1
|
Kayesh MEH, Nazneen H, Kohara M, Tsukiyama-Kohara K. An effective pan-serotype dengue vaccine and enhanced control strategies could help in reducing the severe dengue burden in Bangladesh-A perspective. Front Microbiol 2024; 15:1423044. [PMID: 39228383 PMCID: PMC11368799 DOI: 10.3389/fmicb.2024.1423044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Dengue is an important vector-borne disease occurring globally. Dengue virus (DENV) infection can result in a potentially life-threatening disease. To date, no DENV-specific antiviral treatment is available. Moreover, an equally effective pan-serotype dengue virus vaccine is not available. Recently, two DENV vaccines, Dengvaxia and Qdenga, were licensed for limited use. However, none of them have been approved in Bangladesh. DENV is transmitted by Aedes mosquitoes, and global warming caused by climate change favoring Aedes breeding plays an important role in increasing DENV infections in Bangladesh. Dengue is a serious public health concern in Bangladesh. In the year 2023, Bangladesh witnessed its largest dengue outbreak, with the highest number of dengue cases (n = 321,179) and dengue-related deaths (n = 1,705) in a single epidemic year. There is an increased risk of severe dengue in individuals with preexisting DENV-specific immunoglobulin G if the individuals become infected with different DENV serotypes. To date, vector control has remained the mainstay for controlling dengue; therefore, an immediate, strengthened, and effective vector control program is critical and should be regularly performed for controlling dengue outbreaks in Bangladesh. In addition, the use of DENV vaccine in curbing dengue epidemics in Bangladesh requires more consideration and judgment by the respective authority of Bangladesh. This review provides perspectives on the control and prevention of dengue outbreaks. We also discuss the challenges of DENV vaccine use to reduce dengue epidemics infection in Bangladesh.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Humayra Nazneen
- Department of Haematology, Dhaka Medical College Hospital, Dhaka, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
2
|
Thoresen D, Matsuda K, Urakami A, Ngwe Tun MM, Nomura T, Moi ML, Watanabe Y, Ishikawa M, Hau TTT, Yamamoto H, Suzaki Y, Ami Y, Smith JF, Matano T, Morita K, Akahata W. A tetravalent dengue virus-like particle vaccine induces high levels of neutralizing antibodies and reduces dengue replication in non-human primates. J Virol 2024; 98:e0023924. [PMID: 38647327 PMCID: PMC11092354 DOI: 10.1128/jvi.00239-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Dengue virus (DENV) represents a significant global health burden, with 50% of the world's population at risk of infection, and there is an urgent need for next-generation vaccines. Virus-like particle (VLP)-based vaccines, which mimic the antigenic structure of the virus but lack the viral genome, are an attractive approach. Here, we describe a dengue VLP (DENVLP) vaccine which generates a neutralizing antibody response against all four DENV serotypes in 100% of immunized non-human primates for up to 1 year. Additionally, DENVLP vaccination produced no ADE response against any of four DENV serotypes in vitro. DENVLP vaccination reduces viral replication in a non-human primate challenge model. We also show that transfer of purified IgG from immunized monkeys into immunodeficient mice protects against subsequent lethal DENV challenge, indicating a humoral mechanism of protection. These results indicate that this DENVLP vaccine is immunogenic and can be considered for clinical evaluation. Immunization of non-human primates with a tetravalent DENVLP vaccine induces high levels of neutralizing antibodies and reduces the severity of infection for all four dengue serotypes.IMPORTANCEDengue is a viral disease that infects nearly 400 million people worldwide and causes dengue hemorrhagic fever, which is responsible for 10,000 deaths each year. Currently, there is no therapeutic drug licensed to treat dengue infection, which makes the development of an effective vaccine essential. Virus-like particles (VLPs) are a safe and highly immunogenic platform that can be used in young children, immunocompromised individuals, as well as healthy adults. In this study, we describe the development of a dengue VLP vaccine and demonstrate that it induces a robust immune response against the dengue virus for over 1 year in monkeys. The immunity induced by this vaccine reduced live dengue infection in both murine and non-human primate models. These results indicate that our dengue VLP vaccine is a promising vaccine candidate.
Collapse
Affiliation(s)
| | | | | | - Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Meng Ling Moi
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Trang Thi Thu Hau
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuriko Suzaki
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasushi Ami
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki, Japan
| | | |
Collapse
|
3
|
Akter R, Tasneem F, Das S, Soma MA, Georgakopoulos-Soares I, Juthi RT, Sazed SA. Approaches of dengue control: vaccine strategies and future aspects. Front Immunol 2024; 15:1362780. [PMID: 38487527 PMCID: PMC10937410 DOI: 10.3389/fimmu.2024.1362780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Dengue, caused by the dengue virus (DENV), affects millions of people worldwide every year. This virus has two distinct life cycles, one in the human and another in the mosquito, and both cycles are crucial to be controlled. To control the vector of DENV, the mosquito Aedes aegypti, scientists employed many techniques, which were later proved ineffective and harmful in many ways. Consequently, the attention shifted to the development of a vaccine; researchers have targeted the E protein, a surface protein of the virus and the NS1 protein, an extracellular protein. There are several types of vaccines developed so far, such as live attenuated vaccines, recombinant subunit vaccines, inactivated virus vaccines, viral vectored vaccines, DNA vaccines, and mRNA vaccines. Along with these, scientists are exploring new strategies of developing improved version of the vaccine by employing recombinant DNA plasmid against NS1 and also aiming to prevent the infection by blocking the DENV life cycle inside the mosquitoes. Here, we discussed the aspects of research in the field of vaccines until now and identified some prospects for future vaccine developments.
Collapse
Affiliation(s)
- Runa Akter
- Department of Pharmacy, Independent University Bangladesh, Dhaka, Bangladesh
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Faria Tasneem
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Shuvo Das
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rifat Tasnim Juthi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Saiful Arefeen Sazed
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
4
|
Sarker A, Dhama N, Gupta RD. Dengue virus neutralizing antibody: a review of targets, cross-reactivity, and antibody-dependent enhancement. Front Immunol 2023; 14:1200195. [PMID: 37334355 PMCID: PMC10272415 DOI: 10.3389/fimmu.2023.1200195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Dengue is the most common viral infection spread by mosquitoes, prevalent in tropical countries. The acute dengue virus (DENV) infection is a benign and primarily febrile illness. However, secondary infection with alternative serotypes can worsen the condition, leading to severe and potentially fatal dengue. The antibody raised by the vaccine or the primary infections are frequently cross-reactive; however, weakly neutralizing, and during subsequent infection, they may increase the odds of antibody-dependent enhancement (ADE). Despite that, many neutralizing antibodies have been identified against the DENV, which are thought to be useful in reducing dengue severity. Indeed, an antibody must be free from ADE for therapeutic application, as it is pretty common in dengue infection and escalates disease severity. Therefore, this review has described the critical characteristics of DENV and the potential immune targets in general. The primary emphasis is given to the envelope protein of DENV, where potential epitopes targeted for generating serotype-specific and cross-reactive antibodies have critically been described. In addition, a novel class of highly neutralizing antibodies targeted to the quaternary structure, similar to viral particles, has also been described. Lastly, we have discussed different aspects of the pathogenesis and ADE, which would provide significant insights into developing safe and effective antibody therapeutics and equivalent protein subunit vaccines.
Collapse
|
5
|
Nordin AH, Husna SMN, Ahmad Z, Nordin ML, Ilyas RA, Azemi AK, Ismail N, Siti NH, Ngadi N, Azami MSM, Mohamad Norpi AS, Reduan MFH, Osman AY, Pratama DAOA, Nabgan W, Shaari R. Natural Polymeric Composites Derived from Animals, Plants, and Microbes for Vaccine Delivery and Adjuvant Applications: A Review. Gels 2023; 9:227. [PMID: 36975676 PMCID: PMC10048722 DOI: 10.3390/gels9030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
A key element in ensuring successful immunization is the efficient delivery of vaccines. However, poor immunogenicity and adverse inflammatory immunogenic reactions make the establishment of an efficient vaccine delivery method a challenging task. The delivery of vaccines has been performed via a variety of delivery methods, including natural-polymer-based carriers that are relatively biocompatible and have low toxicity. The incorporation of adjuvants or antigens into biomaterial-based immunizations has demonstrated better immune response than formulations that just contain the antigen. This system may enable antigen-mediated immunogenicity and shelter and transport the cargo vaccine or antigen to the appropriate target organ. In this regard, this work reviews the recent applications of natural polymer composites from different sources, such as animals, plants, and microbes, in vaccine delivery systems.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Siti Muhamad Nur Husna
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Zuliahani Ahmad
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
- Centre for Veterinary Vaccinology (VetVaCC), Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Rushdan Ahmad Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - Nordin Hawa Siti
- Pharmacology Unit, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | | | - Abdin Shakirin Mohamad Norpi
- Faculty Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia
| | - Mohd Farhan Hanif Reduan
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
- Centre for Veterinary Vaccinology (VetVaCC), Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Abdinasir Yusuf Osman
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK
- National Institutes of Health (NIH), Ministry of Health, Corso Somalia Street, Shingani, Mogadishu P.O. Box 22, Somalia
| | | | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Rumaizi Shaari
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| |
Collapse
|
6
|
Zeyaullah M, Muzammil K, AlShahrani AM, Khan N, Ahmad I, Alam MS, Ahmad R, Khan WH. Preparedness for the Dengue Epidemic: Vaccine as a Viable Approach. Vaccines (Basel) 2022; 10:1940. [PMID: 36423035 PMCID: PMC9697487 DOI: 10.3390/vaccines10111940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 08/08/2023] Open
Abstract
Dengue fever is one of the significant fatal mosquito-borne viral diseases and is considered to be a worldwide problem. Aedes mosquito is responsible for transmitting various serotypes of dengue viruses to humans. Dengue incidence has developed prominently throughout the world in the last ten years. The exact number of dengue cases is underestimated, whereas plenty of cases are misdiagnosed as alternative febrile sicknesses. There is an estimation that about 390 million dengue cases occur annually. Dengue fever encompasses a wide range of clinical presentations, usually with undefinable clinical progression and outcome. The diagnosis of dengue depends on serology tests, molecular diagnostic methods, and antigen detection tests. The therapeutic approach relies completely on supplemental drugs, which is far from the real approach. Vaccines for dengue disease are in various stages of development. The commercial formulation Dengvaxia (CYD-TDV) is accessible and developed by Sanofi Pasteur. The vaccine candidate Dengvaxia was inefficient in liberating a stabilized immune reaction toward different serotypes (1-4) of dengue fever. Numerous promising vaccine candidates are now being developed in preclinical and clinical stages even though different serotypes of DENV exist that worsen the situation for a vaccine to be equally effective for all serotypes. Thus, the development of an efficient dengue fever vaccine candidate requires time. Effective dengue fever management can be a multidisciplinary challenge, involving international cooperation from diverse perspectives and expertise to resolve this global concern.
