1
|
An Y, Ni R, Zhuang L, Yang L, Ye Z, Li L, Parkkila S, Aspatwar A, Gong W. Tuberculosis vaccines and therapeutic drug: challenges and future directions. MOLECULAR BIOMEDICINE 2025; 6:4. [PMID: 39841361 PMCID: PMC11754781 DOI: 10.1186/s43556-024-00243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025] Open
Abstract
Tuberculosis (TB) remains a prominent global health challenge, with the World Health Organization documenting over 1 million annual fatalities. Despite the deployment of the Bacille Calmette-Guérin (BCG) vaccine and available therapeutic agents, the escalation of drug-resistant Mycobacterium tuberculosis strains underscores the pressing need for more efficacious vaccines and treatments. This review meticulously maps out the contemporary landscape of TB vaccine development, with a focus on antigen identification, clinical trial progress, and the obstacles and future trajectories in vaccine research. We spotlight innovative approaches, such as multi-antigen vaccines and mRNA technology platforms. Furthermore, the review delves into current TB therapeutics, particularly for multidrug-resistant tuberculosis (MDR-TB), exploring promising agents like bedaquiline (BDQ) and delamanid (DLM), as well as the potential of host-directed therapies. The hurdles in TB vaccine and therapeutic development encompass overcoming antigen diversity, enhancing vaccine effectiveness across diverse populations, and advancing novel vaccine platforms. Future initiatives emphasize combinatorial strategies, the development of anti-TB compounds targeting novel pathways, and personalized medicine for TB treatment and prevention. Despite notable advances, persistent challenges such as diagnostic failures and protracted treatment regimens continue to impede progress. This work aims to steer future research endeavors toward groundbreaking TB vaccines and therapeutic agents, providing crucial insights for enhancing TB prevention and treatment strategies.
Collapse
Affiliation(s)
- Yajing An
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ruizi Ni
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ling Yang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhaoyang Ye
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Linsheng Li
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
2
|
Di Benedetto R, Massai L, Wright M, Mancini F, Cleveland M, Rossi O, Giannelli C, Berlanda Scorza F, Micoli F. Adjuvanted Modified Bacterial Antigens for Single-Dose Vaccines. Int J Mol Sci 2024; 25:11461. [PMID: 39519015 PMCID: PMC11546299 DOI: 10.3390/ijms252111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Alum is the most used vaccine adjuvant, due to its safety, low cost and adjuvanticity to various antigens. However, the mechanism of action of alum is complex and not yet fully understood, and the immune responses elicited can be weak and antigen-dependent. While several antigens rapidly desorb from alum upon exposure to serum, phosphorylated proteins remain tightly bound through a ligand-exchange reaction with surface hydroxyls on alum. Here, bacterial proteins and glycoconjugates have been modified with phosphoserines, aiming at enhancing the binding to alum and prolonging their bioavailability. Tetanus toxoid protein and Salmonella Typhi fragmented Vi-CRM conjugate were used. Both antigens rapidly and completely desorbed from alum after incubation with serum, verified via a competitive ELISA assay, and set up to rapidly evaluate in vitro antigen desorption from alum. After antigen modification with phosphoserines, desorption from alum was slowed down, and modified antigens demonstrated more prolonged retention at the injection sites through in vivo optical imaging in mice. Both modified antigens elicited stronger immune responses in mice, after a single injection only, compared to unmodified antigens. A stronger binding to alum could result in potent single-dose vaccine candidates and opens the possibility to design novel carrier proteins for glycoconjugates and improved versions of bacterial recombinant proteins.
Collapse
Affiliation(s)
- Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Mark Wright
- GSK, Stevenage SG1 2NFX, Hertfordshire, UK; (M.W.); (M.C.)
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | | | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Francesco Berlanda Scorza
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.D.B.); (L.M.); (F.M.); (O.R.); (C.G.); (F.B.S.)
| |
Collapse
|
3
|
Li F, Dang W, Du Y, Xu X, He P, Zhou Y, Zhu B. Tuberculosis Vaccines and T Cell Immune Memory. Vaccines (Basel) 2024; 12:483. [PMID: 38793734 PMCID: PMC11125691 DOI: 10.3390/vaccines12050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB) remains a major infectious disease partly due to the lack of an effective vaccine. Therefore, developing new and more effective TB vaccines is crucial for controlling TB. Mycobacterium tuberculosis (M. tuberculosis) usually parasitizes in macrophages; therefore, cell-mediated immunity plays an important role. The maintenance of memory T cells following M. tuberculosis infection or vaccination is a hallmark of immune protection. This review analyzes the development of memory T cells during M. tuberculosis infection and vaccine immunization, especially on immune memory induced by BCG and subunit vaccines. Furthermore, the factors affecting the development of memory T cells are discussed in detail. The understanding of the development of memory T cells should contribute to designing more effective TB vaccines and optimizing vaccination strategies.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Wenrui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yunjie Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Xiaonan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Pu He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yuhe Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Bingdong Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
- College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Wang H, Wang S, Fang R, Li X, Xing J, Li Z, Song N. Enhancing TB Vaccine Efficacy: Current Progress on Vaccines, Adjuvants and Immunization Strategies. Vaccines (Basel) 2023; 12:38. [PMID: 38250851 PMCID: PMC10820143 DOI: 10.3390/vaccines12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB) remains a global infectious disease primarily transmitted via respiratory tract infection. Presently, vaccination stands as the primary method for TB prevention, predominantly reliant on the Bacillus Calmette-Guérin (BCG) vaccine. Although it is effective in preventing disseminated diseases in children, its impact on adults is limited. To broaden vaccine protection, efforts are underway to accelerate the development of new TB vaccines. However, challenges arise due to the limited immunogenicity and safety of these vaccines, necessitating adjuvants to bolster their ability to elicit a robust immune response for improved and safer immunization. These adjuvants function by augmenting cellular and humoral immunity against M. tuberculosis antigens via different delivery systems, ultimately enhancing vaccine efficacy. Therefore, this paper reviews and summarizes the current research progress on M. tuberculosis vaccines and their associated adjuvants, aiming to provide a valuable reference for the development of novel TB vaccines and the screening of adjuvants.
Collapse
Affiliation(s)
- Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co., Ltd., Beijing 100000, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| |
Collapse
|
5
|
Gyu Choi H, Woong Kwon K, Jae Shin S. Importance of adjuvant selection in tuberculosis vaccine development: Exploring basic mechanisms and clinical implications. Vaccine X 2023; 15:100400. [PMID: 37965276 PMCID: PMC10641539 DOI: 10.1016/j.jvacx.2023.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
The global emergency of unexpected pathogens, exemplified by SARS-CoV-2, has emphasized the importance of vaccines in thwarting infection and curtailing the progression of severe disease. The scourge of tuberculosis (TB), emanating from the Mycobacterium tuberculosis (Mtb) complex, has inflicted a more profound toll in terms of mortality and morbidity than any other infectious agents prior to the SARS-CoV-2 pandemic. Despite the existence of Bacillus Calmette-Guérin (BCG), the only licensed vaccine developed a century ago, its efficacy against TB remains unsatisfactory, particularly in preventing pulmonary Mtb infections in adolescents and adults. However, collaborations between academic and industrial entities have led to a renewed impetus in the development of TB vaccines, with numerous candidates, particularly subunit vaccines with specialized adjuvants, exhibiting promising outcomes in recent clinical studies. Adjuvants are crucial in modulating optimal immunological responses, by endowing immune cells with sufficient antigen and immune signals. As exemplified by the COVID-19 vaccine landscape, the interplay between vaccine efficacy and adverse effects is of paramount importance, particularly for the elderly and individuals with underlying ailments such as diabetes and concurrent infections. In this regard, adjuvants hold the key to optimizing vaccine efficacy and safety. This review accentuates the pivotal roles of adjuvants and their underlying mechanisms in the development of TB vaccines. Furthermore, we expound on the prospects for the development of more efficacious adjuvants and their synergistic combinations for individuals in diverse states, such as aging, HIV co-infection, and diabetes, by examining the immunological alterations that arise with aging and comparing them with those observed in younger cohorts.
Collapse
Affiliation(s)
- Han Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| |
Collapse
|
6
|
Miao B, Hu Z, Mezzadra R, Hoeijmakers L, Fauster A, Du S, Yang Z, Sator-Schmitt M, Engel H, Li X, Broderick C, Jin G, Gomez-Eerland R, Rozeman L, Lei X, Matsuo H, Yang C, Hofland I, Peters D, Broeks A, Laport E, Fitz A, Zhao X, Mahmoud MAA, Ma X, Sander S, Liu HK, Cui G, Gan Y, Wu W, Xiao Y, Heck AJR, Guan W, Lowe SW, Horlings HM, Wang C, Brummelkamp TR, Blank CU, Schumacher TNM, Sun C. CMTM6 shapes antitumor T cell response through modulating protein expression of CD58 and PD-L1. Cancer Cell 2023; 41:1817-1828.e9. [PMID: 37683639 PMCID: PMC11113010 DOI: 10.1016/j.ccell.2023.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
The dysregulated expression of immune checkpoint molecules enables cancer cells to evade immune destruction. While blockade of inhibitory immune checkpoints like PD-L1 forms the basis of current cancer immunotherapies, a deficiency in costimulatory signals can render these therapies futile. CD58, a costimulatory ligand, plays a crucial role in antitumor immune responses, but the mechanisms controlling its expression remain unclear. Using two systematic approaches, we reveal that CMTM6 positively regulates CD58 expression. Notably, CMTM6 interacts with both CD58 and PD-L1, maintaining the expression of these two immune checkpoint ligands with opposing functions. Functionally, the presence of CMTM6 and CD58 on tumor cells significantly affects T cell-tumor interactions and response to PD-L1-PD-1 blockade. Collectively, these findings provide fundamental insights into CD58 regulation, uncover a shared regulator of stimulatory and inhibitory immune checkpoints, and highlight the importance of tumor-intrinsic CMTM6 and CD58 expression in antitumor immune responses.
