rao
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Dong Jiang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging infectious Diseases, Beijing, China
| | - Jianghua Wang
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Xingwang Xie
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
| | - Lai Wei
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China
- * E-mail:
| |
Collapse
|
11
|
Sun W, Li Q, Zhu D, Feng J, Zhuang Z, Sun X, Xiao G, Duan Y. Enhancement of immune response to a hepatitis C virus E2 DNA vaccine by an immunoglobulin Fc fusion tag. J Med Virol 2015; 87:2090-7. [PMID: 26010499 DOI: 10.1002/jmv.24277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 11/11/2022]
Abstract
Neutralizing antibodies and cellular immune response both play essential roles in the clearance of Hepatitis C virus (HCV) infection. The envelope glycoprotein E2 is a major target for producing neutralizing antibodies against HCV. Here, we constructed a recombinant plasmid, termed pcDNA3.1-E2-Fc, to express HCV E2 with an immunoglobulin Fc fusion tag (E2-Fc). Importantly, we found that the titers of E2-specific IgG from mice immunized with pcDNA3.1-E2-Fc were significantly higher than that from mice immunized with pcDNA3.1-E2. Moreover, pcDNA3.1-E2-Fc immunization could boost E2-specific lymphocyte proliferation and enhance the secretion of IFN-γ by lymphocytes upon in vitro stimulation with soluble E2 compared to pcDNA3.1-E2 immunization. Neutralization assays showed that serum from pcDNA3.1-E2-Fc immunized mice exhibited more effective neutralizing capacity of HCVpp entry into Huh-7 cells compared with that from pcDNA3.1-E2 immunized mice, although both of the sera could inhibit the virus entry. Taken together, our results imply that pcDNA3.1-E2-Fc immunization could enhance E2-specific humoral and cellular immune response in mice and thus provide a promising candidate for the development of an HCV vaccine.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Qun Li
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zhong Zhuang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
12
|
Verstrepen BE, Boonstra A, Koopman G. Immune mechanisms of vaccine induced protection against chronic hepatitis C virus infection in chimpanzees. World J Hepatol 2015; 7:53-69. [PMID: 25624997 PMCID: PMC4295194 DOI: 10.4254/wjh.v7.i1.53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/22/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is characterized by a high propensity for development of life-long viral persistence. An estimated 170 million people suffer from chronic hepatitis caused by HCV. Currently, there is no approved prophylactic HCV vaccine available. With the near disappearance of the most relevant animal model for HCV, the chimpanzee, we review the progression that has been made regarding prophylactic vaccine development against HCV. We describe the results of the individual vaccine evaluation experiments in chimpanzees, in relation to what has been observed in humans. The results of the different studies indicate that partial protection against infection can be achieved, but a clear correlate of protection has thus far not yet been defined.
Collapse
Affiliation(s)
- Babs E Verstrepen
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| | - André Boonstra
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| | - Gerrit Koopman
- Babs E Verstrepen, Gerrit Koopman, Department of Virology, Biomedical Primate Research Centre, 2280GH Rijswijk, The Netherlands
| |
Collapse
|
13
|
Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Res 2014; 105:100-11. [PMID: 24583033 PMCID: PMC4034163 DOI: 10.1016/j.antiviral.2014.02.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/08/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease and hepatocellular carcinoma worldwide. HCV establishes a chronic infection in the majority of cases. However, some individuals clear the virus, demonstrating a protective role for the host immune response. Although new all-oral drug combinations may soon replace traditional ribavirin-interferon therapy, the emerging drug cocktails will be expensive and associated with side-effects and resistance, making a global vaccine an urgent priority. T cells are widely accepted to play an essential role in clearing acute HCV infection, whereas the role antibodies play in resolution and disease pathogenesis is less well understood. Recent studies have provided an insight into viral neutralizing determinants and the protective role of antibodies during infection. This review provides a historical perspective of the role neutralizing antibodies play in HCV infection and discusses the therapeutic benefits of antibody-based therapies. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication."
Collapse
Affiliation(s)
- Jonathan K Ball
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Alexander W Tarr
- School of Life Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jane A McKeating
- Viral Hepatitis Research Group and Centre for Human Virology, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
14
|
Zubkova I, Duan H, Wells F, Mostowski H, Chang E, Pirollo K, Krawczynski K, Lanford R, Major M. Hepatitis C virus clearance correlates with HLA-DR expression on proliferating CD8+ T cells in immune-primed chimpanzees. Hepatology 2014; 59:803-13. [PMID: 24123114 PMCID: PMC4079472 DOI: 10.1002/hep.26747] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/11/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED Vaccination of chimpanzees against hepatitis C virus (HCV) using T-cell-based vaccines targeting nonstructural proteins has not resulted in the same levels of control and clearance as those seen in animals reexposed after HCV clearance. We hypothesized that the outcome of infection depends on the different subtypes of activated T cells. We used multicolor flow cytometry to evaluate activation (CD38+/HLA-DR+) and proliferation (Ki67+/Bcl-2-low) profiles of CD4+ and CD8+ T cells in peripheral blood before and after challenge in chimpanzees vaccinated using DNA/adenovirus, mock-vaccinated, and chimpanzees that had spontaneously cleared infection (rechallenged). The frequencies of activated or proliferating CD8+ T cells peaked at 2 weeks postchallenge in the vaccinated and rechallenged animals, coinciding with reductions in viral titers. However, the magnitude of the responses did not correlate with outcome or sustained control of viral replication. In contrast, proliferation of the CD8+ T cells coexpressing HLA-DR either with or without CD38 expression was significantly higher at challenge in animals that rapidly cleared HCV and remained so throughout the follow-up period. CONCLUSION Our data suggest that the appearance of proliferating HLA-DR+/CD8+ T cells can be used as a predictor of a successfully primed memory immune response against HCV and as a marker of effective vaccination in clinical trials.
Collapse
Affiliation(s)
- Iryna Zubkova
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Hongying Duan
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Frances Wells
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Howard Mostowski
- Office of Cellular and Gene Therapy, Center for Biologics evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Esther Chang
- Office of Cellular and Gene Therapy, Center for Biologics evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Kathleen Pirollo
- Office of Cellular and Gene Therapy, Center for Biologics evaluation and Research, Food and Drug Administration, Bethesda, MD 20892
| | - Kris Krawczynski
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Robert Lanford
- Division of Viral Hepatitis, NCHHSTP, Centers for Disease Control and Prevention. Atlanta, GA
| | - Marian Major
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892,Corresponding author. Marian E. Major, Laboratory of Hepatitis Viruses, Division of Viral Products, Bldg 29A/Rm 1D10/HFM 448, 8800 Rockville Pike, Bethesda, MD 20892, Telephone number: 1-301 827 1881, Fax number: 301 402 5585,
| |
Collapse
|
15
|
Cox AL, Thomas DL. Hepatitis C virus vaccines among people who inject drugs. Clin Infect Dis 2014; 57 Suppl 2:S46-50. [PMID: 23884065 DOI: 10.1093/cid/cit329] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Most people who inject drugs (PWID) are infected with hepatitis C virus (HCV), and PWID have the highest risk of HCV infection of any risk group. The incidence of HCV infection is 5%-25% per year, demonstrating continued need for HCV infection prevention in PWID. Existing data in chimpanzees and PWID suggest that protective immunity against persistent HCV infection is achievable. Due to the high incidence of infection, PWID are both the most likely to benefit from a vaccine and a population in which vaccine efficacy could be tested. Challenges to testing a vaccine in PWID are significant. However, the first HCV vaccine trial in at-risk HCV-uninfected PWID was initiated in 2012. The results will likely guide future vaccine development and strategies for vaccination of this and other high-risk populations.
