1
|
Regan AK, Sullivan SG, Arah OA. Maternal influenza vaccination and associated risk of fetal loss: A claims-based prospective cohort study. Vaccine 2024; 42:126256. [PMID: 39260053 DOI: 10.1016/j.vaccine.2024.126256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Although numerous studies support the safety of influenza vaccination during pregnancy, fewer studies have evaluated the risk of miscarriage or considered the effect of prior immunization. METHODS Using national de-identified administrative claims data from the Optum Labs Data Warehouse, we conducted a claims-based cohort study of 117,626 pregnancies between January 2009 and December 2018. We identified pandemic A(H1N1)pdm09 and seasonal influenza vaccinations using CPT codes. Fetal loss was defined as miscarriage, medical termination, or stillbirth as identified by ICD-10-CM diagnostic codes. Cox proportional hazard models treating influenza vaccination as a time-varying exposure, weighted for loss-to-follow-up and stratified by baseline probability of vaccination, were used to model the risk of fetal loss by exposure to influenza vaccine. RESULTS About 31.4 % of the cohort had a record of influenza vaccination; 10.0 % were vaccinated before pregnancy only, 17.8 % during pregnancy only, and 3.6 % before and during pregnancy. The risk of miscarriage was 39 % lower among those vaccinated during pregnancy compared to unvaccinated (adjusted hazard ratio, aHR 0.61; 95 % CI 0.50, 0.74) and was similar for medical termination or stillbirth (HR 0.69; 95 % CI 0.45, 1.03 and aHR 0.99; 95 % CI 0.76, 1.30, respectively). Similar results were observed for women who received the vaccine before and during pregnancy. We observed little to no association between vaccination before pregnancy and risk of miscarriage (HR 0.98; 95 % CI 0.76, 1.26), medical termination (HR 1.02; 95 % CI 0.46, 2.24), or stillbirth (HR 1.14, 95 % CI 0.77, 1.69). DISCUSSION Influenza vaccination was not associated with an increased risk of fetal loss. These results support the safety of influenza vaccine administration even when administered before or early during pregnancy.
Collapse
Affiliation(s)
- Annette K Regan
- School of Nursing and Health Professions, University of San Francisco, San Francisco, CA, United States; Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, United States.
| | - Sheena G Sullivan
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, United States; WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, and Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Onyebuchi A Arah
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, United States; Department of Statistics and Data Science, UCLA, Los Angeles, CA, United States; Practical Causal Inference Lab, UCLA, Los Angeles, CA, United States; Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
O’Leary ST, Campbell JD, Ardura MI, Bryant KA, Caserta MT, Espinosa C, Frenck RW, Healy CM, John CC, Kourtis AP, Milstone A, Myers A, Pannaraj P, Ratner AJ, Bryant KA, Hofstetter AM, Chaparro JD, Michel JJ, Kimberlin DW, Banerjee R, Barnett ED, Lynfield R, Sawyer MH, Barton-Forbes M, Cardemil CV, Farizo KM, Kafer LM, Moore D, Okeke C, Prestel C, Patel M, Starke JR, Thompson J, Torres JP, Wharton M, Woods CR, Gibbs G. Recommendations for Prevention and Control of Influenza in Children, 2024-2025: Technical Report. Pediatrics 2024; 154:e2024068508. [PMID: 39183667 DOI: 10.1542/peds.2024-068508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
This technical report accompanies the recommendations of the American Academy of Pediatrics for the routine use of influenza vaccine and antiviral medications in the prevention and treatment of influenza in children during the 2024 to 2025 season. The rationale for the American Academy of Pediatrics recommendation for annual influenza vaccination of all children without medical contraindications starting at 6 months of age is provided. Influenza vaccination is an important strategy for protecting children and the broader community against influenza. This technical report summarizes recent influenza seasons, morbidity and mortality in children, vaccine effectiveness, and vaccination coverage and provides detailed guidance on vaccine storage, administration, and implementation. The report also provides a brief background on inactivated (nonlive) and live attenuated influenza vaccines, available vaccines for the 2024-2025 influenza season, vaccination during pregnancy and breastfeeding, diagnostic testing for influenza, and antiviral medications for treatment and chemoprophylaxis. Strategies to promote vaccine uptake are emphasized.
Collapse
|
3
|
Getahun D, Liu ILA, Sy LS, Glanz JM, Zerbo O, Vazquez-Benitez G, Nelson JC, Williams JT, Hambidge SJ, McLean HQ, Irving SA, Weintraub ES, Qian L. Safety of the Seasonal Influenza Vaccine in 2 Successive Pregnancies. JAMA Netw Open 2024; 7:e2434857. [PMID: 39298167 DOI: 10.1001/jamanetworkopen.2024.34857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Importance Although influenza vaccination has been found to be safe in pregnancy, few studies have assessed repeated influenza vaccination over successive pregnancies, including 2 vaccinations in a year, in terms of adverse perinatal outcomes. Objective To examine the association of seasonal influenza vaccination across successive pregnancies with adverse perinatal outcomes and whether the association varies by interpregnancy interval (IPI) and vaccine type (quadrivalent or trivalent). Design, Setting, and Participants This retrospective cohort study included individuals with at least 2 successive singleton live-birth pregnancies between January 1, 2004, and December 31, 2018. Data were collected from the Vaccine Safety Datalink, a collaboration between the Centers for Disease Control and Prevention and integrated health care organizations. Data analysis was performed between January 8, 2021, and July 17, 2024. Exposures Influenza vaccination was identified using vaccine administration codes. The vaccinated cohort consisted of people who received influenza vaccines during the influenza season (August 1 through April 30) in 2 successive pregnancies. The comparator cohort consisted of people identified as unvaccinated during both pregnancies. Main Outcomes and Measures Main outcomes were risk of preeclampsia or eclampsia, placental abruption, fever, preterm birth, preterm premature rupture of membranes, chorioamnionitis, and small for gestational age among individuals with and without vaccination in both pregnancies. Adjusted relative risks (RRs) from Poisson regression were used to assess the magnitude of associations. The associations with adverse outcomes by IPI and vaccine type were evaluated. Results Of 82 055 people with 2 singleton pregnancies between 2004 and 2018, 44 879 (54.7%) had influenza vaccination in successive pregnancies. Mean (SD) age at the start of the second pregnancy was 32.2 (4.6) years for vaccinated individuals and 31.2 (5.0) years for unvaccinated individuals. Compared with individuals not vaccinated in both pregnancies, vaccination in successive pregnancies was not associated with increased risk of preeclampsia or eclampsia (adjusted RR, 1.10; 95% CI, 0.99-1.21), placental abruption (adjusted RR, 1.01; 95% CI, 0.84-1.21), fever (adjusted RR, 0.87; 95% CI, 0.47-1.59), preterm birth (adjusted RR, 0.83; 95% CI, 0.78-0.89), preterm premature rupture of membranes (RR, 1.00; 95% CI, 0.94-1.06), chorioamnionitis (adjusted RR, 1.03; 95% CI, 0.90-1.18), or small for gestational age birth (adjusted RR, 0.99; 95% CI, 0.93-1.05). IPI and vaccine type did not modify the observed associations. Conclusions and Relevance In this large cohort study of successive pregnancies, influenza vaccination was not associated with increased risk of adverse perinatal outcomes, irrespective of IPI and vaccine type. Findings support recommendations to vaccinate pregnant people or those who might be pregnant during the influenza season.
Collapse
Affiliation(s)
- Darios Getahun
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| | - In-Lu Amy Liu
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena
| | - Lina S Sy
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena
| | - Jason M Glanz
- Institute for Health Research, Kaiser Permanente Colorado, Denver
| | - Ousseny Zerbo
- Kaiser Permanente Vaccine Study Center, Kaiser Permanente Northern California, Oakland
| | | | - Jennifer C Nelson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | | | | | - Huong Q McLean
- Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | | | - Eric S Weintraub
- Immunization Safety Office, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lei Qian
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena
| |
Collapse
|
4
|
Rick AM, Beigi R. Maternal Immunizations: Past, Present, and Future. Clin Obstet Gynecol 2024; 67:605-619. [PMID: 38899806 DOI: 10.1097/grf.0000000000000882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Maternal vaccines during pregnancy offer crucial protection against infections for both the pregnant person and their newborn. Vaccines against influenza, pertussis, coronavirus disease 2019, and respiratory syncytial virus are routinely recommended by the Centers for Disease Control and Prevention to safeguard pregnant women and their infants from potentially severe complications. Administering these vaccines during pregnancy helps transfer protective antibodies from the mother to the baby, enhancing immunity during the vulnerable early months of life. Extensive research supports the safety and efficacy of maternal vaccines, with numerous studies demonstrating their protective benefits for both pregnant people and newborns.