Collapse
Affiliation(s)
- Beiping Miao
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoqing Hu
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Riccardo Mezzadra
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lotte Hoeijmakers
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Astrid Fauster
- Division of Biochemistry, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Shangce Du
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany
| | - Zhi Yang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Melanie Sator-Schmitt
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Helena Engel
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Xueshen Li
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Caroline Broderick
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Guangzhi Jin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Shanghai 200336, China
| | - Raquel Gomez-Eerland
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Lisette Rozeman
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Xin Lei
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Hitoshi Matsuo
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Chen Yang
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dennis Peters
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Elke Laport
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Annika Fitz
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Xiyue Zhao
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Mohamed A A Mahmoud
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Xiujian Ma
- Faculty of Medicine, Heidelberg University, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ) Heidelberg, Division Molecular Neurogenetics, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sandrine Sander
- German Cancer Research Center (DKFZ) Heidelberg, Division Adaptive Immunity and Lymphoma , Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hai-Kun Liu
- German Cancer Research Center (DKFZ) Heidelberg, Division Molecular Neurogenetics, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Guoliang Cui
- German Cancer Research Center (DKFZ) Heidelberg, Division T Cell Metabolism, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yu Gan
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Yanling Xiao
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hugo M Horlings
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Thijn R Brummelkamp
- Division of Biochemistry, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Christian U Blank
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Medical Oncology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Medical Oncology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands.
| | - Ton N M Schumacher
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Oncode Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Hematology, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| | - Chong Sun
- German Cancer Research Center (DKFZ) Heidelberg, Division Immune Regulation in Cancer, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Zhang Y, Xu JC, Hu ZD, Fan XY. Advances in protein subunit vaccines against tuberculosis. Front Immunol 2023; 14:1238586. [PMID: 37654500 PMCID: PMC10465801 DOI: 10.3389/fimmu.2023.1238586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Tuberculosis (TB), also known as the "White Plague", is caused by Mycobacterium tuberculosis (Mtb). Before the COVID-19 epidemic, TB had the highest mortality rate of any single infectious disease. Vaccination is considered one of the most effective strategies for controlling TB. Despite the limitations of the Bacille Calmette-Guérin (BCG) vaccine in terms of protection against TB among adults, it is currently the only licensed TB vaccine. Recently, with the evolution of bioinformatics and structural biology techniques to screen and optimize protective antigens of Mtb, the tremendous potential of protein subunit vaccines is being exploited. Multistage subunit vaccines obtained by fusing immunodominant antigens from different stages of TB infection are being used both to prevent and to treat TB. Additionally, the development of novel adjuvants is compensating for weaknesses of immunogenicity, which is conducive to the flourishing of subunit vaccines. With advances in the development of animal models, preclinical vaccine protection assessments are becoming increasingly accurate. This review summarizes progress in the research of protein subunit TB vaccines during the past decades to facilitate the further optimization of protein subunit vaccines that may eradicate TB.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jin-chuan Xu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhi-dong Hu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Xiao-yong Fan
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel) 2023; 11:1304. [PMID: 37631874 PMCID: PMC10457792 DOI: 10.3390/vaccines11081304] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou 075000, China
| | - Ling Yang
- Hebei North University, Zhangjiakou 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| |
Collapse
|
9
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Vono M, Mastelic-Gavillet B, Mohr E, Östensson M, Persson J, Olafsdottir TA, Lemeille S, Pejoski D, Hartley O, Christensen D, Andersen P, Didierlaurent AM, Harandi AM, Lambert PH, Siegrist CA. C-type lectin receptor agonists elicit functional IL21-expressing Tfh cells and induce primary B cell responses in neonates. Front Immunol 2023; 14:1155200. [PMID: 37063899 PMCID: PMC10102809 DOI: 10.3389/fimmu.2023.1155200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionC-type lectin receptor (CLR) agonists emerged as superior inducers of primary B cell responses in early life compared with Toll-like receptor (TLR) agonists, while both types of adjuvants are potent in adults.MethodsHere, we explored the mechanisms accounting for the differences in neonatal adjuvanticity between a CLR-based (CAF®01) and a TLR4-based (GLA-SE) adjuvant administered with influenza hemagglutinin (HA) in neonatal mice, by using transcriptomics and systems biology analyses.ResultsOn day 7 after immunization, HA/CAF01 increased IL6 and IL21 levels in the draining lymph nodes, while HA/GLA-SE increased IL10. CAF01 induced mixed Th1/Th17 neonatal responses while T cell responses induced by GLA-SE had a more pronounced Th2-profile. Only CAF01 induced T follicular helper (Tfh) cells expressing high levels of IL21 similar to levels induced in adult mice, which is essential for germinal center (GC) formation. Accordingly, only CAF01- induced neonatal Tfh cells activated adoptively transferred hen egg lysozyme (HEL)-specific B cells to form HEL+ GC B cells in neonatal mice upon vaccination with HEL-OVA.DiscussionCollectively, the data show that CLR-based adjuvants are promising neonatal and infant adjuvants due to their ability to harness Tfh responses in early life.
Collapse
Affiliation(s)
- Maria Vono
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- *Correspondence: Maria Vono,
| | - Beatris Mastelic-Gavillet
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Elodie Mohr
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Malin Östensson
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Josefine Persson
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | | | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - David Pejoski
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Dennis Christensen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Arnaud M. Didierlaurent
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ali M. Harandi
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Center, British Columbia (BC) Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Paul-Henri Lambert
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Duong VT, Skwarczynski M, Toth I. Towards the development of subunit vaccines against tuberculosis: The key role of adjuvant. Tuberculosis (Edinb) 2023; 139:102307. [PMID: 36706503 DOI: 10.1016/j.tube.2023.102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
According to the World Health Organization (WHO), tuberculosis (TB) is the leading cause of death triggered by a single infectious agent, worldwide. Bacillus Calmette-Guerin (BCG) is the only currently licensed anti-TB vaccine. However, other strategies, including modification of recombinant BCG vaccine, attenuated Mycobacterium tuberculosis (Mtb) mutant constructs, DNA and protein subunit vaccines, are under extensive investigation. As whole pathogen vaccines can trigger serious adverse reactions, most current strategies are focused on the development of safe anti-TB subunit vaccines; this is especially important given the rising TB infection rate in immunocompromised HIV patients. The whole Mtb genome has been mapped and major antigens have been identified; however, optimal vaccine delivery mode is still to be established. Isolated protein antigens are typically poorly immunogenic so adjuvants are required to induce strong and long-lasting immune responses. This article aims to review the developmental status of anti-TB subunit vaccine adjuvants.
Collapse
Affiliation(s)
- Viet Tram Duong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
12
|
Ontiveros-Padilla L, Batty CJ, Hendy DA, Pena ES, Roque JA, Stiepel RT, Carlock MA, Simpson SR, Ross TM, Abraham SN, Staats HF, Bachelder EM, Ainslie KM. Development of a broadly active influenza intranasal vaccine adjuvanted with self-assembled particles composed of mastoparan-7 and CpG. Front Immunol 2023; 14:1103765. [PMID: 37033992 PMCID: PMC10081679 DOI: 10.3389/fimmu.2023.1103765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Currently licensed vaccine adjuvants offer limited mucosal immunity, which is needed to better combat respiratory infections such as influenza. Mast cells (MCs) are emerging as a target for a new class of mucosal vaccine adjuvants. Here, we developed and characterized a nanoparticulate adjuvant composed of an MC activator [mastoparan-7 (M7)] and a TLR ligand (CpG). This novel nanoparticle (NP) adjuvant was co-formulated with a computationally optimized broadly reactive antigen (COBRA) for hemagglutinin (HA), which is broadly reactive against influenza strains. M7 was combined at different ratios with CpG and tested for in vitro immune responses and cytotoxicity. We observed significantly higher cytokine production in dendritic cells and MCs with the lowest cytotoxicity at a charge-neutralizing ratio of nitrogen/phosphate = 1 for M7 and CpG. This combination formed spherical NPs approximately 200 nm in diameter with self-assembling capacity. Mice were vaccinated intranasally with COBRA HA and M7-CpG NPs in a prime-boost-boost schedule. Vaccinated mice had significantly higher antigen-specific antibody responses (IgG and IgA) in serum and mucosa compared with controls. Splenocytes from vaccinated mice had significantly increased cytokine production upon antigen recall and the presence of central and effector memory T cells in draining lymph nodes. Finally, co-immunization with NPs and COBRA HA induced influenza H3N2-specific HA inhibition antibody titers across multiple strains and partially protected mice from a challenge against an H3N2 virus. These results illustrate that the M7-CpG NP adjuvant combination can induce a protective immune response with a broadly reactive influenza antigen via mucosal vaccination.
Collapse
Affiliation(s)
- Luis Ontiveros-Padilla
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cole J. Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erik S. Pena
- Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, United States
| | - John A. Roque
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebeca T. Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael A. Carlock
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, FL, United States
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Sean R. Simpson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ted M. Ross
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, FL, United States
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Soman N. Abraham
- Departments of Pathology, Molecular Genetics and Microbiology and Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Herman F. Staats
- Department of Pathology, School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccines Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Kristy M. Ainslie,
| |
Collapse
|
13
|
Jain A, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: A comprehensive review. Comput Struct Biotechnol J 2022; 20:4415-4436. [PMID: 36051878 PMCID: PMC9420432 DOI: 10.1016/j.csbj.2022.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by host cells is an effective host strategy to detect pathogenic invasion and trigger immune responses. In the context of pathogen-specific pharmacology, there is a growing interest in mapping the interactions between pathogen-derived nucleic acids and host proteins. Insight into the principles of the structural and immunological mechanisms underlying such interactions and their roles in host defense is necessary to guide therapeutic intervention. Here, we discuss the newest advances in studies of molecular interactions involving pathogen nucleic acids and host factors, including their drug design, molecular structure and specific patterns. We observed that two groups of nucleic acid recognizing molecules, Toll-like receptors (TLRs) and the cytoplasmic retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) form the backbone of host responses to pathogen nucleic acids, with additional support provided by absent in melanoma 2 (AIM2) and DNA-dependent activator of Interferons (IFNs)-regulatory factors (DAI) like cytosolic activity. We review the structural, immunological, and other biological aspects of these representative groups of molecules, especially in terms of their target specificity and affinity and challenges in leveraging host-pathogen protein-nucleic acid interactions (HP-PNI) in drug discovery.