Collapse
Affiliation(s)
- Andrea L Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | |
Collapse
|
16
|
Abstract
Prevention of hepatitis C virus (HCV) infection by vaccination has been a priority since discovery of the virus and the need has not diminished over the past 25 years. Infection rates are increasing in developed countries because of intravenous drug use. Reducing transmission will be difficult without a vaccine to prevent persistence of primary infections, and also secondary infections that may occur after cure of chronic hepatitis C with increasingly effective direct-acting antiviral (DAA) regimens. Vaccine need is also acute in resource poor countries where most new infections occur and DAAs may be unaffordable. Spontaneous resolution of HCV infection confers durable protection, but mechanisms of immunity remain obscure and contested in the context of vaccine design. A vaccine must elicit a CD4+ helper T cell response that does not fail during acute infection. The need for neutralizing antibodies versus cytotoxic CD8+ T cells is unsettled and reflected in the design of two very different vaccines evaluated in humans for safety and immunogenicity. Here we review the status of vaccine development and the scientific and practical challenges that must be met if the burden of liver disease caused by HCV is to be reduced or eliminated.
Collapse
Affiliation(s)
- Jonathan R Honegger
- The Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, Ohio
| | - Yan Zhou
- The Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, Ohio
| | - Christopher M Walker
- The Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
17
|
Kachko A, Loesgen S, Shahzad-Ul-Hussan S, Tan W, Zubkova I, Takeda K, Wells F, Rubin S, Bewley CA, Major ME. Inhibition of hepatitis C virus by the cyanobacterial protein Microcystis viridis lectin: mechanistic differences between the high-mannose specific lectins MVL, CV-N, and GNA. Mol Pharm 2013; 10:4590-4602. [PMID: 24152340 DOI: 10.1021/mp400399b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant or microbial lectins are known to exhibit potent antiviral activities against viruses with glycosylated surface proteins, yet the mechanism(s) by which these carbohydrate-binding proteins exert their antiviral activities is not fully understood. Hepatitis C virus (HCV) is known to possess glycosylated envelope proteins (gpE1E2) and to be potently inhibited by lectins. Here, we tested in detail the antiviral properties of the newly discovered Microcystis viridis lectin (MVL) along with cyanovirin-N (CV-N) and Galanthus nivalis agglutinin (GNA) against cell culture HCV, as well as their binding properties toward viral particles, target cells, and recombinant HCV glycoproteins. Using infectivity assays, CV-N, MVL, and GNA inhibited HCV with IC50 values of 0.6 nM, 30.4 nM, and 11.1 nM, respectively. Biolayer interferometry analysis demonstrated a higher affinity of GNA to immobilized recombinant HCV glycoproteins compared to CV-N and MVL. Complementary studies, including fluorescence-activated cell sorting (FACS) analysis, confocal microscopy, and pre- and post-virus binding assays, showed a complex mechanism of inhibition for CV-N and MVL that includes both viral and cell association, while GNA functions by binding directly to the viral particle. Combinations of GNA with CV-N or MVL in HCV infection studies revealed synergistic inhibitory effects, which can be explained by different glycan recognition profiles of the mainly high-mannoside specific lectins, and supports the hypothesis that these lectins inhibit through different and complex modes of action. Our findings provide important insights into the mechanisms by which lectins inhibit HCV infection. Overall, the data suggest MVL and CV-N have the potential for toxicity due to interactions with cellular proteins while GNA may be a better therapeutic agent due to specificity for the HCV gpE1E2.
Collapse
Affiliation(s)
- Alla Kachko
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Sandra Loesgen
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda Maryland 20892, USA
| | - Syed Shahzad-Ul-Hussan
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda Maryland 20892, USA.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda Maryland 20892, USA
| | - Wendy Tan
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Iryna Zubkova
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD 20892. USA
| | - Frances Wells
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Steven Rubin
- Laboratory of Method Development, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892. USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda Maryland 20892, USA
| | - Marian E Major
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| |
Collapse
|
18
|
Induction of broadly neutralising HCV antibodies in mice by integration-deficient lentiviral vector-based pseudotyped particles. PLoS One 2013; 8:e62684. [PMID: 23626846 PMCID: PMC3633868 DOI: 10.1371/journal.pone.0062684] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/24/2013] [Indexed: 12/26/2022] Open
Abstract
Introduction Integration-deficient lentiviral vectors (IDLVs) are a promising platform for immunisation to elicit both humoral immunity and cellular mediated immunity (CMI). Here, we compared the specific immunity in mice immunised via different regimens (homologous and cocktail) with IDLV-based HCV pseudoparticles (HCVpps) carrying pseudotyped glycoproteins E1E2 and bearing the HCV NS3 gene. Humoral and cell-mediated immune responses were also evaluated after IDLV-HCVpp immunisation combined with heterologous rAd5-CE1E2 priming protocols. Sera from the mice effectively elicited anti-E1, -E2, and -NS3 antibody responses, and neutralised various HCVpp subtypes (1a, 1b, 2a, 3a and 5a). No significant CMI was detected in the groups immunised with IDLV-based HCVpps. In contrast, the combination of rAd5-CE1E2 priming and IDLV-based HCVpp boosting induced significant CMI against multiple antigens (E1, E2, and NS3). Conclusion IDLV-based HCVpps are a promising vaccination platform and the combination of rAd5-CE1E2 and IDLV-based HCVpp prime-boost strategy should be further explored for the development of a cross-protective HCV vaccine.
Collapse
|
19
|
Structural evidence for a bifurcated mode of action in the antibody-mediated neutralization of hepatitis C virus. Proc Natl Acad Sci U S A 2013; 110:7418-22. [PMID: 23589879 PMCID: PMC3645581 DOI: 10.1073/pnas.1305306110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hepatitis C virus (HCV) envelope glycoprotein E2 has been considered as a major target for vaccine design. Epitope II, mapped between residues 427–446 within the E2 protein, elicits antibodies that are either neutralizing or nonneutralizing. The fundamental mechanism of antibody-mediated neutralization at epitope II remains to be defined at the atomic level. Here we report the crystal structure of the epitope II peptide in complex with a monoclonal antibody (mAb#8) capable of neutralizing HCV. The complex structure revealed that this neutralizing antibody engages epitope II via interactions with both the C-terminal α-helix and the N-terminal loop using a bifurcated mode of action. Our structural insights into the key determinants for the antibody-mediated neutralization may contribute to the immune prophylaxis of HCV infection and the development of an effective HCV vaccine.
Collapse
|
20
|
Amino acid residue-specific neutralization and nonneutralization of hepatitis C virus by monoclonal antibodies to the E2 protein. J Virol 2012; 86:12686-94. [PMID: 22973024 DOI: 10.1128/jvi.00994-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibodies to epitopes in the E2 protein of hepatitis C virus (HCV) reduce the viral infectivity in vivo and in vitro. However, the virus can persist in patients in the presence of neutralizing antibodies. In this study, we generated a panel of monoclonal antibodies that bound specifically to the region between residues 427 and 446 of the E2 protein of HCV genotype 1a, and we examined their capacity to neutralize HCV in a cell culture system. Of the four monoclonal antibodies described here, two were able to neutralize the virus in a genotype 1a-specific manner. The other two failed to neutralize the virus. Moreover, one of the nonneutralizing antibodies could interfere with the neutralizing activity of a chimpanzee polyclonal antibody at E2 residues 412 to 426, as it did with an HCV-specific immune globulin preparation, which was derived from the pooled plasma of chronic hepatitis C patients. Mapping the epitope-paratope contact interfaces revealed that these functionally distinct antibodies shared binding specificity for key amino acid residues, including W(437), L(438), L(441), and F(442), within the same epitope of the E2 protein. These data suggest that the effectiveness of antibody-mediated neutralization of HCV could be deduced from the interplay between an antibody and a specific set of amino acid residues. Further understanding of the molecular mechanisms of antibody-mediated neutralization and nonneutralization should provide insights for designing a vaccine to control HCV infection in vivo.