Collapse
Affiliation(s)
- Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Nida Khan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University (KKU), Abha 62561, Saudi Arabia
| | - Md. Shane Alam
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wajihul H. Khan
- Department of Microbiology, All India Institute of Medical Sciences Delhi, New Delhi 110029, India
| |
Collapse
|
7
|
Hammel JH, Zatorski JM, Cook SR, Pompano RR, Munson JM. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Adv Drug Deliv Rev 2022; 182:114111. [PMID: 35031388 PMCID: PMC8908413 DOI: 10.1016/j.addr.2022.114111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/16/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Advances in 3D cell culture, microscale fluidic control, and cellular analysis have enabled the development of more physiologically-relevant engineered models of human organs with precise control of the cellular microenvironment. Engineered models have been used successfully to answer fundamental biological questions and to screen therapeutics, but these often neglect key elements of the immune system. There are immune elements in every tissue that contribute to healthy and diseased states. Including immune function will be essential for effective preclinical testing of therapeutics for inflammatory and immune-modulated diseases. In this review, we first discuss the key components to consider in designing engineered immune-competent models in terms of physical, chemical, and biological cues. Next, we review recent applications of models of immunity for screening therapeutics for cancer, preclinical evaluation of engineered T cells, modeling autoimmunity, and screening vaccine efficacy. Future work is needed to further recapitulate immune responses in engineered models for the most informative therapeutic screening and evaluation.
Collapse
Affiliation(s)
- Jennifer H. Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA
| | - Jonathan M. Zatorski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Sophie R. Cook
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA,Department of Biomedical Engineering, University of Virginia; Charlottesville, Virginia 22904, USA,Carter Immunology Center and UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903
| | - Jennifer M. Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA
| |
Collapse
|
8
|
Park J, Kim J, Jang YS. Current status and perspectives on vaccine development against dengue virus infection. J Microbiol 2022; 60:247-254. [PMID: 35157223 PMCID: PMC8853353 DOI: 10.1007/s12275-022-1625-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 10/31/2022]
Abstract
Dengue virus (DENV) consists of four serotypes in the family Flaviviridae and is a causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV is transmitted by mosquitoes, Aedes aegypti and A. albopictus, and is mainly observed in areas where vector mosquitoes live. The number of dengue cases reported by the World Health Organization increased more than 8-fold over the last two decades from 505,430 in 2000 to over 2.4 million in 2010 to 5.2 million in 2019. Although vaccine is the most effective method against DENV, only one commercialized vaccine exists, and it cannot be administered to children under 9 years of age. Currently, many researchers are working to resolve the various problems hindering the development of effective dengue vaccines; understanding of the viral antigen configuration would provide insight into the development of effective vaccines against DENV infection. In this review, the current status and perspectives on effective vaccine development for DENV are examined. In addition, a plausible direction for effective vaccine development against DENV is suggested.
Collapse
Affiliation(s)
- Jisang Park
- Department of Bioactive Material Sciences and the Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.,Innovative Research and Education Center for Integrated Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and the Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Innovative Research and Education Center for Integrated Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
9
|
Wang WH, Urbina AN, Lin CY, Yang ZS, Assavalapsakul W, Thitithanyanont A, Lu PL, Chen YH, Wang SF. Targets and strategies for vaccine development against dengue viruses. Biomed Pharmacother 2021; 144:112304. [PMID: 34634560 DOI: 10.1016/j.biopha.2021.112304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Dengue virus (DENV) is a global health threat causing about half of the worldwide population to be at risk of infection, especially the people living in tropical and subtropical area. Although the dengue disease caused by dengue virus (DENV) is asymptomatic and self-limiting in most people with first infection, increased severe dengue symptoms may be observed in people with heterotypic secondary DENV infection. Since there is a lack of specific antiviral medication, the development of dengue vaccines is critical in the prevention and control this disease. Several targets and strategies in the development of dengue vaccine have been demonstrated. Currently, Dengvaxia, a live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV) developed by Sanofi Pasteur, has been licensed and approved for clinical use in some countries. However, this vaccine has demonstrated low efficacy in children and dengue-naïve individuals and also increases the risk of severe dengue in young vaccinated recipients. Accordingly, many novel strategies for the dengue vaccine are under investigation and development. Here, we conducted a systemic literature review according to PRISMA guidelines to give a concise overview of various aspects of the vaccine development process against DENVs, mainly targeting five potential strategies including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral-vector vaccine, and DNA vaccine. This study offers the comprehensive view of updated information and current progression of immunogen selection as well as strategies of vaccine development against DENVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Po-Liang Lu
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical, University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
10
|
|
11
|
Horton MS, Minnier M, Cosmi S, Cox K, Galli J, Peters J, Sullivan N, Squadroni B, Tang A, Fridman A, Wang D, Chen Z, Vora KA. Development of a microneutralization assay for HSV-2. J Virol Methods 2021; 297:114268. [PMID: 34437874 DOI: 10.1016/j.jviromet.2021.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Plaque Reduction Neutralization Test (PRNT) is the standard assay used for measuring neutralizing antibody responses to Herpes simplex virus type-2 (HSV-2). The PRNT is a cumbersome, time-consuming and laborious assay. The development of a faster, high throughput microneutralization assay (MNA) for HSV-2 viruses carried out in a 96-well format will allow for rapid testing of large numbers of samples for drug and vaccine development. METHODS We describe the generation of a MNA that utilizes a pair of anti-HSV human monoclonal antibodies (mAbs) for virus detection in HSV-2 infected Vero cells. Antibodies were generated by B-cell cloning from PBMC's isolated from HSV-1 negative/HSV-2 positive donors. We describe the selection and characterization of the antibodies used for virus detection by ELISA with purified, recombinant anti-HSV glycoproteins, antibody binding in infected cells, and Western Blot. We determine the anti-HSV-2 neutralizing titers of immune sera from mice by MNA and PRNT and compare these results by linear regression analysis. RESULTS We show that neutralization titers for HSV-2, determined by the 96-well MNA correlate with titers determined by a PRNT completed in 24-well plates in both the absence (R2 = 0.8250) and presence (R2 = 0.7075) of complement. CONCLUSIONS We have successfully developed an MNA that can be used in place of the burdensome PRNT to determine anti-HSV-2 neutralizing activity in serum. This MNA has much greater throughput than the PRNT, allowing many more samples to be processed in a shorter time saving ∼90 % of the time required by the laboratory scientist to complete the task as compared to the traditional PRNT.
Collapse
Affiliation(s)
- Melanie S Horton
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA.
| | | | - Scott Cosmi
- Eurofins Lancaster Laboratories Professional Scientific Service, Lancaster, PA, USA
| | - Kara Cox
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Jennifer Galli
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Jessica Peters
- Eurofins Lancaster Laboratories Professional Scientific Service, Lancaster, PA, USA
| | - Nicole Sullivan
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Brian Squadroni
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Aimin Tang
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Arthur Fridman
- Scientific Informatics, Merck & Co., Inc., Rahway, NJ, USA
| | - Dai Wang
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Zhifeng Chen
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| | - Kalpit A Vora
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, PA, USA
| |
Collapse
|
12
|
Lebeau G, Lagrave A, Ogire E, Grondin L, Seriacaroupin S, Moutoussamy C, Mavingui P, Hoarau JJ, Roche M, Krejbich-Trotot P, Desprès P, Viranaicken W. Viral Toxin NS1 Implication in Dengue Pathogenesis Making It a Pivotal Target in Development of Efficient Vaccine. Vaccines (Basel) 2021; 9:vaccines9090946. [PMID: 34579183 PMCID: PMC8471935 DOI: 10.3390/vaccines9090946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
The mosquito-borne viral disease dengue is a global public health problem causing a wide spectrum of clinical manifestations ranging from mild dengue fever to severe dengue with plasma leakage and bleeding which are often fatal. To date, there are no specific medications to treat dengue and prevent the risk of hemorrhage. Dengue is caused by one of four genetically related but antigenically distinct serotypes DENV-1–DENV-4. The growing burden of the four DENV serotypes has intensified both basic and applied research to better understand dengue physiopathology. Research has shown that the secreted soluble hexameric form of DENV nonstructural protein-1 (sNS1) plays a significant role in the pathogenesis of severe dengue. Here, we provide an overview of the current knowledge about the role of sNS1 in the immunopathogenesis of dengue disease. We discuss the potential use of sNS1 in future vaccine development and its potential to improve dengue vaccine efficiency, particularly against severe dengue illness.
Collapse
|
13
|
Cid R, Bolívar J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021; 11:1072. [PMID: 34439738 PMCID: PMC8394948 DOI: 10.3390/biom11081072] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.
Collapse
Affiliation(s)
- Raquel Cid
- ADL Bionatur Solutions S.A., Av. del Desarrollo Tecnológico 11, 11591 Jerez de la Frontera, Spain
| | - Jorge Bolívar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
14
|
Abstract
Introduction: Dengue virus is a global health threat, with approximately 390 million dengue infections annually. Efficient vaccines for dengue prevention are currently lacking. This review aims to summarize the current progress in dengue vaccine development.Area covered: This article discusses recent dengue vaccine developments based on the published literature and ClinicalTrials.gov website up to December 2020.Expert opinion: The first live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV), Dengvaxia, has been licensed in several countries. However, the low efficacy of this vaccine was observed in children and dengue-naïve individuals. It also increased the risk of severe dengue in people who had not been exposed to dengue. The heterologous prime-boost regimen of sequential immunization with DENVax and Dengvaxia covers four serotypes of immunogenicity, eliminating the effect of ADE. Moreover, a heterologous prime-boost regimen that combines inactivated vaccines with alum and live attenuated vaccines might increase the immunogenic response. The lack of an ideal animal model is an obstacle to the development of dengue vaccines, and the macaque model may be considered for similar immunologic responses in humans.