Collapse
Affiliation(s)
- Anne-Marie Rick
- Department of Pediatrics, Division of General Academic Pediatrics, University of Pittsburgh School of Medicine
| | - Richard Beigi
- Department of Obstetrics, Gynecology and Reproductive Sciences University of Pittsburgh School of Medicine
- UPMC Magee-Womens Hospital, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Grohskopf LA, Ferdinands JM, Blanton LH, Broder KR, Loehr J. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices - United States, 2024-25 Influenza Season. MMWR Recomm Rep 2024; 73:1-25. [PMID: 39197095 PMCID: PMC11501009 DOI: 10.15585/mmwr.rr7305a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
Abstract
This report updates the 2023-24 recommendations of the Advisory Committee on Immunization Practices (ACIP) concerning the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2022;72[No. RR-2]:1-24). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. Trivalent inactivated influenza vaccines (IIV3s), trivalent recombinant influenza vaccine (RIV3), and trivalent live attenuated influenza vaccine (LAIV3) are expected to be available. All persons should receive an age-appropriate influenza vaccine (i.e., one approved for their age), with the exception that solid organ transplant recipients aged 18 through 64 years who are receiving immunosuppressive medication regimens may receive either high-dose inactivated influenza vaccine (HD-IIV3) or adjuvanted inactivated influenza vaccine (aIIV3) as acceptable options (without a preference over other age-appropriate IIV3s or RIV3). Except for vaccination for adults aged ≥65 years, ACIP makes no preferential recommendation for a specific vaccine when more than one licensed and recommended vaccine is available. ACIP recommends that adults aged ≥65 years preferentially receive any one of the following higher dose or adjuvanted influenza vaccines: trivalent high-dose inactivated influenza vaccine (HD-IIV3), trivalent recombinant influenza vaccine (RIV3), or trivalent adjuvanted inactivated influenza vaccine (aIIV3). If none of these three vaccines is available at an opportunity for vaccine administration, then any other age-appropriate influenza vaccine should be used.Primary updates to this report include the following two topics: the composition of 2024-25 U.S. seasonal influenza vaccines and updated recommendations for vaccination of adult solid organ transplant recipients. First, following a period of no confirmed detections of wild-type influenza B/Yamagata lineage viruses in global surveillance since March 2020, 2024-25 U.S. influenza vaccines will not include an influenza B/Yamagata component. All influenza vaccines available in the United States during the 2024-25 season will be trivalent vaccines containing hemagglutinin derived from 1) an influenza A/Victoria/4897/2022 (H1N1)pdm09-like virus (for egg-based vaccines) or an influenza A/Wisconsin/67/2022 (H1N1)pdm09-like virus (for cell culture-based and recombinant vaccines); 2) an influenza A/Thailand/8/2022 (H3N2)-like virus (for egg-based vaccines) or an influenza A/Massachusetts/18/2022 (H3N2)-like virus (for cell culture-based and recombinant vaccines); and 3) an influenza B/Austria/1359417/2021 (Victoria lineage)-like virus. Second, recommendations for vaccination of adult solid organ transplant recipients have been updated to include HD-IIV3 and aIIV3 as acceptable options for solid organ transplant recipients aged 18 through 64 years who are receiving immunosuppressive medication regimens (without a preference over other age-appropriate IIV3s or RIV3).This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2024-25 influenza season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/acip-recs/hcp/vaccine-specific/flu.html?CDC_AAref_Val=https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu). Vaccination and health care providers should check this site periodically for additional information.
Collapse
|
6
|
Davies HG, Thorley EV, Al-Bahadili R, Sutton N, Burt J, Hookham L, Karampatsas K, Lambach P, Muñoz F, Cutland CL, Omer S, Le Doare K. Defining and reporting adverse events of special interest in comparative maternal vaccine studies: a systematic review. Vaccine X 2024; 18:100464. [PMID: 38495929 PMCID: PMC10943481 DOI: 10.1016/j.jvacx.2024.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction The GAIA (Global Alignment on Immunisation Safety Assessment in Pregnancy) consortium was established in 2014 with the aim of creating a standardised, globally coordinated approach to monitoring the safety of vaccines administered in pregnancy. The consortium developed twenty-six standardised definitions for classifying obstetric and infant adverse events. This systematic review sought to evaluate the current state of adverse event reporting in maternal vaccine trials following the publication of the case definitions by GAIA, and the extent to which these case definitions have been adopted in maternal vaccine safety research. Methods A comprehensive search of published literature was undertaken to identify maternal vaccine research studies. PubMed, EMBASE, Web of Science, and Cochrane were searched using a combination of MeSH terms and keyword searches to identify observational or interventional studies that examined vaccine safety in pregnant women with a comparator group. A two-reviewer screening process was undertaken, and a narrative synthesis of the results presented. Results 14,737 titles were identified from database searches, 435 titles were selected as potentially relevant, 256 were excluded, the remaining 116 papers were included. Influenza vaccine was the most studied (25.0%), followed by TDaP (20.7%) and SARS-CoV-2 (12.9%).Ninety-one studies (78.4%) were conducted in high-income settings. Forty-eight (41.4%) utilised electronic health-records. The majority focused on reporting adverse events of special interest (AESI) in pregnancy (65.0%) alone or in addition to reactogenicity (27.6%). The most frequently reported AESI were preterm birth, small for gestational age and hypertensive disorders. Fewer than 10 studies reported use of GAIA definitions. Gestational age assessment was poorly described; of 39 studies reporting stillbirths 30.8% provided no description of the gestational age threshold. Conclusions Low-income settings remain under-represented in comparative maternal vaccine safety research. There has been poor uptake of GAIA case definitions. A lack of harmonisation and standardisation persists limiting comparability of the generated safety data.
Collapse
Affiliation(s)
- Hannah G Davies
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
- MRC, UVRI & LSHTM Uganda Research Centre, Entebbe, Uganda
- Makerere University John Hopkins Research Unit, Kampala, Uganda
| | - Emma V Thorley
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Rossul Al-Bahadili
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Natalina Sutton
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Jessica Burt
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Lauren Hookham
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | - Kostas Karampatsas
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | | | - Flor Muñoz
- Paediatric Infectious Diseases Department, Baylor College of Medicine, Houston, TX, USA
| | - Clare L Cutland
- Wits African Leadership in Vaccinology Expertise (Wits-Alive), School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Saad Omer
- O’Donnell School of Public Health, UT Southwestern Medical Center, Texas, USA
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infection, Institute of Infection & Immunity, St George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
- Makerere University John Hopkins Research Unit, Kampala, Uganda
- World Health Organization, Geneva, Switzerland
| |
Collapse
|
7
|
Seravalli V, Romualdi I, Ammar O, De Blasi C, Boccalini S, Bechini A, Di Tommaso M. Vaccination coverage during pregnancy and factors associated with refusal of recommended vaccinations: An Italian cross sectional study. Vaccine X 2024; 18:100483. [PMID: 38623567 PMCID: PMC11016930 DOI: 10.1016/j.jvacx.2024.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
Background The vaccines recommended during pregnancy are the Tdap, the influenza vaccine, and, during the SARS-CoV-2 pandemic, the vaccine against COVID-19. This survey aimed at determining vaccination coverage among pregnant women and adverse events, reasons for vaccine refusal, and factors associated with vaccine uptake. Methods A single-center cross-sectional study was conducted on women who delivered between March and April 2022 at Careggi University Hospital in Florence, Italy. Information on the vaccinations (Tdap, influenza and COVID-19) received during pregnancy were collected through in-person interviews. Results Among 307 enrolled women (response rate 99 % on a study population of 310 eligible women), 74 % of patients were vaccinated with Tdap, 82 % against COVID-19, and only 33 % against influenza. Vaccination coverage for Tdap and COVID-19 was significantly higher among Italian than foreign patients (80 % vs 51 %, p < 0.001 and 86 % vs 69 %, p = 0.002, respectively), and for Tdap was higher among patients followed in the private vs public care setting. The main reasons behind refusal of vaccinations were low risk perception of influenza (41 %), insufficient information received from the prenatal care provider regarding the Tdap (35 %), and, for the COVID-19, fear of vaccine side effects (64 %), and concerns about effects on the fetus (70 %). Conclusions Adherence to the influenza vaccine was low because of reduced perception of the disease risks. The difference in vaccination coverage between Italians and foreigners is an example of healthcare disparity. Better information provided to patients about vaccines' efficacy and safety is advisable to increase acceptance of recommended vaccines.
Collapse
Affiliation(s)
- Viola Seravalli
- Department of Health Sciences, Section of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy
| | - Irene Romualdi
- Department of Health Sciences, Section of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy
| | - Oumaima Ammar
- Department of Health Sciences, Section of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy
| | - Chiara De Blasi
- Department of Health Sciences, Section of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy
| | - Sara Boccalini
- Department of Health Sciences, Section of Hygiene, Preventive Medicine, Nursing and Public Health, University of Florence, Florence, Italy
| | - Angela Bechini
- Department of Health Sciences, Section of Hygiene, Preventive Medicine, Nursing and Public Health, University of Florence, Florence, Italy
| | - Mariarosaria Di Tommaso
- Department of Health Sciences, Section of Obstetrics and Gynecology, Careggi Hospital, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Siu W, Sinilaite A, Papenburg J. Summary of the National Advisory Committee on Immunization (NACI) Updated Guidance on Influenza Vaccination During Pregnancy. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2024; 50:86-92. [PMID: 38716409 PMCID: PMC11073834 DOI: 10.14745/ccdr.v50i34a01] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Background Seasonal influenza infection can lead to serious complications and adverse outcomes for pregnant individuals, the developing fetus and infants younger than six months of age. This supplemental statement provides an evidence summary on the safety and effectiveness of influenza vaccination in pregnant individuals, and the benefits and risks to the pregnant person, the developing fetus and infants younger than six months of age. Methods A systematic review was conducted on the effectiveness and safety of influenza vaccination in pregnancy. The National Advisory Committee on Immunization (NACI)'s evidence-based process was used to assess the quality of eligible studies, summarize and analyze the findings, and apply an ethics, equity, feasibility and acceptability lens to develop recommendations. Results The evidence suggests that influenza vaccination during pregnancy is effective in reducing the risk of laboratory-confirmed influenza infection and hospitalization in both pregnant individuals and their infants up to six months postpartum. The evidence also suggests that influenza vaccination during pregnancy does not increase the risk of non-obstetric serious adverse events in pregnant persons, infant death, spontaneous abortion, stillbirth, preterm birth, small for gestational age, low birth weight and congenital anomalies. Conclusion Based on this body of evidence, NACI reaffirms the safety and importance of influenza vaccination during pregnancy. NACI recommends that individuals at any stage of pregnancy should receive an age-appropriate inactivated, unadjuvanted or recombinant influenza vaccine each influenza season. Influenza vaccination may be given at the same time as, or at any time before or after administration of another vaccine, including the coronavirus disease 2019 (COVID-19) or pertussis vaccines.