Collapse
|
21
|
Sabo MC, Luca VC, Ray SC, Bukh J, Fremont DH, Diamond MS. Hepatitis C virus epitope exposure and neutralization by antibodies is affected by time and temperature. Virology 2011; 422:174-84. [PMID: 22078164 DOI: 10.1016/j.virol.2011.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/14/2011] [Accepted: 10/22/2011] [Indexed: 01/22/2023]
Abstract
A recent study with flaviviruses suggested that structural dynamics of the virion impact antibody neutralization via exposure of ostensibly cryptic epitopes. To determine whether this holds true for the distantly related hepatitis C virus (HCV), whose neutralizing epitopes may be obscured by a glycan shield, apolipoprotein interactions, and the hypervariable region on the E2 envelope protein, we assessed how time and temperature of pre-incubation altered monoclonal antibody (MAb) neutralization of HCV. Notably, several MAbs showed increased inhibitory activity when pre-binding was performed at 37°C or after longer pre-incubation periods, and a corresponding loss-of-neutralization was observed when pre-binding was performed at 4°C. A similar profile of changes was observed with acute and chronic phase sera from HCV-infected patients. Our data suggest that time and temperature of incubation modulate epitope exposure on the conformational ensembles of HCV virions and thus, alter the potency of antibody neutralization.
Collapse
Affiliation(s)
- Michelle C Sabo
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kachko A, Kochneva G, Sivolobova G, Grazhdantseva A, Lupan T, Zubkova I, Wells F, Merchlinsky M, Williams O, Watanabe H, Ivanova A, Shvalov A, Loktev V, Netesov S, Major ME. New neutralizing antibody epitopes in hepatitis C virus envelope glycoproteins are revealed by dissecting peptide recognition profiles. Vaccine 2011; 30:69-77. [PMID: 22041300 DOI: 10.1016/j.vaccine.2011.10.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 08/22/2011] [Accepted: 10/18/2011] [Indexed: 02/07/2023]
Abstract
One of the greatest challenges to HCV vaccine development is the induction of effective immune responses using recombinant proteins or vectors. In order to better understand which vaccine-induced antibodies contribute to neutralization of HCV the quality of polyclonal anti-E1E2 antibody responses in immunized mice and chimpanzees was assessed at the level of epitope recognition using peptide scanning and neutralization of chimeric 1a/2a, 1b/2a and 2a HCVcc after blocking or affinity elution of specific antibodies. Mice and chimpanzees were immunized with genotype 1a (H77) HCV gpE1E2; all samples contained cross-neutralizing antibody against HCVcc. By functionally dissecting the polyclonal immune responses we identified three new regions important for neutralization within E1 (aa264-318) and E2 (aa448-483 and aa496-515) of the HCV glycoproteins, the third of which (aa496-515) is highly conserved (85-95%) amongst genotypes. Antibodies to aa496-515 were isolated by affinity binding and elution from the serum of a vaccinated chimpanzee and found to specifically neutralize chimeric 1a/2a, 1b/2a and 2a HCVcc. IC50 titres (IgG ng/mL) for the aa496-515 eluate were calculated as 142.1, 239.37 and 487.62 against 1a/2a, 1b/2a and 2a HCVcc, respectively. Further analysis demonstrated that although antibody to this new, conserved neutralization epitope is efficiently induced with recombinant proteins in mice and chimpanzees; it is poorly induced during natural infection in patients and chimpanzees (7 out of 68 samples positive) suggesting the epitope is poorly presented to the immune system in the context of the viral particle. These findings have important implications for the development of HCV vaccines and strategies designed to protect against heterologous viruses. The data also suggest that recombinant or synthetic antigens may be more efficient at inducing neutralizing antibodies to certain epitopes and that screening virally infected patients may not be the best approach for finding new cross-reactive epitopes.
Collapse
Affiliation(s)
- Alla Kachko
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hepatitis C virus soluble E2 in combination with QuilA and CpG ODN induces neutralizing antibodies in mice. Vaccine 2011; 29:2910-7. [PMID: 21338680 DOI: 10.1016/j.vaccine.2011.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/16/2010] [Accepted: 02/05/2011] [Indexed: 11/22/2022]
Abstract
Several studies have emphasized the importance of an early, highly neutralizing antibody response in the clearance of Hepatitis C virus (HCV) infection. The envelope glycoprotein E2 is a major target for HCV neutralizing antibodies. Here, we compared antibody responses in mice immunized with native soluble E2 (sE2) from the H77 1a isolate coupled with different adjuvants or combinations of adjuvants. Adjuvanting sE2 with Freund's, monophosphoryl lipid A (MPL), cytosine phosphorothioate guanine oligodeoxynucleotide (CpG ODN), or alpha-galactosylceramide (αGalCer) derivatives elicited only moderate antibody responses. In contrast, immunizations with sE2 and QuilA elicited exceptionally high anti-E2 antibody titers. Sera from these mice effectively neutralized HCV pseudoparticles (HCVpp) 1a entry. Moreover, the combination of QuilA and CpG ODN further enhanced neutralizing antibody titers wherein cross-neutralization of HCVpp 4 was observed. We conclude that the combination of QuilA and CpG ODN is a promising adjuvant combination that should be further explored for the development of an HCV subunit vaccine. Our work also emphasizes that the ideal combination of adjuvant and immunogen has to be determined empirically.
Collapse
|
24
|
Bailey J. An assessment of the use of chimpanzees in hepatitis C research past, present and future: 1. Validity of the chimpanzee model. Altern Lab Anim 2011; 38:387-418. [PMID: 21105756 DOI: 10.1177/026119291003800501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The USA is the only significant user of chimpanzees in biomedical research in the world, since many countries have banned or limited the practice due to substantial ethical, economic and scientific concerns. Advocates of chimpanzee use cite hepatitis C research as a major reason for its necessity and continuation, in spite of supporting evidence that is scant and often anecdotal. This paper examines the scientific and ethical issues surrounding chimpanzee hepatitis C research, and concludes that claims of the necessity of chimpanzees in historical and future hepatitis C research are exaggerated and unjustifiable, respectively. The chimpanzee model has several major scientific, ethical, economic and practical caveats. It has made a relatively negligible contribution to knowledge of, and tangible progress against, the hepatitis C virus compared to non-chimpanzee research, and must be considered scientifically redundant, given the array of alternative methods of inquiry now available. The continuation of chimpanzee use in hepatitis C research adversely affects scientific progress, as well as chimpanzees and humans in need of treatment. Unfounded claims of its necessity should not discourage changes in public policy regarding the use of chimpanzees in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA 02108-5100, USA.