Collapse
Affiliation(s)
- Chung-Hao Huang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Te Tsai
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Seng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Yousefi Avarvand A, Meshkat Z, Khademi F, Tafaghodi M. Immunogenicity of HspX/EsxS fusion protein of Mycobacterium tuberculosis along with ISCOMATRIX and PLUSCOM nano-adjuvants after subcutaneous administration in animal model. Microb Pathog 2021; 154:104842. [PMID: 33762199 DOI: 10.1016/j.micpath.2021.104842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/05/2020] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is one of the most common and dangerous infectious diseases in the world. Despite vaccination with BCG, it is still considered as a major health problem. Therefore, design and production of an effective novel vaccine against TB is necessary. Our aim was to evaluate immunogenicity of HspX/EsxS fusion protein of M. tuberculosis along with ISCOMATRIX, PLUSCOM nano-adjuvants and MPLA through the subcutaneous route in mice model. METHODS HspX/EsxS fused protein of M. tuberculosis was cloned, expressed and purified in the prokaryotic system. ISCOMATRIX and PLUSCOM nano-adjuvants were prepared by film hydration method. Subcutaneous immunization of BALB/c mice was performed by different formulations. IFN-γ, IL-4, IL-17 and TGF-β cytokines levels as well as serum IgG1, IgG2a. RESULTS Our results showed that subcutaneous administration of mice with HspX/EsxS along with three adjuvants, ISCOMATRIX, PLUSCOM and MPLA increased immunogenicity of multi-stage fusion protein of M. tuberculosis. Additionally, HspX/EsxS protein + ISCOMATRIX or + PLUSCOM nano-adjuvants induced stronger Th1, IgG2a and IgG1 immune responses compared to MPLA adjuvant. Totally, HspX/EsxS/ISCOMATRIX/MPLA, HspX/EsxS/PLUSCOM/MPLA and two BCG booster groups could significantly induce higher Th1 and IgG2a immune responses. CONCLUSION With regard to ability of ISCOMATRIX, PLUSCOM and MPLA adjuvants to increase immunogenicity of HspX/EsxS protein through induction of IFN-γ and IgG2a immune responses, it seems that these adjuvants and especially ISCOMATRIX and PLUSCOM, could also improve BCG efficacy as a BCG booster.
Collapse
Affiliation(s)
- Arshid Yousefi Avarvand
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Dengue Vaccines: The Promise and Pitfalls of Antibody-Mediated Protection. Cell Host Microbe 2021; 29:13-22. [PMID: 33444553 DOI: 10.1016/j.chom.2020.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/12/2020] [Accepted: 12/10/2020] [Indexed: 01/16/2023]
Abstract
More than 390 million human dengue virus (DENV) infections occur each year, worldwide. Dengvaxia, a live-virus tetravalent vaccine from Sanofi Pasteur, was recently approved for human clinical use, although vaccine performance against the four DENV serotypes is highly variable. Other dengue vaccines in advanced clinical testing also demonstrate variability in efficacy. In this review, we outline the benefits and challenges of developing a safe, effective, and balanced DENV vaccine that can provide uniform protection against all four serotypes. Even though T cell biology plays an important role in establishing protective immunity, this review focuses on B cell responses. We discuss the leading dengue vaccine candidates and review the specificity of antibody responses and the known immune correlates of protection against DENV infection. A better understanding of immune correlates of protection against DENV infection will inform the development of a vaccine that can provide long-term, uniform protection.
Collapse
|
17
|
Araujo SC, Pereira LR, Alves RPS, Andreata-Santos R, Kanno AI, Ferreira LCS, Gonçalves VM. Anti-Flavivirus Vaccines: Review of the Present Situation and Perspectives of Subunit Vaccines Produced in Escherichia coli. Vaccines (Basel) 2020; 8:vaccines8030492. [PMID: 32878023 PMCID: PMC7564369 DOI: 10.3390/vaccines8030492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
This article aims to review the present status of anti-flavivirus subunit vaccines, both those at the experimental stage and those already available for clinical use. Aspects regarding development of vaccines to Yellow Fever virus, (YFV), Dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) are highlighted, with particular emphasis on purified recombinant proteins generated in bacterial cells. Currently licensed anti-flavivirus vaccines are based on inactivated, attenuated, or virus-vector vaccines. However, technological advances in the generation of recombinant antigens with preserved structural and immunological determinants reveal new possibilities for the development of recombinant protein-based vaccine formulations for clinical testing. Furthermore, novel proposals for multi-epitope vaccines and the discovery of new adjuvants and delivery systems that enhance and/or modulate immune responses can pave the way for the development of successful subunit vaccines. Nonetheless, advances in this field require high investments that will probably not raise interest from private pharmaceutical companies and, therefore, will require support by international philanthropic organizations and governments of the countries more severely stricken by these viruses.
Collapse
Affiliation(s)
- Sergio C. Araujo
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Lennon R. Pereira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Rubens P. S. Alves
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Robert Andreata-Santos
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Alex I. Kanno
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Luis Carlos S. Ferreira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| | - Viviane M. Gonçalves
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| |
Collapse
|
18
|
Pinheiro-Michelsen JR, Souza RDSO, Santana IVR, da Silva PDS, Mendez EC, Luiz WB, Amorim JH. Anti-dengue Vaccines: From Development to Clinical Trials. Front Immunol 2020; 11:1252. [PMID: 32655561 PMCID: PMC7325986 DOI: 10.3389/fimmu.2020.01252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Dengue Virus (DENV) is an arbovirus (arthropod-borne virus). Four serotypes of DENV are responsible for the infectious disease called dengue that annually affects nearly 400 million people worldwide. Although there is only one vaccine formulation licensed for use in humans, there are other vaccine formulations under development that apply different strategies. In this review, we present information about anti-dengue vaccine formulations regarding development, pre-clinical tests, and clinical trials. The improvement in vaccine development against dengue is much needed, but it should be considered that the correlate of protection is still uncertain. Neutralizing antibodies have been proposed as a correlate of protection, but this ignores the key role of T-cell mediated immunity in controlling DENV infection. It is important to confirm the accurate correlate of protection against DENV infection, and also to have other anti-dengue vaccine formulations licensed for use.
Collapse
Affiliation(s)
- Josilene Ramos Pinheiro-Michelsen
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Rayane da Silva Oliveira Souza
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | - Itana Vivian Rocha Santana
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | - Patrícia de Souza da Silva
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Erick Carvalho Mendez
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Wilson Barros Luiz
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Jaime Henrique Amorim
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| |
Collapse
|
19
|
Izmirly AM, Alturki SO, Alturki SO, Connors J, Haddad EK. Challenges in Dengue Vaccines Development: Pre-existing Infections and Cross-Reactivity. Front Immunol 2020; 11:1055. [PMID: 32655548 PMCID: PMC7325873 DOI: 10.3389/fimmu.2020.01055] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Dengue is one of the most frequently transmitted mosquito-borne diseases in the world, which creates a significant public health concern globally, especially in tropical and subtropical countries. It is estimated that more than 390 million people are infected with dengue virus each year and around 96 million develop clinical pathologies. Dengue infections are not only a health problem but also a substantial economic burden. To date, there are no effective antiviral therapies and there is only one licensed dengue vaccine that only demonstrated protection in the seropositive (Immune), naturally infected with dengue, but not dengue seronegative (Naïve) vaccines. In this review, we address several immune components and their interplay with the dengue virus. Additionally, we summarize the literature pertaining to current dengue vaccine development and advances. Moreover, we review some of the factors affecting vaccine responses, such as the pre-vaccination environment, and provide an overview of the significant challenges that face the development of an efficient/protective dengue vaccine including the presence of multiple serotypes, antibody-dependent enhancement (ADE), as well as cross-reactivity with other flaviviruses. Finally, we discuss targeting T follicular helper cells (Tfh), a significant cell population that is essential for the production of high-affinity antibodies, which might be one of the elements needed to be specifically targeted to enhance vaccine precision to dengue regardless of dengue serostatus.
Collapse
Affiliation(s)
- Abdullah M Izmirly
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sana O Alturki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sawsan O Alturki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jennifer Connors
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
20
|
Durbin AP, Pierce KK, Kirkpatrick BD, Grier P, Sabundayo BP, He H, Sausser M, Russell AF, Martin J, Hyatt D, Cook M, Sachs JR, Lee AWT, Wang L, Coller BA, Whitehead SS. Immunogenicity and Safety of a Tetravalent Recombinant Subunit Dengue Vaccine in Adults Previously Vaccinated with a Live Attenuated Tetravalent Dengue Vaccine: Results of a Phase-I Randomized Clinical Trial. Am J Trop Med Hyg 2020; 103:855-863. [PMID: 32394880 DOI: 10.4269/ajtmh.20-0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
New dengue vaccines are needed to prevent this globally expanding vector-borne disease. The V180 vaccine candidate consists of four recombinant, soluble, dengue virus envelope glycoproteins and has been previously evaluated in two clinical trials for safety and immunogenicity in Flavivirus-naive participants (NCT01477580 and NCT0093642). Here, we report on a randomized, placebo-controlled, double-blind study of the safety and immunogenicity of the V180 vaccine in subjects who have previously received the live attenuated tetravalent vaccine (LATV) developed by the National Institute of Allergy and Infectious Diseases (protocol #V180-002 [CIR-301]). The study was designed to evaluate whether this recombinant subunit vaccine could boost the neutralizing antibody responses induced by dengue LATV. Twenty participants who had previously received one or two doses of dengue LATV were randomized and received a single dose of V180 nonadjuvanted (N = 8), V180 adjuvanted with Alhydrogel™ (aluminum hydroxide gel, Brenntag Biosector, Frederikssund, Denmark) (N = 8), or placebo (N = 4). Immunogenicity was measured using a plaque reduction neutralization test at days 1, 15, 28, and 180 after vaccination. In addition, vaccine safety (solicited and unsolicited adverse events) was assessed using a vaccination report card for 28 days following vaccination, and serious adverse events were captured from the time of informed consent through the final study visit at 6 months after vaccination. The results of the study demonstrate that the V180 vaccine is generally well tolerated and immunogenic in these dengue-seropositive volunteers.