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Lokesh P. Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Riken Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National, Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
Aradottir Pind AA, Thorsdottir S, Magnusdottir G, Meinke A, Del Giudice G, Jonsdottir I, Bjarnarson SP. A comparative study of adjuvants effects on neonatal plasma cell survival niche in bone marrow and persistence of humoral immune responses. Front Immunol 2022; 13:904415. [PMID: 35990686 PMCID: PMC9381929 DOI: 10.3389/fimmu.2022.904415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The neonatal immune system is distinct from the immune system of older individuals rendering neonates vulnerable to infections and poor responders to vaccination. Adjuvants can be used as tools to enhance immune responses to co-administered antigens. Antibody (Ab) persistence is mediated by long-lived plasma cells that reside in specialized survival niches in the bone marrow, and transient Ab responses in early life have been associated with decreased survival of plasma cells, possibly due to lack of survival factors. Various cells can secrete these factors and which cells are the main producers is still up for debate, especially in early life where this has not been fully addressed. The receptor BCMA and its ligand APRIL have been shown to be important in the maintenance of plasma cells and Abs. Herein, we assessed age-dependent maturation of a broad range of bone marrow accessory cells and their expression of the survival factors APRIL and IL-6. Furthermore, we performed a comparative analysis of the potential of 5 different adjuvants; LT-K63, mmCT, MF59, IC31 and alum, to enhance expression of survival factors and BCMA following immunization of neonatal mice with tetanus toxoid (TT) vaccine. We found that APRIL expression was reduced in the bone marrow of young mice whereas IL-6 expression was higher. Eosinophils, macrophages, megakaryocytes, monocytes and lymphocytes were important secretors of survival factors in early life but undefined cells also constituted a large fraction of secretors. Immunization and adjuvants enhanced APRIL expression but decreased IL-6 expression in bone marrow cells early after immunization. Furthermore, neonatal immunization with adjuvants enhanced the proportion of plasmablasts and plasma cells that expressed BCMA both in spleen and bone marrow. Enhanced BCMA expression correlated with enhanced vaccine-specific humoral responses, even though the effect of alum on BCMA was less pronounced than those of the other adjuvants at later time points. We propose that low APRIL expression in bone marrow as well as low BCMA expression of plasmablasts/plasma cells in early life together cause transient Ab responses and could represent targets to be triggered by vaccine adjuvants to induce persistent humoral immune responses in this age group.
Collapse
Affiliation(s)
- Audur Anna Aradottir Pind
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Sigrun Thorsdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | - Gudbjorg Julia Magnusdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Ingileif Jonsdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Stefania P. Bjarnarson
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- *Correspondence: Stefania P. Bjarnarson,
| |
Collapse
|
15
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
16
|
Effects of Antimicrobial Peptides Gal-13 on the Growth Performance, Intestinal Microbiota, Digestive Enzyme Activities, Intestinal Morphology, Antioxidative Activities, and Immunity of Broilers. Probiotics Antimicrob Proteins 2022; 15:694-705. [PMID: 35015242 DOI: 10.1007/s12602-021-09905-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
To evaluate the application effect of antimicrobial peptides Gal-13 (AMP Gal-13) instead of antibiotic feed additives, 90 7-day-old Ross 308 broilers were randomly divided into 3 groups. Group A was fed a basic diet as the control, and Groups B and C were supplemented with AMP Gal-13 (100 mg/kg and 200 mg/kg, respectively). After a 35-day feeding experiment, the weight and average daily gain (ADG) of the broilers in Group B were significantly higher than those of the broilers in Group A. The Enterococcus sp. and Escherichia coli counts in the ileum and cecum in Group A were significantly higher than those in Groups B and C, while the Lactic acid bacteria (LAB) and Bifidobacterium sp. counts were significantly lower. The amylase activity of the jejunum in Group B was significantly higher than that in Group A. The villus length (VL): crypt depth (CD) ratios of the jejunum and ileum in Group B were significantly higher than those in Group A. The glutathione peroxidase (GSH-Px) activities in the liver and serum in Groups B and C were significantly higher than those in Group A, while the malondialdehyde (MDA) activity was significantly lower. The titers of Newcastle disease virus (NDV)-specific antibodies were elevated significantly in Group B at the age of 42 days. Additionally, the weights of the spleen and thymus were significantly increased. The expression levels of Il-2, Il-6, Tgf-β4, Tnf-α, and Mif in the spleen in Groups B and C were significantly downregulated to different degrees; Il-4 expression in Group B was significantly upregulated, while Ifn-γ expression in Group C was significantly upregulated. The results suggested that adding AMP Gal-13 to the diet could improve intestinal digestion, the antioxidant capacity, and immune function, ultimately promoting the growth of broilers.
Collapse
|
17
|
Enriquez AB, Izzo A, Miller SM, Stewart EL, Mahon RN, Frank DJ, Evans JT, Rengarajan J, Triccas JA. Advancing Adjuvants for Mycobacterium tuberculosis Therapeutics. Front Immunol 2021; 12:740117. [PMID: 34759923 PMCID: PMC8572789 DOI: 10.3389/fimmu.2021.740117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 01/15/2023] Open
Abstract
Tuberculosis (TB) remains one of the leading causes of death worldwide due to a single infectious disease agent. BCG, the only licensed vaccine against TB, offers limited protection against pulmonary disease in children and adults. TB vaccine research has recently been reinvigorated by new data suggesting alternative administration of BCG induces protection and a subunit/adjuvant vaccine that provides close to 50% protection. These results demonstrate the need for generating adjuvants in order to develop the next generation of TB vaccines. However, development of TB-targeted adjuvants is lacking. To help meet this need, NIAID convened a workshop in 2020 titled “Advancing Vaccine Adjuvants for Mycobacterium tuberculosis Therapeutics”. In this review, we present the four areas identified in the workshop as necessary for advancing TB adjuvants: 1) correlates of protective immunity, 2) targeting specific immune cells, 3) immune evasion mechanisms, and 4) animal models. We will discuss each of these four areas in detail and summarize what is known and what we can advance on in order to help develop more efficacious TB vaccines.
Collapse
Affiliation(s)
- Ana B Enriquez
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Angelo Izzo
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Shannon M Miller
- Center for Translational Medicine, University of Montana, Missoula, MT, United States.,Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Erica L Stewart
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Institute for Infectious Diseases and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Robert N Mahon
- Division of AIDS, Columbus Technologies & Services Inc., Contractor to National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel J Frank
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, Missoula, MT, United States.,Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - James A Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Institute for Infectious Diseases and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Sartorius R, Trovato M, Manco R, D'Apice L, De Berardinis P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. NPJ Vaccines 2021; 6:127. [PMID: 34711839 PMCID: PMC8553822 DOI: 10.1038/s41541-021-00391-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are transmembrane proteins belonging to the family of pattern-recognition receptors. They function as sensors of invading pathogens through recognition of pathogen-associated molecular patterns. After their engagement by microbial ligands, TLRs trigger downstream signaling pathways that culminate into transcriptional upregulation of genes involved in immune defense. Here we provide an updated overview on members of the TLR family and we focus on their role in antiviral response. Understanding of innate sensing and signaling of viruses triggered by these receptors would provide useful knowledge to prompt the development of vaccines able to elicit effective and long-lasting immune responses. We describe the mechanisms developed by viral pathogens to escape from immune surveillance mediated by TLRs and finally discuss how TLR/virus interplay might be exploited to guide the design of innovative vaccine platforms.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Roberta Manco
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | | |
Collapse
|
19
|
Ong GH, Lian BSX, Kawasaki T, Kawai T. Exploration of Pattern Recognition Receptor Agonists as Candidate Adjuvants. Front Cell Infect Microbiol 2021; 11:745016. [PMID: 34692565 PMCID: PMC8526852 DOI: 10.3389/fcimb.2021.745016] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Adjuvants are used to maximize the potency of vaccines by enhancing immune reactions. Components of adjuvants include pathogen-associated molecular patterns (PAMPs) and damage-associate molecular patterns (DAMPs) that are agonists for innate immune receptors. Innate immune responses are usually activated when pathogen recognition receptors (PRRs) recognize PAMPs derived from invading pathogens or DAMPs released by host cells upon tissue damage. Activation of innate immunity by PRR agonists in adjuvants activates acquired immune responses, which is crucial to enhance immune reactions against the targeted pathogen. For example, agonists for Toll-like receptors have yielded promising results as adjuvants, which target PRR as adjuvant candidates. However, a comprehensive understanding of the type of immunological reaction against agonists for PRRs is essential to ensure the safety and reliability of vaccine adjuvants. This review provides an overview of the current progress in development of PRR agonists as vaccine adjuvants, the molecular mechanisms that underlie activation of immune responses, and the enhancement of vaccine efficacy by these potential adjuvant candidates.
Collapse
Affiliation(s)
- Guang Han Ong
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Benedict Shi Xiang Lian
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
20
|
Wijesinghe VN, Farouk IA, Zabidi NZ, Puniyamurti A, Choo WS, Lal SK. Current vaccine approaches and emerging strategies against herpes simplex virus (HSV). Expert Rev Vaccines 2021; 20:1077-1096. [PMID: 34296960 DOI: 10.1080/14760584.2021.1960162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Vaccine development for the disease caused by the herpes simplex virus (HSV) has been challenging over the years and is always in dire need of novel approaches for prevention and cure. To date, the HSV disease remains incurable and challenging to prevent. The disease is extremely widespread due to its high infection rate, resulting in millions of infection cases worldwide.Areas covered: This review first explains the diverse forms of HSV-related disease presentations and reports past vaccine history for the disease. Next, this review examines current and novel HSV vaccine approaches being studied and tested for efficacy and safety as well as vaccines in clinical trial phases I to III. Modern approaches to vaccine design using bioinformatics are described. Finally, we discuss measures to enhance new vaccine development pipelines for HSV.Expert opinion: Modernized approaches using in silico analysis and bioinformatics are emerging methods that exhibit potential for producing vaccines with enhanced targets and formulations. Although not yet fully established for HSV disease, we describe current studies using these approaches for HSV vaccine design to shed light on these methods. In addition, we provide up-to-date requirements of immunogenicity, adjuvant selection, and routes of administration.
Collapse
Affiliation(s)
| | - Isra Ahmad Farouk
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | | | | | - Wee Sim Choo
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Sunil Kumar Lal
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia.,Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
21
|
Luchner M, Reinke S, Milicic A. TLR Agonists as Vaccine Adjuvants Targeting Cancer and Infectious Diseases. Pharmaceutics 2021; 13:142. [PMID: 33499143 PMCID: PMC7911620 DOI: 10.3390/pharmaceutics13020142] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Modern vaccines have largely shifted from using whole, killed or attenuated pathogens to being based on subunit components. Since this diminishes immunogenicity, vaccine adjuvants that enhance the immune response to purified antigens are critically needed. Further advantages of adjuvants include dose sparing, increased vaccine efficacy in immunocompromised individuals and the potential to protect against highly variable pathogens by broadening the immune response. Due to their ability to link the innate with the adaptive immune response, Toll-like receptor (TLR) agonists are highly promising as adjuvants in vaccines against life-threatening and complex diseases such as cancer, AIDS and malaria. TLRs are transmembrane receptors, which are predominantly expressed by innate immune cells. They can be classified into cell surface (TLR1, TLR2, TLR4, TLR5, TLR6) and intracellular TLRs (TLR3, TLR7, TLR8, TLR9), expressed on endosomal membranes. Besides a transmembrane domain, each TLR possesses a leucine-rich repeat (LRR) segment that mediates PAMP/DAMP recognition and a TIR domain that delivers the downstream signal transduction and initiates an inflammatory response. Thus, TLRs are excellent targets for adjuvants to provide a "danger" signal to induce an effective immune response that leads to long-lasting protection. The present review will elaborate on applications of TLR ligands as vaccine adjuvants and immunotherapeutic agents, with a focus on clinically relevant adjuvants.