Collapse
Affiliation(s)
- Winnie Siu
- Centre for Immunization Programs, Public Health Agency of Canada, Ottawa, ON
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON
| | - Angela Sinilaite
- Centre for Immunization Programs, Public Health Agency of Canada, Ottawa, ON
| | - Jesse Papenburg
- NACI Influenza Working Group Chair
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Montréal Children's Hospital, McGill University Health Centre, Montréal, QC
- Division of Microbiology, Department of Clinical Laboratory Medicine, OPTILAB Montréal-McGill University Health Centre, Montréal, QC
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montréal, QC
| |
Collapse
|
9
|
Quincer EM, Cranmer LM, Kamidani S. Prenatal Maternal Immunization for Infant Protection: A Review of the Vaccines Recommended, Infant Immunity and Future Research Directions. Pathogens 2024; 13:200. [PMID: 38535543 PMCID: PMC10975994 DOI: 10.3390/pathogens13030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 04/01/2024] Open
Abstract
Prenatal maternal immunization is an effective tool to protect mothers and infants from poor health outcomes due to infectious diseases. We provide an overview of the rationale for the use of prenatal vaccines, discuss the immunologic environment of the maternal-fetal interface including the impact of maternal vaccines prenatally and subsequently on the infant's immune response, and review vaccines currently recommended in pregnancy and landscape for the future of maternal vaccination. This review aims to provide an understanding of the recent history and progress made in the field and highlight the importance of continued research and development into new vaccines for pregnant populations.
Collapse
Affiliation(s)
- Elizabeth M. Quincer
- Immunization Safety Office, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Lisa M. Cranmer
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Satoshi Kamidani
- Immunization Safety Office, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
O’Leary ST, Campbell JD, Ardura MI, Banerjee R, Bryant KA, Caserta MT, Frenck RW, Gerber JS, John CC, Kourtis AP, Myers A, Pannaraj P, Ratner AJ, Shah SS, Bryant KA, Hofstetter AM, Chaparro JD, Michel JJ, Kimberlin DW, Barnett ED, Lynfield R, Sawyer MH, Bernstein HH, Cardemil CV, Farizo KM, Kafer LM, Kim D, López Medina E, Moore D, Panagiotakopoulos L, Romero JR, Sauvé L, Starke JR, Thompson J, Wharton M, Woods CR, Frantz JM, Gibbs G. Recommendations for Prevention and Control of Influenza in Children, 2023-2024. Pediatrics 2023; 152:e2023063773. [PMID: 37641884 DOI: 10.1542/peds.2023-063773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
This technical report accompanies the recommendations of the American Academy of Pediatrics for the routine use of influenza vaccine and antiviral medications in the prevention and treatment of influenza in children during the 2023-2024 season. The rationale for the American Academy of Pediatrics recommendation for annual influenza vaccination of all children without medical contraindications starting at 6 months of age is provided. Influenza vaccination is an important strategy for protecting children and the broader community against influenza. This technical report summarizes recent influenza seasons, morbidity and mortality in children, vaccine effectiveness, and vaccination coverage, and provides detailed guidance on vaccine storage, administration, and implementation. The report also provides a brief background on inactivated and live-attenuated influenza vaccines, available vaccines this season, vaccination during pregnancy and breastfeeding, diagnostic testing for influenza, and antiviral medications for treatment and chemoprophylaxis. Strategies to promote vaccine uptake are emphasized.
Collapse
|
11
|
Wolfe DM, Fell D, Garritty C, Hamel C, Butler C, Hersi M, Ahmadzai N, Rice DB, Esmaeilisaraji L, Michaud A, Soobiah C, Ghassemi M, Khan PA, Sinilaite A, Skidmore B, Tricco AC, Moher D, Hutton B. Safety of influenza vaccination during pregnancy: a systematic review. BMJ Open 2023; 13:e066182. [PMID: 37673449 PMCID: PMC10496691 DOI: 10.1136/bmjopen-2022-066182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
OBJECTIVE We conducted a systematic review to evaluate associations between influenza vaccination during pregnancy and adverse birth outcomes and maternal non-obstetric serious adverse events (SAEs), taking into consideration confounding and temporal biases. METHODS Electronic databases (Ovid MEDLINE ALL, Embase Classic+Embase and the Cochrane Central Register of Controlled Trials) were searched to June 2021 for observational studies assessing associations between influenza vaccination during pregnancy and maternal non-obstetric SAEs and adverse birth outcomes, including preterm birth, spontaneous abortion, stillbirth, small-for-gestational-age birth and congenital anomalies. Studies of live attenuated vaccines, single-arm cohort studies and abstract-only publications were excluded. Records were screened using a liberal accelerated approach initially, followed by a dual independent approach for full-text screening, data extraction and risk of bias assessment. Pairwise meta-analyses were conducted, where two or more studies met methodological criteria for inclusion. The Grading of Recommendations, Assessment, Development and Evaluation approach was used to assess evidence certainty. RESULTS Of 9443 records screened, 63 studies were included. Twenty-nine studies (24 cohort and 5 case-control) evaluated seasonal influenza vaccination (trivalent and/or quadrivalent) versus no vaccination and were the focus of our prioritised syntheses; 34 studies of pandemic vaccines (2009 A/H1N1 and others), combinations of pandemic and seasonal vaccines, and seasonal versus seasonal vaccines were also reviewed. Control for confounding and temporal biases was inconsistent across studies, limiting pooling of data. Meta-analyses for preterm birth, spontaneous abortion and small-for-gestational-age birth demonstrated no significant associations with seasonal influenza vaccination. Immortal time bias was observed in a sensitivity analysis of meta-analysing risk-based preterm birth data. In descriptive summaries for stillbirth, congenital anomalies and maternal non-obstetric SAEs, no significant association with increased risk was found in any studies. All evidence was of very low certainty. CONCLUSIONS Evidence of very low certainty suggests that seasonal influenza vaccination during pregnancy is not associated with adverse birth outcomes or maternal non-obstetric SAEs. Appropriate control of confounding and temporal biases in future studies would improve the evidence base.
Collapse
Affiliation(s)
- Dianna M Wolfe
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Deshayne Fell
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Chantelle Garritty
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Candyce Hamel
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Claire Butler
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Mona Hersi
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Nadera Ahmadzai
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Danielle B Rice
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Psychiatry, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Psychology, McGill University, Montreal, Quebec, Canada
| | - Leila Esmaeilisaraji
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alan Michaud
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Charlene Soobiah
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Marco Ghassemi
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Paul A Khan
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Angela Sinilaite
- Centre for Immunization Readiness, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Becky Skidmore
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Andrea C Tricco
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
- Epidemiology Division & Institute of Health Policy, Management, and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - David Moher
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Brian Hutton
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Regan AK, Wesselink AK, Wang TR, Savitz DA, Yland JJ, Rothman KJ, Hatch EE, Wise LA. Risk of Miscarriage in Relation to Seasonal Influenza Vaccination Before or During Pregnancy. Obstet Gynecol 2023; 142:625-635. [PMID: 37535959 PMCID: PMC10424825 DOI: 10.1097/aog.0000000000005279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 04/20/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE To evaluate the association between seasonal influenza vaccination and miscarriage using data from an ongoing, prospective cohort study. METHODS We analyzed 2013-2022 data from PRESTO (Pregnancy Study Online), a prospective prepregnancy cohort study of female pregnancy planners and their male partners in the United States and Canada. Female participants completed a baseline questionnaire and then follow-up questionnaires every 8 weeks until pregnancy, during early and late pregnancy, and during the postpartum period. Vaccine information was self-reported on all questionnaires. Miscarriage was identified from self-reported information during follow-up. Male partners were invited to complete a baseline questionnaire only. We used Cox proportional hazard models to estimate the hazard ratio (HR) and 95% CI for the association between vaccination less than 3 months before pregnancy detection through the 19th week of pregnancy and miscarriage, with gestational weeks as the time scale. We modeled vaccination as a time-varying exposure and used propensity-score fine stratification to control for confounding from seasonal and female partner factors. RESULTS Of 6,946 pregnancies, 23.3% of female partners reported exposure to influenza vaccine before or during pregnancy: 3.2% during pregnancy (gestational age 4-19 weeks) and 20.1% during the 3 months before pregnancy detection. The miscarriage rate was 16.2% in unvaccinated and 17.0% among vaccinated participants. Compared with no vaccine exposure, influenza vaccination was not associated with increased rate of miscarriage when administered before (HR 0.99, 95% CI 0.81-1.20) or during (HR 0.83, 95% CI 0.47-1.47) pregnancy. Of the 1,135 couples with male partner vaccination data available, 10.8% reported vaccination less than 3 months before pregnancy. The HR for the association between male partner vaccination and miscarriage was 1.17 (95% CI 0.73-1.90). CONCLUSION Influenza vaccination before or during pregnancy was not associated with miscarriage.