Collapse
Affiliation(s)
- Anna P Durbin
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kristen K Pierce
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Medicine, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Medicine, Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Palmtama Grier
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Beulah P Sabundayo
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Helen He
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | | | | | | | | | - Liman Wang
- Merck & Co., Inc., Kenilworth, New Jersey
| | | | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
21
|
Production and immunogenicity of Fubc subunit protein redesigned from DENV envelope protein. Appl Microbiol Biotechnol 2020; 104:4333-4344. [PMID: 32232529 PMCID: PMC7223326 DOI: 10.1007/s00253-020-10541-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Dengue virus (DENV) is a vector-borne human pathogen that usually causes dengue fever; however, sometime it leads to deadly complications such as dengue with warning signs (DWS+) and severe dengue (SD). Several studies have shown that fusion (Fu) and bc loop of DENV envelope domain II are highly conserved and consist some of the most dominant antigenic epitopes. Therefore, in this study, Fu and bc loops were joined together to develop a short recombinant protein as an alternative of whole DENV envelope protein, and its immunogenic potential as fusion peptide was estimated. For de novo designing of the antigen, Fu and bc peptides were linked with an optimised linker so that the three dimensional conformation was maintained as it is in DENV envelope protein. The redesigned Fubc protein was expressed in E. coli and purified. Subsequently, structural integrity of the purified protein was verified by CD spectroscopy. To characterise immune responses against recombinant Fubc protein, BALB/c mice were subcutaneously injected with emulsified antigen preparation. It was observed by ELISA that Fubc fusion protein elicited higher serum IgG antibody response either in the presence or in absence of Freund’s adjuvant in comparison to the immune response of Fu and bc peptides separately. Furthermore, the binding of Fubc protein with mice antisera was validated by SPR analysis. These results suggest that Fu and bc epitope-based recombinant fusion protein could be a potential candidate towards the development of the effective subunit vaccine against DENV.
Collapse
|
22
|
Sun J, Du S, Zheng Z, Cheng G, Jin X. Defeat Dengue and Zika Viruses With a One-Two Punch of Vaccine and Vector Blockade. Front Microbiol 2020; 11:362. [PMID: 32265852 PMCID: PMC7100368 DOI: 10.3389/fmicb.2020.00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/18/2020] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) are two mosquito-borne flaviviruses afflicting nearly half of the world population. Human infection by these viruses can either be asymptomatic or manifest as clinical diseases from mild to severe. Despite more cases are presented as self-limiting febrile illness, severe dengue disease can be manifested as hemorrhagic fever and hemorrhagic shock syndrome, and ZIKV infection has been linked to increased incidence of peripheral neuropathy Guillain-Barre syndrome and central neural disease such as microcephaly. The current prevention and treatment of these infectious diseases are either non-satisfactory or entirely lacking. Because DENV and ZIKV have much similarities in genomic and structural features, almost identical mode of mosquito-mediated transmission, and probably the same pattern of host innate and adaptive immunity toward them, it is reasonable and often desirable to investigate these two viruses side-by-side, and thereby devise common countermeasures against both. Here, we review the existing knowledge on DENV and ZIKV regarding epidemiology, molecular virology, protective immunity and vaccine development, discuss recent new discoveries on the functions of flavivirus NS1 protein in viral pathogenesis and transmission, and propose a one-two punch strategy using vaccine and vector blockade to overcome antibody-dependent enhancement and defeat Dengue and Zika viruses.
Collapse
Affiliation(s)
- Jin Sun
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Senyan Du
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhihang Zheng
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China,Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xia Jin
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Xia Jin, ;
| |
Collapse
|
23
|
Park J, Lee HY, Khai LT, Thuy NTT, Mai LQ, Jang YS. Addition of Partial Envelope Domain II into Envelope Domain III of Dengue Virus Antigen Potentiates the Induction of Virus-Neutralizing Antibodies and Induces Protective Immunity. Vaccines (Basel) 2020; 8:vaccines8010088. [PMID: 32075300 PMCID: PMC7157711 DOI: 10.3390/vaccines8010088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV) comprises four serotypes in the family Flaviviridae and is a causative agent of dengue-related diseases, including dengue fever. Dengue fever is generally a self-limited febrile illness. However, secondary infection of patients with a suboptimal antibody (Ab) response provokes life-threatening severe dengue hemorrhagic fever or dengue shock syndrome. To develop a potent candidate subunit vaccine against DENV infection, we developed the EDII-cEDIII antigen, which contains partial envelope domain II (EDII) including the fusion loop and BC loop epitopes together with consensus envelope domain III (cEDIII) of all four serotypes of DENV. We purified Ab from mice after immunization with EDII-cEDIII or cEDIII and compared their virus neutralization and Ab-dependent enhancement of DENV infection. Anti-EDII-cEDIII Ab showed stronger neutralizing activity and lower Ab-dependent peak enhancement of DENV infection compared with anti-cEDIII Ab. Following injection of Ab-treated DENV into AG129 mice, anti-EDII-cEDIII Ab ameliorated DENV infection in tissues with primary and secondary infection more effectively than anti-cEDIII Ab. In addition, anti-EDII-cEDIII Ab protected against DENV1, 2, and 4 challenge. We conclude that EDII-cEDIII induces neutralizing and protective Abs, and thus, shows promise as a candidate subunit vaccine for DENV infection.
Collapse
Affiliation(s)
- Jisang Park
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Hyun-Young Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Ly Tuan Khai
- Department of Hematology, 108 Military Central Hospital, Hanoi 113601, Vietnam
| | | | - Le Quynh Mai
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
- Department of Molecular Biology and The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence:
| |
Collapse
|
24
|
Deng SQ, Yang X, Wei Y, Chen JT, Wang XJ, Peng HJ. A Review on Dengue Vaccine Development. Vaccines (Basel) 2020; 8:E63. [PMID: 32024238 PMCID: PMC7159032 DOI: 10.3390/vaccines8010063] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Dengue virus (DENV) has become a global health threat with about half of the world's population at risk of infection. Although the disease caused by DENV is self-limiting in the first infection, the antibody-dependent enhancement (ADE) effect increases the mortality in the second infection with a heterotypic virus. Since there is no specific efficient medicine in treatment, it is urgent to develop vaccines to prevent infection and disease progression. Currently, only a live attenuated vaccine, chimeric yellow fever 17D-tetravalent dengue vaccine (CYD-TDV), has been licensed for clinical use in some countries, and many candidate vaccines are still under research and development. This review discusses the progress, strengths, and weaknesses of the five types of vaccines including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral vectored vaccine, and DNA vaccine.
Collapse
Affiliation(s)
- Sheng-Qun Deng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| | - Xian Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| | - Yong Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| | - Jia-Ting Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| | - Xiao-Jun Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China;
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.-Q.D.); (X.Y.); (Y.W.); (J.-T.C.)
| |
Collapse
|
25
|
Yu S, Hao S, Sun B, Zhao D, Yan X, Jin Z, Zhao K. Quaternized Chitosan Nanoparticles in Vaccine Applications. Curr Med Chem 2020; 27:4932-4944. [PMID: 30827229 DOI: 10.2174/0929867326666190227192527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Different natural and synthetic biodegradable polymers have been used in vaccine formulations as adjuvant and delivery system but have faced various limitations. Chitosan is a new delivery system with the potential to improve development of nano vaccines and drugs. However, chitosan is only soluble in acidic solutions of low concentration inorganic acids such as dilute acetic acid and dilute hydrochloric acid and in pure organic solvents, which greatly limits its application. Chemical modification of chitosan is an important way to improve its weak solubility. Quaternized chitosan not only retains the excellent properties of chitosan, but also improves its water solubility for a wider application. Recently, quaternized chitosan nanoparticles have been widely used in biomedical field. This review focuses on some quaternized chitosan nanoparticles, and points out the advantages and research direction of quaternized chitosan nanoparticles. As shown by the applications of quaternized chitosan nanoparticles as adjuvant and delivery carrier in vaccines, quaternized chitosan nanoparticles have promising potential in application for the development of nano vaccines in the future.
Collapse
Affiliation(s)
- Shuang Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Shengnan Hao
- Animal Husbandry Bureau of Hekou District, Dongying City, Shandong 257200, China
| | - Beini Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Dongying Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Xingye Yan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
26
|
Efficient Delivery of Dengue Virus Subunit Vaccines to the Skin by Microprojection Arrays. Vaccines (Basel) 2019; 7:vaccines7040189. [PMID: 31756967 PMCID: PMC6963636 DOI: 10.3390/vaccines7040189] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
Dengue virus is the most important arbovirus impacting global human health, with an estimated 390 million infections annually, and over half the world’s population at risk of infection. While significant efforts have been made to develop effective vaccines to mitigate this threat, the task has proven extremely challenging, with new approaches continually being sought. The majority of protective, neutralizing antibodies induced during infection are targeted by the envelope (E) protein, making it an ideal candidate for a subunit vaccine approach. Using truncated, recombinant, secreted E proteins (sE) of all 4 dengue virus serotypes, we have assessed their immunogenicity and protective efficacy in mice, with or without Quil-A as an adjuvant, and delivered via micropatch array (MPA) to the skin in comparison with more traditional routes of immunization. The micropatch contains an ultra-high density array (21,000/cm2) of 110 μm microprojections. Mice received 3 doses of 1 μg (nanopatch, intradermal, subcutaneous, or intra muscular injection) or 10 μg (intradermal, subcutaneous, or intra muscular injection) of tetravalent sE spaced 4 weeks apart. When adjuvanted with Quil-A, tetravalent sE vaccination delivered via MPA resulted in earlier induction of virus-neutralizing IgG antibodies for all four serotypes when compared with all of the other vaccination routes. Using the infectious dengue virus AG129 mouse infectious dengue model, these neutralizing antibodies protected all mice from lethal dengue virus type 2 D220 challenge, with protected animals showing no signs of disease or circulating virus. If these results can be translated to humans, MPA-delivered sE represents a promising approach to dengue virus vaccination.
