1
|
Al-Osaimi HM, Kanan M, Marghlani L, Al-Rowaili B, Albalawi R, Saad A, Alasmari S, Althobaiti K, Alhulaili Z, Alanzi A, Alqarni R, Alsofiyani R, Shrwani R. A systematic review on malaria and dengue vaccines for the effective management of these mosquito borne diseases: Improving public health. Hum Vaccin Immunother 2024; 20:2337985. [PMID: 38602074 PMCID: PMC11017952 DOI: 10.1080/21645515.2024.2337985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Insect vector-borne diseases (VBDs) pose significant global health challenges, particularly in tropical and subtropical regions. The WHO has launched the "Global Vector Control Response (GVCR) 2017-2030" to address these diseases, emphasizing a comprehensive approach to vector control. This systematic review investigates the potential of malaria and dengue vaccines in controlling mosquito-borne VBDs, aiming to alleviate disease burdens and enhance public health. Following PRISMA 2020 guidelines, the review incorporated 39 new studies out of 934 identified records. It encompasses various studies assessing malaria and dengue vaccines, emphasizing the significance of vaccination as a preventive measure. The findings indicate variations in vaccine efficacy, duration of protection, and safety considerations for each disease, influencing public health strategies. The review underscores the urgent need for vaccines to combat the increasing burden of VBDs like malaria and dengue, advocating for ongoing research and investment in vaccine development.
Collapse
Affiliation(s)
- Hind M. Al-Osaimi
- Department of Pharmacy Services Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Kanan
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Lujain Marghlani
- Department of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Badria Al-Rowaili
- Pharmaceutical Services Department, Northern Area Armed Forces Hospital, King Khalid Military, Hafr Al Batin, Kingdom of Saudi Arabia
| | - Reem Albalawi
- Department of Medicine, Tabuk University, Tabuk, Kingdom of Saudi Arabia
| | - Abrar Saad
- Pharmacy Department, Royal Commission Hospital, Yanbu, Kingdom of Saudi Arabia
| | - Saba Alasmari
- Department of Clinical Pharmacy, King Khalid University, Jeddah, Kingdom of Saudi Arabia
| | - Khaled Althobaiti
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Zainab Alhulaili
- Department of Clinical Pharmacy, Dammam Medical Complex, Dammam, Kingdom of Saudi Arabia
| | - Abeer Alanzi
- Department of Medicine, King Abdulaziz Hospital, Makkah, Kingdom of Saudi Arabia
| | - Rawan Alqarni
- Department of Medicine and Surgery, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Razan Alsofiyani
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Reem Shrwani
- Department of Clinical Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Saivish MV, Nogueira ML, Rossi SL, Vasilakis N. Exploring Iguape Virus-A Lesser-Known Orthoflavivirus. Viruses 2024; 16:960. [PMID: 38932252 PMCID: PMC11209261 DOI: 10.3390/v16060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Brazil has earned the moniker "arbovirus hotspot", providing an ideal breeding ground for a multitude of arboviruses thriving in various zoonotic and urban cycles. As the planet warms and vectors expand their habitat range, a nuanced understanding of lesser-known arboviruses and the factors that could drive their emergence becomes imperative. Among these viruses is the Iguape virus (IGUV), a member of the Orthoflavivirus aroaense species, which was first isolated in 1979 from a sentinel mouse in the municipality of Iguape, within the Vale do Ribeira region of São Paulo State. While evidence suggests that IGUV circulates among birds, wild rodents, marsupials, bats, and domestic birds, there is no information available on its pathogenesis in both humans and animals. The existing literature on IGUV spans decades, is outdated, and is often challenging to access. In this review, we have curated information from the known literature, clarifying its elusive nature and investigating the factors that may influence its emergence. As an orthoflavivirus, IGUV poses a potential threat, which demands our attention and vigilance, considering the serious outbreaks that the Zika virus, another neglected orthoflavivirus, has unleashed in the recent past.
Collapse
Affiliation(s)
- Marielena V. Saivish
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (M.L.N.)
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Maurício L. Nogueira
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (M.L.N.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
3
|
Ngwe Tun MM, Nwe KM, Balingit JC, Takamatsu Y, Inoue S, Pandey BD, Urano T, Kohara M, Tsukiyama-Kohara K, Morita K. A Novel, Comprehensive A129 Mouse Model for Investigating Dengue Vaccines and Evaluating Pathogenesis. Vaccines (Basel) 2023; 11:1857. [PMID: 38140260 PMCID: PMC10748371 DOI: 10.3390/vaccines11121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
In search of a mouse model for use in evaluating dengue vaccines, we assessed A129 mice that lacked IFN-α/β receptors, rendering them susceptible to dengue virus (DENV) infection. To our knowledge, no reports have evaluated dengue vaccine efficiency using A129 mice. A129 mice were given a single intraperitoneal (IP) or subcutaneous (SC) injection of the vaccine, Dengvaxia. After 14 days of immunization via the IP or SC injection of Dengvaxia, the A129 mice exhibited notably elevated levels of anti-DENV immunoglobulin G and neutralizing antibodies (NAb) targeting all four DENV serotypes, with DENV-4 displaying the highest NAb levels. After challenge with DENV-2, Dengvaxia and mock-immunized mice survived, while only the mock group exhibited signs of morbidity. Viral genome levels in the serum and tissues (excluding the brain) were considerably lower in the immunized mice compared to those in the mock group. The SC administration of Dengvaxia resulted in lower viremia levels than IP administration did. Therefore, given that A129 mice manifest dengue-related morbidity, including viremia in the serum and other tissues, these mice represent a valuable model for investigating novel dengue vaccines and antiviral drugs and for exploring dengue pathogenesis.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (J.C.B.); (Y.T.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan;
| | - Khine Mya Nwe
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Jean Claude Balingit
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (J.C.B.); (Y.T.)
| | - Yuki Takamatsu
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (J.C.B.); (Y.T.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Shingo Inoue
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Basu Dev Pandey
- Dejima Infectious Diseases Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Takeshi Urano
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan;
| | - Michinori Kohara
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-0057, Japan;
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (J.C.B.); (Y.T.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Dejima Infectious Diseases Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan;
| |
Collapse
|
4
|
Asish PR, Dasgupta S, Rachel G, Bagepally BS, Girish Kumar CP. Global prevalence of asymptomatic dengue infections - a systematic review and meta-analysis. Int J Infect Dis 2023; 134:292-298. [PMID: 37463631 DOI: 10.1016/j.ijid.2023.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES The burden of asymptomatic dengue infections is understudied. Therefore, we systematically reviewed the literature to estimate the global prevalence of asymptomatic dengue infections. METHODS We searched cross-sectional studies reporting the prevalence of asymptomatic dengue infections from PubMed, Scopus, and Embase. Prevalence of asymptomatic dengue infections was pooled and reported as proportions with a 95% confidence interval (CI). This systematic review protocol was a priori registered in The International Prospective Register of Systematic Reviews (Reg: No. CRD42020218446). RESULTS We included 41 studies with 131,953 cases in our analysis. The overall pooled prevalence of asymptomatic dengue infections was 59.26% (95% CI: 43.76-74.75, I2 = 99.93%), with 65.52% (95% CI: 38.73-92.32, I2 = 99.95%) during outbreaks and 30.78% (95% CI: 21.39-40.16, I2 = 98.78%) during non-outbreak periods. The pooled prevalence among the acutely infected individuals was 54.52% (95% CI: 17.73-46.76, I2 = 99.91%), whereas, among primary and secondary asymptomatic dengue infections, it was 65.36% (95% CI: 45.76-84.96, I2 = 98.82) and 48.99% (95% CI: 27.85-70.13, I2 = 99.08%) respectively. CONCLUSION The majority of dengue cases are asymptomatic and may play a significant role in disease transmission. Public health strategies aimed at dengue outbreak response and mitigation of disease burden should include early detection of asymptomatic cases.
Collapse
Affiliation(s)
| | | | - Gladys Rachel
- ICMR-National Institute of Epidemiology, Chennai, India
| | | | | |
Collapse
|
5
|
Farooq QUA, Aiman S, Ali Y, Shaukat Z, Ali Y, Khan A, Samad A, Wadood A, Li C. A comprehensive protein interaction map and druggability investigation prioritized dengue virus NS1 protein as promising therapeutic candidate. PLoS One 2023; 18:e0287905. [PMID: 37498862 PMCID: PMC10374080 DOI: 10.1371/journal.pone.0287905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
Dengue Virus (DENV) is a serious threat to human life worldwide and is one of the most dangerous vector-borne diseases, causing thousands of deaths annually. We constructed a comprehensive PPI map of DENV with its host Homo sapiens and performed various bioinformatics analyses. We found 1195 interactions between 858 human and 10 DENV proteins. Pathway enrichment analysis was performed on the two sets of gene products, and the top 5 human proteins with the maximum number of interactions with dengue viral proteins revealed noticeable results. The non-structural protein NS1 in DENV had the maximum number of interactions with the host protein, followed by NS5 and NS3. Among the human proteins, HBA1 and UBE2I were associated with 7 viral proteins, and 3 human proteins (CSNK2A1, RRP12, and HSP90AB1) were found to interact with 6 viral proteins. Pharmacophore-based virtual screening of millions of compounds in the public databases was performed to identify potential DENV-NS1 inhibitors. The lead compounds were selected based on RMSD values, docking scores, and strong binding affinities. The top ten hit compounds were subjected to ADME profiling which identified compounds C2 (MolPort-044-180-163) and C6 (MolPort-001-742-737) as lead inhibitors against DENV-NS1. Molecular dynamics trajectory analysis and intermolecular interactions between NS1 and the ligands displayed the molecular stability of the complexes in the cellular environment. The in-silico approaches used in this study could pave the way for the development of potential specie-specific drugs and help in eliminating deadly viral infections. Therefore, experimental and clinical assays are required to validate the results of this study.
Collapse
Affiliation(s)
- Qurrat Ul Ain Farooq
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Yasir Ali
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zeeshan Shaukat
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Yasir Ali
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdus Samad
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| |
Collapse
|
6
|
Campbell O, Monje-Galvan V. Protein-driven membrane remodeling: Molecular perspectives from Flaviviridae infections. Biophys J 2023; 122:1890-1899. [PMID: 36369756 PMCID: PMC10257083 DOI: 10.1016/j.bpj.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cell membrane consists of thousands of different lipid species, and this variety is critical for biological function. Alterations to this balance can be dangerous as they can lead to permanent disruption of lipid metabolism, a hallmark in several viral diseases. The Flaviviridae family is made up of positive single-stranded RNA viruses that assemble at or near the location of lipid droplet formation in the endoplasmic reticulum. These viruses are known to interfere with lipid metabolism during the onset of liver disease, albeit to different extents. Pathogenesis of these infections involves specific protein-lipid interactions that alter lipid sorting and metabolism to sustain propagation of the viral infection. Recent experimental studies identify a correlation between viral proteins and lipid content or location in the cell, but these do not assess membrane-embedded interactions. Molecular modeling, specifically molecular dynamics simulations, can provide molecular-level spatial and temporal resolution for characterization of biomolecular interactions. This review focuses on recent advancements and current knowledge gaps in the molecular mechanisms of lipid-mediated liver disease preceded by viral infection. We discuss three viruses from the Flaviviridae family: dengue, zika, and hepatitis C, with a particular focus on lipid interactions with their respective ion channels, known as viroporins.