Collapse
Affiliation(s)
- Annette K Regan
- School of Nursing and Health Professions, University of San Francisco, Orange, and Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California; Boston University School of Public Health, Boston, Massachusetts; and Brown University School of Public Health, Providence, Rhode Island
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Grohskopf LA, Blanton LH, Ferdinands JM, Chung JR, Broder KR, Talbot HK. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices — United States, 2023–24 Influenza Season. MMWR Recomm Rep 2023; 72:1-25. [PMCID: PMC10468199 DOI: 10.15585/mmwr.rr7202a1] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
This report updates the 2022–23 recommendations of the Advisory Committee on Immunization Practices (ACIP) concerning the use of seasonal influenza vaccines in the United States ( MMWR Recomm Rep 2022;71[No. RR-1]:1–28). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. All seasonal influenza vaccines expected to be available in the United States for the 2023–24 season are quadrivalent, containing hemagglutinin (HA) derived from one influenza A(H1N1)pdm09 virus, one influenza A(H3N2) virus, one influenza B/Victoria lineage virus, and one influenza B/Yamagata lineage virus. Inactivated influenza vaccines (IIV4s), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4) are expected to be available. For most persons who need only 1 dose of influenza vaccine for the season, vaccination should ideally be offered during September or October. However, vaccination should continue after October and throughout the season as long as influenza viruses are circulating and unexpired vaccine is available. Influenza vaccines might be available as early as July or August, but for most adults (particularly adults aged ≥65 years) and for pregnant persons in the first or second trimester, vaccination during July and August should be avoided unless there is concern that vaccination later in the season might not be possible. Certain children aged 6 months through 8 years need 2 doses; these children should receive the first dose as soon as possible after vaccine is available, including during July and August. Vaccination during July and August can be considered for children of any age who need only 1 dose for the season and for pregnant persons who are in the third trimester during these months if vaccine is available ACIP recommends that all persons aged ≥6 months who do not have contraindications receive a licensed and age-appropriate seasonal influenza vaccine. With the exception of vaccination for adults aged ≥65 years, ACIP makes no preferential recommendation for a specific vaccine when more than one licensed, recommended, and age-appropriate vaccine is available. ACIP recommends that adults aged ≥65 years preferentially receive any one of the following higher dose or adjuvanted influenza vaccines: quadrivalent high-dose inactivated influenza vaccine (HD-IIV4), quadrivalent recombinant influenza vaccine (RIV4), or quadrivalent adjuvanted inactivated influenza vaccine (aIIV4). If none of these three vaccines is available at an opportunity for vaccine administration, then any other age-appropriate influenza vaccine should be used Primary updates to this report include the following two topics: 1) the composition of 2023–24 U.S. seasonal influenza vaccines and 2) updated recommendations regarding influenza vaccination of persons with egg allergy. First, the composition of 2023–24 U.S. influenza vaccines includes an update to the influenza A(H1N1)pdm09 component. U.S.-licensed influenza vaccines will contain HA derived from 1) an influenza A/Victoria/4897/2022 (H1N1)pdm09-like virus (for egg-based vaccines) or an influenza A/Wisconsin/67/2022 (H1N1)pdm09-like virus (for cell culture-based and recombinant vaccines); 2) an influenza A/Darwin/9/2021 (H3N2)-like virus (for egg-based vaccines) or an influenza A/Darwin/6/2021 (H3N2)-like virus (for cell culture-based and recombinant vaccines); 3) an influenza B/Austria/1359417/2021 (Victoria lineage)-like virus; and 4) an influenza B/Phuket/3073/2013 (Yamagata lineage)-like virus. Second, ACIP recommends that all persons aged ≥6 months with egg allergy should receive influenza vaccine. Any influenza vaccine (egg based or nonegg based) that is otherwise appropriate for the recipient’s age and health status can be used. It is no longer recommended that persons who have had an allergic reaction to egg involving symptoms other than urticaria should be vaccinated in an inpatient or outpatient medical setting supervised by a health care provider who is able to recognize and manage severe allergic reactions if an egg-based vaccine is used. Egg allergy alone necessitates no additional safety measures for influenza vaccination beyond those recommended for any recipient of any vaccine, regardless of severity of previous reaction to egg. All vaccines should be administered in settings in which personnel and equipment needed for rapid recognition and treatment of acute hypersensitivity reactions are available This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2023–24 influenza season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html . These recommendations apply to U.S.-licensed influenza vaccines used according to Food and Drug Administration–licensed indications. Updates and other information are available from CDC’s influenza website ( https://www.cdc.gov/flu ). Vaccination and health care providers should check this site periodically for additional information.
Collapse
|
14
|
Jeong NY, Kim CJ, Park SM, Kim YJ, Lee J, Choi NK. Active surveillance for adverse events of influenza vaccine safety in elderly cancer patients using self-controlled tree-temporal scan statistic analysis. Sci Rep 2023; 13:13346. [PMID: 37587127 PMCID: PMC10432531 DOI: 10.1038/s41598-023-40091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Both cancer patients and the elderly are at high risk of developing flu complications, so influenza vaccination is recommended. We aimed to evaluate potential adverse events (AEs) following influenza vaccination in elderly cancer patients using the self-controlled tree-temporal scan statistic method. From a large linked database of Korea Disease Control and Prevention Agency vaccination data and the National Health Insurance Service claims data, we identified cancer patients aged over 65 who received flu vaccines during the 2016/2017 and 2017/2018 seasons. We included all the outcomes occurring on 1-84 days post-vaccination and evaluated all temporal risk windows, which started 1-28 days and ended 2-42 days. Patients who were diagnosed with the same disease during a year prior to vaccination were excluded. We used the hierarchy of ICD-10 to identify statistically significant clustering. This study included 431,276 doses of flu vaccine. We detected signals for 1 set: other dorsopathies on 1-15 days (attributable risk 16.5 per 100,000, P = 0.017). Dorsopathy is a known AE of influenza vaccine. No statistically significant clusters were found when analyzed by flu season. Therefore, influenza vaccination is more recommended for elderly patients with cancer and weakened immune systems.
Collapse
Affiliation(s)
- Na-Young Jeong
- Department of Health Convergence, College of Science & Industry Convergence, Ewha Womans University, Seoul, Korea
| | - Chung-Jong Kim
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Sang Min Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul National University College of Medicine, Seoul, Korea
| | - Ye-Jee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joongyub Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Nam-Kyong Choi
- Department of Health Convergence, College of Science & Industry Convergence, Ewha Womans University, Seoul, Korea.
- Graduate School of Industrial Pharmaceutical Science, College of Pharmacy, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
15
|
Vazquez-Benitez G, Haapala JL, Lipkind HS, DeSilva MB, Zhu J, Daley MF, Getahun D, Klein NP, Vesco KK, Irving SA, Nelson JC, Williams JTB, Hambidge SJ, Donahue J, Fuller CC, Weintraub ES, Olson C, Kharbanda EO. COVID-19 Vaccine Safety Surveillance in Early Pregnancy in the United States: Design Factors Affecting the Association Between Vaccine and Spontaneous Abortion. Am J Epidemiol 2023; 192:1386-1395. [PMID: 36928091 PMCID: PMC10466212 DOI: 10.1093/aje/kwad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/21/2022] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
In the Vaccine Safety Datalink (VSD), we previously reported no association between coronavirus disease 2019 (COVID-19) vaccination in early pregnancy and spontaneous abortion (SAB). The present study aims to understand how time since vaccine rollout or other methodological factors could affect results. Using a case-control design and generalized estimating equations, we estimated the odds ratios (ORs) of COVID-19 vaccination in the 28 days before a SAB or last date of the surveillance period (index date) in ongoing pregnancies and occurrence of SAB, across cumulative 4-week periods from December 2020 through June 2021. Using data from a single site, we evaluated alternative methodological approaches: increasing the exposure window to 42 days, modifying the index date from the last day to the midpoint of the surveillance period, and constructing a cohort design with a time-dependent exposure model. A protective effect (OR = 0.78, 95% confidence interval: 0.69, 0.89), observed with 3-cumulative periods ending March 8, 2021, was attenuated when surveillance extended to June 28, 2021 (OR = 1.02, 95% confidence interval: 0.96, 1.08). We observed a lower OR for a 42-day window compared with a 28-day window. The time-dependent model showed no association. Timing of the surveillance appears to be an important factor affecting the observed vaccine-SAB association.