Collapse
|
27
|
Faheem M, Barbosa Lima JC, Jamal SB, Silva PA, Barbosa JARG. An insight into dengue virus proteins as potential drug/vaccine targets. Future Virol 2019. [DOI: 10.2217/fvl-2019-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dengue virus (DENV) is an arbovirus that belongs to family flaviviridae. Its genome is composed of a single stranded RNA molecule that encodes a single polyprotein. The polyprotein is processed by viral and cellular proteases to generate ten viral proteins. There are four antigenically distinct serotypes of DENV (DENV1, DENV2, DENV3 and DENV4), which are genetically related. Although protein variability is a major problem in dengue treatment, the functional and structural studies of individual proteins are equally important in treatment development. The data accumulated on dengue proteins are significant to provide detailed understanding of viral infection, replication, host-immune evasion and pathogenesis. In this review, we summarized the detailed current knowledge about DENV proteins.
Collapse
Affiliation(s)
- Muhammad Faheem
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - Jônatas Cunha Barbosa Lima
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, The Mall road, Rawalpindi, Punjab 46000, Pakistan
| | - Paula Andreia Silva
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - João Alexandre Ribeiro Gonçalves Barbosa
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| |
Collapse
|
28
|
Kudlacek ST, Metz SW. Focused dengue vaccine development: outwitting nature's design. Pathog Dis 2019; 77:5307883. [PMID: 30726906 DOI: 10.1093/femspd/ftz003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/15/2019] [Indexed: 12/28/2022] Open
Abstract
The four DENV serotypes are mosquito-borne pathogens that belong to the Flavivirus genus. These viruses present a major global health burden, being endemic in over 120 countries, causing ∼390 million reported infections yearly, with clinical symptoms ranging from mild fever to severe and potentially fatal hemorrhagic syndromes. Development of a safe and efficacious DENV vaccine is challenging because of the need to induce immunity against all four serotypes simultaneously, as immunity against one serotype can potentially enhance disease caused by a heterotypic secondary infection. So far, live-virus particle-based vaccine approaches struggle with inducing protective tetravalent immunity, while recombinant subunit approaches that use the envelope protein (E) as the major antigen, are gaining promise in preclinical studies. However, E-based subunits require further development and characterization to be used as effective vaccine antigens against DENV. In this review, we will address the shortcomings of recombinant E-based antigens and will discuss potential solutions to enhance E-based subunit antigen immunogenicity and vaccine efficacy.
Collapse
Affiliation(s)
- Stephan T Kudlacek
- Department of Biochemistry and Biophysics, University of North Carolina, 125 Mason Farm Road, 6230E Marisco Hall, Chapel Hill, NC 27599, USA
| | - Stefan W Metz
- Department of Microbiology and Immunology, University of North Carolina, 125 Mason Farm Road, 6230E Marisco Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
29
|
Manoff SB, Sausser M, Falk Russell A, Martin J, Radley D, Hyatt D, Roberts CC, Lickliter J, Krishnarajah J, Bett A, Dubey S, Finn T, Coller BA. Immunogenicity and safety of an investigational tetravalent recombinant subunit vaccine for dengue: results of a Phase I randomized clinical trial in flavivirus-naïve adults. Hum Vaccin Immunother 2019; 15:2195-2204. [PMID: 30427741 DOI: 10.1080/21645515.2018.1546523] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
There is an unmet medical need for vaccines to prevent dengue. V180 is an investigational recombinant subunit vaccine that consists of truncated dengue envelope proteins (DEN-80E) for all 4 serotypes. Three dosage levels of the tetravalent DEN-80E antigens were assessed in a randomized, placebo-controlled, Phase I dose-escalation, first-in-human proof-of-principle trial in healthy, flavivirus-naïve adults in Australia (NCT01477580). The 9 V180 formulations that were assessed included either ISCOMATRIX™ adjuvant (2 dosage levels), aluminum-hydroxide adjuvant, or were unadjuvanted, and were compared to phosphate-buffered saline placebo. Volunteers received 3 injections of assigned product on a 0, 1, 2 month schedule, and were followed for safety through 1 year after the last injection. Antibody levels were assessed at 6 time-points: enrollment, 28 days after each injection, and 6 and 12 months Postdose 3 (PD3). Of the 98 randomized participants, 90 (92%) received all 3 injections; 83 (85%) completed 1-year follow-up. Immunogenicity was measured by a qualified Focus Reduction Neutralization Test with a 50% neutralization cutoff (FRNT50). All 6 V180 formulations with ISCOMATRIX™ adjuvant showed robust immunogenicity, while the 1 aluminum-adjuvanted and 2 unadjuvanted formulations were poorly immunogenic. Geometric mean antibody titers generally declined at 6 months and 1 year PD3. All 9 V180 formulations were generally well tolerated. Formulations with ISCOMATRIX™ adjuvant were associated with more adverse events than aluminum-adjuvanted or unadjuvanted formulations.
Collapse
|
30
|
Potent Neutralizing Human Monoclonal Antibodies Preferentially Target Mature Dengue Virus Particles: Implication for Novel Strategy for Dengue Vaccine. J Virol 2018; 92:JVI.00556-18. [PMID: 30185598 PMCID: PMC6232466 DOI: 10.1128/jvi.00556-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/22/2018] [Indexed: 11/20/2022] Open
Abstract
The four serotypes of dengue virus (DENV) cause the most important mosquito-borne viral disease in humans. The envelope (E) protein is the major target of neutralizing antibodies and contains 3 domains (domain I [DI], DII, and DIII). Recent studies reported that human monoclonal antibodies (MAbs) recognizing DIII, the D1/DII hinge, the E-dimer epitope, or a quaternary epitope involving DI/DII/DIII are more potently neutralizing than those recognizing the fusion loop (FL) of DII. Due to inefficient cleavage of the premembrane protein, DENV suspensions consist of a mixture of mature, immature, and partially immature particles. We investigated the neutralization and binding of 22 human MAbs to DENV serotype 1 (DENV1) virions with differential maturation status. Compared with FL MAbs, DIII, DI/DII hinge, and E-dimer epitope MAbs showed higher maximum binding and avidity to mature particles relative to immature particles; this feature may contribute to the strong neutralizing potency of such MAbs. FL-specific MAbs required 57 to 87% occupancy on mature particles to achieve half-maximal neutralization (NT50), whereas the potently neutralizing MAbs achieved NT50 states at 20 to 38% occupancy. Analysis of the MAb repertoire and polyclonal sera from patients with primary DENV1 infection supports the immunodominance of cross-reactive anti-E antibodies over type-specific antibodies. After depletion with viral particles from a heterologous DENV serotype, the type-specific neutralizing antibodies remained and showed binding features shared by potent neutralizing MAbs. Taken together, these findings suggest that the use of homogeneous mature DENV particles as an immunogen may induce more potent neutralizing antibodies against DENV than the use of immature or mixed particles.IMPORTANCE With an estimated 390 million infections per year, the four serotypes of dengue virus (DENV) cause the most important mosquito-borne viral disease in humans. The dengue vaccine Dengvaxia was licensed; however, its low efficacy among dengue-naive individuals and increased risk of causing severe dengue in children highlight the need for a better understanding of the role of human antibodies in immunity against DENV. DENV suspensions contain mature, immature, and partially immature particles. We investigated the binding of 22 human monoclonal antibodies (MAbs) to the DENV envelope protein on particles with different maturation states. Potently neutralizing MAbs had higher relative maximum binding and avidity to mature particles than weakly neutralizing MAbs. This was supported by analysis of MAb repertoires and polyclonal sera from patients with primary DENV infection. Together, these findings suggest that mature particles may be the optimal form of presentation of the envelope protein to induce more potent neutralizing antibodies against DENV.
Collapse
|
31
|
Tripathi NK, Shrivastava A. Recent Developments in Recombinant Protein-Based Dengue Vaccines. Front Immunol 2018; 9:1919. [PMID: 30190720 PMCID: PMC6115509 DOI: 10.3389/fimmu.2018.01919] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Recombinant proteins are gaining enormous importance these days due to their wide application as biopharmaceutical products and proven safety record. Various recombinant proteins of therapeutic and prophylactic importance have been successfully produced in microbial and higher expression host systems. Since there is no specific antiviral therapy available against dengue, the prevention by vaccination is the mainstay in reducing the disease burden. Therefore, efficacious vaccines are needed to control the spread of dengue worldwide. Dengue is an emerging viral disease caused by any of dengue virus 1-4 serotypes that affects the human population around the globe. Dengue virus is a single stranded RNA virus encoding three structural proteins (capsid protein, pre-membrane protein, and envelope protein) and seven non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5). As the only licensed dengue vaccine (Dengvaxia) is unable to confer balanced protection against all the serotypes, therefore various approaches for development of dengue vaccines including tetravalent live attenuated, inactivated, plasmid DNA, virus-vectored, virus-like particles, and recombinant subunit vaccines are being explored. These candidates are at different stages of vaccine development and have their own merits and demerits. The promising subunit vaccines are mainly based on envelope or its domain and non-structural proteins of dengue virus. These proteins have been produced in different hosts and are being investigated for development of a successful dengue vaccine. Novel immunogens have been designed employing various strategies like protein engineering and fusion of antigen with various immunostimulatory motif to work as self-adjuvant. Moreover, recombinant proteins can be formulated with novel adjuvants to enhance the immunogenicity and thus conferring better protection to the vaccinees. With the advent of newer and safer host systems, these recombinant proteins can be produced in a cost effective manner at large scale for vaccine studies. In this review, we summarize recent developments in recombinant protein based dengue vaccines that could lead to a good number of efficacious vaccine candidates for future human use and ultimately alternative dengue vaccine candidates.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
32
|
Abstract
The 2015–2016 Zika virus (ZIKV) epidemic in the Americas and the Caribbean demonstrated that clinical assays to detect, distinguish, and characterize immune responses to flaviviral infections are needed. ZIKV and dengue virus (DENV) are mosquito-transmitted flaviviruses sharing overlapping geographic distributions and have significant sequence similarities that can increase the potential for antibody and T cell cross-reaction. Using nonstructural protein 1-based enzyme-linked immunosorbent assays (ELISAs), we determined the serostatus of individuals living in a region of DENV and ZIKV endemicity in Brazil, identifying individuals with primary DENV (pDENV) and primary ZIKV (pZIKV), ZIKV with primary DENV (ZIKVwpDENV), and secondary DENV (sDENV) infections; the presence of pDENV and pZIKV was further confirmed by neutralization tests. Development of an enzyme-linked immunosorbent spot (ELISPOT) assay for DENV and ZIKV structural and nonstructural (NS) protein antigens enabled us to distinguish infections by these viruses based on T cell responses and to characterize those responses. We found that gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) T cell responses to NS3 differentiated DENV and ZIKV infections with 94% sensitivity and 92% specificity. In general, we also showed that pDENV and sDENV cases and pZIKV and ZIKVwpDENV cases elicit similar T cell response patterns and that HIV-infected individuals show T cell responses that are lower than those shown by HIV-negative individuals. These results have important implications for DENV and ZIKV diagnostic and vaccine development and provide critical insights into the T cell response in individuals with multiple flaviviral infections. The potential for antibody and T cell cross-reactions to DENV and ZIKV, flaviviruses that cocirculate and can sequentially infect individuals, has complicated diagnostic and vaccine development. Our serological data show that antibodies to nonstructural protein 1 can distinguish sequential human infections by DENV and ZIKV. The development of a simple and inexpensive assay also enables the differentiation of DENV and ZIKV infections based on characterization of T cell responses. Our T cell data reveal strong response patterns that are similar in nature to those seen with individuals with one or multiple DENV infections and with individuals with only primary ZIKV infection and ZIKV-infected individuals with previous DENV exposure. The characterization of T cell responses in a serologically validated group of individuals is of relevance to the development of vaccines and immunotherapeutics against these global threats.