Collapse
Affiliation(s)
- Marina Luchner
- Department of Biochemistry, Magdalen College Oxford, University of Oxford, Oxford OX1 4AU, UK;
| | - Sören Reinke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK;
| | - Anita Milicic
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
22
|
Ferluga J, Yasmin H, Bhakta S, Kishore U. Vaccination Strategies Against Mycobacterium tuberculosis: BCG and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:217-240. [PMID: 34661897 DOI: 10.1007/978-3-030-67452-6_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tuberculosis (TB) is a highly contagious disease caused by Mycobacterium tuberculosis (Mtb) and is the major cause of morbidity and mortality across the globe. The clinical outcome of TB infection and susceptibility varies among individuals and even among different populations, contributed by host genetic factors such as polymorphism in the human leukocyte antigen (HLA) alleles as well as in cytokine genes, nutritional differences between populations, immunometabolism, and other environmental factors. Till now, BCG is the only vaccine available to prevent TB but the protection rendered by BCG against pulmonary TB is not uniform. To deliver a vaccine which can give consistent protection against TB is a great challenge with rising burden of drug-resistant TB. Thus, expectations are quite high with new generation vaccines that will improve the efficiency of BCG without showing any discordance for all forms of TB, effective for individual of all ages in all parts of the world. In order to enhance or improve the efficacy of BCG, different strategies are being implemented by considering the immunogenicity of various Mtb virulence factors as well as of the recombinant strains, co-administration with adjuvants and use of appropriate vehicle for delivery. This chapter discusses several such pre-clinical attempts to boost BCG with subunit vaccines tested in murine models and also highlights various recombinant TB vaccines undergoing clinical trials. Promising candidates include new generation of live recombinant BCG (rBCG) vaccines, VPM1002, which are deleted in one or two virulence genes. They encode for the mycobacteria-infected macrophage-inhibitor proteins of host macrophage apoptosis and autophagy, key events in killing and eradication of Mtb. These vaccines are rBCG- ΔureC::hly HMR, and rBCG-ΔureC::hly ΔnuoG. The former vaccine has passed phase IIb in clinical trials involving South African infants and adults. Thus, with an aim of elimination of TB by 2050, all these cumulative efforts to develop a better TB vaccine possibly is new hope for positive outcomes.
Collapse
Affiliation(s)
- Janez Ferluga
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
23
|
Lee ALZ, Yang C, Gao S, Wang Y, Hedrick JL, Yang YY. Biodegradable Cationic Polycarbonates as Vaccine Adjuvants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52285-52297. [PMID: 33179910 DOI: 10.1021/acsami.0c09649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, biodegradable cationic polycarbonate and polylactide block copolymers were synthesized and successfully used as novel vaccine adjuvants to provide enhanced anticancer immunity. The polymers formed nanoparticles with the model vaccine, ovalbumin (OVA), and the immunostimulant toll-like receptor 3 agonist poly(I:C) (a synthetic analog of the double-stranded RNA). Higher uptake of poly(I:C) by the bone marrow-derived dendritic cells and macrophages and OVA by dendritic cells was observed when delivered using the polymer adjuvant. In vivo experiments showed that these nanoparticles remained longer in the subcutaneous injection site as compared to OVA alone and led to higher production of anti-OVA specific antibodies with prolonged immunostimulation. When OVA was combined with poly(I:C) that was either co-entrapped in the same particles or as separate particles, a comparable level of anti-OVA IgG1 antibodies and interleukin-6 (IL-6) was produced in mouse blood plasma, and a similar level of cytotoxic T lymphocyte (CTL) response in mice was stimulated as compared to OVA/Alum particles. Furthermore, tumor rejection in the mice that were vaccinated for 9 months with the formulations containing the polymer adjuvant was stronger than the other treatment groups without the polymer. Notably, the cationic polycarbonates were not associated with any adverse in vivo effects. Thus, these biodegradable polymers may be promising substitutes for aluminum-based adjuvants in vaccine formulations.
Collapse
Affiliation(s)
- Ashlynn L Z Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, 31 Biopolis Way, #09-01 The Nanos, Singapore 138669, Singapore
| | - Yanming Wang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - James L Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
24
|
Hao L, Wu Y, Zhang Y, Zhou Z, Lei Q, Ullah N, Banga Ndzouboukou JL, Lin X, Fan X. Combinational PRR Agonists in Liposomal Adjuvant Enhances Immunogenicity and Protective Efficacy in a Tuberculosis Subunit Vaccine. Front Immunol 2020; 11:575504. [PMID: 33117374 PMCID: PMC7561437 DOI: 10.3389/fimmu.2020.575504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/15/2020] [Indexed: 12/26/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) is the only licensed vaccine to prevent children from tuberculosis (TB), whereas it cannot provide effective protection for adults. Our previous work showed a novel vaccine candidate, liposomal adjuvant DMT emulsified with a multistage antigen CMFO, could protect mice against primary progressive TB, latency, and reactivation. To develop a more effective vaccine against adult TB, we aimed to further understand the role of pattern recognition receptor (PRR) agonists monophosphoryl lipid A (MPLA) and trehalose-6,6'-dibehenate (TDB) of the liposomal adjuvant DMT in the CMFO subunit vaccine-induced protection. Using C57BL/6 mouse models, the current study prepared different dimethyldioctadecylammonium (DDA)-based liposomal adjuvants with MPLA, TDB, or both (DMT), and then compared the immunogenicity and the protective efficacy among different liposomal adjuvanted CMFO subunit vaccines. Our study demonstrated that CMFO/DMT provided stronger and longer-lasting protective efficacy than the CMFO emulsified with adjuvants DDA or DDA/TDB. In addition, DDA/MPLA adjuvanted CMFO conferred a comparable protection in the lung as CMFO/DMT did. Higher levels of IFN-γ, IL-2, TNF-α, and IL-17A secreted by splenocytes were related with a more powerful and durable protection induced by CMFO/DMT through a putative synergistic effect of both MPLA and TDB via binding to TLR4 and Mincle. IL-2+ CD4+ T cells, especially IL-2+ CD4+ TCM cells, in the lung after infection were significantly associated with the vaccine-induced protection, whereas stronger IL-10 response and lower IL-2+ CD4+ T cells also contributed to the inferior protection of the DDA/TDB adjuvanted CMFO subunit vaccine. Given their crucial roles in vaccine-induced protection, combinational different PRR agonists in adjuvant formulation represent a promising strategy for the development of next-generation TB vaccine.
Collapse
Affiliation(s)
- Ling Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqi Wu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yandi Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijie Zhou
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nadeem Ullah
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jo-Lewis Banga Ndzouboukou
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosong Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Lofano G, Mallett CP, Bertholet S, O’Hagan DT. Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines. NPJ Vaccines 2020; 5:88. [PMID: 33024579 PMCID: PMC7501859 DOI: 10.1038/s41541-020-00238-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccines represent the most successful medical intervention in history, with billions of lives saved. Although multiple doses of the same vaccine are typically required to reach an adequate level of protection, it would be advantageous to develop vaccines that induce protective immunity with fewer doses, ideally just one. Single-dose vaccines would be ideal to maximize vaccination coverage, help stakeholders to greatly reduce the costs associated with vaccination, and improve patient convenience. Here we describe past attempts to develop potent single dose vaccines and explore the reasons they failed. Then, we review key immunological mechanisms of the vaccine-specific immune responses, and how innovative technologies and approaches are guiding the preclinical and clinical development of potent single-dose vaccines. By modulating the spatio-temporal delivery of the vaccine components, by providing the appropriate stimuli to the innate immunity, and by designing better antigens, the new technologies and approaches leverage our current knowledge of the immune system and may synergize to enable the rational design of next-generation vaccination strategies. This review provides a rational perspective on the possible development of future single-dose vaccines.
Collapse
Affiliation(s)
- Giuseppe Lofano
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Corey P. Mallett
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Sylvie Bertholet
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Derek T. O’Hagan
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| |
Collapse
|
26
|
Afkhami S, Villela AD, D’Agostino MR, Jeyanathan M, Gillgrass A, Xing Z. Advancing Immunotherapeutic Vaccine Strategies Against Pulmonary Tuberculosis. Front Immunol 2020; 11:557809. [PMID: 33013927 PMCID: PMC7509172 DOI: 10.3389/fimmu.2020.557809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Chemotherapeutic intervention remains the primary strategy in treating and controlling tuberculosis (TB). However, a complex interplay between therapeutic and patient-related factors leads to poor treatment adherence. This in turn continues to give rise to unacceptably high rates of disease relapse and the growing emergence of drug-resistant forms of TB. As such, there is considerable interest in strategies that simultaneously improve treatment outcome and shorten chemotherapy duration. Therapeutic vaccines represent one such approach which aims to accomplish this through boosting and/or priming novel anti-TB immune responses to accelerate disease resolution, shorten treatment duration, and enhance treatment success rates. Numerous therapeutic vaccine candidates are currently undergoing pre-clinical and clinical assessment, showing varying degrees of efficacy. By dissecting the underlying mechanisms/correlates of their successes and/or shortcomings, strategies can be identified to improve existing and future vaccine candidates. This mini-review will discuss the current understanding of therapeutic TB vaccine candidates, and discuss major strategies that can be implemented in advancing their development.
Collapse
Affiliation(s)
- Sam Afkhami
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Anne Drumond Villela
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michael R. D’Agostino
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Amy Gillgrass
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Zhou Xing
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
27
|
Nishihara S, Kawasaki K. Enhanced cellular uptake of CpG DNA by α-helical antimicrobial peptide Kn2-7: Effects on macrophage responsiveness to CpG DNA. Biochem Biophys Res Commun 2020; 530:100-106. [PMID: 32828270 DOI: 10.1016/j.bbrc.2020.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022]
Abstract
DNA containing unmethylated cytosine-guanine motifs (CpG DNA) initiates innate immune responses, including the secretion of cytokines from macrophages. Some antimicrobial peptides modulate the responses to CpG DNA, although the molecular mechanisms of this process remain unclear. This study examined the effects of four α-helical antimicrobial peptides on the immune responses induced by CpG DNA. The antimicrobial peptide FIKRIARLLRKIF, known as Kn2-7, increased the CpG DNA-dependent secretion of interleukin-10 (IL-10) and tumor necrosis factor-α from mouse macrophage-like RAW264.7 cells. Kn2-7 enhanced the cellular uptake of CpG DNA; this effect was decreased by the substitution of arginine residues with alanine residues, and increased by the substitution of lysine residues with arginine residues. The degree to which these peptides enhanced the cellular uptake of CpG DNA correlated well with their ability to increase CpG DNA-dependent IL-10 secretion. In contrast, Kn2-7 synthesized with d-amino acids did not increase CpG DNA-dependent IL-10 secretion, although the ability of the D-form of Kn2-7 to enhance the cellular uptake of CpG DNA was not diminished relative to that of Kn2-7. These results indicate that enhanced cellular uptake of CpG DNA is necessary but insufficient to augment CpG DNA-dependent immune responses.