Collapse
Affiliation(s)
- Gabriela Vazquez-Benitez
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Jacob L. Haapala
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Heather S. Lipkind
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Malini B. DeSilva
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Jingyi Zhu
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Matthew F. Daley
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Darios Getahun
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Nicola P. Klein
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Kimberly K. Vesco
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Stephanie A. Irving
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Jennifer C. Nelson
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Joshua T. B. Williams
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Simon J. Hambidge
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - James Donahue
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Candace C. Fuller
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Eric S. Weintraub
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Christine Olson
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| | - Elyse O. Kharbanda
- HealthPartners Institute, Bloomington, Minnesota, United States (Gabriela Vazquez-Benitez, Jacob L. Haapala, Malini B. DeSilva, Jingyi Zhu, Elyse O. Kharbanda); Yale School of Medicine, New Haven, Connecticut, United States (Heather S. Lipkind); Kaiser Permanente Denver, Colorado, United States (Matthew F. Daly); Kaiser Permanente Southern California, Pasadena, California, United States (Darios Getahun); Kaiser Permanente Northern California, Oakland, California, United States (Nicola P. Klein); Kaiser Permanente Northwest, Portland, Oregon, United States (Kimberly K. Vesco, Stephanie A. Irving); Kaiser Permanente Washington, Seattle, Washington, United States (Jennifer C. Nelson); Denver Health, Denver, Colorado, United States (Joshua T. B. Williams, Simon J. Hambidge); Marshfield Clinic, Marshfield, Wisconsin, United States (James Donahue); Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States (Candace C. Fuller); and Centers for Disease Control and Prevention, Atlanta, Georgia, United States (Eric S. Weintraub, Christine Olson)
| |
Collapse
|
16
|
Wang Z, Li Z, Shi W, Zhu D, Hu S, Dinh PUC, Cheng K. A SARS-CoV-2 and influenza double hit vaccine based on RBD-conjugated inactivated influenza A virus. SCIENCE ADVANCES 2023; 9:eabo4100. [PMID: 37352360 PMCID: PMC10289656 DOI: 10.1126/sciadv.abo4100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/19/2023] [Indexed: 06/25/2023]
Abstract
The circulating flu viruses merging with the ongoing COVID-19 pandemic raises a more severe threat that promotes the infectivity of SARS-CoV-2 associated with higher mortality rates. Here, we conjugated recombinant receptor binding domain (RBD) of SARS-CoV-2 spike protein onto inactivated influenza A virus (Flu) to develop a SARS-CoV-2 virus-like particle (VLP) vaccine with two-hit protection. This double-hit vaccine (Flu-RBD) not only induced protective immunities against SARS-CoV-2 but also remained functional as a flu vaccine. The Flu core improved the retention and distribution of Flu-RBD vaccine in the draining lymph nodes, with enhanced immunogenicity. In a hamster model of live SARS-CoV-2 infection, two doses of Flu-RBD efficiently protected animals against viral infection. Furthermore, Flu-RBD VLP elicited a strong neutralization activity against both SARS-CoV-2 Delta pseudovirus and wild-type influenza A H1N1 inactivated virus in mice. Overall, the Flu-RBD VLP vaccine is a promising candidate for combating COVID-19, influenza A, and coinfection.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Weiwei Shi
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Phuong-Uyen C. Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Abstract
Immunization implementation in the community relies upon post-licensure vaccine safety surveillance to maintain safe vaccination programs and to detect rare AEFI not observed in clinical trials. The increasing availability of electronic health-care related data and correspondence from both health-related providers and internet-based media has revolutionized health-care information. Many and varied forms of health information related to adverse event following immunization (AEFI) are potentially suitable for vaccine safety surveillance. The utilization of these media ranges from more efficient use of electronic spontaneous reporting, automated solicited surveillance methods, screening various electronic health record types, and the utilization of natural language processing techniques to scan enormous amounts of internet-based data for AEFI mentions. Each of these surveillance types have advantages and disadvantages and are often complementary to each other. Most are "hypothesis generating," detecting potential safety signals, where some, such as vaccine safety datalinking, may also serve as "hypothesis testing" to help verify and investigate those potential signals.
Collapse
Affiliation(s)
- Jim P Buttery
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Centre for Health Analytics, Melbourne, Australia.,Health Informatics Group and SAEFVIC, Murdoch Children's Research Institute, Melbourne, Australia.,Infectious Diseases Unit, Royal Children's Hospital, Melbourne, Australia
| | - Hazel Clothier
- Centre for Health Analytics, Melbourne, Australia.,Health Informatics Group and SAEFVIC, Murdoch Children's Research Institute, Melbourne, Australia.,School of Population and Global Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Abstract
This technical report accompanies the recommendations of the American Academy of Pediatrics for the routine use of influenza vaccine and antiviral medications in the prevention and treatment of influenza in children during the 2022 to 2023 season. The American Academy of Pediatrics recommends annual influenza vaccination of all children without medical contraindications starting at 6 months of age. Influenza vaccination is an important strategy for protecting children and the broader community as well as reducing the overall burden of respiratory illnesses when other viruses, including severe acute respiratory syndrome-coronavirus 2, are cocirculating. This technical report summarizes recent influenza seasons, morbidity and mortality in children, vaccine effectiveness, and vaccination coverage, and provides detailed guidance on storage, administration, and implementation. The report also provides a brief background on inactivated and live attenuated influenza vaccine recommendations, vaccination during pregnancy and breastfeeding, diagnostic testing, and antiviral medications for treatment and chemoprophylaxis. Updated information is provided about the 2021 to 2022 influenza season, influenza immunization rates, the effectiveness of influenza vaccination on hospitalization and mortality, available vaccines, guidance for patients with history of severe allergic reactions to prior influenza vaccinations, and strategies to promote vaccine uptake.
Collapse
|
19
|
Robinson C, Van Boxmeer J, Tilson H, Scialli A, Vanchiere JA, Ides E, Sawlwin D, Molrine D, Hohenboken M, Edelman J, Albano JD. Outcomes in Pregnant Persons Immunized with a Cell-Based Quadrivalent Inactivated Influenza Vaccine: A Prospective Observational Cohort Study. Vaccines (Basel) 2022; 10:1600. [PMID: 36298465 PMCID: PMC9612226 DOI: 10.3390/vaccines10101600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: To evaluate pregnancy and infant outcomes among persons immunized with a cell-based quadrivalent inactivated influenza vaccine (IIV4c) during routine pregnancy care. Design: Prospective observational cohort. Setting: US-based obstetrics/gynecology clinics. Population: Pregnant persons. This US-based, prospective observational cohort study evaluated the safety of quadrivalent inactivated influenza vaccine (IIV4c; Flucelvax® Quad) in pregnant persons immunized over 3 influenza seasons between 2017 and 2020. Pregnant persons were immunized with IIV4c as part of routine care, after which their health care provides HCPs with all observational data to a single coordinating center. Follow-up data were collected at the end of the second trimester and/or at the time of pregnancy outcome. A scientific advisory committee reviewed the data. Prevalence point estimates were reported with 95% confidence intervals (CIs). Pregnancy outcomes included: live birth, stillbirth, spontaneous abortion, elective termination, and maternal death. Infant outcomes included: preterm birth (<37 weeks gestational age), low birth weight (<2500 g), or major congenital malformations (MCMs). Of the 665 evaluable participants, 659 (99.1%) had a live birth. No stillbirths (0% [95% CI 0.0−0.6]), 4 spontaneous abortions (1.9% [0.5−4.8]), and 1 elective termination (0.5% [0.0−2.6]) were reported. Among 673 infants, 9.2% (upper 95% CI 11.5%) were born prematurely, 5.8% (upper 95% CI 7.6%) had low birth weight, and 1.9% (upper 95% CI 3.1%) were reported to have an MCM. No maternal deaths were reported. Of the 2 infants who died shortly after birth, one was adjudicated as not related to the vaccine; the other’s cause could not be determined due to maternal loss to follow-up. The prevalence of adverse pregnancy outcomes or preterm birth, low birth weight, or MCMs in newborns was similar in persons vaccinated with IIV4c compared to the rates observed in US surveillance systems. The safety profile of IIV4c in pregnant persons is consistent with previously studied influenza vaccines.
Collapse
Affiliation(s)
| | | | - Hugh Tilson
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - John A. Vanchiere
- Louisiana State University Health Science Center, Shreveport, LA 71106, USA
| | - Ellis Ides
- Seqirus Netherlands B.V., 1105 BJ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Robinson C, Oberye J, van Boxmeer J, Albano JD, Tilson H, Scialli A, Vanchiere JA, Ides E, Sawlwin D, Hohenboken M, Edelman J. A Prospective Cohort Study on Pregnancy Outcomes of Persons Immunized with a Seasonal Quadrivalent Inactivated Influenza Vaccine during Pregnancy. Vaccines (Basel) 2022; 10:vaccines10101577. [PMID: 36298442 PMCID: PMC9611467 DOI: 10.3390/vaccines10101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
This US-based, prospective observational cohort study evaluated the safety of a quadrivalent inactivated influenza vaccine (IIV4; Afluria Quadrivalent) in pregnant persons immunized over four influenza seasons between 2017 and 2021. Pregnancy outcomes included live birth, stillbirth, spontaneous abortion, and elective termination. Infant events of interest were major congenital malformations (MCMs), preterm birth (<37 weeks gestational age), and low birth weight (LBW). Data were descriptive; prevalence point estimates were reported with 95% confidence intervals (CI). A total of 483 pregnant persons were given IIV4 and evaluated; 477 (98.8%) reported a live birth, and there were 2 stillbirths, 4 spontaneous abortions, and no elective terminations or maternal deaths. The prevalence rates of infant events were as follows: preterm birth, 7.2% (upper 95% CI, 9.6%); LBW, 5.4% (upper 95% CI, 7.4%); and MCMs, 0.8% (upper 95% CI, 1.9%). Point estimates and upper 95% CIs of the observed prevalence rates were lower than or similar to background prevalence in the general US population. Our findings suggest no evidence of a safety concern with vaccinating this group at high risk of influenza complications and are consistent with published data from databases and surveillance systems that monitor the safety of influenza vaccines in pregnant persons.