Collapse
Affiliation(s)
- Oluwatoyin Campbell
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York.
| |
Collapse
|
7
|
Huang Z, Zhang Y, Li H, Zhu J, Song W, Chen K, Zhang Y, Lou Y. Vaccine development for mosquito-borne viral diseases. Front Immunol 2023; 14:1161149. [PMID: 37251387 PMCID: PMC10213220 DOI: 10.3389/fimmu.2023.1161149] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Mosquito-borne viral diseases are a group of viral illnesses that are predominantly transmitted by mosquitoes, including viruses from the Togaviridae and Flaviviridae families. In recent years, outbreaks caused by Dengue and Zika viruses from the Flaviviridae family, and Chikungunya virus from the Togaviridae family, have raised significant concerns for public health. However, there are currently no safe and effective vaccines available for these viruses, except for CYD-TDV, which has been licensed for Dengue virus. Efforts to control the transmission of COVID-19, such as home quarantine and travel restrictions, have somewhat limited the spread of mosquito-borne viral diseases. Several vaccine platforms, including inactivated vaccines, viral-vector vaccines, live attenuated vaccines, protein vaccines, and nucleic acid vaccines, are being developed to combat these viruses. This review analyzes the various vaccine platforms against Dengue, Zika, and Chikungunya viruses and provides valuable insights for responding to potential outbreaks.
Collapse
Affiliation(s)
- Zhiwei Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wanchen Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Fang E, Li M, Liu X, Hu K, Liu L, Zhang Z, Li X, Peng Q, Li Y. NS1 Protein N-Linked Glycosylation Site Affects the Virulence and Pathogenesis of Dengue Virus. Vaccines (Basel) 2023; 11:vaccines11050959. [PMID: 37243063 DOI: 10.3390/vaccines11050959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Live attenuated vaccine is one of the most effective vaccines against flavivirus. Recently, site-directed mutation of the flavivirus genome using reverse genetics techniques has been used for the rapid development of attenuated vaccines. However, this technique relies on basic research of critical virulence loci of the virus. To screen the attenuated sites in dengue virus, a total of eleven dengue virus type four mutant strains with deletion of N-glycosylation sites in the NS1 protein were designed and constructed. Ten of them (except for the N207-del mutant strain) were successfully rescued. Out of the ten strains, one mutant strain (N130del+207-209QQA) was found to have significantly reduced virulence through neurovirulence assay in suckling mice, but was genetically unstable. Further purification using the plaque purification assay yielded a genetically stable attenuated strain #11-puri9 with mutations of K129T, N130K, N207Q, and T209A in the NS1 protein and E99D in the NS2A protein. Identifying the virulence loci by constructing revertant mutant and chimeric viruses revealed that five amino acid adaptive mutations in the dengue virus type four non-structural proteins NS1 and NS2A dramatically affected its neurovirulence and could be used in constructing attenuated dengue chimeric viruses. Our study is the first to obtain an attenuated dengue virus strain through the deletion of amino acid residues at the N-glycosylation site, providing a theoretical basis for understanding the pathogenesis of the dengue virus and developing its live attenuated vaccines.
Collapse
Affiliation(s)
- Enyue Fang
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Miao Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
- Vaccines R&D Department, Changchun Institute of Biological Products Co., Ltd., Changchun 130000, China
| | - Xiaohui Liu
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
- Vaccines R&D Department, Changchun Institute of Biological Products Co., Ltd., Changchun 130000, China
| | - Kongxin Hu
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Lijuan Liu
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Zelun Zhang
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xingxing Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Qinhua Peng
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yuhua Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
9
|
Tabassum S, Naeem A, Nazir A, Naeem F, Gill S, Tabassum S. Year-round dengue fever in Pakistan, highlighting the surge amidst ongoing flood havoc and the COVID-19 pandemic: a comprehensive review. Ann Med Surg (Lond) 2023; 85:908-912. [PMID: 37113909 PMCID: PMC10129218 DOI: 10.1097/ms9.0000000000000418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/12/2023] [Indexed: 04/29/2023] Open
Abstract
Dengue fever (DF) is an arthropod-borne viral infection caused by four serotypes of dengue virus (DENV 1-4) transmitted to the host by the vector mosquito Aedes, which causes fever, vomiting, headache, joint pain, muscle pain, and a distinctive itching and skin rash, ultimately leading to dengue hemorrhagic fever and dengue shock syndrome. The first case of DF in Pakistan was documented in 1994, but outbreak patterns began in 2005. As of 20 August 2022, Pakistan has 875 confirmed cases, raising alarming concerns. Misdiagnosis due to mutual symptoms, lack of an effective vaccine, the weakened and overburdened health system of Pakistan, irrational urbanization, climate change in Pakistan, insufficient waste management system, and a lack of awareness are the significant challenges Pakistan faces and result in recurrent dengue outbreaks every year. The recent flood in Pakistan has caused massive destruction, and stagnant dirty water has facilitated mosquito breeding. Sanitization and spraying, proper waste management, an adequate and advanced diagnostic system, control of population size, public awareness, and promotion of medical research and global collaboration, especially amidst flood devastation, are recommended to combat this deadly infection in Pakistan. This article aims to comprehensively review the year-round DF in Pakistan, highlighting the surge amidst ongoing flood havoc and the coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Shehroze Tabassum
- King Edward Medical University, Lahore
- Corresponding author. Address: King Edward Medical University, Lahore 54000, Pakistan. Tel.: +92 333 1783344. E-mail address: (S. Tabassum)
| | | | | | | | | | | |
Collapse
|
10
|
Tripathi S, Sharma N, Naorem LD, Raghava GPS. ViralVacDB: A manually curated repository of viral vaccines. Drug Discov Today 2023; 28:103523. [PMID: 36764575 DOI: 10.1016/j.drudis.2023.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Over the years, numerous vaccines have been developed against viral infections; however, a complete database that provides comprehensive information on viral vaccines has been lacking. In this review, along with our freely accessible database ViralVacDB, we provide details of the viral vaccines, their type, routes of administration and approving agencies. This repository systematically covers additional information such as disease name, adjuvant, manufacturer, clinical status, age and dosage against 422 viral vaccines, including 145 approved vaccines and 277 in clinical trials. We anticipate that this database will be highly beneficial to researchers and others working in pharmaceuticals and immuno-informatics.
Collapse
Affiliation(s)
- Sadhana Tripathi
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| | - Leimarembi Devi Naorem
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| |
Collapse
|
11
|
Dengue virus infection - a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res 2023; 324:199018. [PMID: 36493993 DOI: 10.1016/j.virusres.2022.199018] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/19/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
The transmission of dengue virus (DENV) from an infected Aedes mosquito to a human, causes illness ranging from mild dengue fever to fatal dengue shock syndrome. The similar conserved structure and sequence among distinct DENV serotypes or different flaviviruses has resulted in the occurrence of cross reaction followed by antibody-dependent enhancement (ADE). Thus far, the vaccine which can provide effective protection against infection by different DENV serotypes remains the biggest hurdle to overcome. Therefore, deep investigation is crucial for the potent and effective therapeutic drugs development. In addition, the cross-reactivity of flaviviruses that leads to false diagnosis in clinical settings could result to delay proper intervention management. Thus, the accurate diagnostic with high specificity and sensitivity is highly required to provide prompt diagnosis in respect to render early treatment for DENV infected individuals. In this review, the recent development of neutralizing antibodies, antiviral agents, and vaccine candidates in therapeutic platform for DENV infection will be discussed. Moreover, the discovery of antigenic cryptic epitopes, principle of molecular mimicry, and application of single-chain or single-domain antibodies towards DENV will also be presented.
Collapse
|
12
|
Shrestha DB, Budhathoki P, Gurung B, Subedi S, Aryal S, Basukala A, Aryal B, Adhikari A, Poudel A, Yadav GK, Khoury M, Rayamajhee B, Shrestha LB. Epidemiology of dengue in SAARC territory: a systematic review and meta-analysis. Parasit Vectors 2022; 15:389. [PMID: 36280877 PMCID: PMC9594905 DOI: 10.1186/s13071-022-05409-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Dengue is one of the common arboviral infections and is a public health problem in South East Asia. The aim of this systematic review and meta-analysis was to evaluate the prevalence and distribution of dengue in SAARC (South Asian Association for Regional Cooperation) countries. METHODS The PubMed, PubMed Central, Embase and Scopus databases were searched for relevant studies. Statistical analysis on data extracted from the selected studied was conducted using the Comprehensive Meta-Analysis Software (CMA) version 3 software package. Proportions were used to estimate the outcome with a 95% confidence interval (CI). RESULTS Across all studies, among cases of suspected dengue, 30.7% were confirmed dengue cases (proportion: 0.307, 95% CI: 0.277-0.339). The seroprevalence of dengue immunoglobulin (Ig)G, IgM or both (IgM and IgG) antibodies and dengue NS1 antigen was 34.6, 34.2, 29.0 and 24.1%, respectively. Among the different strains of dengue, dengue virus (DENV) strains DENV-1, DENV-2, DENV-3 and DENV-4 accounted for 21.8, 41.2, 14.7 and 6.3% of cases, respectively. The prevalence of dengue fever, dengue hemorrhagic fever and dengue shock syndrome was 80.5, 18.2 and 1.5%, respectively. Fever was a commonly reported symptom, and thrombocytopenia was present in 44.7% of cases. Mortality was reported in 1.9% of dengue cases. CONCLUSIONS Dengue is a common health problem in South East Asia with high seroprevalence. DENV-2 was found to be the most common strain causing infection, and most dengue cases were dengue fever. In addition, thrombocytopenia was reported in almost half of the dengue cases.
Collapse
Affiliation(s)
| | | | | | | | | | - Anisha Basukala
- Nepalese Army Institute of Health Sciences, Kathmandu, Nepal
| | - Barun Aryal
- Department of Emergency Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Anurag Adhikari
- Department of Emergency Medicine, Nepal National Hospital, Kathmandu, Nepal
| | - Ayusha Poudel
- Department of Emergency Medicine, Alka Hospital, Kathmandu, Nepal
| | | | - Mtanis Khoury
- Department of Internal Medicine, Mount Sinai Hospital, Chicago, IL USA
| | - Binod Rayamajhee
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences (KRIBS), Lalitpur, Nepal
| | - Lok Bahadur Shrestha
- Department of Microbiology & Infectious Diseases, B. P. Koirala Institute of Health Sciences, Dharan, 56700 Nepal
- School of Medical Sciences and the Kirby Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Xiong N, Sun Q. Identification of stage-related and severity-related biomarkers and exploration of immune landscape for Dengue by comprehensive analyses. Virol J 2022; 19:130. [PMID: 35918744 PMCID: PMC9344228 DOI: 10.1186/s12985-022-01853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Background At present, there are still no specific therapeutic drugs and appropriate vaccines for Dengue. Therefore, it is important to explore distinct clinical diagnostic indicators. Methods In this study, we combined differentially expressed genes (DEGs) analysis, weighted co-expression network analysis (WGCNA) and Receiver Operator Characteristic Curve (ROC) to screen a stable and robust biomarker with diagnosis value for Dengue patients. CIBERSORT was used to evaluate immune landscape of Dengue patients. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene set enrichment analysis (GSEA) were applied to explore potential functions of hub genes. Results CD38 and Plasma cells have excellent Area Under the Curve (AUC) in distinguishing clinical stages for Dengue patients, and activated memory CD4+ T cells and Monocytes have good AUC for this function. ZNF595 has acceptable AUC in discriminating dengue hemorrhagic fever (DHF) from dengue fever (DF) in whole acute stages. Analyzing any serotype, we can obtain consistent results. Negative inhibition of viral replication based on GO, KEGG and GSEA analysis results, up-regulated autophagy genes and the impairing immune system are potential reasons resulting in DHF. Conclusions CD38, Plasma cells, activated memory CD4+ T cells and Monocytes can be used to distinguish clinical stages for dengue patients, and ZNF595 can be used to discriminate DHF from DF, regardless of serotypes. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01853-8.