Collapse
|
33
|
Kudlacek ST, Premkumar L, Metz SW, Tripathy A, Bobkov AA, Payne AM, Graham S, Brackbill JA, Miley MJ, de Silva AM, Kuhlman B. Physiological temperatures reduce dimerization of dengue and Zika virus recombinant envelope proteins. J Biol Chem 2018; 293:8922-8933. [PMID: 29678884 PMCID: PMC5995514 DOI: 10.1074/jbc.ra118.002658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
The spread of dengue (DENV) and Zika virus (ZIKV) is a major public health concern. The primary target of antibodies that neutralize DENV and ZIKV is the envelope (E) glycoprotein, and there is interest in using soluble recombinant E (sRecE) proteins as subunit vaccines. However, the most potent neutralizing antibodies against DENV and ZIKV recognize epitopes on the virion surface that span two or more E proteins. Therefore, to create effective DENV and ZIKV vaccines, presentation of these quaternary epitopes may be necessary. The sRecE proteins from DENV and ZIKV crystallize as native-like dimers, but studies in solution suggest that these dimers are marginally stable. To better understand the challenges associated with creating stable sRecE dimers, we characterized the thermostability of sRecE proteins from ZIKV and three DENV serotypes, DENV2-4. All four proteins irreversibly unfolded at moderate temperatures (46-53 °C). At 23 °C and low micromolar concentrations, DENV2 and ZIKV were primarily dimeric, and DENV3-4 were primarily monomeric, whereas at 37 °C, all four proteins were predominantly monomeric. We further show that the dissociation constant for DENV2 dimerization is very temperature-sensitive, ranging from <1 μm at 25 °C to 50 μm at 41 °C, due to a large exothermic enthalpy of binding of -79 kcal/mol. We also found that quaternary epitope antibody binding to DENV2-4 and ZIKV sRecE is reduced at 37 °C. Our observation of reduced sRecE dimerization at physiological temperature highlights the need for stabilizing the dimer as part of its development as a subunit vaccine.
Collapse
Affiliation(s)
- Stephan T Kudlacek
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Lakshmanane Premkumar
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Stefan W Metz
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Ashutosh Tripathy
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Andrey A Bobkov
- the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Alexander Matthew Payne
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Stephen Graham
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - James A Brackbill
- the Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, and
| | - Michael J Miley
- the Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, and
| | - Aravinda M de Silva
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Brian Kuhlman
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599,
- the Lineburger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
34
|
Recombinant Zika Virus Subunits Are Immunogenic and Efficacious in Mice. mSphere 2018; 3:mSphere00576-17. [PMID: 29359186 PMCID: PMC5760751 DOI: 10.1128/msphere.00576-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 12/14/2017] [Indexed: 12/01/2022] Open
Abstract
The recent outbreaks of Zika virus (ZIKV) infection in French Polynesia, the Caribbean, and the Americas have highlighted the severe neuropathological sequelae that such an infection may cause. The development of a safe, effective ZIKV vaccine is critical for several reasons: (i) the difficulty in diagnosing an active infection due to common nonspecific symptoms, (ii) the lack of a specific antiviral therapy, and (iii) the potentially devastating pathological effects of in utero infection. Moreover, a vaccine with an excellent safety profile, such as a nonreplicating, noninfectious vaccine, would be ideal for high-risk people (e.g., pregnant women, immunocompromised patients, and elderly individuals). This report describes the development of a recombinant subunit protein vaccine candidate derived from stably transformed insect cells expressing the ZIKV envelope protein in vitro, the primary antigen to which effective virus-neutralizing antibodies are engendered by immunized animals for several other flaviviruses; the vaccine candidate elicits effective virus-neutralizing antibodies against ZIKV and provides protection against ZIKV infection in mice. Following the 2015 Zika virus (ZIKV) outbreaks in the South Pacific, Caribbean, and Americas, ZIKV has emerged as a serious threat due to its association with infantile microcephaly and other neurologic disorders. Despite an international effort to develop a safe and effective vaccine to combat congenital Zika syndrome and ZIKV infection, only DNA and mRNA vaccines encoding the precursor membrane (prM) and envelope (E) proteins, an inactivated-ZIKV vaccine, and a measles virus-based ZIKV vaccine are currently in phase I or II (prM/E DNA) clinical trials. A ZIKV vaccine based on a nonreplicating, recombinant subunit platform offers a higher safety profile than other ZIKV vaccine candidates but is still highly immunogenic, inducing high virus-neutralizing antibody titers. Here, we describe the production and purification of Drosophila melanogaster S2 insect cell-derived, soluble ZIKV E protein and evaluate its immunogenicity and efficacy in three different mouse strains. As expected, significant virus-specific antibody titers were observed when using formulations containing clinically relevant adjuvants. Immunized mice challenged with live virus demonstrate inhibition of virus replication. Importantly, plaque reduction neutralization tests (PRNTs) indicate the high-titer production of neutralizing antibodies, a correlate of protection in the defense against ZIKV infection. ZIKV challenge of immunocompetent mice led to full protection against viremia with two doses of adjuvanted vaccine candidates. These data demonstrate a proof of concept and establish recombinant subunit immunogens as an effective vaccine candidate against ZIKV infection. IMPORTANCE The recent outbreaks of Zika virus (ZIKV) infection in French Polynesia, the Caribbean, and the Americas have highlighted the severe neuropathological sequelae that such an infection may cause. The development of a safe, effective ZIKV vaccine is critical for several reasons: (i) the difficulty in diagnosing an active infection due to common nonspecific symptoms, (ii) the lack of a specific antiviral therapy, and (iii) the potentially devastating pathological effects of in utero infection. Moreover, a vaccine with an excellent safety profile, such as a nonreplicating, noninfectious vaccine, would be ideal for high-risk people (e.g., pregnant women, immunocompromised patients, and elderly individuals). This report describes the development of a recombinant subunit protein vaccine candidate derived from stably transformed insect cells expressing the ZIKV envelope protein in vitro, the primary antigen to which effective virus-neutralizing antibodies are engendered by immunized animals for several other flaviviruses; the vaccine candidate elicits effective virus-neutralizing antibodies against ZIKV and provides protection against ZIKV infection in mice.
Collapse
|
35
|
Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers (Basel) 2018; 10:polym10010031. [PMID: 30966075 PMCID: PMC6415012 DOI: 10.3390/polym10010031] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology plays a significant role in drug development. As carriers, polymeric nanoparticles can deliver vaccine antigens, proteins, and drugs to the desired site of action. Polymeric nanoparticles with lower cytotoxicity can protect the delivered antigens or drugs from degradation under unfavorable conditions via a mucosal administration route; further, the uptake of nanoparticles by antigen-presenting cells can increase and induce potent immune responses. Additionally, nanomaterials are widely used in vaccine delivery systems because nanomaterials can make the vaccine antigen long-acting. This review focuses on some biodegradable polymer materials such as natural polymeric nanomaterials, chemically synthesized polymer materials, and biosynthesized polymeric materials, and points out the advantages and the direction of research on degradable polymeric materials. The application and future perspectives of polymeric materials as delivery carriers and vaccine adjuvants in the field of drugs and vaccines are presented. With the increase of knowledge and fundamental understandings of polymer-based nanomaterials, means of integrating some other attractive properties, such as slow release, target delivery, and alternative administration methods and delivery pathways are feasible. Polymer-based nanomaterials have great potential for the development of novel vaccines and drug systems for certain needs, including single-dose and needle-free deliveries of vaccine antigens and drugs in the future.
Collapse
|
36
|
Animal Models for Dengue and Zika Vaccine Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:215-239. [PMID: 29845536 DOI: 10.1007/978-981-10-8727-1_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current status of animal models in the study of dengue and Zika are covered in this review. Mouse models deficient in IFN signaling are used to overcome the natural resistance of mice to non-encephalitic flaviviruses. Conditional IFNAR mice and non-human primates (NHP) are useful immuno-competent models. Sterile immunity after dengue vaccination is not observed in NHPs. Placental and fetal development in NHPs is similar to humans, facilitating studies on infection-mediated fetal impairment.