| |
Collapse
|
25
|
Dahari H, Feinstone SM, Major ME. Meta-analysis of hepatitis C virus vaccine efficacy in chimpanzees indicates an importance for structural proteins. Gastroenterology 2010; 139:965-74. [PMID: 20621699 PMCID: PMC3075980 DOI: 10.1053/j.gastro.2010.05.077] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/06/2010] [Accepted: 05/26/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Studies in patients and chimpanzees that spontaneously cleared hepatitis C virus (HCV) infections demonstrated that natural immunity to the virus is induced during primary infections and that this immunity can be cross protective. These discoveries led to optimism about prophylactic HCV vaccines, and several studies were performed in chimpanzees, although most included fewer than 6 animals. To draw meaningful conclusions about the efficacy of HCV vaccines in chimpanzees, we performed statistical analyses of data from previously published studies from different groups. METHODS We performed a meta-analysis that compared parameters among naïve (n = 63), vaccinated (n = 53), and rechallenged (n = 36) animals, including peak RNA titer postchallenge, time points of peak RNA titer, duration of viremia, and proportion of persistent infections. RESULTS Each vaccination study induced immune responses that were effective in rapidly controlling HCV replication. Levels of induced T-cell responses did not indicate vaccine success. There was no reduction in the rate of HCV persistence in vaccinated animals, compared with naïve animals, when nonstructural proteins were included in the vaccine. Vaccines that contained only structural proteins had clearance rates that were significantly higher than vaccines that contained nonstructural components (P = .015). CONCLUSIONS The inclusion of nonstructural proteins in HCV vaccines might be detrimental to protective immune responses, and/or structural proteins might activate T-cell responses that mediate viral clearance.
Collapse
Affiliation(s)
- Harel Dahari
- Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Stephen M. Feinstone
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| | - Marian E. Major
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 USA
| |
Collapse
|
26
|
Ratio of HCV structural antigens in protein-based vaccine formulations is critical for functional immune response induction. Biotechnol Appl Biochem 2010; 56:111-8. [PMID: 20515441 DOI: 10.1042/ba20090216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HCV (hepatitis C virus) infection is among the leading causes of chronic liver disease, but currently there is no vaccine available. Data have accumulated about the importance of targeting different HCV antigens in vaccine candidate preparations. Here, a surface response study to select the optimal ratio of recombinant HCV structural antigens in a vaccine preparation, capable of generating in vivo functional cellular immune response in mice, was performed. The immunogenicity of the selected HCV structural protein mixture (Co-E1-E2) in mice and African green monkeys, after five doses of immunization, was also demonstrated. Specific T-cell proliferative response against HCV structural antigens was induced in vaccinated mice. Moreover, on challenge with recombinant HCV VV (vaccinia virus), all mice controlled the viraemia and 80% were protected. On the other hand, monkeys immunized with Co-E1-E2 developed antibodies, specifically directed to region 412-438 of E2 protein, that include an epitope implicated in HCV neutralization, in addition to a specific proliferative response against HCV Core and E2 proteins. These results indicated that the optimal amount and ratio of HCV recombinant proteins should be taken into account to elicit a successful immune response against HCV and therefore have important implications for vaccine design.
Collapse
|
27
|
The wild-type hepatitis C virus core inhibits initiation of antigen-specific T- and B-cell immune responses in BALB/c mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1139-47. [PMID: 20519445 DOI: 10.1128/cvi.00490-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, the effects of wild-type and deletion mutant hepatitis C virus (HCV) core proteins on the induction of immune responses in BALB/c mice were assessed. p2HA-C145-S23, encoding a core protein with the C-terminal 46 amino acids truncated, significantly produced stronger antibody and cellular responses than p2HA-C191-S23. The induction of immune responses by p2HA-C145-S23 was dose dependent. However, increasing the doses or repeated administration did not enhance immune responses by the wild-type core protein. In addition, p2HA-C191-S23 was apparently able to interfere with the priming of specific immune responses by p2HA-C145-S23 when the two were coadministered. These results demonstrated that the wild-type HCV core protein itself could inhibit the priming of immune responses in the course of a DNA vaccination, whereas the truncated HCV core protein could provide potential applications for the development of DNA- and peptide-based HCV vaccines.
Collapse
|
28
|
Duan H, Struble E, Zhong L, Mihalik K, Major M, Zhang P, Feinstone S, Feigelstock D. Hepatitis C virus with a naturally occurring single amino-acid substitution in the E2 envelope protein escapes neutralization by naturally-induced and vaccine-induced antibodies. Vaccine 2010; 28:4138-44. [PMID: 20433800 DOI: 10.1016/j.vaccine.2010.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 03/08/2010] [Accepted: 04/13/2010] [Indexed: 11/24/2022]
Abstract
Mutations arising in neutralizing epitopes of hepatitis C virus may play a role in the ability of the virus to escape control by neutralizing antibodies and in the establishment of chronic infections. An amino-acid substitution, Q412H, within a major conserved neutralization epitope EP I (aa 412-426) in the E2 glycoprotein is observed in chronic HCV carriers. We found that naturally acquired polyclonal EP I-specific antibodies have an equivalent binding capacity toward either the wild type or the Q412H mutant peptide encompassing the EP I epitope. While EP I-specific antibodies neutralized J6/JFH1 virus in vitro, they did not neutralize J6/JFH1 virus containing the Q412H mutation. Furthermore, we found that plasma obtained from a chimpanzee that had anti-E1/E2 antibodies following experimental immunization, neutralized the wild type J6/JFH1 virus but failed to neutralize the mutant virus. Thus, mutation Q412H found in naturally occurring variants could represent an antibody escape mutation. These data may have important implications for vaccine design.
Collapse
Affiliation(s)
- Hongying Duan
- Division of Viral Products, Center for Biologics Evaluation and Research, FDA, 29 Lincoln Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
BACKGROUND Chimpanzees have been widely used in hepatitis C virus (HCV) research, but their endangered status and high financial and ethical costs have prompted a closer review. METHODS One hundred and nine articles published in 1998-2007 were analyzed for the number of chimpanzees involved, experimental procedures, objectives and other relevant issues. RESULTS The articles described the use of 852 chimpanzees, but accounting for likely multiple uses, the number of individual chimpanzees involved here is estimated to be approximately 500. Most articles addressed immunology and inoculation studies. A significant portion of studies lasted for several months or years. Approximately one half of the individual chimpanzees were each used in 2-10 studies. CONCLUSIONS Significant financial and scientific resources have been expended in these chimpanzee HCV studies. Discussion addresses troublesome questions presented by some of the reviewed articles, including statistical validity, repeatability, and biological relevance of this model. These concerns merit attention as future approaches to HCV research and research priorities are considered.
Collapse
|
30
|
Major ME. Prophylactic and Therapeutic Vaccination against Hepatitis C Virus (HCV): Developments and Future Perspectives. Viruses 2009; 1:144-65. [PMID: 21994543 PMCID: PMC3185488 DOI: 10.3390/v1020144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/25/2009] [Accepted: 08/11/2009] [Indexed: 12/15/2022] Open
Abstract
Studies in patients and chimpanzees that spontaneously clear Hepatitis C Virus (HCV) have demonstrated that natural immunity to the virus is induced during primary infections and that this immunity can be cross protective. These discoveries led to optimism regarding prophylactic HCV vaccines and a number of studies in the chimpanzee model have been performed, all of which resulted in modified infections after challenge but did not always prevent persistence of the virus. Therapeutic vaccine strategies have also been pursued in an effort to reduce the costs and side effects associated with anti-viral drug treatment. This review summarizes the studies performed thus far in both patients and chimpanzees for prophylactic and therapeutic vaccination, assesses the progress made and future perspectives.