Collapse
Affiliation(s)
- Saeka Nishihara
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, 610-0395, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, 610-0395, Japan.
| |
Collapse
|
28
|
Baindara P, Mandal SM. Antimicrobial Peptides and Vaccine Development to Control Multi-drug Resistant Bacteria. Protein Pept Lett 2019; 26:324-331. [PMID: 31237198 DOI: 10.2174/0929866526666190228162751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) reported to increase globally at alarming levels in the recent past. A number of potential alternative solutions discussed and implemented to control AMR in bacterial pathogens. Stringent control over the clinical application of antibiotics for a reduction in uses is a special consideration along with alternative solutions to fight against AMR. Although alternatives to conventional antibiotics like antimicrobial peptides (AMP) might warrant serious consideration to fight against AMR, there is a thriving recognition for vaccines in encountering the problem of AMR. Vaccines can reduce the prevalence of AMR by reducing the number of specific pathogens, which result in cutting down the antimicrobial need and uses. However, conventional vaccines produced using live or attenuated microorganisms while the presence of immunologically redundant biological components or impurities might cause major side effects and health related problems. Here we discussed AMPs based vaccination strategies as an emerging concept to overcome the disadvantages of traditional vaccines while boosting the AMPs to control multidrug resistant bacteria or AMR. Nevertheless, the poor immune response is a major challenge in the case of peptide vaccines as minimal antigenic epitopes used for immunization in peptide vaccines.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Santi M Mandal
- Central Research Facility, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| |
Collapse
|
29
|
Aradottir Pind AA, Dubik M, Thorsdottir S, Meinke A, Harandi AM, Holmgren J, Del Giudice G, Jonsdottir I, Bjarnarson SP. Adjuvants Enhance the Induction of Germinal Center and Antibody Secreting Cells in Spleen and Their Persistence in Bone Marrow of Neonatal Mice. Front Immunol 2019; 10:2214. [PMID: 31616417 PMCID: PMC6775194 DOI: 10.3389/fimmu.2019.02214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
Immaturity of the immune system contributes to poor vaccine responses in early life. Germinal center (GC) activation is limited due to poorly developed follicular dendritic cells (FDC), causing generation of few antibody-secreting cells (ASCs) with limited survival and transient antibody responses. Herein, we compared the potential of five adjuvants, namely LT-K63, mmCT, MF59, IC31, and alum to overcome limitations of the neonatal immune system and to enhance and prolong responses of neonatal mice to a pneumococcal conjugate vaccine Pnc1-TT. The adjuvants LT-K63, mmCT, MF59, and IC31 significantly enhanced GC formation and FDC maturation in neonatal mice when co-administered with Pnc1-TT. This enhanced GC induction correlated with significantly enhanced vaccine-specific ASCs by LT-K63, mmCT, and MF59 in spleen 14 days after immunization. Furthermore, mmCT, MF59, and IC31 prolonged the induction of vaccine-specific ASCs in spleen and increased their persistence in bone marrow up to 9 weeks after immunization, as previously shown for LT-K63. Accordingly, serum Abs persisted above protective levels against pneumococcal bacteremia and pneumonia. In contrast, alum only enhanced the primary induction of vaccine-specific IgG Abs, which was transient. Our comparative study demonstrated that, in contrast to alum, LT-K63, mmCT, MF59, and IC31 can overcome limitations of the neonatal immune system and enhance both induction and persistence of protective immune response when administered with Pnc1-TT. These adjuvants are promising candidates for early life vaccination.
Collapse
Affiliation(s)
- Audur Anna Aradottir Pind
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Magdalena Dubik
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Sigrun Thorsdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Vaccine Evaluation Center, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Jan Holmgren
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,University of Gothenburg Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | | | - Ingileif Jonsdottir
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,deCODE Genetics/Amgen, Reykjavík, Iceland
| | - Stefania P Bjarnarson
- Department of Immunology, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
30
|
Adjuvant Strategies for More Effective Tuberculosis Vaccine Immunity. Microorganisms 2019; 7:microorganisms7080255. [PMID: 31409028 PMCID: PMC6724148 DOI: 10.3390/microorganisms7080255] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis infection is responsible for the most deaths by a single infectious agent worldwide, with 1.6 million deaths in 2017 alone. The World Health Organization, through its "End TB" strategy, aims to reduce TB deaths by 95% by 2035. In order to reach this goal, a more effective vaccine than the Bacillus Calmette-Guerin (BCG) vaccine currently in use is needed. Subunit TB vaccines are ideal candidates, because they can be used as booster vaccinations for individuals who have already received BCG and would also be safer for use in immunocompromised individuals in whom BCG is contraindicated. However, subunit TB vaccines will almost certainly require formulation with a potent adjuvant. As the correlates of vaccine protection against TB are currently unclear, there are a variety of adjuvants currently being used in TB vaccines in preclinical and clinical development. This review describes the various adjuvants in use in TB vaccines, their effectiveness, and their proposed mechanisms of action. Notably, adjuvants with less inflammatory and reactogenic profiles that can be administered safely via mucosal routes, may have the biggest impact on future directions in TB vaccine design.
Collapse
|
31
|
Andoh M, Ueno T, Kawasaki K. Tissue-dependent induction of antimicrobial peptide genes after body wall injury in house fly ( Musca domestica) larvae. Drug Discov Ther 2018; 12:355-362. [DOI: 10.5582/ddt.2018.01063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Minako Andoh
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Takayuki Ueno
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| |
Collapse
|
32
|
Méndez-Samperio P. Development of tuberculosis vaccines in clinical trials: Current status. Scand J Immunol 2018; 88:e12710. [PMID: 30175850 DOI: 10.1111/sji.12710] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is an important infectious disease worldwide. Currently, Bacillus Calmette-Guérin (BCG) remains the only TB vaccine licensed for human use. This TB vaccine is effective in protecting children against severe military TB but offers variable protective efficacy in adults. Therefore, new vaccines against TB are needed to overcome this serious disease. At present, around 14 TB vaccine candidates are in different phases of clinical trials. These TB vaccines in clinical evaluation can be classified into two groups including preventive pre- and post-exposure vaccines: subunit vaccines (attenuated viral vectors or adjuvanted fusion proteins), and whole-cell vaccines (genetically attenuated Mycobacterium tuberculosis (M. tb), recombinant BCG, killed M. tb or M. vaccae). Although, over the last two decades a great progress in the search for a more effective TB vaccine has been demonstrated there is still no replacement for the licensed BCG vaccine. This article summarizes the current status of TB vaccine development and identifies crucial gaps of research for the development of an effective TB vaccine in all age groups.
Collapse
|
33
|
Vono M, Eberhardt CS, Mohr E, Auderset F, Christensen D, Schmolke M, Coler R, Meinke A, Andersen P, Lambert PH, Mastelic-Gavillet B, Siegrist CA. Overcoming the Neonatal Limitations of Inducing Germinal Centers through Liposome-Based Adjuvants Including C-Type Lectin Agonists Trehalose Dibehenate or Curdlan. Front Immunol 2018. [PMID: 29541075 PMCID: PMC5835515 DOI: 10.3389/fimmu.2018.00381] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Neonates and infants are more vulnerable to infections and show reduced responses to vaccination. Consequently, repeated immunizations are required to induce protection and early life vaccines against major pathogens such as influenza are yet unavailable. Formulating antigens with potent adjuvants, including immunostimulators and delivery systems, is a demonstrated approach to enhance vaccine efficacy. Yet, adjuvants effective in adults may not meet the specific requirements for activating the early life immune system. Here, we assessed the neonatal adjuvanticity of three novel adjuvants including TLR4 (glucopyranosyl lipid adjuvant-squalene emulsion), TLR9 (IC31®), and Mincle (CAF01) agonists, which all induce germinal centers (GCs) and potent antibody responses to influenza hemagglutinin (HA) in adult mice. In neonates, a single dose of HA formulated into each adjuvant induced T follicular helper (TFH) cells. However, only HA/CAF01 elicited significantly higher and sustained antibody responses, engaging neonatal B cells to differentiate into GCs already after a single dose. Although antibody titers remained lower than in adults, HA-specific responses induced by a single neonatal dose of HA/CAF01 were sufficient to confer protection against influenza viral challenge. Postulating that the neonatal adjuvanticity of CAF01 may result from the functionality of the C-type lectin receptor (CLR) Mincle in early life we asked whether other C-type lectin agonists would show a similar neonatal adjuvanticity. Replacing the Mincle agonist trehalose 6,6′-dibehenate by Curdlan, which binds to Dectin-1, enhanced antibody responses through the induction of similar levels of TFH, GCs and bone marrow high-affinity plasma cells. Thus, specific requirements of early life B cells may already be met after a single vaccine dose using CLR-activating agonists, identified here as promising B cell immunostimulators for early life vaccines when included into cationic liposomes.