Collapse
Affiliation(s)
- Nan Xiong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, People's Republic of China.,Kunming Medical University, Kunming, 650500, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, People's Republic of China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, People's Republic of China.
| |
Collapse
|
14
|
Gallichotte EN, Henein S, Nivarthi U, Delacruz M, Scobey T, Bonaparte M, Moser J, Munteanu A, Baric R, de Silva AM. Vaccine-induced antibodies to contemporary strains of dengue virus type 4 show a mechanistic correlate of protective immunity. Cell Rep 2022; 39:110930. [PMID: 35675766 DOI: 10.1016/j.celrep.2022.110930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/18/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The four dengue virus serotypes (DENV1-4) are mosquito-borne flaviviruses of humans. Several live-attenuated tetravalent DENV vaccines are at different stages of clinical development and approval. In children with no baseline immunity to DENVs, a leading vaccine (Dengvaxia) is efficacious against vaccine-matched DENV4 genotype II (GII) strains but not vaccine-mismatched DENV4 GI viruses. We use a panel of recombinant DENV4 viruses displaying GI or GII envelope (E) proteins to map Dengvaxia-induced neutralizing antibodies (NAbs) linked to protection. The vaccine stimulated antibodies that neutralize the DENV4 GII virus better than the GI virus. The neutralization differences map to 5 variable amino acids on the E protein located within a region targeted by DENV4 NAbs, supporting a mechanistic role for these epitope-specific NAbs in protection. In children with no baseline immunity to DENVs, levels of DENV4 serotype- and genotype-specific NAbs induced by vaccination are predictive of vaccine efficacy.
Collapse
Affiliation(s)
- Emily N Gallichotte
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Usha Nivarthi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Matthew Delacruz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina School of Public Health, Chapel Hill, NC, USA
| | | | | | | | - Ralph Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina School of Public Health, Chapel Hill, NC, USA.
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Izmirly AM, Pelletier AN, Connors J, Taramangalam B, Alturki SO, Gordon EA, Alturki SO, Mell JC, Swaminathan G, Karthik V, Kutzler MA, Kallas EG, Sekaly RP, Haddad EK. Pre-vaccination frequency of circulatory Tfh is associated with robust immune response to TV003 dengue vaccine. PLoS Pathog 2022; 18:e1009903. [PMID: 35061851 PMCID: PMC8809550 DOI: 10.1371/journal.ppat.1009903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/02/2022] [Accepted: 01/06/2022] [Indexed: 11/19/2022] Open
Abstract
It has been estimated that more than 390 million people are infected with Dengue virus every year; around 96 millions of these infections result in clinical pathologies. To date, there is only one licensed viral vector-based Dengue virus vaccine CYD-TDV approved for use in dengue endemic areas. While initially approved for administration independent of serostatus, the current guidance only recommends the use of this vaccine for seropositive individuals. Therefore, there is a critical need for investigating the influence of Dengue virus serostatus and immunological mechanisms that influence vaccine outcome. Here, we provide comprehensive evaluation of sero-status and host immune factors that correlate with robust immune responses to a Dengue virus vector based tetravalent vaccine (TV003) in a Phase II clinical cohort of human participants. We observed that sero-positive individuals demonstrate a much stronger immune response to the TV003 vaccine. Our multi-layered immune profiling revealed that sero-positive subjects have increased baseline/pre-vaccination frequencies of circulating T follicular helper (cTfh) cells and the Tfh related chemokine CXCL13/BLC. Importantly, this baseline/pre-vaccination cTfh profile correlated with the vaccinees' ability to launch neutralizing antibody response against all four sero-types of Dengue virus, an important endpoint for Dengue vaccine clinical trials. Overall, we provide novel insights into the favorable cTfh related immune status that persists in Dengue virus sero-positive individuals that correlate with their ability to mount robust vaccine specific immune responses. Such detailed interrogation of cTfh cell biology in the context of clinical vaccinology will help uncover mechanisms and targets for favorable immuno-modulatory agents.
Collapse
Affiliation(s)
- Abdullah M. Izmirly
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Jennifer Connors
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Bhavani Taramangalam
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sawsan O. Alturki
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Emma A. Gordon
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sana O. Alturki
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua C. Mell
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gokul Swaminathan
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Vaccine Innovation, Boehringer Ingelheim, Lyon, France
| | - Vivin Karthik
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michele A. Kutzler
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Esper G. Kallas
- Department of Infectious and Parasitic Diseases, University of São Paulo, Sao Paulo, Brazil
| | - Rafick-Pierre Sekaly
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Elias K. Haddad
- Department of Medicine and Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
16
|
Abstract
Dengue is a vector-borne viral disease caused by the flavivirus dengue virus (DENV). Approximately 400 million cases and 22 000 deaths occur due to dengue worldwide each year. It has been reported in more than 100 countries in tropical and subtropical regions. A positive-stranded enveloped RNA virus (DENV) is principally transmitted by Aedes mosquitoes. It has four antigenically distinct serotypes, DENV-1 to DENV-4, with different genotypes and three structural proteins and seven non-structural proteins. Clinical symptoms of dengue range from mild fever to severe dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), with thrombocytopenia, leucopenia, and increased vascular permeability. Although primary infection causes activation of immune responses against DENV serotypes, the severity of the disease is enhanced via heterotypic infection by various serotypes as well as antibody-dependent enhancement (ADE). The first licensed DENV vaccine was tetravalent CYD Denvaxia, but it has not been approved in all countries. The lack of a suitable animal model, a proper mechanistic study in pathogenesis, and ADE are the main hindrances in vaccine development. This review summarizes the current knowledge on DENV epidemiology, biology, and disease aetiology in the context of prevention and protection from dengue virus disease.
Collapse
Affiliation(s)
- Sudipta Kumar Roy
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India.,Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India.,Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India
| |
Collapse
|
17
|
Sabir MJ, Al-Saud NBS, Hassan SM. Dengue and human health: A global scenario of its occurrence, diagnosis and therapeutics. Saudi J Biol Sci 2021; 28:5074-5080. [PMID: 34466085 PMCID: PMC8381008 DOI: 10.1016/j.sjbs.2021.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Dengue is one of the highest and rapidly spreading vector-borne viral diseases with high mortality rates. The infection causes acute febrile illness, a major public health concern in the tropics and subtropics globally. The disease is caused by an RNA virus that belongs to the Flaviviridae family. The virus is transferred to humans by the mosquito vector called Aedvrves aegypti, which is the cause of new prevalent sicknesses worldwide. These vector-borne viral diseases spread very fast and pose public health and economic challenges that deemed various prevention and control techniques. The Flavivirus genus consists of five different types of viruses starting from DENV-1 to DENV-5. Thus, the present review focuses on the origin of the virus, how the Dengue virus can be detected, infection, the morphology of the virus, its classifications as proposed by ICTV, the replication and genome of the dengue virus, translation, receptor binding, and some vaccine trial volunteers. In addition, it highlights the current challenges and limitations of effective dengue treatment.
Collapse
Affiliation(s)
- Mernan Jamal Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najla Bint Saud Al-Saud
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabah Mohmoud Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Näslund J, Ahlm C, Islam K, Evander M, Bucht G, Lwande OW. Emerging Mosquito-Borne Viruses Linked to Aedes aegypti and Aedes albopictus: Global Status and Preventive Strategies. Vector Borne Zoonotic Dis 2021; 21:731-746. [PMID: 34424778 DOI: 10.1089/vbz.2020.2762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Emerging mosquito-borne viruses continue to cause serious health problems and economic burden among billions of people living in and near the tropical belt of the world. The highly invasive mosquito species Aedes aegypti and Aedes albopictus have successively invaded and expanded their presence as key vectors of Chikungunya virus, dengue virus, yellow fever virus, and Zika virus, and that has consecutively led to frequent outbreaks of the corresponding viral diseases. Of note, these two mosquito species have gradually adapted to the changing weather and environmental conditions leading to a shift in the epidemiology of the viral diseases, and facilitated their establishment in new ecozones inhabited by immunologically naive human populations. Many abilities of Ae. aegypti and Ae. albopictus, as vectors of significant arbovirus pathogens, may affect the infection and transmission rates after a bloodmeal, and may influence the vector competence for either virus. We highlight that many collaborating risk factors, for example, the global transportation systems may result in sporadic and more local outbreaks caused by mosquito-borne viruses related to Ae. aegypti and/or Ae. albopictus. Those local outbreaks could in synergy grow and produce larger epidemics with pandemic characters. There is an urgent need for improved surveillance of vector populations, human cases, and reliable prediction models. In summary, we recommend new and innovative strategies for the prevention of these types of infections.
Collapse
Affiliation(s)
- Jonas Näslund
- Swedish Defence Research Agency, CBRN, Defence and Security, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umea, Sweden.,Arctic Research Centre at Umeå University, Umea, Sweden
| | - Koushikul Islam
- Department of Clinical Microbiology, Umeå University, Umea, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, Umea, Sweden.,Arctic Research Centre at Umeå University, Umea, Sweden
| | - Göran Bucht
- Department of Clinical Microbiology, Umeå University, Umea, Sweden
| | - Olivia Wesula Lwande
- Department of Clinical Microbiology, Umeå University, Umea, Sweden.,Arctic Research Centre at Umeå University, Umea, Sweden
| |
Collapse
|
19
|
Huang Y, Williamson BD, Moodie Z, Carpp LN, Chambonneau L, DiazGranados CA, Gilbert PB. Analysis of Neutralizing Antibodies as a Correlate of Instantaneous Risk of Hospitalized Dengue in Placebo Recipients of Dengue Vaccine Efficacy Trials. J Infect Dis 2021; 225:332-340. [PMID: 34174082 DOI: 10.1093/infdis/jiab342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In the CYD14 (NCT01373281) and CYD15 (NCT01374516) dengue vaccine efficacy trials, Month 13 neutralizing antibody (nAb) titers correlated inversely with risk of symptomatic, virologically confirmed dengue (VCD) between Month 13 (one month post-final-dose) and Month 25. We assessed nAb titer as a correlate of instantaneous risk of hospitalized VCD (HVCD), for which participants were continually surveilled for 72 months. METHODS Using longitudinal nAb titers from the per-protocol immunogenicity subsets, we estimated hazard ratios (HRs) of HVCD by current nAb titer value for three correlate/endpoint pairs: average titer across all four serotypes/HVCD of any serotype (HVCD-Any), serotype-specific titer/homologous HVCD, and serotype-specific titer/heterologous HVCD. RESULTS Baseline-seropositive placebo recipients with higher average titer had lower instantaneous risk of HVCD-Any in 2-16-year-olds and in 9-16-year-olds (HR 0.26 or 0.15 per 10-fold increase in average titer by two methods, 95% CIs 0.14 to 0.45 and 0.07 to 0.34, respectively) pooled across both trials. Results were similar for homologous HVCD. There was evidence suggesting increased HVCD-Any risk in participants with low average titer (1:10 to 1:100) compared to seronegative participants (HR 1.85, 95% CI 0.93 to 3.68). CONCLUSIONS Natural infection-induced nAbs were inversely associated with hospitalized dengue, upon exceeding a relatively low threshold.