Collapse
Affiliation(s)
| | - Janine Oberye
- Seqirus Netherlands B.V., 1105 BJ Amsterdam, The Netherlands
- Correspondence:
| | | | | | - Hugh Tilson
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | - Ellis Ides
- Seqirus Netherlands B.V., 1105 BJ Amsterdam, The Netherlands
| | - Daphne Sawlwin
- Seqirus Australia Pty Ltd., Parkville, VIC 3052, Australia
| | | | | |
Collapse
|
21
|
Rand CM, Bender R, Humiston SG, Albertin C, Olson-Chen C, Chen J, Hsu YSJ, Vangala S, Szilagyi PG. Obstetric Provider Attitudes and Office Practices for Maternal Influenza and Tdap Vaccination. J Womens Health (Larchmt) 2022; 31:1246-1254. [PMID: 35904933 DOI: 10.1089/jwh.2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Although maternal vaccination with influenza and tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccines improve health outcomes for pregnant individuals and infants, maternal vaccination rates are low. This study assessed obstetric providers' attitudes and practices related to influenza and Tdap vaccination in four large health systems in New York (NY) and California (CA). Methods: We conducted a cross-sectional survey of all obstetric providers within four health systems (two in NY, two in CA) to evaluate provider attitudes and office systems used for Tdap and influenza vaccination. The survey assessed perceptions of influenza and Tdap vaccination based on the Health Belief Model, and assessed office systems (reminders, prompts, standing orders, and patient education) and communication with pregnant patients related to influenza and Tdap vaccines. Results: We had 112 responses (52% response rate) for analyses. Respondents strongly supported vaccination during pregnancy but viewed influenza disease as less of a concern for newborns than for pregnant individuals (40% vs. 67% considered influenza disease to be very significant, p < 0.001). Only 84% agreed that giving influenza vaccine in the first trimester is very safe. Patient vaccine refusal was the most commonly named barrier for both influenza and Tdap vaccination. Providers frequently used office system prompts, but did not frequently use standing orders, patient educational materials, vaccine champions, and feedback on vaccination rates. Conclusions: While most providers consider influenza and Tdap vaccination important during pregnancy, there is room for improvement in focusing on the importance of maternal vaccination to the health of the infant, and increasing the use of office systems to improve vaccination during pregnancy.
Collapse
Affiliation(s)
- Cynthia M Rand
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Robin Bender
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Sharon G Humiston
- Department of Pediatrics, University of Missouri Kansas City School of Medicine and Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Christina Albertin
- Department of Pediatrics, University of California Los Angeles, UCLA Mattel Children's Hospital, Los Angeles, California, USA
| | - Courtney Olson-Chen
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - Judy Chen
- Los Angeles County Department of Health Services, Los Angeles, California, USA
| | - Yung-Shee J Hsu
- Department of Obstetrics and Gynecology, UCLA Health, Los Angeles, California, USA
| | - Sitaram Vangala
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Peter G Szilagyi
- Department of Pediatrics, University of California Los Angeles, UCLA Mattel Children's Hospital, Los Angeles, California, USA
| |
Collapse
|
22
|
Grohskopf LA, Blanton LH, Ferdinands JM, Chung JR, Broder KR, Talbot HK, Morgan RL, Fry AM. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices - United States, 2022-23 Influenza Season. MMWR Recomm Rep 2022; 71:1-28. [PMID: 36006864 PMCID: PMC9429824 DOI: 10.15585/mmwr.rr7101a1] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This report updates the 2021–22 recommendations of the Advisory Committee on Immunization Practices (ACIP) concerning the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2021;70[No. RR-5]:1–24). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used.With the exception of vaccination for adults aged ≥65 years, ACIP makes no preferential recommendation for a specific vaccine when more than one licensed, recommended, and age-appropriate vaccine is available. All seasonal influenza vaccines expected to be available in the United States for the 2022–23 season are quadrivalent, containing hemagglutinin (HA) derived from one influenza A(H1N1)pdm09 virus, one influenza A(H3N2) virus, one influenza B/Victoria lineage virus, and one influenza B/Yamagata lineage virus. Inactivated influenza vaccines (IIV4s), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4) are expected to be available. Trivalent influenza vaccines are no longer available, but data that involve these vaccines are included for reference. Influenza vaccines might be available as early as July or August, but for most persons who need only 1 dose of influenza vaccine for the season, vaccination should ideally be offered during September or October. However, vaccination should continue after October and throughout the season as long as influenza viruses are circulating and unexpired vaccine is available. For most adults (particularly adults aged ≥65 years) and for pregnant persons in the first or second trimester, vaccination during July and August should be avoided unless there is concern that vaccination later in the season might not be possible. Certain children aged 6 months through 8 years need 2 doses; these children should receive the first dose as soon as possible after vaccine is available, including during July and August. Vaccination during July and August can be considered for children of any age who need only 1 dose for the season and for pregnant persons who are in the third trimester if vaccine is available during those months Updates described in this report reflect discussions during public meetings of ACIP that were held on October 20, 2021; January 12, 2022; February 23, 2022; and June 22, 2022. Primary updates to this report include the following three topics: 1) the composition of 2022–23 U.S. seasonal influenza vaccines; 2) updates to the description of influenza vaccines expected to be available for the 2022–23 season, including one influenza vaccine labeling change that occurred after the publication of the 2021–22 ACIP influenza recommendations; and 3) updates to the recommendations concerning vaccination of adults aged ≥65 years. First, the composition of 2022–23 U.S. influenza vaccines includes updates to the influenza A(H3N2) and influenza B/Victoria lineage components. U.S.-licensed influenza vaccines will contain HA derived from an influenza A/Victoria/2570/2019 (H1N1)pdm09-like virus (for egg-based vaccines) or an influenza A/Wisconsin/588/2019 (H1N1)pdm09-like virus (for cell culture–based or recombinant vaccines); an influenza A/Darwin/9/2021 (H3N2)-like virus (for egg-based vaccines) or an influenza A/Darwin/6/2021 (H3N2)-like virus (for cell culture–based or recombinant vaccines); an influenza B/Austria/1359417/2021 (Victoria lineage)-like virus; and an influenza B/Phuket/3073/2013 (Yamagata lineage)-like virus. Second, the approved age indication for the cell culture–based inactivated influenza vaccine, Flucelvax Quadrivalent (ccIIV4), was changed in October 2021 from ≥2 years to ≥6 months. Third, recommendations for vaccination of adults aged ≥65 years have been modified. ACIP recommends that adults aged ≥65 years preferentially receive any one of the following higher dose or adjuvanted influenza vaccines: quadrivalent high-dose inactivated influenza vaccine (HD-IIV4), quadrivalent recombinant influenza vaccine (RIV4), or quadrivalent adjuvanted inactivated influenza vaccine (aIIV4). If none of these three vaccines is available at an opportunity for vaccine administration, then any other age-appropriate influenza vaccine should be used This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2022–23 influenza season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used according to Food and Drug Administration–licensed indications. Updates and other information are available from CDC’s influenza website (https://www.cdc.gov/flu). Vaccination and health care providers should check this site periodically for additional information.
Collapse
|
23
|
Romano CJ, Hall C, Khodr ZG, Bukowinski AT, Gumbs GR, Conlin AMS. History of pandemic H1N1-containing influenza vaccination and risk for spontaneous abortion and birth defects. Vaccine 2021; 39:6553-6562. [PMID: 34598819 DOI: 10.1016/j.vaccine.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND One recent study suggested an association between receipt of pandemic H1N1 (pH1N1)-containing vaccines in consecutive influenza seasons and spontaneous abortion, but corroborating scientific evidence is limited. In the present study, we leveraged a population of vaccine-compliant pregnant military women to examine history of pH1N1-containing influenza vaccination and adverse pregnancy outcomes. Because seasonal influenza vaccination is compulsory for military service, safety concerns regarding repeat vaccination are particularly relevant in this population. METHODS Pregnancies and live births from Department of Defense Birth and Infant Health Research program data were linked with military personnel immunization records to identify women vaccinated with a pH1N1-containing vaccine in pregnancy prior to 21 6/7 weeks' gestation, October 2009-April 2015. Cox and modified Poisson regression models estimated associations between vaccination with pH1N1- versus non-pH1N1-containing influenza vaccine in the season prior to the index pregnancy, and spontaneous abortion and birth defects, respectively. Cox models were calculated for two periods of follow-up: through (1) 21 6/7 weeks' gestation and (2) 28 days postvaccination. RESULTS Of 26,264 pregnancies, 21,736 (82.8%) were among women who received a dose of pH1N1-containing vaccine in the prior influenza season and 4,528 (17.2%) were among women who received non-pH1N1-containing vaccine in the prior influenza season. Among 23,121 infants, 19,365 (83.8%) and 3,756 (16.2%) had mothers exposed and unexposed to pH1N1-containing vaccine in the prior influenza season, respectively. The adjusted hazard ratio (aHR) for spontaneous abortion approximated 1.0 across the complete follow-up period (95% confidence interval [CI]: 0.89-1.13) and was slightly elevated when censored at 28 days postvaccination, though the CI was imprecise (aHR: 1.19; 95% CI: 0.97-1.46). No associations with birth defects were observed. CONCLUSION This work lends additional safety evidence and support for vaccination against pH1N1 in pregnancy, regardless of the vaccine received in the prior influenza season.