Collapse
Affiliation(s)
- Maria Vono
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Christiane Sigrid Eberhardt
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland.,WHO Collaborative Center for Vaccine Immunology, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Elodie Mohr
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Floriane Auderset
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Dennis Christensen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Rhea Coler
- Infectious Disease Research Institute, Seattle, WA, United States
| | | | - Peter Andersen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Paul-Henri Lambert
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Beatris Mastelic-Gavillet
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland.,WHO Collaborative Center for Vaccine Immunology, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Hussein J, Zewdie M, Yamuah L, Bedru A, Abebe M, Dagnew AF, Chanyalew M, Yohannes AG, Ahmed J, Engers H, Doherty TM, Bang P, Kromann I, Hoff ST, Aseffa A. A phase I, open-label trial on the safety and immunogenicity of the adjuvanted tuberculosis subunit vaccine H1/IC31® in people living in a TB-endemic area. Trials 2018; 19:24. [PMID: 29321075 PMCID: PMC5764015 DOI: 10.1186/s13063-017-2354-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND H1/IC31® is a tuberculosis (TB) subunit vaccine candidate consisting of the fusion protein of Ag85B and ESAT-6 (H1) formulated with the IC31® adjuvant. Previous trials have reported on the H1/IC31® vaccine in M. tuberculosis (Mtb)-naïve, BCG-vaccinated and previously Mtb-infected individuals. In this trial, conducted between December 2008 and April 2010, the safety and immunogenicity of H1/IC31® was assessed in participants living in Ethiopia - a highly TB-endemic area. METHODS Healthy male participants aged 18-25 years were recruited into four groups. Participants in group 1 (N = 12) and group 2 (N = 12) were Tuberculin Skin Test (TST) negative and QuantiFERON-TB Gold in-tube test (QFT) negative (Mtb-naïve groups), participants in group 3 (N = 3) were TST positive and QFT negative (BCG group), and participants in group 4 (N = 12) were both TST and QFT positive (Mtb-infected group). H1 vaccine alone (group 1) or H1 formulated with the adjuvant IC31® (groups 2, 3 and 4) was administered intramuscularly on day 0 and day 56. Safety and immunogenicity parameters were evaluated for up to 32 weeks after day 0. RESULTS The H1/IC31®vaccine was safe and generally well tolerated. There was little difference among the four groups, with a tendency towards a higher incidence of adverse events in Mtb-infected compared to Mtb-naïve participants. Two serious adverse events were reported in the Mtb-infected group where a relationship to the vaccine could not be excluded. In both cases the participants recovered without sequelae within 72 h. Immunogenicity assays, evaluated in the 29 participants who received both vaccinations, showed a stronger response to TB antigens in the Mtb-naïve group vaccinated with the adjuvant. CONCLUSION The trial confirmed the need for an adjuvant for the vaccine to be immunogenic and highlighted the importance of early phase testing of a novel TB vaccine candidate in TB-endemic areas. TRIAL REGISTRATION ClinicalTrials.gov, ID: NCT01049282. Retrospectively registered on 14 January 2010.
Collapse
Affiliation(s)
- Jemal Hussein
- Armauer Hansen Research Institute (AHRI), Jimma Road, PO Box 1005, Addis Ababa, Ethiopia
| | - Martha Zewdie
- Armauer Hansen Research Institute (AHRI), Jimma Road, PO Box 1005, Addis Ababa, Ethiopia.
| | - Lawrence Yamuah
- Armauer Hansen Research Institute (AHRI), Jimma Road, PO Box 1005, Addis Ababa, Ethiopia
| | - Ahmed Bedru
- Armauer Hansen Research Institute (AHRI), Jimma Road, PO Box 1005, Addis Ababa, Ethiopia.,KNCV Tuberculosis foundation, Challenge TB project, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute (AHRI), Jimma Road, PO Box 1005, Addis Ababa, Ethiopia
| | - Alemnew F Dagnew
- Armauer Hansen Research Institute (AHRI), Jimma Road, PO Box 1005, Addis Ababa, Ethiopia.,GlaxoSmithKline Vaccines, Rockville, MD, USA
| | - Menberework Chanyalew
- Armauer Hansen Research Institute (AHRI), Jimma Road, PO Box 1005, Addis Ababa, Ethiopia
| | - Asfawesen G Yohannes
- Armauer Hansen Research Institute (AHRI), Jimma Road, PO Box 1005, Addis Ababa, Ethiopia
| | - Jemal Ahmed
- Armauer Hansen Research Institute (AHRI), Jimma Road, PO Box 1005, Addis Ababa, Ethiopia
| | - Howard Engers
- Armauer Hansen Research Institute (AHRI), Jimma Road, PO Box 1005, Addis Ababa, Ethiopia
| | - T Mark Doherty
- Statens Serum Institut (SSI), Artillerivej 5, 2300, Copenhagen, Denmark.,GlaxoSmithKline Vaccines, Wavre, Belgium
| | - Peter Bang
- Statens Serum Institut (SSI), Artillerivej 5, 2300, Copenhagen, Denmark
| | - Ingrid Kromann
- Statens Serum Institut (SSI), Artillerivej 5, 2300, Copenhagen, Denmark
| | - Søren T Hoff
- Statens Serum Institut (SSI), Artillerivej 5, 2300, Copenhagen, Denmark.,Present address: Novo Nordisk, Copenhagen, Denmark
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Jimma Road, PO Box 1005, Addis Ababa, Ethiopia
| |
Collapse
|
35
|
Potential role of an antimicrobial peptide, KLK in inhibiting lipopolysaccharide-induced macrophage inflammation. PLoS One 2017; 12:e0183852. [PMID: 28850608 PMCID: PMC5574609 DOI: 10.1371/journal.pone.0183852] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/12/2017] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are attractive alternatives to antibiotics. Due to their immune modulatory properties, AMPs are at present emerging as promising agents for controlling inflammatory-mediated diseases. In this study, anti-inflammatory potential of an antimicrobial peptide, KLK (KLKLLLLLKLK) and its analogs was evaluated in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. The results herein demonstrated that KLK peptide as well as its analogs significantly inhibited the pro-inflammatory mediator nitric oxide (NO), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) production in LPS-stimulated RAW 264.7 macrophages in dose-dependent manners, and such inhibitory effects were not due to direct cytotoxicity. When considering inhibition potency, KLK among the test peptides exhibited the most effective activity. The inhibitory activity of KLK peptide also extended to include suppression of LPS-induced production of prostaglandin E2 (PGE2). KLK significantly decreased mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as mRNA expression of IL-1β and TNF-α. Moreover, KLK inhibited nuclear translocation of nuclear factor-κB (NF-κB) p65 and blocked degradation and phosphorylation of inhibitor of κB (IκB). Taken together, these results suggested that the KLK peptide inhibited inflammatory response through the down-regulation of NF-κB mediated activation in macrophages. Since peptide analogs with different amino acid sequences and arrangement were investigated for their anti-inflammatory activities, the residues/structures required for activity were also discussed. Our findings therefore proved anti-inflammatory potential of the KLK peptide and provide direct evidence for therapeutic application of KLK as a novel anti-inflammatory agent.
Collapse
|
36
|
Cimica V, Galarza JM. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin Immunol 2017; 183:99-108. [PMID: 28780375 DOI: 10.1016/j.clim.2017.08.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/11/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
The development of virus-like particle (VLP) technology has had an enormous impact on modern vaccinology. In order to optimize the efficacy and safety of VLP-based vaccines, adjuvants are included in most vaccine formulations. To date, most licensed VLP-based vaccines utilize the classic aluminum adjuvant compositions. Certain challenging pathogens and weak immune responder subjects may require further optimization of the adjuvant formulation to maximize the magnitude and duration of the protective immunity. Indeed, novel classes of adjuvants such as liposomes, agonists of pathogen recognition receptors, polymeric particles, emulsions, cytokines and bacterial toxins, can be used to further improve the immunostimulatory activity of a VLP-based vaccine. This review describes the current advances in adjuvant technology for VLP-based vaccines directed at viral diseases, and discusses the basic principles for designing adjuvant formulations for enhancing the vaccine immunogenicity.
Collapse
Affiliation(s)
- Velasco Cimica
- TechnoVax, Inc., 765 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Jose M Galarza
- TechnoVax, Inc., 765 Old Saw Mill River Road, Tarrytown, NY 10591, United States.
| |
Collapse
|
37
|
Kawasaki K, Andoh M. Properties of induced antimicrobial activity in Musca domestica larvae. Drug Discov Ther 2017; 11:156-160. [PMID: 28652511 DOI: 10.5582/ddt.2017.01027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Insects produce antimicrobial molecules that contribute to their innate immune responses to eliminate invading microorganisms. To explore the potential utility of these antimicrobial molecules, we focused on larvae of the house fly Musca domestica, which is an efficient processor of organic waste and a good resource of protein and oil for animal feeding. The induction of hemagglutinating activity, which is usually accompanied by activation of innate immune responses in fly larvae, was observed in the hemolymph following needle injury. Hemolymph collected from injured larvae demonstrated potent antimicrobial activities against both Gram-positive and Gram-negative bacteria, including Staphylococcus aureus and Pseudomonas aeruginosa. Furthermore, the antimicrobial activity was significantly retained in hemolymph after heat-treatments, suggesting that pasteurization of animal feed prepared from fly larvae would be a useful sterilization method. These observations indicate that injured Musca domestica larvae are a source of antimicrobial agents, and highlight the utility of preparing animal feed from these larvae.
Collapse
Affiliation(s)
| | - Minako Andoh
- Faculty of Pharmaceutical Sciences, Doshisha Women's College
| |
Collapse
|
38
|
Hakimi J, Azizi A, Ausar SF, Todryk SM, Rahman N, Brookes RH. An adjuvant-modulated vaccine response in human whole blood. Hum Vaccin Immunother 2017; 13:2130-2134. [PMID: 28605295 DOI: 10.1080/21645515.2017.1337616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The restimulation of an immune memory response by in vitro culture of blood cells with a specific antigen has been used as a way to gauge immunity to vaccines for decades. In this commentary we discuss a less appreciated application to support vaccine process development. We report that human whole blood from pre-primed subjects can generate a profound adjuvant-modulated, antigen-specific response to several different vaccine formulations. The response is able to differentiate subtle changes in the quality of an immune memory response to vaccine formulations and can be used to select optimal conditions relating to a particular manufacture process step. While questions relating to closeness to in vivo vaccination remain, the approach is another big step nearer to the more relevant human response. It has special importance for new adjuvant development, complementing other preclinical in vivo and in vitro approaches to considerably de-risk progression of novel vaccines before and throughout early clinical development. Broader implications of the approach are discussed.
Collapse
Affiliation(s)
- Jalil Hakimi
- a Sanofi Pasteur, Product R&D , Toronto , Ontario , Canada
| | - Ali Azizi
- a Sanofi Pasteur, Product R&D , Toronto , Ontario , Canada
| | | | - Stephen M Todryk
- b Department of Applied Sciences , Faculty of Health & Life Sciences, Northumbria University , Newcastle upon Tyne , UK
| | | | | |
Collapse
|
39
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
40
|
Manabe T, Kawasaki K. D-form KLKLLLLLKLK-NH 2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Sci Rep 2017; 7:43384. [PMID: 28262682 PMCID: PMC5338256 DOI: 10.1038/srep43384] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/20/2017] [Indexed: 11/10/2022] Open
Abstract
The antimicrobial peptide KLKLLLLLKLK-NH2 was developed based on sapesin B, and synthesized using D-amino acids. Biochemical properties of the D-form and L-form KLKLLLLLKLK-NH2 peptides were compared. In order to limit the effects due to bacterial resistance to proteolysis, antimicrobial activities of the peptides were evaluated after short-term exposure to bacteria. D-form KLKLLLLLKLK-NH2 exhibited higher antimicrobial activities than L-form KLKLLLLLKLK-NH2 against bacteria, including Staphylococcus aureus and Escherichia coli. In contrast, both the D-form and L-form of other antimicrobial peptides, including Mastoparan M and Temporin A, exhibited similar antimicrobial activities. Both the D-form KLKLLLLLKLK-NH2 and L-form KLKLLLLLKLK-NH2 peptides preferentially disrupted S. aureus-mimetic liposomes over mammalian-mimetic liposomes. Furthermore, the D-form KLKLLLLLKLK-NH2 increased the membrane permeability of S. aureus more than the L-form KLKLLLLLKLK-NH2. Thus suggesting that the enhanced antimicrobial activity of the D-form was likely due to its interaction with bacterial cell wall components. S. aureus peptidoglycan preferentially inhibited the antimicrobial activity of the D-form KLKLLLLLKLK-NH2 relative to the L-form. Furthermore, the D-form KLKLLLLLKLK-NH2 showed higher affinity for S. aureus peptidoglycan than the L-form. Taken together, these results indicate that the D-form KLKLLLLLKLK-NH2 peptide has higher antimicrobial activity than the L-form via a specific association with bacterial cell wall components, including peptidoglycan.