Collapse
Affiliation(s)
- Marian E Major
- Division of Viral Products, Center for Biologics, Food and Drug Administration, Bldg29A/Rm1D10, 8800 Rockville Pike, Bethesda, MD 20892, USA; E-mail: ; Tel.: +1-301-827-1881
| |
Collapse
|
31
|
El-Awady MK, Tabll AA, El-Abd YS, Yousif H, Hegab M, Reda M, El Shenawy R, Moustafa RI, Degheidy N, El Din NGB. Conserved peptides within the E2 region of Hepatitis C virus induce humoral and cellular responses in goats. Virol J 2009. [PMID: 19473491 DOI: 10.1186/1743-422x-6-66.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The reason(s) why human antibodies raised against hepatitis C virus (HCV) E2 epitopes do not offer protection against multiple viral infections may be related to either genetic variations among viral strains particularly within the hypervariable region-1 (HVR-1), low titers of anti E2 antibodies or interference of non neutralizing antibodies with the function of neutralizing antibodies. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 as potential therapeutic and/or prophylactic vaccines against HCV infection. Goats immunized with E2-conserved synthetic peptides termed p36 (a.a 430-446), p37(a.a 517-531) and p38 (a.a 412-419) generated high titers of anti-p36, anti-p37 and anti-P38 antibody responses of which only anti- p37 and anti- p38 were neutralizing to HCV particles in sera from patients infected predominantly with genotype 4a. On the other hand anti-p36 exhibited weak viral neutralization capacity on the same samples. Animals super-immunized with single epitopes generated 2 to 4.5 fold higher titers than similar antibodies produced in chronic HCV patients. Also the studied peptides elicited approximately 3 fold increase in cell proliferation of specific antibody-secreting peripheral blood mononuclear cells (PBMC) from immunized goats. These results indicate that, besides E1 derived peptide p35 (a.a 315-323) described previously by this laboratory, E2 conserved peptides p37 and p38 represent essential components of a candidate peptide vaccine against HCV infection.
Collapse
Affiliation(s)
- Mostafa K El-Awady
- Department of Biomedical Technology, National Research Center, Giza, Egypt.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
El-Awady MK, Tabll AA, El-Abd YS, Yousif H, Hegab M, Reda M, El Shenawy R, Moustafa RI, Degheidy N, El Din NGB. Conserved peptides within the E2 region of Hepatitis C virus induce humoral and cellular responses in goats. Virol J 2009; 6:66. [PMID: 19473491 PMCID: PMC2694788 DOI: 10.1186/1743-422x-6-66] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023] Open
Abstract
The reason(s) why human antibodies raised against hepatitis C virus (HCV) E2 epitopes do not offer protection against multiple viral infections may be related to either genetic variations among viral strains particularly within the hypervariable region-1 (HVR-1), low titers of anti E2 antibodies or interference of non neutralizing antibodies with the function of neutralizing antibodies. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 as potential therapeutic and/or prophylactic vaccines against HCV infection. Goats immunized with E2-conserved synthetic peptides termed p36 (a.a 430-446), p37(a.a 517-531) and p38 (a.a 412-419) generated high titers of anti-p36, anti-p37 and anti-P38 antibody responses of which only anti- p37 and anti- p38 were neutralizing to HCV particles in sera from patients infected predominantly with genotype 4a. On the other hand anti-p36 exhibited weak viral neutralization capacity on the same samples. Animals super-immunized with single epitopes generated 2 to 4.5 fold higher titers than similar antibodies produced in chronic HCV patients. Also the studied peptides elicited approximately 3 fold increase in cell proliferation of specific antibody-secreting peripheral blood mononuclear cells (PBMC) from immunized goats. These results indicate that, besides E1 derived peptide p35 (a.a 315-323) described previously by this laboratory, E2 conserved peptides p37 and p38 represent essential components of a candidate peptide vaccine against HCV infection.
Collapse
Affiliation(s)
- Mostafa K El-Awady
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Ashraf A Tabll
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Yasmine S El-Abd
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Hassan Yousif
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Mohsen Hegab
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Mohamed Reda
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Reem El Shenawy
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Rehab I Moustafa
- Department of Biomedical Technology, National Research Center, Giza, Egypt
| | - Nabila Degheidy
- Parasitology and Animal Diseases Department, National Research Center, Giza, Egypt
| | | |
Collapse
|
33
|
Depletion of interfering antibodies in chronic hepatitis C patients and vaccinated chimpanzees reveals broad cross-genotype neutralizing activity. Proc Natl Acad Sci U S A 2009; 106:7537-41. [PMID: 19380744 PMCID: PMC2670884 DOI: 10.1073/pnas.0902749106] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Using human immune globulins made from antihepatitis C virus (HCV)-positive plasma, we recently identified two antibody epitopes in the E2 protein at residues 412–426 (epitope I) and 434–446 (epitope II). Whereas epitope I is highly conserved among genotypes, epitope II varies. We discovered that epitope I was implicated in HCV neutralization whereas the binding of non-neutralizing antibody to epitope II disrupted virus neutralization mediated by antibody binding at epitope I. These findings suggested that, if this interfering mechanism operates in vivo during HCV infection, a neutralizing antibody against epitope I can be restrained by an interfering antibody, which may account for the persistence of HCV even in the presence of an abundance of neutralizing antibodies. We tested this hypothesis by affinity depletion and peptide-blocking of epitope-II-specific antibodies in plasma of a chronically HCV-infected patient and recombinant E1E2 vaccinated chimpanzees. We demonstrate that, by removing the restraints imposed by the interfering antibodies to epitope-II, neutralizing activity can be revealed in plasma that previously failed to neutralize viral stock in cell culture. Further, cross-genotype neutralization could be generated from monospecific plasma. Our studies contribute to understanding the mechanisms of antibody-mediated neutralization and interference and provide a practical approach to the development of more potent and broadly reactive hepatitis C immune globulins.
Collapse
|
34
|
Stoll-Keller F, Barth H, Fafi-Kremer S, Zeisel MB, Baumert TF. Development of hepatitis C virus vaccines: challenges and progress. Expert Rev Vaccines 2009; 8:333-45. [PMID: 19249975 DOI: 10.1586/14760584.8.3.333] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of an effective vaccine against the hepatitis C virus (HCV) has long been defined as a difficult challenge due to the considerable variability of this RNA virus and the observation that convalescent humans and chimpanzees could be re-infected after re-exposure. On the other hand, progress in the understanding of antiviral immune responses in patients with viral clearance has elucidated key mechanisms playing a role in the control of viral infection. Studies investigating prophylactic vaccine approaches in chimpanzees have confirmed that the induction and maintenance of strong helper and cytotoxic T-cell immune responses against multiple viral epitopes is necessary for protection against viral clearance and chronic infection. A multispecific B-cell response, resulting in rapid induction of cross-neutralizing antibodies may assist cellular responses. Therapeutic vaccine formulations currently being evaluated in clinical trials are facing the fact that the immune system of chronic carriers is impaired and needs the restoration of T-cell functions to enhance their efficacy.