Collapse
|
37
|
Kim M, Van Dolleweerd C, Copland A, Paul MJ, Hofmann S, Webster GR, Julik E, Ceballos‐Olvera I, Reyes‐del Valle J, Yang M, Jang Y, Reljic R, Ma JK. Molecular engineering and plant expression of an immunoglobulin heavy chain scaffold for delivery of a dengue vaccine candidate. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1590-1601. [PMID: 28421694 PMCID: PMC5698049 DOI: 10.1111/pbi.12741] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 05/22/2023]
Abstract
In order to enhance vaccine uptake by the immune cells in vivo, molecular engineering approach was employed to construct a polymeric immunoglobulin G scaffold (PIGS) that incorporates multiple copies of an antigen and targets the Fc gamma receptors on antigen-presenting cells. These self-adjuvanting immunogens were tested in the context of dengue infection, for which there is currently no globally licensed vaccine yet. Thus, the consensus domain III sequence (cEDIII) of dengue glycoprotein E was incorporated into PIGS and expressed in both tobacco plants and Chinese Ovary Hamster cells. Purified mouse and human cEDIII-PIGS were fractionated by HPLC into low and high molecular weight forms, corresponding to monomers, dimers and polymers. cEDIII-PIGS were shown to retain important Fc receptor functions associated with immunoglobulins, including binding to C1q component of the complement and the low affinity Fcγ receptor II, as well as to macrophage cells in vitro. These molecules were shown to be immunogenic in mice, with or without an adjuvant, inducing a high level IgG antibody response which showed a neutralizing potential against the dengue virus serotype 2. The cEDIII-PIGS also induced a significant cellular immune response, IFN-γ production and polyfunctional T cells in both the CD4+ and CD8+ compartments. This proof-of-principle study shows that the potent antibody Fc-mediated cellular functions can be harnessed to improve vaccine design, underscoring the potential of this technology to induce and modulate a broad-ranging immune response.
Collapse
Affiliation(s)
- Mi‐Young Kim
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | | | - Alastair Copland
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Matthew John Paul
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Sven Hofmann
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Gina R. Webster
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Emily Julik
- School of Life SciencesArizona State UniversityTempeAZUSA
| | | | | | - Moon‐Sik Yang
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Yong‐Suk Jang
- Department of Molecular Biology and The Institute for Molecular Biology and GeneticsChonbuk National UniversityJeonjuKorea
| | - Rajko Reljic
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| | - Julian K. Ma
- Institute for Infection and ImmunitySt George's University of LondonLondonUK
| |
Collapse
|
38
|
Moi ML, Ami Y, Muhammad Azami NA, Shirai K, Yoksan S, Suzaki Y, Kitaura K, Lim CK, Saijo M, Suzuki R, Takasaki T, Kurane I. Marmosets (Callithrix jacchus) as a non-human primate model for evaluation of candidate dengue vaccines: induction and maintenance of specific protective immunity against challenges with clinical isolates. J Gen Virol 2017; 98:2955-2967. [PMID: 29160199 DOI: 10.1099/jgv.0.000913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dengue virus (DENV) is one of the major infectious diseases in tropical regions and approximately half of the world population is at risk of infection. Vaccines would offer an effective control measure against this disease. We previously reported on the utility of marmosets as an animal model for studying primary and secondary dengue infections. Infected marmosets consistently develop viraemia and antibody kinetics that reflect those of patients with dengue. Thus, it is important to determine the utility of marmosets as an animal model for demonstrating vaccine efficacy. In this study, marmosets were inoculated with candidate vaccine and parent strains and challenged with a clinical DENV strain. The viraemia and antibody kinetics in these marmosets were determined. Marmosets consistently develop lower viraemia with an attenuated vaccine strain. During secondary challenge, the IgM response was delayed, whereas the IgG levels rose rapidly, indicating a secondary antibody response. The neutralizing activities against the homotypic serotype were high; all marmosets were protected against viraemia following secondary inoculation. The viraemia markers and antibody responses were consistent with those of human DENV infection and vaccinees. These results demonstrate the utility of marmosets as an animal model for the study of vaccine efficacy.
Collapse
Affiliation(s)
- Meng Ling Moi
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yasushi Ami
- Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | | | - Kenji Shirai
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan
| | - Sutee Yoksan
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Yuriko Suzaki
- Division of Experimental Animal Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Kazutaka Kitaura
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Kanagawa, Japan
| | | | - Ichiro Kurane
- National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
39
|
Elaboration of tetravalent antibody responses against dengue viruses using a subunit vaccine comprised of a single consensus dengue envelope sequence. Vaccine 2017; 35:6308-6320. [PMID: 28987441 DOI: 10.1016/j.vaccine.2017.09.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 02/01/2023]
Abstract
Dengue viruses (DENVs) are re-emerging pathogens transmitted by mosquitoes mainly in tropical and subtropical regions. Each year, they are estimated to infect 390 million people globally. The major challenge confronting dengue vaccine development is the need to induce balanced, long lasting tetravalent immune responses against four co-circulating virus serotypes (DENV-I, -II, -III, -IV), because primary infection by any one of which may predispose infected individuals to more severe diseases during a heterotypic secondary infection. Another difficulty is to select representative strains in vaccine design to provide cross-protection against most circulating virus strains. In this study, aimed at developing a tetravalent subunit vaccine with a representative single protein, we designed two vaccines (named cE80(D4) and cE80(max)) based on the consensus sequences of the ectodomain of envelope protein of 3127 DENV strains, and then expressed them in the baculovirus expression system. Both vaccines were capable of eliciting specific antibodies against all four DENV serotypes, and the predominant IgG subtype elicited by the two vaccines was IgG1. Moreover, these vaccines activated both type I and type II antigen-specific helper T cells that secreted IFN-γ and IL-4, respectively. This proof-of-concept study has set foundation for further optimization of a single protein-based tetravalent DENV vaccine.
Collapse
|
40
|
Valdés I, Marcos E, Suzarte E, Pérez Y, Brown E, Lazo L, Cobas K, Yaugel M, Rodríguez Y, Gil L, Guillén G, Hermida L. A dose-response study in mice of a tetravalent vaccine candidate composed of domain III-capsid proteins from dengue viruses. Arch Virol 2017; 162:2247-2256. [PMID: 28393307 DOI: 10.1007/s00705-017-3360-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
Tetra DIIIC is a subunit vaccine candidate based on domain III of the envelope protein and the capsid protein of the four serotypes of dengue virus. This vaccine preparation contains the DIIIC proteins aggregated with a specific immunostimulatory oligodeoxynucleotide (ODN 39M). Tetra DIIIC has already been shown to be immunogenic and protective in mice and monkeys. In this study, we evaluated the immunogenicity in mice of several formulations of Tetra DIIIC containing different amounts of the recombinant proteins. The Tetra DIIIC formulation induced a humoral immune response against the four DENV serotypes, even at the lowest dose assayed. In contrast, the highest level of cell-mediated immunity, measured as frequency of IFNγ-producing cells, was detected in animals immunized with the lowest dose. The protective capacity of the tetravalent formulations was assessed using the mouse model of dengue virus encephalitis. Upon challenge, vaccinated mice showed significantly reduced virus replication in all tested groups. This study provides new information about the functionality of Tetra DIIIC as a vaccine candidate and also supports the crucial role of cell-mediated immunity in protection against dengue virus.
Collapse
Affiliation(s)
- Iris Valdés
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Ernesto Marcos
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Edith Suzarte
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Yusleidi Pérez
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Enma Brown
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Laura Lazo
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Karem Cobas
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Melyssa Yaugel
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Yadira Rodríguez
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Lázaro Gil
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba.
| | - Gerardo Guillén
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba
| | - Lisset Hermida
- Vaccine Division, Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, 10 600, Havana 6, Cuba.
| |
Collapse
|
41
|
Pang EL, Loh HS. Towards development of a universal dengue vaccine – How close are we? ASIAN PAC J TROP MED 2017; 10:220-228. [DOI: 10.1016/j.apjtm.2017.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 11/16/2022] Open
|
42
|
Torresi J, Ebert G, Pellegrini M. Vaccines licensed and in clinical trials for the prevention of dengue. Hum Vaccin Immunother 2017; 13:1059-1072. [PMID: 28281864 DOI: 10.1080/21645515.2016.1261770] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dengue has become a major global public health threat with almost half of the world's population living in at-risk areas. Vaccination would likely represent an effective strategy for the management of dengue disease in endemic regions, however to date there is only one licensed preventative vaccine for dengue infection. The development of a vaccine against dengue virus (DENV) has been hampered by an incomplete understanding of protective immune responses against DENV. The most clinically advanced dengue vaccine is the chimeric yellow fever-dengue vaccine (CYD) that employs the yellow fever virus 17D strain as the replication backbone (Chimerivax-DEN; CYD-TDV). This vaccine had an overall pooled protective efficacy of 65.6% but was substantially more effective against severe dengue and dengue hemorrhagic fever. Several other vaccine approaches have been developed including live attenuated chimeric dengue vaccines (DENVax and LAV Delta 30), DEN protein subunit V180 vaccine (DEN1-80E) and DENV DNA vaccines. These vaccines have been shown to be immunogenic in animals and also safe and immunogenic in humans. However, these vaccines are yet to progress to phase III trials to determine their protective efficacy against dengue. This review will summarize the details of vaccines that have progressed to clinical trials in humans.
Collapse
Affiliation(s)
- J Torresi
- a Department of Microbiology and Immunology , The Peter Doherty Institute for Infection and Immunity, University of Melbourne , Parkville , Victoria , Australia
| | - G Ebert
- b The Walter and Eliza Hall Institute of Medical Research , Parkville , Victoria , Australia
| | - M Pellegrini
- b The Walter and Eliza Hall Institute of Medical Research , Parkville , Victoria , Australia.,c Department of Medical Biology , The University of Melbourne , Parkville , Victoria , Australia
| |
Collapse
|
43
|
Khetarpal N, Shukla R, Rajpoot RK, Poddar A, Pal M, Swaminathan S, Arora U, Khanna N. Recombinant Dengue Virus 4 Envelope Glycoprotein Virus-Like Particles Derived from Pichia pastoris are Capable of Eliciting Homotypic Domain III-Directed Neutralizing Antibodies. Am J Trop Med Hyg 2017; 96:126-134. [PMID: 27821688 PMCID: PMC5239678 DOI: 10.4269/ajtmh.16-0503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Dengue is a viral pandemic caused by four dengue virus serotypes (DENV-1, 2, 3, and 4) transmitted by Aedes mosquitoes. Reportedly, there has been a 2-fold increase in dengue cases every decade. An efficacious tetravalent vaccine, which can provide long-term immunity against all four serotypes in all target populations, is still unavailable. Despite the progress being made in the live virus-based dengue vaccines, the World Health Organization strongly recommends the development of alternative approaches for safe, affordable, and efficacious dengue vaccine candidates. We have explored virus-like particles (VLPs)-based nonreplicating subunit vaccine approach and have developed recombinant envelope ectodomains of DENV-1, 2, and 3 expressed in Pichia pastoris These self-assembled into VLPs without pre-membrane (prM) protein, which limits the generation of enhancing antibodies, and elicited type-specific neutralizing antibodies against the respective serotype. Encouraged by these results, we have extended this work further by developing P. pastoris-expressed DENV-4 ectodomain (DENV-4 E) in this study, which was found to be glycosylated and assembled into spherical VLPs without prM, and displayed critical neutralizing epitopes on its surface. These VLPs were found to be immunogenic in mice and elicited DENV-4-specific neutralizing antibodies, which were predominantly directed against envelope domain III, implicated in host-receptor recognition and virus entry. These observations underscore the potential of VLP-based nonreplicative vaccine approach as a means to develop a safe, efficacious, and tetravalent dengue subunit vaccine. This work paves the way for the evaluation of a DENV E-based tetravalent dengue vaccine candidate, as an alternative to live virus-based dengue vaccines.