Collapse
Affiliation(s)
- Takayuki Manabe
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto 610-0395, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
41
|
Norrby M, Vesikari T, Lindqvist L, Maeurer M, Ahmed R, Mahdavifar S, Bennett S, McClain JB, Shepherd BM, Li D, Hokey DA, Kromann I, Hoff ST, Andersen P, de Visser AW, Joosten SA, Ottenhoff THM, Andersson J, Brighenti S. Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: Two phase I dose escalation trials. Vaccine 2017; 35:1652-1661. [PMID: 28216183 DOI: 10.1016/j.vaccine.2017.01.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/28/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Novel vaccine strategies are required to provide protective immunity in tuberculosis (TB) and prevent development of active disease. We investigated the safety and immunogenicity of a novel TB vaccine candidate, H4:IC31 (AERAS-404) that is composed of a fusion protein of M. tuberculosis antigens Ag85B and TB10.4 combined with an IC31® adjuvant. METHODS BCG-vaccinated healthy subjects were immunized with various antigen (5, 15, 50, 150μg) and adjuvant (0, 100, 500nmol) doses of the H4:IC31 vaccine (n=106) or placebo (n=18) in two randomized, double-blind, placebo-controlled phase I studies conducted in a low TB endemic setting in Sweden and Finland. The subjects were followed for adverse events and CD4+ T cell responses. RESULTS H4:IC31 vaccination was well tolerated with a safety profile consisting of mostly mild to moderate self-limited injection site pain, myalgia, arthralgia, fever and post-vaccination inflammatory reaction at the screening tuberculin skin test injection site. The H4:IC31 vaccine elicited antigen-specific CD4+ T cell proliferation and cytokine production that persisted 18weeks after the last vaccination. CD4+ T cell expansion, IFN-γ production and multifunctional CD4+ Th1 responses were most prominent after two doses of H4:IC31 containing 5, 15, or 50μg of H4 in combination with the 500nmol IC31 adjuvant dose. CONCLUSIONS The novel TB vaccine candidate, H4:IC31, demonstrated an acceptable safety profile and was immunogenic, capable of triggering multifunctional CD4+ T cell responses in previously BCG-vaccinated healthy individuals. These dose-escalation trials provided evidence that the optimal antigen-adjuvant dose combinations are 5, 15, or 50μg of H4 and 500nmol of IC31. TRIAL REGISTRATION ClinicalTrials.gov, NCT02066428 and NCT02074956.
Collapse
Affiliation(s)
- Maria Norrby
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Timo Vesikari
- Vaccine Research Center, University of Tampere, Tampere, Finland
| | - Lars Lindqvist
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Maeurer
- TIM, Department of Laboratory Medicine and CAST, Karolinska Institutet, Stockholm, Sweden
| | - Raija Ahmed
- TIM, Department of Laboratory Medicine and CAST, Karolinska Institutet, Stockholm, Sweden
| | - Shahnaz Mahdavifar
- TIM, Department of Laboratory Medicine and CAST, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | - Adriëtte W de Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Andersson
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Center for Infectious Medicine (CIM), Karolinska Institutet, Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine (CIM), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
42
|
Méndez-Samperio P. Global Efforts in the Development of Vaccines for Tuberculosis: Requirements for Improved Vaccines Against Mycobacterium tuberculosis. Scand J Immunol 2017; 84:204-10. [PMID: 27454335 DOI: 10.1111/sji.12465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/13/2016] [Indexed: 11/28/2022]
Abstract
Currently, more than 9.0 million people develop acute pulmonary tuberculosis (TB) each year and about 1.5 million people worldwide die from this infection. Thus, developing vaccines to prevent active TB disease remains a priority. This article discusses recent progress in the development of new vaccines against TB and focusses on the main requirements for development of improved vaccines against Mycobacterium tuberculosis (M. tb). Over the last two decades, significant progress has been made in TB vaccine development, and some TB vaccine candidates have currently completed a phase III clinical trial. The potential public health benefits of these vaccines are possible, but it will need much more effort, including new global governance investment on this research. This investment would certainly be less than the annual global financial toll of TB treatment.
Collapse
Affiliation(s)
- P Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN, CD México, México.
| |
Collapse
|
43
|
Gutjahr A, Tiraby G, Perouzel E, Verrier B, Paul S. Triggering Intracellular Receptors for Vaccine Adjuvantation. Trends Immunol 2016; 37:573-587. [PMID: 27474233 DOI: 10.1016/j.it.2016.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022]
Abstract
Immune adjuvants are components that stimulate, potentiate, or modulate the immune response to an antigen. They are key elements of vaccines in both the prophylactic and therapeutic domains. In the past decade substantial progress in our understanding of innate immunity has paved the way for the design of next-generation adjuvants that stimulate a wide range of receptors. Within the framework of vaccine adjuvant design, this review outlines the interest of targeting endosomal and intracellular receptors to enhance and guide the immune response. We present and compare the molecules as well as potential combinations which are currently in the spotlight. We emphasize how targeting the appropriate receptor can direct immunity towards the appropriate response, such as a cytotoxic or mucosal response.
Collapse
Affiliation(s)
- Alice Gutjahr
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Unité Mixte de Recherche 5305, Université Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et Chimie des Protéines (IBCP)-Lyon, France; InvivoGen, Toulouse, France; Groupe Immunité des Muqueuses et Agents Pathogènes, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre d'Investigation Clinique 1408 Vaccinologie, Faculté de Médecine de Saint-Etienne-Saint-Etienne, France
| | | | | | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Unité Mixte de Recherche 5305, Université Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et Chimie des Protéines (IBCP)-Lyon, France
| | - Stéphane Paul
- Groupe Immunité des Muqueuses et Agents Pathogènes, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre d'Investigation Clinique 1408 Vaccinologie, Faculté de Médecine de Saint-Etienne-Saint-Etienne, France.
| |
Collapse
|
44
|
Agger EM. Novel adjuvant formulations for delivery of anti-tuberculosis vaccine candidates. Adv Drug Deliv Rev 2016; 102:73-82. [PMID: 26596558 DOI: 10.1016/j.addr.2015.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 01/18/2023]
Abstract
There is an urgent need for a new and improved vaccine against tuberculosis for controlling this disease that continues to pose a global health threat. The current research strategy is to replace the present BCG vaccine or boost BCG-immunity with subunit vaccines such as viral vectored- or protein-based vaccines. The use of recombinant proteins holds a number of production advantages including ease of scalability, but requires an adjuvant inducing cell-mediated immune responses. A number of promising novel adjuvant formulations have recently been designed and show evidence of induction of cellular immune responses in humans. A common trait of effective TB adjuvants including those already in current clinical testing is a two-component approach combining a delivery system with an appropriate immunomodulator. This review summarizes the status of current TB adjuvant research with a focus on the division of labor between delivery systems and immunomodulators.
Collapse
Affiliation(s)
- Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| |
Collapse
|
45
|
Chikh G, Luu R, Patel S, Davis HL, Weeratna RD. Effects of KLK Peptide on Adjuvanticity of Different ODN Sequences. Vaccines (Basel) 2016; 4:vaccines4020014. [PMID: 27153098 PMCID: PMC4931631 DOI: 10.3390/vaccines4020014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
Endosomal Toll-like receptors (TLR) such as TLR3, 7, 8 and 9 recognize pathogen associated nucleic acids. While DNA sequence does influence degree of binding to and activation of TLR9, it also appears to influence the ability of the ligand to reach the intracellular endosomal compartment. The KLK (KLKL5KLK) antimicrobial peptide, which is immunostimulatory itself, can translocate into cells without cell membrane permeabilization and thus can be used for endosomal delivery of TLR agonists, as has been shown with the IC31 formulation that contains an oligodeoxynucleotide (ODN) TLR9 agonist. We evaluated the adjuvant activity of KLK combined with CpG or non-CpG (GpC) ODN synthesized with nuclease resistant phosphorothioate (S) or native phosphodiester (O) backbones with ovalbumin (OVA) antigen in mice. As single adjuvants, CpG(S) gave the strongest enhancement of OVA-specific immunity and the addition of KLK provided no benefit and was actually detrimental for some readouts. In contrast, KLK enhanced the adjuvant effects of CpG(O) and to a lesser extent of GpC (S), which on their own had little or no activity. Indeed while CD8 T cells, IFN-γ secretion and humoral response to vaccine antigen were enhanced when CpG(O) was combined with KLK, only IFN-γ secretion was enhanced when GpC (S) was combined to KLK. The synergistic adjuvant effects with KLK/ODN combinations were TLR9-mediated since they did not occur in TLR9 knock-out mice. We hypothesize that a nuclease resistant ODN with CpG motifs has its own mechanism for entering cells to reach the endosome. For ODN without CpG motifs, KLK appears to provide an alternate mechanism for accessing the endosome, where it can activate TLR9, albeit with lower potency than a CpG ODN. For nuclease sensitive (O) backbone ODN, KLK may also provide protection from nucleases in the tissues.