Collapse
Affiliation(s)
- Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America.,Department of Biostatistics, University of Washington, Seattle, 98109, United States of America
| | - Brian D Williamson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America
| | | | - Carlos A DiazGranados
- Clinical Sciences, Sanofi Pasteur, Swiftwater, Pennsylvania, United States of America
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109, United States of America.,Department of Biostatistics, University of Washington, Seattle, 98109, United States of America
| |
Collapse
|
20
|
Perspectives on New Vaccines against Arboviruses Using Insect-Specific Viruses as Platforms. Vaccines (Basel) 2021; 9:vaccines9030263. [PMID: 33809576 PMCID: PMC7999276 DOI: 10.3390/vaccines9030263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/07/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are global pathogens circulating endemically with local explosive outbreaks and constant encroachment into new locations. Few vaccines against arboviruses exist; most for humans are in development or clinical trials. Insect-specific viruses (ISVs) offer a unique platform for expression of arbovirus proteins, through the creation of ISV/arbovirus chimeras. Studies have shown promising results of these vaccines with several advantages over their wild-type counterparts. In this review, we discuss the current status of these potential vaccines using ISVs.
Collapse
|
21
|
Rasli R, Cheong YL, Che Ibrahim MK, Farahininajua Fikri SF, Norzali RN, Nazarudin NA, Hamdan NF, Muhamed KA, Hafisool AA, Azmi RA, Ismail HA, Ali R, Ab Hamid N, Taib MZ, Omar T, Wasi Ahmad N, Lee HL. Insecticide resistance in dengue vectors from hotspots in Selangor, Malaysia. PLoS Negl Trop Dis 2021; 15:e0009205. [PMID: 33755661 PMCID: PMC7987141 DOI: 10.1371/journal.pntd.0009205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/03/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In Malaysia, dengue remains a top priority disease and usage of insecticides is the main method for dengue vector control. Limited baseline insecticide resistance data in dengue hotspots has prompted us to conduct this study. The present study reports the use of a map on the insecticide susceptibility status of Aedes aegypti and Aedes albopictus to provide a quick visualization and overview of the distribution of insecticide resistance. METHOD AND RESULTS The insecticide resistance status of Aedes populations collected from 24 dengue hotspot areas from the period of December 2018 until June 2019 was proactively monitored using the World Health Organization standard protocol for adult and larval susceptibility testing was conducted, together with elucidation of the mechanisms involved in observed resistance. For resistance monitoring, susceptibility to three adulticides (permethrin, deltamethrin, and malathion) was tested, as well as susceptibility to the larvicide, temephos. Data showed significant resistance to both deltamethrin and permethrin (pyrethroid insecticides), and to malathion (organophosphate insecticide) in all sampled Aedes aegypti populations, while variable resistance patterns were found in the sampled Aedes albopictus populations. Temephos resistance was observed when larvae were tested using the diagnostic dosage of 0.012mg/L but not at the operational dosage of 1mg/L for both species. CONCLUSION The present study highlights evidence of a potential threat to the effectiveness of insecticides currently used in dengue vector control, and the urgent requirement for insecticide resistance management to be integrated into the National Dengue Control Program.
Collapse
Affiliation(s)
- Rosilawati Rasli
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Yoon Ling Cheong
- Biomedical Epidemiology Unit, Special Resource Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - M. Khairuddin Che Ibrahim
- Biomedical Research, Strategic & Innovation Management Unit, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Siti Futri Farahininajua Fikri
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Rusydi Najmuddin Norzali
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Nur Ayuni Nazarudin
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Nur Fadillah Hamdan
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Khairul Asuad Muhamed
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Afiq Ahnaf Hafisool
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Ruziyatul Aznieda Azmi
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Harith Aswad Ismail
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Roziah Ali
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Nurulhusna Ab Hamid
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Mohd Zainuldin Taib
- Biomedical Museum Unit, Special Resource Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - Topek Omar
- Federal Territory Health Department of Kuala Lumpur and Putrajaya, Ministry of Health, Kuala Lumpur, Malaysia
| | - Nazni Wasi Ahmad
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| | - Han Lim Lee
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Selangor, Malaysia
| |
Collapse
|
22
|
Trauchessec M, Hesse AM, Kraut A, Berard Y, Herment L, Fortin T, Bruley C, Ferro M, Manin C. An innovative standard for LC-MS-based HCP profiling and accurate quantity assessment: Application to batch consistency in viral vaccine samples. Proteomics 2021; 21:e2000152. [PMID: 33459490 DOI: 10.1002/pmic.202000152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/10/2020] [Accepted: 12/18/2020] [Indexed: 11/05/2022]
Abstract
Biotherapeutics, molecules produced from biological systems, require rigorous purification steps to remove impurities including host cell proteins (HCPs). Regulatory guidelines require manufacturers to monitor process-related impurities along the purification workflow. Mass spectrometry (MS) has recently been considered as a complementary method to the well-established ELISA for HCPs quantification, since it has the advantage of unambiguously identifying individual HCP. In this study, we developed an innovative standard dedicated to MS-based HCP profiling analysis in order to monitor the consistency of viral vaccine intermediate purification samples. This standard, termed the HCP-PROFILER standard, is composed of a water-soluble bead (READYBEADS technology) which, after being added into the sample, releases unlabeled peptides in controlled amounts. The standard meets three desired criteria: (1) it is composed of multiple peptides, at different concentration levels, allowing construction of a calibration curve covering the dynamic range of HCPs present in the target sample, ensuring quantification accuracy; (2) it demonstrates high batch-to-batch reproducibility, ensuring quantification robustness and consistency over time; and (3) it is easy to use and avoids user-induced analytical biases. In this study, we present the use of the HCP-PROFILER standard for vaccine batches comparison and downstream process performance studies.
Collapse
Affiliation(s)
- Mathieu Trauchessec
- ANAQUANT, Villeurbanne, France.,CEA, 17 av. des Martyrs, Grenoble, 38000, France
| | | | | | | | | | | | | | - Myriam Ferro
- CEA, 17 av. des Martyrs, Grenoble, 38000, France
| | | |
Collapse
|
23
|
Fibriansah G, Lim EXY, Marzinek JK, Ng TS, Tan JL, Huber RG, Lim XN, Chew VSY, Kostyuchenko VA, Shi J, Anand GS, Bond PJ, Crowe JE, Lok SM. Antibody affinity versus dengue morphology influences neutralization. PLoS Pathog 2021; 17:e1009331. [PMID: 33621239 PMCID: PMC7935256 DOI: 10.1371/journal.ppat.1009331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/05/2021] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Different strains within a dengue serotype (DENV1-4) can have smooth, or “bumpy” surface morphologies with different antigenic characteristics at average body temperature (37°C). We determined the neutralizing properties of a serotype cross-reactive human monoclonal antibody (HMAb) 1C19 for strains with differing morphologies within the DENV1 and DENV2 serotypes. We mapped the 1C19 epitope to E protein domain II by hydrogen deuterium exchange mass spectrometry, cryoEM and molecular dynamics simulations, revealing that this epitope is likely partially hidden on the virus surface. We showed the antibody has high affinity for binding to recombinant DENV1 E proteins compared to those of DENV2, consistent with its strong neutralizing activities for all DENV1 strains tested regardless of their morphologies. This finding suggests that the antibody could out-compete E-to-E interaction for binding to its epitope. In contrast, for DENV2, HMAb 1C19 can only neutralize when the epitope becomes exposed on the bumpy-surfaced particle. Although HMAb 1C19 is not a suitable therapeutic candidate, this study with HMAb 1C19 shows the importance of choosing a high-affinity antibody that could neutralize diverse dengue virus morphologies for therapeutic purposes. Dengue virus consists of four serotypes (DENV1-4) and there are different strains within a serotype. DENV can have smooth or bumpy surface morphologies at physiological body temperature of 37°C, depending on the strain. We have determined the cryoEM structures of a cross-reactive neutralizing human monoclonal antibody (HMAb) 1C19 in complex with strains of DENV1 and DENV2 that form either smooth or bumpy surface morphologies. We have mapped the epitope of HMAb 1C19 to E protein domain II and the epitope is likely partially hidden on the virus surface. We showed that the antibody has high affinity for binding to recombinant DENV1 E protein than to DENV2 E protein. This explains the strong neutralization activity for all DENV1 strains tested regardless of their morphologies at physiological temperature, whereas it can only neutralize DENV2 strain that exposes the epitope on the bumpy surface particles. These results suggest that high-affinity therapeutic antibodies could neutralize diverse dengue virus morphologies.
Collapse
Affiliation(s)
- Guntur Fibriansah
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Elisa X. Y. Lim
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jan K. Marzinek
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Thiam-Seng Ng
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Joanne L. Tan
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Roland G. Huber
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Xin-Ni Lim
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Valerie S. Y. Chew
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Victor A. Kostyuchenko
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jian Shi
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Ganesh S. Anand
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Peter J. Bond
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - James E. Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail: (JEC); (SML)
| | - Shee-Mei Lok
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (JEC); (SML)
| |
Collapse
|
24
|
Nivarthi UK, Swanstrom J, Delacruz MJ, Patel B, Durbin AP, Whitehead SS, Kirkpatrick BD, Pierce KK, Diehl SA, Katzelnick L, Baric RS, de Silva AM. A tetravalent live attenuated dengue virus vaccine stimulates balanced immunity to multiple serotypes in humans. Nat Commun 2021; 12:1102. [PMID: 33597521 PMCID: PMC7889627 DOI: 10.1038/s41467-021-21384-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 01/26/2021] [Indexed: 11/24/2022] Open
Abstract
The four-dengue virus (DENV) serotypes infect several hundred million people annually. For the greatest safety and efficacy, tetravalent DENV vaccines are designed to stimulate balanced protective immunity to all four serotypes. However, this has been difficult to achieve. Clinical trials with a leading vaccine demonstrated that unbalanced replication and immunodominance of one vaccine component over others can lead to low efficacy and vaccine enhanced severe disease. The Laboratory of Infectious Diseases at the National Institutes of Health has developed a live attenuated tetravalent DENV vaccine (TV003), which is currently being tested in phase 3 clinical trials. Here we report, our study to determine if TV003 stimulate balanced and serotype-specific (TS) neutralizing antibody (nAb) responses to each serotype. Serum samples from twenty-one dengue-naive individuals participated under study protocol CIR287 (ClinicalTrials.gov NCT02021968) are analyzed 6 months after vaccination. Most subjects (76%) develop TS nAbs to 3 or 4 DENV serotypes, indicating immunity is induced by each vaccine component. Vaccine-induced TS nAbs map to epitopes known to be targets of nAbs in people infected with wild type DENVs. Following challenge with a partially attenuated strain of DENV2, all 21 subjects are protected from the efficacy endpoints. However, some vaccinated individuals develop post challenge nAb boost, while others mount post-challenge antibody responses that are consistent with sterilizing immunity. TV003 vaccine induced DENV2 TS nAbs are associated with sterilizing immunity. Our results indicate that nAbs to TS epitopes on each serotype may be a better correlate than total levels of nAbs currently used for guiding DENV vaccine development.
Collapse
Affiliation(s)
- Usha K Nivarthi
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jesica Swanstrom
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, NC, USA
| | - Matthew J Delacruz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Bhumi Patel
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anna P Durbin
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, MD, USA
| | - Steve S Whitehead
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Kristen K Pierce
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Sean A Diehl
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | | | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, NC, USA.