Collapse
Affiliation(s)
- Celeste J Romano
- Deployment Health Research Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., 140 Sylvester Road, San Diego, CA 92106, USA.
| | - Clinton Hall
- Deployment Health Research Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., 140 Sylvester Road, San Diego, CA 92106, USA
| | - Zeina G Khodr
- Deployment Health Research Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., 140 Sylvester Road, San Diego, CA 92106, USA
| | - Anna T Bukowinski
- Deployment Health Research Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., 140 Sylvester Road, San Diego, CA 92106, USA
| | - Gia R Gumbs
- Deployment Health Research Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA; Leidos, Inc., 140 Sylvester Road, San Diego, CA 92106, USA
| | - Ava Marie S Conlin
- Deployment Health Research Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA
| |
Collapse
|
24
|
Bansal A, Trieu MC, Mohn KGI, Cox RJ. Safety, Immunogenicity, Efficacy and Effectiveness of Inactivated Influenza Vaccines in Healthy Pregnant Women and Children Under 5 Years: An Evidence-Based Clinical Review. Front Immunol 2021; 12:744774. [PMID: 34691051 PMCID: PMC8526930 DOI: 10.3389/fimmu.2021.744774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023] Open
Abstract
Annual influenza vaccination is often recommended for pregnant women and young children to reduce the risk of severe influenza. However, most studies investigating the safety, immunogenicity, and efficacy or effectiveness of influenza vaccines are conducted in healthy adults. In this evidence-based clinical review, we provide an update on the safety profile, immunogenicity, and efficacy/effectiveness of inactivated influenza vaccines (IIVs) in healthy pregnant women and children <5 years old. Six electronic databases were searched until May 27, 2021. We identified 3,731 articles, of which 93 met the eligibility criteria and were included. The IIVs were generally well tolerated in pregnant women and young children, with low frequencies of adverse events following IIV administration; however, continuous vaccine safety monitoring systems are necessary to detect rare adverse events. IIVs generated good antibody responses, and the seroprotection rates after IIVs were moderate to high in pregnant women (range = 65%-96%) and young children (range = 50%-100%), varying between the different influenza types/subtypes and seasons. Studies show vaccine efficacy/effectiveness values of 50%-70% in pregnant women and 20%-90% in young children against lab-confirmed influenza, although the efficacy/effectiveness depended on the study design, host factors, vaccine type, manufacturing practices, and the antigenic match/mismatch between the influenza vaccine strains and the circulating strains. Current evidence suggests that the benefits of IIVs far outweigh the potential risks and that IIVs should be recommended for pregnant women and young children.
Collapse
Affiliation(s)
- Amit Bansal
- The Influenza Centre, Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mai-Chi Trieu
- The Influenza Centre, Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kristin G I Mohn
- The Influenza Centre, Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Jane Cox
- The Influenza Centre, Department of Clinical Sciences, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway
| |
Collapse
|
25
|
Abstract
This technical report accompanies the recommendations of the American Academy of Pediatrics for the routine use of the influenza vaccine and antiviral medications in the prevention and treatment of influenza in children during the 2021-2022 season. Influenza vaccination is an important intervention to protect vulnerable populations and reduce the burden of respiratory illnesses during circulation of severe acute respiratory syndrome coronavirus 2, which is expected to continue during this influenza season. In this technical report, we summarize recent influenza seasons, morbidity and mortality in children, vaccine effectiveness, vaccination coverage, and detailed guidance on storage, administration, and implementation. We also provide background on inactivated and live attenuated influenza vaccine recommendations, vaccination during pregnancy and breastfeeding, diagnostic testing, and antiviral medications for treatment and chemoprophylaxis.
Collapse
MESH Headings
- Antiviral Agents/therapeutic use
- Breast Feeding
- Child
- Contraindications, Drug
- Drug Resistance, Viral
- Drug Storage
- Female
- Hospitalization
- Humans
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza, Human/drug therapy
- Influenza, Human/epidemiology
- Influenza, Human/mortality
- Influenza, Human/prevention & control
- Mass Vaccination
- Risk Factors
- United States/epidemiology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/adverse effects
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/adverse effects
Collapse
|
26
|
Grohskopf LA, Alyanak E, Ferdinands JM, Broder KR, Blanton LH, Talbot HK, Fry AM. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices, United States, 2021-22 Influenza Season. MMWR Recomm Rep 2021; 70:1-28. [PMID: 34448800 PMCID: PMC8407757 DOI: 10.15585/mmwr.rr7005a1] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This report updates the 2020-21 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2020;69[No. RR-8]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. ACIP makes no preferential recommendation for a specific vaccine when more than one licensed, recommended, and age-appropriate vaccine is available. During the 2021-22 influenza season, the following types of vaccines are expected to be available: inactivated influenza vaccines (IIV4s), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4).The 2021-22 influenza season is expected to coincide with continued circulation of SARS-CoV-2, the virus that causes COVID-19. Influenza vaccination of persons aged ≥6 months to reduce prevalence of illness caused by influenza will reduce symptoms that might be confused with those of COVID-19. Prevention of and reduction in the severity of influenza illness and reduction of outpatient visits, hospitalizations, and intensive care unit admissions through influenza vaccination also could alleviate stress on the U.S. health care system. Guidance for vaccine planning during the pandemic is available at https://www.cdc.gov/vaccines/pandemic-guidance/index.html. Recommendations for the use of COVID-19 vaccines are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/covid-19.html, and additional clinical guidance is available at https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html.Updates described in this report reflect discussions during public meetings of ACIP that were held on October 28, 2020; February 25, 2021; and June 24, 2021. Primary updates to this report include the following six items. First, all seasonal influenza vaccines available in the United States for the 2021-22 season are expected to be quadrivalent. Second, the composition of 2021-22 U.S. influenza vaccines includes updates to the influenza A(H1N1)pdm09 and influenza A(H3N2) components. U.S.-licensed influenza vaccines will contain hemagglutinin derived from an influenza A/Victoria/2570/2019 (H1N1)pdm09-like virus (for egg-based vaccines) or an influenza A/Wisconsin/588/2019 (H1N1)pdm09-like virus (for cell culture-based and recombinant vaccines), an influenza A/Cambodia/e0826360/2020 (H3N2)-like virus, an influenza B/Washington/02/2019 (Victoria lineage)-like virus, and an influenza B/Phuket/3073/2013 (Yamagata lineage)-like virus. Third, the approved age indication for the cell culture-based inactivated influenza vaccine, Flucelvax Quadrivalent (ccIIV4), has been expanded from ages ≥4 years to ages ≥2 years. Fourth, discussion of administration of influenza vaccines with other vaccines includes considerations for coadministration of influenza vaccines and COVID-19 vaccines. Providers should also consult current ACIP COVID-19 vaccine recommendations and CDC guidance concerning coadministration of these vaccines with influenza vaccines. Vaccines that are given at the same time should be administered in separate anatomic sites. Fifth, guidance concerning timing of influenza vaccination now states that vaccination soon after vaccine becomes available can be considered for pregnant women in the third trimester. As previously recommended, children who need 2 doses (children aged 6 months through 8 years who have never received influenza vaccine or who have not previously received a lifetime total of ≥2 doses) should receive their first dose as soon as possible after vaccine becomes available to allow the second dose (which must be administered ≥4 weeks later) to be received by the end of October. For nonpregnant adults, vaccination in July and August should be avoided unless there is concern that later vaccination might not be possible. Sixth, contraindications and precautions to the use of ccIIV4 and RIV4 have been modified, specifically with regard to persons with a history of severe allergic reaction (e.g., anaphylaxis) to an influenza vaccine. A history of a severe allergic reaction to a previous dose of any egg-based IIV, LAIV, or RIV of any valency is a precaution to use of ccIIV4. A history of a severe allergic reaction to a previous dose of any egg-based IIV, ccIIV, or LAIV of any valency is a precaution to use of RIV4. Use of ccIIV4 and RIV4 in such instances should occur in an inpatient or outpatient medical setting under supervision of a provider who can recognize and manage a severe allergic reaction; providers can also consider consulting with an allergist to help identify the vaccine component responsible for the reaction. For ccIIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any ccIIV of any valency or any component of ccIIV4 is a contraindication to future use of ccIIV4. For RIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any RIV of any valency or any component of RIV4 is a contraindication to future use of RIV4. This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2021-22 influenza season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used according to Food and Drug Administration-licensed indications. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu); vaccination and health care providers should check this site periodically for additional information.