Collapse
Affiliation(s)
- Ghania Chikh
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| | - Rachel Luu
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| | - Shobhna Patel
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| | - Heather L Davis
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| | - Risini D Weeratna
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, Ottawa, ON K2K 3A2, Canada.
| |
Collapse
|
46
|
Jonsdottir S, Svansson V, Stefansdottir SB, Schüpbach G, Rhyner C, Marti E, Torsteinsdottir S. A preventive immunization approach against insect bite hypersensitivity: Intralymphatic injection with recombinant allergens in Alum or Alum and monophosphoryl lipid A. Vet Immunol Immunopathol 2016; 172:14-20. [PMID: 27032498 DOI: 10.1016/j.vetimm.2016.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/11/2016] [Accepted: 02/24/2016] [Indexed: 11/15/2022]
Abstract
Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis of horses caused by bites of Culicoides insects, not indigenous to Iceland. Horses born in Iceland and exported to Culicoides-rich areas are frequently affected with IBH. The aims of the study were to compare immunization with recombinant allergens using the adjuvant aluminum hydroxide (Alum) alone or combined with monophosphoryl lipid A (MPLA) for development of a preventive immunization against IBH. Twelve healthy Icelandic horses were vaccinated intralymphatically three times with 10 μg each of four recombinant Culicoides nubeculosus allergens in Alum or in Alum/MPLA. Injection with allergens in both Alum and Alum/MPLA resulted in significant increase in specific IgG subclasses and IgA against all r-allergens with no significant differences between the adjuvant groups. The induced antibodies from both groups could block binding of allergen specific IgE from IBH affected horses to a similar extent. No IgE-mediated reactions were induced. Allergen-stimulated PBMC from Alum/MPLA horses but not from Alum only horses produced significantly more IFNγ and IL-10 than PBMC from non-vaccinated control horses. In conclusion, intralymphatic administration of small amounts of pure allergens in Alum/MPLA induces high IgG antibody levels and Th1/Treg immune response and is a promising approach for immunoprophylaxis and immunotherapy against IBH.
Collapse
Affiliation(s)
- Sigridur Jonsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland.
| | - Vilhjalmur Svansson
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Sara Bjork Stefansdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Gertraud Schüpbach
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggass-Strasse 124, 3012 Berne, Switzerland
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggass-Strasse 124, 3012 Berne, Switzerland
| | - Sigurbjorg Torsteinsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| |
Collapse
|
47
|
Hofman S, Segers MM, Ghimire S, Bolhuis MS, Sturkenboom MGG, Van Soolingen D, Alffenaar JWC. Emerging drugs and alternative possibilities in the treatment of tuberculosis. Expert Opin Emerg Drugs 2016; 21:103-16. [PMID: 26848966 DOI: 10.1517/14728214.2016.1151000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tuberculosis (TB) remains a global health problem. Drug resistance, treatment duration, complexity, and adverse drug reactions associated with anti-TB regimens are associated with treatment failure, prolonged infectiousness and relapse. With the current set of anti-TB drugs the goal to end TB has not been met. New drugs and new treatment regimens are needed to eradicate TB. AREAS COVERED Literature was explored to select publications on drugs currently in phase II and phase III trials. These include new chemical entities, immunotherapy, established drugs in new treatment regimens and vaccines for the prophylaxis of TB. EXPERT OPINION Well designed trials, with detailed pharmacokinetic/pharmacodynamic analysis, in which information on drug exposure and drug susceptibility of the entire anti-TB regimen is included, in combination with long-term follow-up will provide relevant data to optimize TB treatment. The new multi arm multistage trial design could be used to test new combinations of compounds, immunotherapy and therapeutic vaccines. This new approach will both reduce the number of patients exposed to inferior treatment and the financial burden. Moreover, it will speed up drug evaluation. Considering the investments involved in development of new drugs it is worthwhile to thoroughly investigate existing, non-TB drugs in new regimens.
Collapse
Affiliation(s)
- S Hofman
- a University of Groningen , University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology , Groningen , the Netherlands
| | - M M Segers
- a University of Groningen , University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology , Groningen , the Netherlands
| | - S Ghimire
- a University of Groningen , University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology , Groningen , the Netherlands
| | - M S Bolhuis
- a University of Groningen , University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology , Groningen , the Netherlands
| | - M G G Sturkenboom
- a University of Groningen , University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology , Groningen , the Netherlands
| | - D Van Soolingen
- b Departments of Pulmonary Diseases and Medical Microbiology , Nijmegen Medical Center, Radboud University , Nijmegen , The Netherlands.,c National Tuberculosis Reference Laboratory , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - J W C Alffenaar
- a University of Groningen , University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology , Groningen , the Netherlands
| |
Collapse
|
48
|
Knudsen NPH, Olsen A, Buonsanti C, Follmann F, Zhang Y, Coler RN, Fox CB, Meinke A, D'Oro U, Casini D, Bonci A, Billeskov R, De Gregorio E, Rappuoli R, Harandi AM, Andersen P, Agger EM. Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Sci Rep 2016; 6:19570. [PMID: 26791076 PMCID: PMC4726129 DOI: 10.1038/srep19570] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/15/2015] [Indexed: 01/20/2023] Open
Abstract
The majority of vaccine candidates in clinical development are highly purified proteins and peptides relying on adjuvants to enhance and/or direct immune responses. Despite the acknowledged need for novel adjuvants, there are still very few adjuvants in licensed human vaccines. A vast number of adjuvants have been tested pre-clinically using different experimental conditions, rendering it impossible to directly compare their activity. We performed a head-to-head comparison of five different adjuvants Alum, MF59®, GLA-SE, IC31® and CAF01 in mice and combined these with antigens from M. tuberculosis, influenza, and chlamydia to test immune-profiles and efficacy in infection models using standardized protocols. Regardless of antigen, each adjuvant had a unique immunological signature suggesting that the adjuvants have potential for different disease targets. Alum increased antibody titers; MF59® induced strong antibody and IL-5 responses; GLA-SE induced antibodies and Th1; CAF01 showed a mixed Th1/Th17 profile and IC31® induced strong Th1 responses. MF59® and GLA-SE were strong inducers of influenza HI titers while CAF01, GLA-SE and IC31® enhanced protection to TB and chlamydia. Importantly, this is the first extensive attempt to categorize clinical-grade adjuvants based on their immune profiles and protective efficacy to inform a rational development of next generation vaccines for human use.
Collapse
Affiliation(s)
- Niels Peter H Knudsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anja Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Cecilia Buonsanti
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Yuan Zhang
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA, USA
| | | | | | - Ugo D'Oro
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Daniele Casini
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Alessandra Bonci
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Rolf Billeskov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ennio De Gregorio
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Rino Rappuoli
- Novartis Vaccines and Diagnostics s.r.l (a GSK Company), Siena, Italy
| | - Ali M Harandi
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
49
|
Lam JH, Ong LC, Alonso S. Key concepts, strategies, and challenges in dengue vaccine development: an opportunity for sub-unit candidates? Expert Rev Vaccines 2015; 15:483-95. [PMID: 26508565 DOI: 10.1586/14760584.2016.1106318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite 70 years of research that has intensified in the past decade, a safe and efficacious dengue vaccine has yet to be available. In addition to the expected challenges such as identifying immune correlates of protection, the dengue vaccine field has faced additional hurdles including the necessity to design a tetravalent formulation and the risk of antibody-mediated disease enhancement. Nevertheless, tetravalent live attenuated vaccine candidates have reached efficacy trials and demonstrated some benefit, despite imbalanced immunogenicity and incomplete protection against the four serotypes. Meanwhile, the development of sub-unit dengue vaccines has gained momentum. As the target of most of the neutralizing antibodies so far reported, the virus envelope E protein has been the focus of much effort and represents the leading dengue sub-unit vaccine candidate. However, its notorious poor immunogenicity has prompted the development of innovative approaches to make E-derived constructs part of the second generation dengue vaccines portfolio.
Collapse
Affiliation(s)
- Jian Hang Lam
- a Department of Microbiology and Immunology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore
| | - Li Ching Ong
- b Immunology programme, Life Sciences Institute , National University of Singapore , Singapore
| | - Sylvie Alonso
- a Department of Microbiology and Immunology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore.,b Immunology programme, Life Sciences Institute , National University of Singapore , Singapore
| |
Collapse
|
50
|
Luabeya AKK, Kagina BMN, Tameris MD, Geldenhuys H, Hoff ST, Shi Z, Kromann I, Hatherill M, Mahomed H, Hanekom WA, Andersen P, Scriba TJ, Schoeman E, Krohn C, Day CL, Africa H, Makhethe L, Smit E, Brown Y, Suliman S, Hughes EJ, Bang P, Snowden MA, McClain B, Hussey GD. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine 2015; 33:4130-40. [PMID: 26095509 DOI: 10.1016/j.vaccine.2015.06.051] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/07/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND H56:IC31 is a candidate tuberculosis vaccine comprising a fusion protein of Ag85B, ESAT-6 and Rv2660c, formulated in IC31 adjuvant. This first-in-human, open label phase I trial assessed the safety and immunogenicity of H56:IC31 in healthy adults without or with Mycobacterium tuberculosis (M.tb) infection. METHODS Low dose (15 μg H56 protein in 500 nmol IC31) or high dose (50 μg H56, 500 nmol IC31) vaccine was administered intramuscularly thrice, at 56-day intervals. Antigen-specific T cell responses were measured by intracellular cytokine staining and antibody responses by ELISA. RESULTS One hundred and twenty-six subjects were screened and 25 enrolled and vaccinated. No serious adverse events were reported. Nine subjects (36%) presented with transient cardiovascular adverse events. The H56:IC31 vaccine induced antigen-specific IgG responses and Th1 cytokine-expressing CD4(+) T cells. M.tb-infected vaccinees had higher frequencies of H56-induced CD4(+) T cells than uninfected vaccinees. Low dose vaccination induced more polyfunctional (IFN-γ(+)TNF-α(+)IL-2(+)) and higher frequencies of H56-specific CD4(+) T cells compared with high dose vaccination. A striking increase in IFN-γ-only-expressing CD4(+) T cells, displaying a CD45RA(-)CCR7(-) effector memory phenotype, emerged after the second high-dose vaccination in M.tb-infected vaccinees. TNF-α(+)IL-2(+) H56-specific memory CD4(+) T cells were detected mostly after low-dose H56 vaccination in M.tb-infected vaccinees, and predominantly expressed a CD45RA(-)CCR7(+) central memory phenotype. Our results support further clinical testing of H56:IC31.
Collapse
Affiliation(s)
- Angelique Kany Kany Luabeya
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa.
| | - Benjamin M N Kagina
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa; Vaccines for Africa Initiative, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Michele D Tameris
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Hennie Geldenhuys
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Soren T Hoff
- Statens Serum Institut (SSI), Copenhagen, Denmark
| | | | | | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Hassan Mahomed
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa; Western Cape Government and Stellenbosch University, Cape Town, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | | | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Elisma Schoeman
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Colleen Krohn
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Cheryl L Day
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa; Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA; Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Hadn Africa
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Lebohang Makhethe
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Erica Smit
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Yolande Brown
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Sara Suliman
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - E Jane Hughes
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa
| | - Peter Bang
- Statens Serum Institut (SSI), Copenhagen, Denmark
| | | | | | - Gregory D Hussey
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine (IDM), School of Child and Adolescent Health, University of Cape Town, University of Cape Town, Cape Town, South Africa; Vaccines for Africa Initiative, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|