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
25
|
Valli M, Atanázio LCV, Monteiro GC, Coelho RR, Demarque DP, Andricopulo AD, Espindola LS, Bolzani VDS. The Potential of Biologically Active Brazilian Plant Species as a Strategy to Search for Molecular Models for Mosquito Control. PLANTA MEDICA 2021; 87:6-23. [PMID: 33348409 DOI: 10.1055/a-1320-4610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural products are a valuable source of biologically active compounds and continue to play an important role in modern drug discovery due to their great structural diversity and unique biological properties. Brazilian biodiversity is one of the most extensive in the world and could be an effective source of new chemical entities for drug discovery. Mosquitoes are vectors for the transmission of dengue, Zika, chikungunya, yellow fever, and many other diseases of public health importance. These diseases have a major impact on tropical and subtropical countries, and their incidence has increased dramatically in recent decades, reaching billions of people at risk worldwide. The prevention of these diseases is mainly through vector control, which is becoming more difficult because of the emergence of resistant mosquito populations to the chemical insecticides. Strategies to provide efficient and safe vector control are needed, and secondary metabolites from plant species from the Brazilian biodiversity, especially Cerrado, that are biologically active for mosquito control are herein highlighted. Also, this is a literature revision of targets as insights to promote advances in the task of developing active compounds for vector control. In view of the expansion and occurrence of arboviruses diseases worldwide, scientific reviews on bioactive natural products are important to provide molecular models for vector control and contribute with effective measures to reduce their incidence.
Collapse
Affiliation(s)
- Marilia Valli
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), Institute of Physics of São Carlos, University of São Paulo (USP), São Carlos, Brazil
| | - Letícia Cristina Vieira Atanázio
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gustavo Claro Monteiro
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Roberta Ramos Coelho
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Daniel Pecoraro Demarque
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), Institute of Physics of São Carlos, University of São Paulo (USP), São Carlos, Brazil
| | - Laila Salmen Espindola
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Vanderlan da Silva Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
26
|
A single-dose live attenuated chimeric vaccine candidate against Zika virus. NPJ Vaccines 2021; 6:20. [PMID: 33514743 PMCID: PMC7846741 DOI: 10.1038/s41541-021-00282-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The mosquito-borne Zika virus is an emerging pathogen from the Flavivirus genus for which there are no approved antivirals or vaccines. Using the clinically validated PDK-53 dengue virus vaccine strain as a backbone, we created a chimeric dengue/Zika virus, VacDZ, as a live attenuated vaccine candidate against Zika virus. VacDZ demonstrates key markers of attenuation: small plaque phenotype, temperature sensitivity, attenuation of neurovirulence in suckling mice, and attenuation of pathogenicity in interferon deficient adult AG129 mice. VacDZ may be administered as a traditional live virus vaccine, or as a DNA-launched vaccine that produces live VacDZ in vivo after delivery. Both vaccine formulations induce a protective immune response against Zika virus in AG129 mice, which includes neutralising antibodies and a strong Th1 response. This study demonstrates that VacDZ is a safe and effective vaccine candidate against Zika virus.
Collapse
|
27
|
Universal Dengue Vaccine Elicits Neutralizing Antibodies against Strains from All Four Dengue Virus Serotypes. J Virol 2021; 95:JVI.00658-20. [PMID: 33208445 DOI: 10.1128/jvi.00658-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Any potential dengue virus (DENV) vaccine needs to elicit protective immunity against strains from all four serotypes to avoid potential antibody-dependent enhancement (ADE). In this study, four independent DENV envelope (E) glycoproteins were generated using wild-type E sequences from viruses isolated between 1943 and 2006 using computationally optimized broadly reactive antigen (COBRA) methodology. COBRA and wild-type E antigens were expressed on the surface of subvirion viral particles (SVPs). Four separate wild-type E antigens were used for each serotype. Mice vaccinated with wild-type DENV SVPs had anti-E IgG antibodies that neutralized serotype-specific viruses. COBRA DENV SVPs elicited a broader breadth of antibodies that neutralized strains across all four serotypes. Two COBRA DENV vaccine candidates that elicited the broadest breadth of neutralizing antibodies in mice were used to vaccinate rhesus macaques (Macaca mulatta) that either were immunologically naive to any DENV serotype or had preexisting antibodies to DENV. Antibodies elicited by COBRA DENV E immunogens neutralized all 12 strains of DENV in vitro, which was comparable to antibodies elicited by a tetravalent wild-type E SVP vaccination mixture. Therefore, using a single DENV COBRA E protein can elicit neutralizing antibodies against strains representing all four serotypes of DENV in both naive and dengue virus-preimmune populations.IMPORTANCE Dengue virus infects millions of people living in tropical areas of the world. Dengue virus-induced diseases can range from mild to severe with death. An effective vaccine will need to neutralize viruses from all four serotypes of dengue virus without inducing enhanced disease. A dengue virus E vaccine candidate generated by computationally optimized broadly reactive antigen algorithms elicits broadly neutralizing protection for currently circulating strains from all four serotypes regardless of immune status. Most dengue vaccines in development formulate four separate components based on prM-E from a wild-type strain representing each serotype. Designing a monovalent vaccine that elicits protective immunity against all four serotypes is an effective and economical strategy.
Collapse
|
28
|
Xisto MF, Dias RS, Feitosa-Araujo E, Prates JWO, da Silva CC, de Paula SO. Efficient Plant Production of Recombinant NS1 Protein for Diagnosis of Dengue. FRONTIERS IN PLANT SCIENCE 2020; 11:581100. [PMID: 33193526 PMCID: PMC7649140 DOI: 10.3389/fpls.2020.581100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 05/28/2023]
Abstract
Dengue fever is endemic in more than 120 countries, which account for 3.9 billion people at risk of infection worldwide. The absence of a vaccine with effective protection against the four serotypes of this virus makes differential molecular diagnosis the key step for the correct treatment of the disease. Rapid and efficient diagnosis prevents progression to a more severe stage of this disease. Currently, the limiting factor in the manufacture of dengue (DENV) diagnostic kits is the lack of large-scale production of the non-structural 1 (NS1) protein (antigen) to be used in the capture of antibodies from the blood serum of infected patients. In this work, we use plant biotechnology and genetic engineering as tools for the study of protein production for research and commercial purposes. Gene transfer, integration and expression in plants is a valid strategy for obtaining large-scale and low-cost heterologous protein production. The authors produced NS1 protein of the dengue virus serotype 2 (NS1DENV2) in the Arabidopsis thaliana plant. Transgenic plants obtained by genetic transformation expressed the recombinant protein that was purified and characterized for diagnostic use. The yield was 203 μg of the recombinant protein per gram of fresh leaf. By in situ immunolocalization, transgenic protein was observed within the plant tissue, located in aggregates bodies. These antigens showed high sensitivity and specificity to both IgM (84.29% and 91.43%, respectively) and IgG (83.08% and 87.69%, respectively). The study goes a step further to validate the use of plants as a strategy for obtaining large-scale and efficient protein production to be used in dengue virus diagnostic tests.
Collapse
Affiliation(s)
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | | | |
Collapse
|
29
|
Halstead SB, Katzelnick LC, Russell PK, Markoff L, Aguiar M, Dans LR, Dans AL. Ethics of a partially effective dengue vaccine: Lessons from the Philippines. Vaccine 2020; 38:5572-5576. [PMID: 32654899 PMCID: PMC7347470 DOI: 10.1016/j.vaccine.2020.06.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/31/2022]
Abstract
Dengvaxia, a chimeric yellow fever tetravalent dengue vaccine developed by SanofiPasteur is widely licensed in dengue-endemic countries. In a large cohort study Dengvaxia was found to partially protect children who had prior dengue virus (DENV) infections but sensitized seronegative children to breakthrough DENV disease of enhanced severity. In 2019, the European Medicines Agency and the US FDA issued licenses that reconciled safety issues by restricting vaccine to individuals with prior dengue infections. Using revised Dengvaxia efficacy and safety data we sought to estimate hospitalized and severe dengue cases among the more than 800,000 9 year-old children vaccinated in the Philippines. Despite an overall vaccine efficacy of 69% during 4 years post-vaccination we project there will be more than one thousand vaccinated seronegative and seropositive children hospitalized for severe dengue. Assisting these children through a program of enhanced surveillance leading to improved care deserves widespread support. Clinical responses observed during breakthrough dengue infections in vaccinated individuals counsel prudence in design of vaccine policies. Recommendations concerning continued use of this dengue vaccine are: (1) obtain a better definition of vaccine efficacy and safety through enhanced phase 4 surveillance, (2) obtain a valid, accessible, sensitive, specific and affordable serological test that identifies past wild-type dengue virus infection and (3) clarify safety and efficacy of Dengvaxia in flavivirus immunes. In the absence of an acceptable serological screening test these unresolved ethical issues suggest Dengvaxia be given only to those signing informed consent.
Collapse
Affiliation(s)
- Scott B Halstead
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, United States.
| | - Leah C Katzelnick
- Research Associate, Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, United States; Department of Biology, University of Florida, Gainesville, FL 32611, United States
| | - Philip K Russell
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
| | - Lewis Markoff
- Consultant, 6908 Nevis Road, Bethesda MD 20817, United States
| | - Maira Aguiar
- Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, 38123 Povo Trento, Italy; Basque Center for Applied Mathematics (BCAM), Alameda Mazarredo, 14, 48009 Bilbao, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Leonila R Dans
- Department of Pediatrics, College of Medicine, University of the Philippines, Manila, 547 Pedro Gil Street, Ermita, Manila 1000, Philippines
| | - Antonio L Dans
- Department of Medicine, College of Medicine, University of the Philippines, Manila 547 Pedro Gil Streeet, Ermita, Manila 1000, Philippines
| |
Collapse
|
30
|
Izmirly AM, Alturki SO, Alturki SO, Connors J, Haddad EK. Challenges in Dengue Vaccines Development: Pre-existing Infections and Cross-Reactivity. Front Immunol 2020; 11:1055. [PMID: 32655548 PMCID: PMC7325873 DOI: 10.3389/fimmu.2020.01055] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Dengue is one of the most frequently transmitted mosquito-borne diseases in the world, which creates a significant public health concern globally, especially in tropical and subtropical countries. It is estimated that more than 390 million people are infected with dengue virus each year and around 96 million develop clinical pathologies. Dengue infections are not only a health problem but also a substantial economic burden. To date, there are no effective antiviral therapies and there is only one licensed dengue vaccine that only demonstrated protection in the seropositive (Immune), naturally infected with dengue, but not dengue seronegative (Naïve) vaccines. In this review, we address several immune components and their interplay with the dengue virus. Additionally, we summarize the literature pertaining to current dengue vaccine development and advances. Moreover, we review some of the factors affecting vaccine responses, such as the pre-vaccination environment, and provide an overview of the significant challenges that face the development of an efficient/protective dengue vaccine including the presence of multiple serotypes, antibody-dependent enhancement (ADE), as well as cross-reactivity with other flaviviruses. Finally, we discuss targeting T follicular helper cells (Tfh), a significant cell population that is essential for the production of high-affinity antibodies, which might be one of the elements needed to be specifically targeted to enhance vaccine precision to dengue regardless of dengue serostatus.