Collapse
Affiliation(s)
- Françoise Stoll-Keller
- Inserm, U748 et Laboratoire de Virologie des Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé 67000 Strasbourg, France.
| | | | | | | | | |
Collapse
|
35
|
Zubkova I, Choi YH, Chang E, Pirollo K, Uren T, Watanabe H, Wells F, Kachko A, Krawczynski K, Major ME. T-cell vaccines that elicit effective immune responses against HCV in chimpanzees may create greater immune pressure for viral mutation. Vaccine 2009; 27:2594-602. [PMID: 19428866 DOI: 10.1016/j.vaccine.2009.02.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/18/2008] [Accepted: 02/12/2009] [Indexed: 12/16/2022]
Abstract
A prime/boost vaccine strategy that transfects antigen-presenting cells using ligand-modified immunoliposomes to efficiently deliver plasmid DNA, followed by boosting with non-replicating recombinant adenovirus was used in chimpanzees to generate HCV-specific memory T-cells. Three chimpanzees (two vaccines, one control) were immunized with immunoliposomes complexed with DNA expressing NS3-NS5B or complexed with empty vector. Animals were boosted with adenovirus expressing NS3-NS5B, or non-recombinant adenovirus (control). Using liposome delivery we were able to obtain specific HCV responses following DNA priming in the chimpanzees. This data and mouse immunization studies confirm this as a more efficient delivery system than direct intramuscular inoculations with naked DNA. Subsequent to the adenovirus boost significant increases in peripheral HCV-specific T-cell responses and intrahepatic IFN-gamma and CD3varepsilon mRNA were also observed in the two vaccinated animals. Following challenge (100 CID(50)) both vaccinated animals showed immediate and significant control of viral replication (peak titers 3.7x10(4) and 9x10(3)IU/mL at weeks 1 and 2), which coincided with increases in HCV-specific T-cell responses. Viral kinetics in the control animal were comparable to historical controls with exponential increases in titer during the first several weeks. One vaccinated animal developed a low-level persistent infection (2x10(3)IU/mL) which correlated with a decrease in HCV-specific T-cell responses. Circulating virus isolated from both vaccinated animals showed approximately 2-fold greater nonsynonymous mutation rates compared to controls and the nonsynonymous/synonymous mutation rate ratio was indicative of positive selection. These data suggest that although T-cell vaccines can induce immune responses capable of controlling HCV, they also induce high levels of immune pressure for the potential selection of escape mutants.
Collapse
Affiliation(s)
- I Zubkova
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
With more than 170 million individuals currently infected, HCV is a global pandemic, effecting approximately 3% of the entire world's population. HCV infection is a growing infectious disease pandemic with approximately 3-4 million new cases reported each year. Due to the persistent nature of the virus, 70-90% of infected individuals will develop chronic infection, which can lead to progressive liver disease including cirrhosis and hepatocellular carcinoma. Current standard treatment with a combination of IFN-alpha and ribavirin has improved the prognosis for many HCV sufferers; however, infection is very difficult to treat successfully and the protocol for treatment is neither simple, well tolerated nor economically favorable. Standard treatment can cost an average of US$22,000, and depending on genotype, as few as 42% of treated individuals will clear the infection. This collection of treatment issues combined with new concepts in immune therapy serve to underscore an urgent need for the development of improved immunotherapies, such as novel interferons, and support the possible development of therapeutic vaccines for the treatment of chronic HCV infection.
Collapse
Affiliation(s)
- Krystle Lang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6100, USA.
| | | |
Collapse
|
37
|
Evidence for protection against chronic hepatitis C virus infection in chimpanzees by immunization with replicating recombinant vaccinia virus. J Virol 2008; 82:10896-905. [PMID: 18753204 DOI: 10.1128/jvi.01179-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Given the failures of nonreplicating vaccines against chronic hepatitis C virus (HCV) infection, we hypothesized that a replicating viral vector may provide protective immunity. Four chimpanzees were immunized transdermally twice with recombinant vaccinia viruses (rVV) expressing HCV genes. After challenge with 24 50% chimpanzee infective doses of homologous HCV, the two control animals that had received only the parental VV developed chronic HCV infection. All four immunized animals resolved HCV infection. The difference in the rate of chronicity between the immunized and the control animals was close to statistical significance (P = 0.067). Immunized animals developed vigorous gamma interferon enzyme-linked immunospot responses and moderate proliferative responses. To investigate cross-genotype protection, the immunized recovered chimpanzees were challenged with a pool of six major HCV genotypes. During the acute phase after the multigenotype challenge, all animals had high-titer viremia in which genotype 4 dominated (87%), followed by genotype 5 (13%). However, after fluctuating low-level viremia, the viremia finally turned negative or persisted at very low levels. This study suggests the potential efficacy of replicating recombinant vaccinia virus-based immunization against chronic HCV infection.
Collapse
|
38
|
Stamataki Z, Grove J, Balfe P, McKeating JA. Hepatitis C virus entry and neutralization. Clin Liver Dis 2008; 12:693-712, x. [PMID: 18625435 DOI: 10.1016/j.cld.2008.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The processes of hepatitis C virus (HCV) entry and antibody-mediated neutralization are intimately linked. The high frequency of neutralizing antibodies (nAbs) that inhibit E2-CD81 interaction(s) suggests that this is a major target for the humoral immune response. The observation that HCV can transmit to naive cells by means of CD81-dependent and -independent routes in vitro awaits further investigation to assess the significance in vivo but may offer new strategies for HCV to escape nAbs. The identification of claudins in the entry process highlights the importance of cell polarity in defining routes of HCV entry and release, with recent experiments suggesting a polarized route of viral entry into cells in vitro. In this review, the authors summarize the current understanding of the mechanism(s) defining HCV entry and the role of nAbs in controlling HCV replication.
Collapse
Affiliation(s)
- Zania Stamataki
- Division of Immunity and Infection, Institute for Biomedical Research, University of Birmingham, Edgbaston, UK
| | | | | | | |
Collapse
|
39
|
Abstract
The main goal of therapy in hepatitis C virus (HCV) infection is to achieve a sustained virological response currently defined as undetectable HCV-RNA in peripheral blood determined with the most sensitive polymerase chain reaction technique 24 weeks after the end of treatment. This goal is practically equivalent with eradication of HCV infection and cure of the underlying HCV-induced liver disease. The current standard in hepatitis C treatment consists in combination regimens of pegylated interferon-alpha (Peg-INF-alpha) with Ribavirin (RBV). Such treatment schemes are quite successful in patients with HCV genotypes 2 and 3 infections achieving HCV eradication rates of 75-90%. However, they are much less effective in patients with genotypes 1 and 4 infections with eradication rates ranging between 45% and 52%. Moreover, they have several, and sometimes severe, adverse effects and contraindications, further limiting their efficacy and applicability in an appreciable number of patients with chronic HCV-induced liver disease. Therefore, the need for improvement of existing therapies and for development of new effective, safe and tolerable drugs is a matter of great clinical relevance and importance. In this article, recent improvements in the current standard of therapy with IFN-alpha and RBV in various subsets of patients with chronic hepatitis C and in the clinical development of new emerging drugs, particularly small molecules, will be reviewed and commented. The article is divided in two main parts: (i) improvements in the standard combination therapies and schemes of approved Peg-INF-alpha with RBV and expectations from new interferons, interferon inducers and alternatives to RBV; (ii) new drugs for HCV in clinical development focusing mostly on specific inhibitors of HCV and less so on other drugs including immune therapies.