Collapse
Affiliation(s)
- Niyati Khetarpal
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Shukla
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ravi Kant Rajpoot
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ankur Poddar
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Meena Pal
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Upasana Arora
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Navin Khanna
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
44
|
Legastelois I, Buffin S, Peubez I, Mignon C, Sodoyer R, Werle B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccin Immunother 2016; 13:947-961. [PMID: 27905833 DOI: 10.1080/21645515.2016.1260795] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for recombinant vaccine antigens or immunotherapeutic molecules calls into question the universality of current protein expression systems. Vaccine production can require relatively low amounts of expressed materials, but represents an extremely diverse category consisting of different target antigens with marked structural differences. In contrast, monoclonal antibodies, by definition share key molecular characteristics and require a production system capable of very large outputs, which drives the quest for highly efficient and cost-effective systems. In discussing expression systems, the primary assumption is that a universal production platform for vaccines and immunotherapeutics will unlikely exist. This review provides an overview of the evolution of traditional expression systems, including mammalian cells, yeast and E.coli, but also alternative systems such as other bacteria than E. coli, transgenic animals, insect cells, plants and microalgae, Tetrahymena thermophila, Leishmania tarentolae, filamentous fungi, cell free systems, and the incorporation of non-natural amino acids.
Collapse
Affiliation(s)
| | - Sophie Buffin
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | - Isabelle Peubez
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | | | - Régis Sodoyer
- b Technology Research Institute Bioaster , Lyon , France
| | - Bettina Werle
- b Technology Research Institute Bioaster , Lyon , France
| |
Collapse
|
45
|
Swaminathan G, Thoryk EA, Cox KS, Smith JS, Wolf JJ, Gindy ME, Casimiro DR, Bett AJ. A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates. Sci Rep 2016; 6:34215. [PMID: 27703172 PMCID: PMC5050434 DOI: 10.1038/srep34215] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/01/2016] [Indexed: 12/30/2022] Open
Abstract
Dengue virus has emerged as an important arboviral infection worldwide. As a complex pathogen, with four distinct serotypes, the development of a successful Dengue virus vaccine has proven to be challenging. Here, we describe a novel Dengue vaccine candidate that contains truncated, recombinant, Dengue virus envelope protein from all four Dengue virus serotypes (DEN-80E) formulated with ionizable cationic lipid nanoparticles (LNPs). Immunization studies in mice, Guinea pigs, and in Rhesus macaques, revealed that LNPs induced high titers of Dengue virus neutralizing antibodies, with or without co-administration or encapsulation of a Toll-Like Receptor 9 agonist. Importantly, LNPs were also able to boost DEN-80E specific CD4+ and CD8+ T cell responses. Cytokine and chemokine profiling revealed that LNPs induced strong chemokine responses without significant induction of inflammatory cytokines. In addition to being highly efficacious, the vaccine formulation proved to be well-tolerated, demonstrating no elevation in any of the safety parameters evaluated. Notably, reduction in cationic lipid content of the nanoparticle dramatically reduced the LNP's ability to boost DEN-80E specific immune responses, highlighting the crucial role for the charge of the LNP. Overall, our novel studies, across multiple species, reveal a promising tetravalent Dengue virus sub-unit vaccine candidate.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Infectious Diseases and Vaccines, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Elizabeth A Thoryk
- Infectious Diseases and Vaccines, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Kara S Cox
- Infectious Diseases and Vaccines, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Jeffrey S Smith
- Pharmaceutical Sciences, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Jayanthi J Wolf
- Safety Assessment &Regulatory Affairs, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Marian E Gindy
- Pharmaceutical Sciences, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Danilo R Casimiro
- Infectious Diseases and Vaccines, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| | - Andrew J Bett
- Infectious Diseases and Vaccines, Merck Research Laboratories, Merck &Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
46
|
Lim SK, Lee YS, Namkung S, Lim JK, Yoon IK. Prospects for dengue vaccines for travelers. Clin Exp Vaccine Res 2016; 5:89-100. [PMID: 27489798 PMCID: PMC4969283 DOI: 10.7774/cevr.2016.5.2.89] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022] Open
Abstract
Travel-acquired dengue cases have been increasing as the overall global dengue burden has expanded. In Korea, imported dengue cases have been reported since 2000 when it first became a notifiable disease. During the first four months of 2016, three times more dengue cases were reported in Korea than during the same period the previous year. A safe and efficacious vaccine for travelers would be beneficial to prevent dengue disease in individual travelers and potentially decrease the risk of virus spread to non-endemic areas. Here, we summarize the characteristics of dengue vaccines for travelers and review dengue vaccines currently licensed or in clinical development.
Collapse
Affiliation(s)
- Sl-Ki Lim
- International Vaccine Institute, Seoul, Korea
| | | | - Suk Namkung
- International Vaccine Institute, Seoul, Korea
| | | | - In-Kyu Yoon
- International Vaccine Institute, Seoul, Korea
| |
Collapse
|
47
|
Khetarpal N, Khanna I. Dengue Fever: Causes, Complications, and Vaccine Strategies. J Immunol Res 2016; 2016:6803098. [PMID: 27525287 PMCID: PMC4971387 DOI: 10.1155/2016/6803098] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/18/2016] [Accepted: 06/01/2016] [Indexed: 01/19/2023] Open
Abstract
Dengue is a highly endemic infectious disease of the tropical countries and is rapidly becoming a global burden. It is caused by any of the 4 serotypes of dengue virus and is transmitted within humans through female Aedes mosquitoes. Dengue disease varies from mild fever to severe conditions of dengue hemorrhagic fever and shock syndrome. Globalization, increased air travel, and unplanned urbanization have led to increase in the rate of infection and helped dengue to expand its geographic and demographic distribution. Dengue vaccine development has been a challenging task due to the existence of four antigenically distinct dengue virus serotypes, each capable of eliciting cross-reactive and disease-enhancing antibody response against the remaining three serotypes. Recently, Sanofi Pasteur's chimeric live-attenuated dengue vaccine candidate has been approved in Mexico, Brazil, and Philippines for usage in adults between 9 and 45 years of age. The impact of its limited application to the public health system needs to be evaluated. Simultaneously, the restricted application of this vaccine candidate warrants continued efforts in developing a dengue vaccine candidate which is additionally efficacious for infants and naïve individuals. In this context, alternative strategies of developing a designed vaccine candidate which does not allow production of enhancing antibodies should be explored, as it may expand the umbrella of efficacy to include infants and naïve individuals.
Collapse
Affiliation(s)
- Niyati Khetarpal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Biochemistry, University of Delhi, Institute of Home Economics, Hauz Khas, New Delhi 110016, India
| | - Ira Khanna
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
48
|
Status of vaccine research and development of vaccines for dengue. Vaccine 2016; 34:2934-2938. [DOI: 10.1016/j.vaccine.2015.12.073] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/30/2015] [Indexed: 11/21/2022]
|
49
|
Govindarajan D, Guan L, Meschino S, Fridman A, Bagchi A, Pak I, ter Meulen J, Casimiro DR, Bett AJ. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates. PLoS One 2016; 11:e0152209. [PMID: 27008550 PMCID: PMC4805244 DOI: 10.1371/journal.pone.0152209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/10/2016] [Indexed: 01/25/2023] Open
Abstract
Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.
Collapse
Affiliation(s)
| | - Liming Guan
- Merck Research Laboratories, Merck & Co., Kenilworth, NJ, United States of America
| | - Steven Meschino
- Merck Research Laboratories, Merck & Co., Kenilworth, NJ, United States of America
| | - Arthur Fridman
- Merck Research Laboratories, Merck & Co., Kenilworth, NJ, United States of America
| | - Ansu Bagchi
- Merck Research Laboratories, Merck & Co., Kenilworth, NJ, United States of America
| | - Irene Pak
- Merck Research Laboratories, Merck & Co., Kenilworth, NJ, United States of America
| | - Jan ter Meulen
- Immune Design Corporation, Seattle, WA, United States of America
| | - Danilo R Casimiro
- Merck Research Laboratories, Merck & Co., Kenilworth, NJ, United States of America
| | - Andrew J Bett
- Merck Research Laboratories, Merck & Co., Kenilworth, NJ, United States of America
| |
Collapse
|
50
|
Abstract
Dengue virus is the leading cause of vector-borne viral disease with four serotypes in circulation. Vaccine development has been complicated by the potential for both protection and disease enhancement during heterologous infection. Secondary infection triggers cross-reactive immune memory responses that have varying functional and epitope specificities that determine protection or risk. Strongly neutralizing antibodies to quaternary epitopes may be especially important for virus neutralization. Cell-mediated immunity dominated by Th1 functions may also play an important role. Determining an immune correlate of protection or risk would be highly beneficial for vaccine development but is hampered by mechanistic uncertainties and assay limitations. Clinical efficacy trials and human infection models along with a systems approach may provide future opportunities to elucidate such correlates.
Collapse
Affiliation(s)
- Anon Srikiatkhachorn
- a Division of Infectious Diseases and Immunology, Department of Medicine , University of Massachusetts Medical School , Worcester , MA , USA
| | - In-Kyu Yoon
- b Dengue Vaccine Initiative , International Vaccine Institute, SNU Research Park , Seoul , Korea
| |
Collapse
|