Collapse
Affiliation(s)
- Abdullah M Izmirly
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sana O Alturki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sawsan O Alturki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jennifer Connors
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
31
|
Xisto MF, Prates JWO, Dias IM, Dias RS, da Silva CC, de Paula SO. NS1 Recombinant Proteins Are Efficiently Produced in Pichia pastoris and Have Great Potential for Use in Diagnostic Kits for Dengue Virus Infections. Diagnostics (Basel) 2020; 10:E379. [PMID: 32517281 PMCID: PMC7345099 DOI: 10.3390/diagnostics10060379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Dengue is one of the major diseases causing global public health concerns. Despite technological advances in vaccine production against all its serotypes, it is estimated that the dengue virus is responsible for approximately 390 million infections per year. Laboratory diagnosis has been the key point for the correct treatment and prevention of this disease. Currently, the limiting factor in the manufacture of dengue diagnostic kits is the large-scale production of the non-structural 1 (NS1) antigen used in the capture of the antibody present in the infected patients' serum. In this work, we demonstrate the production of the non-structural 1 protein of dengue virus (DENV) serotypes 1-4 (NS1-DENV1, NS1-DENV2, NS1-DENV3, and NS1-DENV4) in the methylotrophic yeast Pichia pastoris KM71H. Secreted recombinant protein was purified by affinity chromatography and characterized by SDS-PAGE and ELISA. The objectives of this study were achieved, and the results showed that P. pastoris is a good heterologous host and worked well in the production of NS1DENV 1-4 recombinant proteins. Easy to grow and quick to obtain, this yeast secreted ready-to-use proteins, with a final yield estimated at 2.8-4.6 milligrams per liter of culture. We reached 85-91% sensitivity and 91-93% specificity using IgM as a target, and for anti-dengue IgG, 83-87% sensitivity and 81-93% specificity were achieved. In this work, we conclude that the NS1 recombinant proteins are efficiently produced in P. pastoris and have great potential for use in diagnostic kits for dengue virus infections. The transformed yeast obtained can be used for production in industrial-scale bioreactors.
Collapse
Affiliation(s)
- Mariana Fonseca Xisto
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (M.F.X.); (I.M.D.); (R.S.D.)
| | - John Willians Oliveira Prates
- Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.W.O.P.); (C.C.d.S.)
| | - Ingrid Marques Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (M.F.X.); (I.M.D.); (R.S.D.)
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (M.F.X.); (I.M.D.); (R.S.D.)
| | - Cynthia Canedo da Silva
- Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.W.O.P.); (C.C.d.S.)
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (M.F.X.); (I.M.D.); (R.S.D.)
| |
Collapse
|
32
|
Alkaff AH, Saragih M, Fardiansyah MA, Tambunan USF. Role of Immunoinformatics in Accelerating Epitope-Based Vaccine Development against Dengue Virus. Open Biochem J 2020. [DOI: 10.2174/1874091x02014010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dengue Fever (DF) has emerged as a significant public health problem of international concern with its high prevalence in the tropic and subtropical regions. Dengue Virus (DENV), which is the cause of DF, consists of four serotypes of antigenically distinct viruses. The immense variation and limited identity similarity at the amino acid level lead to a problematic challenge in the development of an efficacious vaccine. Fortunately, the extensively available immunological data, the advance in antigenic peptide prediction, and the incorporation of molecular docking and dynamics simulation in immunoinformatics have directed the vaccine development towards the rational design of the epitope-based vaccine. Here, we point out the current state of dengue epidemiology and the recent development in vaccine development. Subsequently, we provide a systematic review of our validated method and tools for B- and T-cell epitope prediction as well as the use of molecular docking and dynamics in evaluating epitope affinity and stability in the discovery of a new tetravalent dengue vaccine through computational epitope-based vaccine design.
Collapse
|
33
|
Production and immunogenicity of Fubc subunit protein redesigned from DENV envelope protein. Appl Microbiol Biotechnol 2020; 104:4333-4344. [PMID: 32232529 PMCID: PMC7223326 DOI: 10.1007/s00253-020-10541-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Dengue virus (DENV) is a vector-borne human pathogen that usually causes dengue fever; however, sometime it leads to deadly complications such as dengue with warning signs (DWS+) and severe dengue (SD). Several studies have shown that fusion (Fu) and bc loop of DENV envelope domain II are highly conserved and consist some of the most dominant antigenic epitopes. Therefore, in this study, Fu and bc loops were joined together to develop a short recombinant protein as an alternative of whole DENV envelope protein, and its immunogenic potential as fusion peptide was estimated. For de novo designing of the antigen, Fu and bc peptides were linked with an optimised linker so that the three dimensional conformation was maintained as it is in DENV envelope protein. The redesigned Fubc protein was expressed in E. coli and purified. Subsequently, structural integrity of the purified protein was verified by CD spectroscopy. To characterise immune responses against recombinant Fubc protein, BALB/c mice were subcutaneously injected with emulsified antigen preparation. It was observed by ELISA that Fubc fusion protein elicited higher serum IgG antibody response either in the presence or in absence of Freund’s adjuvant in comparison to the immune response of Fu and bc peptides separately. Furthermore, the binding of Fubc protein with mice antisera was validated by SPR analysis. These results suggest that Fu and bc epitope-based recombinant fusion protein could be a potential candidate towards the development of the effective subunit vaccine against DENV.
Collapse
|
34
|
Hurtado-Monzón AM, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, De Jesús-González LA, Reyes-Ruiz JM, Del Ángel RM. The role of anti-flavivirus humoral immune response in protection and pathogenesis. Rev Med Virol 2020; 30:e2100. [PMID: 32101633 DOI: 10.1002/rmv.2100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Flavivirus infections are a public health threat in the world that requires the development of safe and effective vaccines. Therefore, the understanding of the anti-flavivirus humoral immune response is fundamental to future studies on flavivirus pathogenesis and the design of anti-flavivirus therapeutics. This review aims to provide an overview of the current understanding of the function and involvement of flavivirus proteins in the humoral immune response as well as the ability of the anti-envelope (anti-E) antibodies to interfere (neutralizing antibodies) or not (non-neutralizing antibodies) with viral infection, and how they can, in some circumstances enhance dengue virus infection on Fc gamma receptor (FcγR) bearing cells through a mechanism known as antibody-dependent enhancement (ADE). Thus, the dual role of the antibodies against E protein poses a formidable challenge for vaccine development. Also, we discuss the roles of antibody binding stoichiometry (the concentration, affinity, or epitope recognition) in the neutralization of flaviviruses and the "breathing" of flavivirus virions in the humoral immune response. Finally, the relevance of some specific antibodies in the design and improvement of effective vaccines is addressed.
Collapse
Affiliation(s)
- Arianna Mahely Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| |
Collapse
|
35
|
Manwill PK, Kalsi M, Wu S, Martinez Rodriguez EJ, Cheng X, Piermarini PM, Rakotondraibe HL. Semi-synthetic cinnamodial analogues: Structural insights into the insecticidal and antifeedant activities of drimane sesquiterpenes against the mosquito Aedes aegypti. PLoS Negl Trop Dis 2020; 14:e0008073. [PMID: 32101555 PMCID: PMC7062286 DOI: 10.1371/journal.pntd.0008073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 03/09/2020] [Accepted: 01/18/2020] [Indexed: 11/28/2022] Open
Abstract
The Aedes aegypti mosquito serves as a major vector for viral diseases, such as dengue, chikungunya, and Zika, which are spreading across the globe and threatening public health. In addition to increased vector transmission, the prevalence of insecticide-resistant mosquitoes is also on the rise, thus solidifying the need for new, safe and effective insecticides to control mosquito populations. We recently discovered that cinnamodial, a unique drimane sesquiterpene dialdehyde of the Malagasy medicinal plant Cinnamosma fragrans, exhibited significant larval and adult toxicity to Ae. aegypti and was more efficacious than DEET-the gold standard for insect repellents-at repelling adult female Ae. aegypti from blood feeding. In this study several semi-synthetic analogues of cinnamodial were prepared to probe the structure-activity relationship (SAR) for larvicidal, adulticidal and antifeedant activity against Ae. aegypti. Initial efforts were focused on modification of the dialdehyde functionality to produce more stable active analogues and to understand the importance of the 1,4-dialdehyde and the α,ß-unsaturated carbonyl in the observed bioactivity of cinnamodial against mosquitoes. This study represents the first investigation into the SAR of cinnamodial as an insecticide and antifeedant against the medically important Ae. aegypti mosquito.
Collapse
Affiliation(s)
- Preston K. Manwill
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Megha Kalsi
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, United States of America
| | - Sijin Wu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Erick J. Martinez Rodriguez
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, United States of America
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Peter M. Piermarini
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, United States of America
| | - Harinantenaina L. Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
36
|
Grifoni A, Tian Y, Sette A, Weiskopf D. Transcriptomic immune profiles of human flavivirus-specific T-cell responses. Immunology 2020; 160:3-9. [PMID: 31778581 DOI: 10.1111/imm.13161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/06/2019] [Accepted: 11/23/2019] [Indexed: 12/14/2022] Open
Abstract
The Flavivirus genus of viruses includes dengue (DENV), Zika (ZIKV), yellow fever (YFV), Japanese encephalitis (JEV), and West Nile (WNV) viruses. Infections with these species combined are prevalent in tropical and sub-tropical areas, affecting millions of people and ranging from asymptomatic to severe forms of the disease. They therefore pose a serious threat to global public health. Several studies imply a role for T cells in the protection but also pathogenesis against the different flavivirus species. Identifying flavivirus-specific T-cell immune profiles and determining how pre-exposure of one species might affect the immune response against subsequent infections from other species is important to further define the role of T cells in the immune response against infection. Understanding the immune profiles of the flavivirus-specific T-cell response in natural infection is important to understand the T-cell response in the context of vaccination. In this review, we summarize the current knowledge on human immune profiles of flavivirus-specific T-cell reactivity, comparing natural infection with the acute form of the disease and vaccination in different flavivirus infections.
Collapse
Affiliation(s)
- Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| |
Collapse
|
37
|
Hooft van Huijsduijnen R, Kojima S, Carter D, Okabe H, Sato A, Akahata W, Wells TNC, Katsuno K. Reassessing therapeutic antibodies for neglected and tropical diseases. PLoS Negl Trop Dis 2020; 14:e0007860. [PMID: 31999695 PMCID: PMC6991954 DOI: 10.1371/journal.pntd.0007860] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the past two decades there has been a significant expansion in the number of new therapeutic monoclonal antibodies (mAbs) that are approved by regulators. The discovery of these new medicines has been driven primarily by new approaches in inflammatory diseases and oncology, especially in immuno-oncology. Other recent successes have included new antibodies for use in viral diseases, including HIV. The perception of very high costs associated with mAbs has led to the assumption that they play no role in prophylaxis for diseases of poverty. However, improvements in antibody-expression yields and manufacturing processes indicate this is a cost-effective option for providing protection from many types of infection that should be revisited. Recent technology developments also indicate that several months of protection could be achieved with a single dose. Moreover, new methods in B cell sorting now enable the systematic identification of high-quality antibodies from humanized mice, or patients. This Review discusses the potential for passive immunization against schistosomiasis, fungal infections, dengue, and other neglected diseases.
Collapse
Affiliation(s)
| | | | - Dee Carter
- School of Life and Environmental Sciences and The Marie Bashir Institute, University of Sydney, NSW, Australia
| | | | | | - Wataru Akahata
- VLP Therapeutics, Gaithersburg, Maryland, United States of America
| | | | - Kei Katsuno
- Global Health Innovative Technology Fund, Tokyo, Japan
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Nagasaki University School of Tropical Medicine and Global Health, Nagasaki, Japan
| |
Collapse
|
38
|
Noad RJ, Simpson K, Fooks AR, Hewson R, Gilbert SC, Stevens MP, Hosie MJ, Prior J, Kinsey AM, Entrican G, Simpson A, Whitty CJM, Carroll MW. UK vaccines network: Mapping priority pathogens of epidemic potential and vaccine pipeline developments. Vaccine 2019; 37:6241-6247. [PMID: 31522809 PMCID: PMC7127063 DOI: 10.1016/j.vaccine.2019.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
During the 2013-2016 Ebola outbreak in West Africa an expert panel was established on the instructions of the UK Prime Minister to identify priority pathogens for outbreak diseases that had the potential to cause future epidemics. A total of 13 priority pathogens were identified, which led to the prioritisation of spending in emerging diseases vaccine research and development from the UK. This meeting report summarises the process used to develop the UK pathogen priority list, compares it to lists generated by other organisations (World Health Organisation, National Institutes of Allergy and Infectious Diseases) and summarises clinical progress towards the development of vaccines against priority diseases. There is clear technical progress towards the development of vaccines. However, the availability of these vaccines will be dependent on sustained funding for clinical trials and the preparation of clinically acceptable manufactured material during inter-epidemic periods.