Collapse
Affiliation(s)
- M Deutsch
- Academic Department of Internal Medicine, Hippokration General Hospital, Athens, Greece.
| | | |
Collapse
|
40
|
Keck ZY, Machida K, Lai MMC, Ball JK, Patel AH, Foung SKH. Therapeutic control of hepatitis C virus: the role of neutralizing monoclonal antibodies. Curr Top Microbiol Immunol 2008; 317:1-38. [PMID: 17990788 DOI: 10.1007/978-3-540-72146-8_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver failure associated with hepatitis C virus (HCV) accounts for a substantial portion of liver transplantation. Although current therapy helps some patients with chronic HCV infection, adverse side effects and a high relapse rate are major problems. These problems are compounded in liver transplant recipients as reinfection occurs shortly after transplantation. One approach to control reinfection is the combined use of specific antivirals together with HCV-specific antibodies. Indeed, a number of human and mouse monoclonal antibodies to conformational and linear epitopes on HCV envelope proteins are potential candidates, since they have high virus neutralization potency and are directed to epitopes conserved across diverse HCV genotypes. However, a greater understanding of the factors contributing to virus escape and the role of lipoproteins in masking virion surface domains involved in virus entry will be required to help define those protective determinants most likely to give broad protection. An approach to immune escape is potentially caused by viral infection of immune cells leading to the induction hypermutation of the immunoglobulin gene in B cells. These effects may contribute to HCV persistence and B cell lymphoproliferative diseases.
Collapse
Affiliation(s)
- Z Y Keck
- Department of Pathology, Stanford Medical School Blood Center, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Lorent E, Bierau H, Engelborghs Y, Verheyden G, Bosman F. Structural characterisation of the hepatitis C envelope glycoprotein E1 ectodomain derived from a mammalian and a yeast expression system. Vaccine 2007; 26:399-410. [PMID: 18077062 DOI: 10.1016/j.vaccine.2007.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 10/12/2007] [Accepted: 11/04/2007] [Indexed: 12/12/2022]
Abstract
The structure of the ectodomain of the hepatitis C envelope glycoprotein E1 (E1s) was characterised by spectroscopic methods. Monomeric E1s was purified from a mammalian and from a Hansenula polymorpha cell lysate, and cysteine-blocked monomers were reconstituted into stable particles. Particles from yeast E1s and mammalian E1s showed a comparable reactivity in ELISA with sera from human chronic HCV carriers, similar antibody titers in the sera of immunised mice as well as a comparable structure as analyzed by spectroscopic methods (tryptophan fluorescence, circular dichroism, and Fourier transform infrared spectroscopy). The overall secondary structure of E1s was neither influenced by the degree of glycosylation nor by the nature of cysteine modification used during purification. The structural comparability of mammalian- and H. polymorpha-expressed E1s opens new perspectives for further development of E1s-based therapeutics as yeast systems generally allow a more easy scaling up.
Collapse
Affiliation(s)
- Eric Lorent
- Laboratory of Biomolecular Dynamics, KULeuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
43
|
Hepatitis C virus envelope glycoprotein immunization of rodents elicits cross-reactive neutralizing antibodies. Vaccine 2007; 25:7773-84. [PMID: 17919789 DOI: 10.1016/j.vaccine.2007.08.053] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/14/2007] [Accepted: 08/26/2007] [Indexed: 01/01/2023]
Abstract
Neutralizing antibody responses elicited during infection generally confer protection from infection. Hepatitis C virus (HCV) encodes two glycoproteins E1 and E2 that are essential for virus entry and are the major target for neutralizing antibodies. To assess whether both glycoproteins are required for the generation of a neutralizing antibody response, rodents were immunized with a series of glycoproteins comprising full length and truncated versions. Guinea pigs immunized with HCV-1 genotype 1a E1E2p7, E1E2 or E2 generated high titer anti-glycoprotein antibody responses that neutralized the infectivity of HCVpp and HCVcc expressing gps of the same genotype as the immunizing antigen. Less potent neutralization of viruses bearing the genotype 2 strain J6 gps was observed. In contrast, immunized mice demonstrated reduced anti-gp antibody responses, consistent with their minimal neutralizing activity. Immunization with E2 alone was sufficient to induce a high titer response that neutralized HCV pseudoparticles (HCVpp) bearing diverse glycoproteins and cell culture grown HCV (HCVcc). The neutralization titer was reduced 3-fold by the presence of lipoproteins in human sera. Cross-competition of the guinea pig anti-E1E2 immune sera with a panel of epitope mapped anti-E2 monoclonal antibodies for binding E2 identified a series of epitopes within the N-terminal domain that may be immunogenic in the immunized rodents. These data demonstrate that recombinant E2 and E1E2 can induce polyclonal antibody responses with cross-reactive neutralizing activity, supporting the future development of prophylactic and therapeutic vaccines.
Collapse
|
44
|
Wintermeyer P, Wands JR. Vaccines to prevent chronic hepatitis C virus infection: current experimental and preclinical developments. J Gastroenterol 2007; 42:424-32. [PMID: 17671756 DOI: 10.1007/s00535-007-2057-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 02/04/2023]
Affiliation(s)
- Philip Wintermeyer
- The Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
45
|
Falkowska E, Kajumo F, Garcia E, Reinus J, Dragic T. Hepatitis C virus envelope glycoprotein E2 glycans modulate entry, CD81 binding, and neutralization. J Virol 2007; 81:8072-9. [PMID: 17507469 PMCID: PMC1951298 DOI: 10.1128/jvi.00459-07] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hepatitis C virus (HCV) is a major human pathogen that causes serious liver disease, including cirrhosis and hepatocellular carcinoma. The primary target cells of HCV are hepatocytes, and entry is restricted by interactions of the envelope glycoproteins, E1 and E2, with cellular receptors. E1 and E2 form noncovalently linked heterodimers and are heavily glycosylated. Glycans contribute to protein folding and transport as well as protein function. In addition, glycans associated with viral envelopes mask important functional domains from the immune system and attenuate viral immunogenicity. Here, we explored the role of N- and O-linked glycans on E2, which is the receptor binding subunit of the HCV envelope. We identified a number of glycans that are critical for viral entry. Importantly, we showed that the removal of several glycans significantly increased the inhibition of entry by sera from HCV-positive individuals. Only some of the glycans that affected entry and neutralization were also important for CD81 binding. Our results show that HCV envelope-associated glycans play a crucial role in masking functionally important regions of E2 and suggest a new strategy for eliciting highly neutralizing antibodies against this virus.
Collapse
Affiliation(s)
- Emilia Falkowska
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
46
|
Elmowalid GA, Qiao M, Jeong SH, Borg BB, Baumert TF, Sapp RK, Hu Z, Murthy K, Liang TJ. Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proc Natl Acad Sci U S A 2007; 104:8427-32. [PMID: 17485666 PMCID: PMC1895966 DOI: 10.1073/pnas.0702162104] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Indexed: 12/18/2022] Open
Abstract
Recombinant hepatitis C virus (HCV)-like particles (HCV-LPs) containing HCV structural proteins (core, E1, and E2) produced in insect cells resemble the putative HCV virions and are capable of inducing strong and broad humoral and cellular immune responses in mice and baboons. Here, we present evidence on the immunogenicity and induction of protective immunity by HCV-LPs in chimpanzees. Chimpanzees (two in each group), were immunized with HCV-LPs or HCV-LPs plus AS01B adjuvant. After immunizations, all animals developed an HCV-specific immune response including IFN-gamma(+), IL-2(+), CD4(+), and CD8(+) T cell and proliferative lymphocyte responses against core, E1, and E2. Upon challenge with an infectious HCV inoculum, one chimpanzee developed transient viremia with low HCV RNA titers (10(3) to 10(4) copies per ml) in the third and fourth weeks after the challenge. The three other chimpanzees became infected with higher levels of viremia (10(4) to 10(5) copies per ml), but their viral levels became unquantifiable (<10(3) copies per ml) 10 weeks after the challenge. After the HCV challenge, all four chimpanzees demonstrated a significant increase in peripheral and intrahepatic T cell and proliferative responses against the HCV structural proteins. These T cell responses coincided with the fall in HCV RNA levels. Four naïve chimpanzees were infected with the same HCV inoculum, and three developed persistent infection with higher viremia in the range of 10(5) to 10(6) copies per ml. Our study suggests that HCV-LP immunization induces HCV-specific cellular immune responses that can control HCV challenge in the chimpanzee model.