Collapse
Affiliation(s)
- Rob J Noad
- Pathobiology and Population Science, The Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK.
| | - Karl Simpson
- JKS Bioscience Ltd, 2 Midanbury Court, 44 Midanbury Lane, Southampton SO18 4HF, UK.
| | | | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Sarah C Gilbert
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| | - Mark P Stevens
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, College of Veterinary, Medical and Life Sciences, Garscube Estate, Bearsden, Glasgow G61 1QH, UK.
| | - Joann Prior
- CBR Division, Dstl Porton Down, Wiltshire SP3 4DZ, UK.
| | - Anna M Kinsey
- Medical Research Council, One Kemble Street, London WC2B 4AN, UK.
| | - Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh, Scotland EH26 0PZ, UK.
| | - Andrew Simpson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| | | | - Miles W Carroll
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| |
Collapse
|
39
|
Abstract
Dengue is the world's most prevalent and important arboviral disease. More than 50% of the world's population lives at daily risk of infection and it is estimated more than 95 million people a year seek medical care following infection. Severe disease can manifest as plasma leakage and potential for clinically significant hemorrhage, shock, and death. Treatment is supportive and there is currently no licensed anti-dengue virus prophylactic or therapeutic compound. A single dengue vaccine, Sanofi Pasteur's Dengvaxia®, has been licensed in 20 countries but uptake has been poor. A safety signal in dengue seronegative vaccine recipients stimulated an international re-look at the vaccine performance profile, new World Health Organization recommendations for use, and controversy in the Philippines involving the government, regulatory agencies, Sanofi Pasteur, clinicians responsible for testing and administering the vaccine, and the parents of vaccinated children. In this review, we provide an overview of Dengvaxia's® development and discuss what has been learned about product performance since its licensure.
Collapse
Affiliation(s)
- Stephen J Thomas
- State University of New York, Upstate Medical University, Division of Infectious Diseases, Institute for Global Health and Translational Sciences , Syracuse , NY , USA
| | - In-Kyu Yoon
- Global Dengue & Aedes-Transmitted Diseases Consortium, International Vaccine Institute, SNU Research Park , Gwanak-gu , Republic of Korea
| |
Collapse
|
40
|
Yang Y, Meng Y, Halloran ME, Longini IM. Dependency of Vaccine Efficacy on Preexposure and Age: A Closer Look at a Tetravalent Dengue Vaccine. Clin Infect Dis 2019; 66:178-184. [PMID: 29020332 DOI: 10.1093/cid/cix766] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/21/2017] [Indexed: 11/12/2022] Open
Abstract
Background A recombinant, live-attenuated, tetravalent dengue vaccine (CYD-TDV) was licensed for children aged ≥9 years in a few countries, but the dependence of vaccine efficacy on baseline immunity status and age groups has not been fully characterized. Methods Combining the 2 phase 3 trials CYD14 and CYD15, we estimated the vaccine efficacy for each of the 4 serotypes of dengue virus (DENV), as well as all serotypes combined, simultaneously stratified by baseline immunity status and age group, while accounting for uncertainty in the baseline immunity status of subjects. Results Baseline seropositive subjects showed high efficacy for all serotypes: 70.2% (95% confidence interval [CI], 57.4%-80.1%) for dengue serotype 1 (DENV-1), 67.9% (95% CI, 49.9%-82.0%) for DENV-2, 77.5% (95% CI, 64.3%-90.2%) for DENV-3, 89.9% (95% CI, 79.8%-99.9%) for DENV-4, and 75.4% (95% CI, 68.3%-81.6%) overall. In contrast, baseline seronegative subjects showed moderate efficacy against DENV-4 (51.2% [95% CI, 20.0%-72.8%]) but no significant efficacy against other serotypes. Among seropositive children, the overall efficacy tended to increase with age: 35.9% (95% CI, -7.6% to 69.3%) for children ≤5 years old, 65.6% (95% CI, 40.3%-84.2%) for those 6-8 years old, 73.4% (95% CI, 62.6%-82.1%) for those 9-11 years old, and 80.6% (95% CI, 72.9%-87.3%) for those 12 years or older. Conclusions The CYD-TDV vaccine was highly efficacious for all dengue serotypes among children aged >5 years who have acquired baseline immunity from previous exposure. Increasing vaccine efficacy with age was not fully explained by increasing prevalence of baseline immunity with age.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biostatistics and Emerging Pathogens Institute, University of Florida, Gainesville
| | - Ya Meng
- Department of Biostatistics and Emerging Pathogens Institute, University of Florida, Gainesville
| | - M Elizabeth Halloran
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle.,Department of Biostatistics, University of Washington, Seattle
| | - Ira M Longini
- Department of Biostatistics and Emerging Pathogens Institute, University of Florida, Gainesville
| |
Collapse
|
41
|
Saotome T, Doret M, Kulkarni M, Yang YS, Barthe P, Kuroda Y, Roumestand C. Folding of the Ig-Like Domain of the Dengue Virus Envelope Protein Analyzed by High-Hydrostatic-Pressure NMR at a Residue-Level Resolution. Biomolecules 2019; 9:biom9080309. [PMID: 31357538 PMCID: PMC6723665 DOI: 10.3390/biom9080309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Dengue fever is a mosquito-borne endemic disease in tropical and subtropical regions, causing a significant public health problem in Southeast Asia. Domain III (ED3) of the viral envelope protein contains the two dominant putative epitopes and part of the heparin sulfate receptor binding region that drives the dengue virus (DENV)’s fusion with the host cell. Here, we used high-hydrostatic-pressure nuclear magnetic resonance (HHP-NMR) to obtain residue-specific information on the folding process of domain III from serotype 4 dengue virus (DEN4-ED3), which adopts the classical three-dimensional (3D) ß-sandwich structure known as the Ig-like fold. Interestingly, the folding pathway of DEN4-ED3 shares similarities with that of the Titin I27 module, which also adopts an Ig-like fold, but is functionally unrelated to ED3. For both proteins, the unfolding process starts by the disruption of the N- and C-terminal strands on one edge of the ß-sandwich, yielding a folding intermediate stable over a substantial pressure range (from 600 to 1000 bar). In contrast to this similarity, pressure-jump kinetics indicated that the folding transition state is considerably more hydrated in DEN4-ED3 than in Titin I27.
Collapse
Affiliation(s)
- Tomonori Saotome
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Maxime Doret
- Centre de Biochimie Structurale, CNRS UMR 5048, University of Montpellier-INSERM U 1054, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Manjiri Kulkarni
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Yin-Shan Yang
- Centre de Biochimie Structurale, CNRS UMR 5048, University of Montpellier-INSERM U 1054, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Philippe Barthe
- Centre de Biochimie Structurale, CNRS UMR 5048, University of Montpellier-INSERM U 1054, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184-8588, Japan
| | - Christian Roumestand
- Centre de Biochimie Structurale, CNRS UMR 5048, University of Montpellier-INSERM U 1054, 29 Rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
42
|
Complementary use of mass spectrometry and cryo-electron microscopy to assess the maturity of live attenuated dengue vaccine viruses. Vaccine 2019; 37:3580-3587. [DOI: 10.1016/j.vaccine.2019.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/25/2019] [Accepted: 05/05/2019] [Indexed: 01/19/2023]
|
43
|
Allonso D, Pereira IB, Alves AM, Kurtenbach E, Mohana-Borges R. Expression of soluble, glycosylated and correctly folded dengue virus NS1 protein in Pichia pastoris. Protein Expr Purif 2019; 162:9-17. [PMID: 31077812 DOI: 10.1016/j.pep.2019.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
The dengue virus (DENV) non structural protein 1 (NS1) is a 46-55 kDa protein that exists as homodimer inside cells and as hexamer in the extracellular milieu. Several lines of evidence have demonstrated that the biochemical and structural properties of recombinant NS1 (rNS1) vary depending on the protein expression system used. Aiming to improve current tools for studying NS1 multiple roles, a recombinant tag-free NS1 protein was expressed and purified from P. pastoris yeast cells. The best expression condition was achieved using GS115 strain and induction for 72 h with 0.7% methanol addition every 24 h. Total secreted rNS1 reached 2.18 mg in 1 L culture and the final yield of the purified protein was 1 mg per liter of culture (recovery yield of approximately 45.9%). Size-exclusion chromatography and treatment with EndoH and PNGase indicate that it exists as an N-glycosylated homodimer. Moreover, an ELISA assay with specific DENV anti-NS1 antibody that recognizes conformational epitopes revealed that rNS1 has most of its conformational epitopes preserved. The expression of rNS1 in its native conformation is an important tool for further studies of its role in DENV pathogenesis and replication.
Collapse
Affiliation(s)
- Diego Allonso
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Brazil; Laboratory of Biotechnology and Structural Bioengineering, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Iuri B Pereira
- Laboratory of Biochemistry and Molecular Biology of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Ada Mb Alves
- Laboratory of Biotechnology and Physiology of Virus Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eleonora Kurtenbach
- Laboratory of Biochemistry and Molecular Biology of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratory of Biotechnology and Structural Bioengineering, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
44
|
Verma M, Bhatnagar S, Kumari K, Mittal N, Sukhralia S, Gopirajan At S, Dhanaraj PS, Lal R. Highly conserved epitopes of DENV structural and non-structural proteins: Candidates for universal vaccine targets. Gene 2019; 695:18-25. [PMID: 30738967 PMCID: PMC7125761 DOI: 10.1016/j.gene.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
Abstract
Dengue is a severe emerging arthropod borne viral disease occurring globally. Around two fifths of the world's population, or up to 3.9 billion people, are at a risk of dengue infection. Infection induces a life-long protective immunity to the homologous serotype but confers only partial and transient protection against subsequent infection caused by other serotypes. Thus, there is a need for a vaccine which is capable of providing a life- long protection against all the serotypes of dengue virus. In our study, comparative genomics of Dengue virus (DENV) was conducted to explore potential candidates for novel vaccine targets. From our analysis we successfully found 100% conserved epitopes in Envelope protein (RCPTQGE); NS3 (SAAQRRGR, PGTSGSPI); NS4A (QRTPQDNQL); NS4B (LQAKATREAQKRA) and NS5 proteins (QRGSGQV) in all DENV serotypes. Some serotype specific conserved motifs were also found in NS1, NS5, Capsid, PrM and Envelope proteins. Using comparative genomics and immunoinformatics approach, we could find conserved epitopes which can be explored as peptide vaccine candidates to combat dengue worldwide. Serotype specific epitopes can also be exploited for rapid diagnostics. All ten proteins are explored to find the conserved epitopes in DENV serotypes, thus making it the most extensively studied viral genome so far.