Collapse
Affiliation(s)
- Gamal A. Elmowalid
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| | - Ming Qiao
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| | - Sook-Hyang Jeong
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| | - Brian B. Borg
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| | - Thomas F. Baumert
- Department of Virology and Immunology, University of Freiburg, 79085 Freiburg, Germany; and
| | - Ronda K. Sapp
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| | - Zongyi Hu
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| | - Krishna Murthy
- Southwest Foundation for Biomedical Research, San Antonio, TX 78245-0549
| | - T. Jake Liang
- *Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1800
| |
Collapse
|
47
|
Rollier CS, Paranhos-Baccala G, Verschoor EJ, Verstrepen BE, Drexhage JAR, Fagrouch Z, Berland JL, Komurian-Pradel F, Duverger B, Himoudi N, Staib C, Meyr M, Whelan M, Whelan JA, Adams VC, Adams VA, Larrea E, Riezu JI, Lasarte JJ, Lasarte JJ, Bartosch B, Cosset FL, Spaan WJM, Diepolder HM, Pape GR, Sutter G, Inchauspe G, Heeney JL. Vaccine-induced early control of hepatitis C virus infection in chimpanzees fails to impact on hepatic PD-1 and chronicity. Hepatology 2007; 45:602-13. [PMID: 17326154 DOI: 10.1002/hep.21573] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Broad T cell and B cell responses to multiple HCV antigens are observed early in individuals who control or clear HCV infection. The prevailing hypothesis has been that similar immune responses induced by prophylactic immunization would reduce acute virus replication and protect exposed individuals from chronic infection. Here, we demonstrate that immunization of naïve chimpanzees with a multicomponent HCV vaccine induced robust HCV-specific immune responses, and that all vaccinees exposed to heterologous chimpanzee-adapted HCV 1b J4 significantly reduced viral RNA in serum by 84%, and in liver by 99% as compared to controls (P=0.024 and 0.028, respectively). However, despite control of HCV in plasma and liver in the acute period, in the chronic phase, 3 of 4 vaccinated animals developed persistent infection. Analysis of expression levels of proinflammatory cytokines in serial hepatic biopsies failed to reveal an association with vaccine outcome. However, expression of IDO, CTLA-4 [corrected] and PD-1 levels in liver correlated with clearance or chronicity. CONCLUSION Despite early control of virus load, a virus-associated tolerogenic-like state can develop in certain individuals independent of vaccination history.
Collapse
Affiliation(s)
- Christine S Rollier
- Department of Virology, Biomedical Primate Research Center, GH Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li YP, Kang HN, Babiuk LA, Liu Q. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models. World J Gastroenterol 2006; 12:7126-35. [PMID: 17131474 PMCID: PMC4087773 DOI: 10.3748/wjg.v12.i44.7126] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models.
METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-γ secreting cells, and cytotoxic T lymphocyte assays.
RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination strategy induced significantly higher E2-specific antibody levels and shifted the immune response towards Th2-like ones in piglets.
CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response in piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations.
Collapse
Affiliation(s)
- Yi-Ping Li
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, S7N 5E3, Canada
| | | | | | | |
Collapse
|
49
|
Gao J, Gong Y, Zhao P, Zhu Q, Yang X, Qi Z. Construction and characterization of an HCV-derived multi-epitope peptide antigen containing B-cell HVR1 mimotopes and T-cell conserved epitopes. ACTA ACUST UNITED AC 2006; 49:490-9. [PMID: 17172057 DOI: 10.1007/s11427-006-2020-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hepatitis C (HCV) genome is highly variable, particularly in the hypervariable region 1 (HVR1) of its E2 envelope gene. The variability of HCV genome has been a major obstacle for developing HCV vaccines. Due to B-cell HVR1 mimotopes mimicking the antigenicity of natural HVR1 epitopes and some T-cell epitopes from the consensus sequence of HCV genes conserving among the different HCV genotypes, we synthesized an minigene of HCV-derived multi-epitope peptide antigen (CMEP), which contains 9 B-cell HVR1 mimotopes in E2, 2 conserved CTL epitopes in C, 1 conserved CTL epitope in NS3 and 1 conserved Th epitope in NS3. This minigene was cloned into a GST expression vector to generate a fusion protein GST-CMEP. The immunogenic properties of CEMP were characterized by HCV infected patients' sera, and found that the reactivity frequency reached 75%. The cross reactivity of anti-CEMP antibody with different natural HVR1 variants was up to 90%. Meanwhile, we constructed an HCV DNA vaccine candidate, plasmid pVAX1.0-st-CMEP carrying the recombinant gene (st) of a secretion signal peptide and PADRE universal Th cell epitope sequence in front of the CMEP minigene. Immunization of rabbits with pVAX1.0-st-CMEP resulted in the production of antibody, which was of the same cross reactivity as the fusion protein GST-CMEP. Our findings indicate that the HCV-derived multi-epitope peptide antigen in some degree possessed the characteristics of neutralizing HCV epitopes, and would be of the value as a candidate for the development of HCV vaccines.
Collapse
Affiliation(s)
- Jun Gao
- Department of Microbiology, Stake Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
50
|
Puig M, Mihalik K, Tilton JC, Williams O, Merchlinsky M, Connors M, Feinstone SM, Major ME. CD4+ immune escape and subsequent T-cell failure following chimpanzee immunization against hepatitis C virus. Hepatology 2006; 44:736-45. [PMID: 16941702 DOI: 10.1002/hep.21319] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis C is a major cause of chronic liver disease, with 170 million individuals infected worldwide and no available vaccine. We analyzed the effects of an induced T-cell response in 3 chimpanzees, targeting nonstructural proteins in the absence of neutralizing antibodies. In all animals the specific T-cell response modified the outcome of infection, producing a 10- to 1,000-fold reduction in peak virus titers. The challenge of 2 immunized animals that had been previously exposed to hepatitis C virus resulted in subclinical infections. Immune responses in the third animal, naive prior to immunization, limited viral replication immediately, evidenced by a 30-fold reduction in virus titer by week 2, declining to a nonquantifiable level by week 6. After 10 weeks of immunological control, we observed a resurgence of virus, followed by progression to a persistent infection. Comparing virus evolution with T-cell recognition, we demonstrated that: (i) resurgence was concomitant with the emergence of new dominant viral populations bearing single amino acid changes in the NS3 and NS5A regions, (ii) these mutations resulted in a loss of CD4+ T-cell recognition, and (iii) subsequent to viral resurgence and immune escape a large fraction of NS3-specific T cells became impaired in their ability to secrete IFN-gamma and proliferate. In contrast, NS3-specific responses were sustained in the recovered/immunized animals presenting with subclinical infections. In conclusion, viral escape from CD4+ T cells can result in the eventual failure of an induced T-cell response that initially controls infection. Vaccines that can induce strong T-cell responses prior to challenge will not necessarily prevent persistent HCV infection.
Collapse
Affiliation(s)
- Montserrat Puig
- Laboratory of Hepatitis Viruses, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|