Collapse
Affiliation(s)
- Mansi Verma
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India; Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Shradha Bhatnagar
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Kavita Kumari
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Nidhi Mittal
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Shivani Sukhralia
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Shruthi Gopirajan At
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - P S Dhanaraj
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
45
|
Turvey ME, Uppu DS, Mohamed Sharif AR, Bidet K, Alonso S, Ooi EE, Hammond PT. Microneedle-based intradermal delivery of stabilized dengue virus. Bioeng Transl Med 2019; 4:e10127. [PMID: 31249877 PMCID: PMC6584444 DOI: 10.1002/btm2.10127] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022] Open
Abstract
Current live-attenuated dengue vaccines require strict cold chain storage. Methods to preserve dengue virus (DENV) viability, which enable vaccines to be transported and administered at ambient temperatures, will be decisive towards the implementation of affordable global vaccination schemes with broad immunization coverage in resource-limited areas. We have developed a microneedle (MN)-based vaccine platform for the stabilization and intradermal delivery of live DENV from minimally invasive skin patches. Dengue virus-stabilized microneedle arrays (VSMN) were fabricated using saccharide-based formulation of virus and could be stored dry at ambient temperature up to 3 weeks with maintained virus viability. Following intradermal vaccination, VSMN-delivered DENV was shown to elicit strong neutralizing antibody responses and protection from viral challenge, comparable to that of the conventional liquid vaccine administered subcutaneously. This work supports the potential for MN-based dengue vaccine technology and the progression towards cold chain-independence. Dengue virus can be stabilized using saccharide-based formulations and coated on microneedle array vaccine patches for storage in dry state with preserved viability at ambient temperature (VSMN; virus-stabilized microneedle arrays).
Collapse
Affiliation(s)
- Michelle E. Turvey
- Infectious Diseases IRGSingapore‐MIT Alliance for Research and TechnologySingapore
| | - Divakara S.S.M. Uppu
- Infectious Diseases IRGSingapore‐MIT Alliance for Research and TechnologySingapore
| | | | - Katell Bidet
- Infectious Diseases IRGSingapore‐MIT Alliance for Research and TechnologySingapore
| | - Sylvie Alonso
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, Immunology ProgrammeLife Sciences Institute, National University of SingaporeSingapore
| | - Eng Eong Ooi
- Infectious Diseases IRGSingapore‐MIT Alliance for Research and TechnologySingapore
- Emerging Infectious DiseasesDuke‐NUS Graduate Medical SchoolSingapore
| | - Paula T. Hammond
- Infectious Diseases IRGSingapore‐MIT Alliance for Research and TechnologySingapore
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeMA
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA
| |
Collapse
|
46
|
Krol E, Brzuska G, Szewczyk B. Production and Biomedical Application of Flavivirus-like Particles. Trends Biotechnol 2019; 37:1202-1216. [PMID: 31003718 DOI: 10.1016/j.tibtech.2019.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 01/13/2023]
Abstract
Many viruses belonging to the Flaviviridae family are transmitted by invertebrate vectors. Among those transmitted by mosquitos, there are many human pathogens of great medical importance, such as Japanese encephalitis virus, West Nile virus, dengue virus, Zika virus, or yellow fever virus. Millions of people contract mosquito-borne diseases each year, leading to thousands of deaths. Co-circulation of genetically similar flaviviruses in the same areas result in the generation of crossreactive antibodies, which is of serious concern for the development of effective vaccines and diagnostic tests. This review provides comprehensive insight into the potential use of virus-like particles as safe and effective antigens in both diagnostics tests, as well as in the development of vaccines against several mosquito-borne flaviviruses.
Collapse
Affiliation(s)
- Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
47
|
Anasir MI, Poh CL. Structural Vaccinology for Viral Vaccine Design. Front Microbiol 2019; 10:738. [PMID: 31040832 PMCID: PMC6476906 DOI: 10.3389/fmicb.2019.00738] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Although vaccines have proven pivotal against arrays of infectious viral diseases, there are still no effective vaccines against many viruses. New structural insights into the viral envelope, protein conformation, and antigenic epitopes can guide the design of novel vaccines against challenging viruses such as human immunodeficiency virus (HIV), hepatitis C virus, enterovirus A71, and dengue virus. Recent studies demonstrated that applications of this structural information can solve some of the vaccine conundrums. This review focuses on recent advances in structure-based vaccine design, or structural vaccinology, for novel and innovative viral vaccine design.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
48
|
Moris P, Bauer KM, Currier JR, Friberg H, Eckels KH, Esquilin IO, Gibbons RV, Innis BL, Jarman RG, Simasathien S, Sun P, Thomas SJ, Watanaveeradej V. Cell-mediated immune responses to different formulations of a live-attenuated tetravalent dengue vaccine candidate in subjects living in dengue endemic and non-endemic regions. Hum Vaccin Immunother 2019; 15:2090-2105. [PMID: 30829100 PMCID: PMC6773406 DOI: 10.1080/21645515.2019.1581536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Three phase II randomized trials evaluated the safety/immunogenicity of two formulations of live-attenuated tetravalent dengue virus (TDEN) vaccine in dengue-endemic (Puerto Rico, Thailand) and non-endemic (US) regions (NCT00350337/NCT00370682/NCT00468858). We describe cell-mediated immune (CMI) responses; safety and humoral responses were reported previously. Participants received two doses of vaccine or control (placebo or the precursor live-attenuated TDEN vaccine) 6 months apart. Selected US participants received a booster 5–12 months post-dose 2. Evaluated subsets of the per-protocol cohorts included 75 primarily dengue virus (DENV)-unprimed US adults, 69 primarily flavivirus-primed Thai adults, and 100 DENV-primed or DENV-unprimed Puerto Rican adults/adolescents/children. T-cell responses were quantified using intracellular cytokine staining (ICS; DENV-infected cell-lysate or DENV-1/DENV-2 peptide-pool stimulation) or IFN-γ ELISPOT (DENV-2 peptide-pool stimulation). Memory B-cell responses were quantified using B-cell ELISPOT. Across populations and age strata, DENV serotype-specific CD4+ T-cell responses were slightly to moderately increased (medians ≤0.18% [ICS]), DENV-2–biased, and variable for both formulations. Responses in unprimed subjects were primarily detected post-dose 1. Response magnitudes in primed subjects were similar between doses. Multifunctional CD8+ T-cell responses were detected after peptide-pool stimulation. T-cell responses were mostly directed to DENV nonstructural proteins 3 and 5. Memory B-cell responses were tetravalent, of low-to-moderate magnitudes (medians ≤0.25%), and mainly observed post-dose 2 in unprimed subjects and post-dose 1 in primed subjects. A third dose did not boost CMI responses. In conclusion, both formulations of the live-attenuated TDEN vaccine candidate were poorly to moderately immunogenic with respect to B-cell and T-cell responses, irrespective of the priming status of the participants. Abbreviation ATP: according-to-protocol; ICS: Intracellular Cytokine Staining; NS3: Nonstructural protein 3; ELISPOT: Enzyme-Linked ImmunoSpot; JEV: Japanese encephalitis virus; PBMC: peripheral blood mononuclear cells
Collapse
Affiliation(s)
| | | | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Kenneth H Eckels
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Ines O Esquilin
- Department of Pediatrics, University of Puerto Rico School of Medicine , San Juan , Puerto Rico
| | - Robert V Gibbons
- Battlefield Pain Management Task Area, U.S. Army Institute for Surgical Research , Fort Sam Houston , TX , USA
| | | | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | | | - Peifang Sun
- Henry Jackson Foundation for the Advancement of Military Medicine , Bethesda , MD , USA
| | - Stephen J Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Veerachai Watanaveeradej
- Department of Pediatrics, Phramongkutklao Hospital , Bangkok , Thailand.,Department of Microbiology, Phramongkutklao College of Medicine , Bangkok , Thailand
| |
Collapse
|
49
|
Aliyu IA, Ling KH, Md Hashim NF, Lam JY, Chee HY. Annexin II as a Dengue Virus Serotype 2 Interacting Protein Mediating Virus Interaction on Vero Cells. Viruses 2019; 11:v11040335. [PMID: 30970587 PMCID: PMC6520844 DOI: 10.3390/v11040335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023] Open
Abstract
Recent evidence has demonstrated that dengue virus requires active filopodia formation for a successful infection. However, the cellular factor involved in the interaction has not been fully elucidated. We used a combination of virus overlay protein binding assay and LC-MS/MS, and identified annexin II as a dengue virus serotype 2 (DENV2) interacting protein on Vero cells, upon filopodia induction. Flow cytometry analysis showed annexin II on the Vero cells surface increased when DENV2 was added. The amount of annexin II in the plasma membrane fraction was reduced as the infection progressed. Antibody-mediated inhibition of infection and siRNA-mediated knockdown of annexin II expression significantly reduced DENV2 infection and production levels. Collectively, we demonstrated that annexin II is one of the host factor involved in DENV2 binding on Vero cells.
Collapse
Affiliation(s)
- Isah Abubakar Aliyu
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Medical Laboratory Science, Faculty of Allied Health Science, College of Health Science, Bayero University Kano, PMB 3011 Kano State, Nigeria.
| | - King-Hwa Ling
- NeuroBiology & Genetics Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Selangor, Malaysia.
| | - Jia-Yong Lam
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Hui-Yee Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
50
|
Cohen C, Moreira ED, Nañez H, Nachiappan JP, Arvinder-Singh HS, Huoi C, Nealon J, Sarti E, Puentes-Rosas E, Moureau A, Khromava A. Incidence rates of neurotropic-like and viscerotropic-like disease in three dengue-endemic countries: Mexico, Brazil, and Malaysia. Vaccine 2019; 37:1868-1875. [PMID: 30826144 DOI: 10.1016/j.vaccine.2019.01.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND The background incidence of viscerotropic- (VLD) and neurotropic-like disease (NLD) unrelated to immunization in dengue-endemic countries is currently unknown. METHODS This retrospective population-based analysis estimated crude and standardized incidences of VLD and NLD in twelve hospitals in Brazil (n = 3), Mexico (n = 3), and Malaysia (n = 6) over a 1-year period before the introduction of the tetravalent dengue vaccine. Catchment areas were estimated using publicly available population census information and administrative data. The denominator population for incidence rates was calculated, and sensitivity analyses assessed the impact of important assumptions. RESULTS Total cases adjudicated as definite VLD were 5, 57, and 56 in Brazil, Mexico, and Malaysia, respectively. Total cases adjudicated as definite NLD were 103, 29, and 26 in Brazil, Mexico, and Malaysia, respectively. Crude incidence rates of cases adjudicated as definite VLD in Brazil, Mexico, and Malaysia were 1.17, 2.60, and 1.48 per 100,000 person-years, respectively. Crude incidence rates of cases adjudicated as definite NLD in Brazil, Mexico, and Malaysia were 4.45, 1.32, and 0.69 per 100,000 person-years, respectively. CONCLUSIONS Background incidence estimates of VLD and NLD obtained in Mexico, Brazil, and Malaysia could provide context for cases occurring after the introduction of the tetravalent dengue vaccine.
Collapse
Affiliation(s)
| | - Edson D Moreira
- Associação Obras Sociais Irmã Dulce and Oswaldo Cruz Foundation, Brazilian Ministry of Health, Bahia, Brazil.
| | - Homero Nañez
- University Hospital Dr. José E. González, Faculty of Medicine Universidad Autonoma de Nuevo León, Monterrey N.L., Mexico.
| | | | | | | | | | - Elsa Sarti
- Sanofi Pasteur LATAM, Coyoacán, CDMX, Mexico.
| | | | - Annick Moureau
- Clinical Development, Sanofi Pasteur, Marcy l'Etoile, Lyon, France.
| | | | | |
Collapse
|