Collapse
|
27
|
Purandare CN, Preiss S, Kolhapure S, Sathyanarayanan S. Expert opinion on the way forward for improving maternal influenza vaccination in India. Expert Rev Vaccines 2021; 20:773-778. [PMID: 34018897 DOI: 10.1080/14760584.2021.1932474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION : Rates of maternal vaccination against influenza are extremely low in India. An expert panel of obstetric-gynecologists and pediatricians met to develop consensus-based recommendations for improving awareness of the benefits of influenza vaccination during pregnancy in India. AREAS COVERED : The group discussed experiences of influenza infection in pregnancy and infancy before focusing on maternal vaccination practices in India, including the degree of communication between obstetric-gynecologists and pediatricians and opinions on optimal timing for vaccination. The impact of inconsistent vaccine prescription practices by healthcare providers was discussed, as well as current clinical recommendations on maternal influenza vaccination. EXPERT OPINION : Although clinical evidence demonstrates the benefit of maternal influenza vaccination in any trimester, influenza vaccination is not widely accepted in India as an integral part of antenatal care. There is a lack of familiarity among obstetricians of clinical guidelines on maternal influenza vaccination. This can be addressed with an education campaign targeting obstetricians and other providers of maternal healthcare. With variable influenza seasons between regions in India, common vaccine stock shortages, and data suggesting influenza vaccination is feasible anytime in pregnancy, all opportunities to offer vaccination to this high-risk group for severe influenza disease should be considered.
Collapse
Affiliation(s)
| | - Scott Preiss
- Global Medical Affairs Lead, GSK, Rockville, USA
| | | | | |
Collapse
|
28
|
Cullen J, Stone S, Phipps MG, Cypher R. Immunization for Pregnant Women: A Call to Action. J Obstet Gynecol Neonatal Nurs 2021; 49:e1-e6. [PMID: 33161992 DOI: 10.1016/j.jogn.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
29
|
Hong K, Lindley MC, Zhou F. Coverage and Timing of Influenza Vaccination Among Privately Insured Pregnant Women in the United States, 2010-2018. Public Health Rep 2021; 137:739-748. [PMID: 34161183 DOI: 10.1177/00333549211026779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Pregnant women are at increased risk of serious complications from influenza and are recommended to receive an influenza vaccination during pregnancy. The objective of this study was to assess trends, timing patterns, and associated factors of influenza vaccination among pregnant women. METHODS We used 2010-2018 MarketScan data on 1 286 749 pregnant women aged 15-49 who were privately insured to examine trends and timing patterns of influenza vaccination coverage. We examined descriptive statistics and identified factors associated with vaccination uptake by using multivariate log-binomial and Cox proportional hazard models. RESULTS In-plan influenza vaccination coverage before delivery increased from 22.0% during the 2010-2011 influenza season to 33.2% during the 2017-2018 influenza season. About two-thirds of vaccinated women received the vaccine in September or October during each influenza season. For women who delivered in September through May, influenza vaccination coverage increased rapidly at the beginning of influenza season and flattened after October. For women who delivered in June through August, influenza vaccination coverage increased gradually until February and flattened thereafter. Most vaccinated women who delivered before January received the vaccine in the third trimester. Increased likelihood of being vaccinated was associated with age 31-40, living in a metropolitan statistical area, living outside the South, enrollment in a consumer-driven or high-deductible health plan, being spouses or dependents of policy holders, and delivery in November through January. CONCLUSIONS Despite increases during the past several years, vaccination uptake is still suboptimal, particularly after October. Health care provider education on timing of vaccination and recommendations throughout influenza seasons are needed to improve influenza vaccination coverage among pregnant women.
Collapse
Affiliation(s)
- Kai Hong
- 1242 Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Megan C Lindley
- 1242 Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Fangjun Zhou
- 1242 Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
30
|
Naleway AL, Crane B, Irving SA, Bachman D, Vesco KK, Daley MF, Getahun D, Glenn SC, Hambidge SJ, Jackson LA, Klein NP, McCarthy NL, McClure DL, Panagiotakopoulos L, Panozzo CA, Vazquez-Benitez G, Weintraub ES, Zerbo O, Kharbanda EO. Vaccine Safety Datalink infrastructure enhancements for evaluating the safety of maternal vaccination. Ther Adv Drug Saf 2021; 12:20420986211021233. [PMID: 34178302 PMCID: PMC8207278 DOI: 10.1177/20420986211021233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/06/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Identifying pregnancy episodes and accurately estimating their beginning and end dates are imperative for observational maternal vaccine safety studies using electronic health record (EHR) data. METHODS We modified the Vaccine Safety Datalink (VSD) Pregnancy Episode Algorithm (PEA) to include both the International Classification of Disease, ninth revision (ICD-9 system) and ICD-10 diagnosis codes, incorporated additional gestational age data, and validated this enhanced algorithm with manual medical record review. We also developed the new Dynamic Pregnancy Algorithm (DPA) to identify pregnancy episodes in real time. RESULTS Around 75% of the pregnancy episodes identified by the enhanced VSD PEA were live births, 12% were spontaneous abortions (SABs), 10% were induced abortions (IABs), and 0.4% were stillbirths (SBs). Gestational age was identified for 99% of live births, 89% of SBs, 69% of SABs, and 42% of IABs. Agreement between the PEA-assigned and abstractor-identified pregnancy outcome and outcome date was 100% for live births, but was lower for pregnancy losses. When gestational age was available in the medical record, the agreement was higher for live births (97%), but lower for pregnancy losses (75%). The DPA demonstrated strong concordance with the PEA and identified pregnancy episodes ⩾6 months prior to the outcome date for 89% of live births. CONCLUSION The enhanced VSD PEA is a useful tool for identifying pregnancy episodes in EHR databases. The DPA improves the timeliness of pregnancy identification and can be used for near real-time maternal vaccine safety studies. PLAIN LANGUAGE SUMMARY Improving identification of pregnancies in the Vaccine Safety Datalink electronic medical record databases to allow for better and faster monitoring of vaccination safety during pregnancy Introduction: It is important to monitor of the safety of vaccines after they have been approved and licensed by the Food and Drug Administration, especially among women vaccinated during pregnancy. The Vaccine Safety Datalink (VSD) monitors vaccine safety through observational studies within large databases of electronic medical records. Since 2012, VSD researchers have used an algorithm called the Pregnancy Episode Algorithm (PEA) to identify the medical records of women who have been pregnant. Researchers then use these medical records to study whether receiving a particular vaccine is linked to any negative outcomes for the woman or her child.Methods: The goal of this study was to update and enhance the PEA to include the full set of medical record diagnostic codes [both from the older International Classification of Disease, ninth revision (ICD-9 system) and the newer ICD-10 system] and to incorporate additional sources of data about gestational age. To ensure the validity of the PEA following these enhancements, we manually reviewed medical records and compared the results with the algorithm. We also developed a new algorithm, the Dynamic Pregnancy Algorithm (DPA), to identify women earlier in pregnancy, allowing us to conduct more timely vaccine safety assessments.Results: The new version of the PEA identified 2,485,410 pregnancies in the VSD database. The enhanced algorithm more precisely estimated the beginning of pregnancies, especially those that did not result in live births, due to the new sources of gestational age data.Conclusion: Our new algorithm, the DPA, was successful at identifying pregnancies earlier in gestation than the PEA. The enhanced PEA and the new DPA will allow us to better evaluate the safety of current and future vaccinations administered during or around the time of pregnancy.
Collapse
Affiliation(s)
- Allison L. Naleway
- Center for Health Research, Kaiser Permanente Northwest, 3800 N. Interstate Ave, Portland, OR 97227, USA
| | - Bradley Crane
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, USA
| | | | - Don Bachman
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, USA
| | - Kimberly K. Vesco
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, USA
| | | | - Darios Getahun
- Kaiser Permanente Southern California, Pasadena, CA, USA
| | | | | | - Lisa A. Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | | | - Ousseny Zerbo
- Kaiser Permanente Vaccine Study Center, Oakland, CA, USA
| | | |
Collapse
|
31
|
Stafford IA, Parchem JG, Sibai BM. The coronavirus disease 2019 vaccine in pregnancy: risks, benefits, and recommendations. Am J Obstet Gynecol 2021; 224:484-495. [PMID: 33529575 PMCID: PMC7847190 DOI: 10.1016/j.ajog.2021.01.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 has caused over 2 million deaths worldwide, with over 412,000 deaths reported in Unites States. To date, at least 57,786 pregnant women in the United States have been infected, and 71 pregnant women have died. Although pregnant women are at higher risk of severe coronavirus disease 2019-related illness, clinical trials for the available vaccines excluded pregnant and lactating women. The safety and efficacy of the vaccines for pregnant women, the fetus, and the newborn remain unknown. A review of maternal and neonatal coronavirus disease 2019 morbidity and mortality data along with perinatal vaccine safety considerations are presented to assist providers with shared decision-making regarding vaccine administration for this group, including the healthcare worker who is pregnant, lactating, or considering pregnancy. The coronavirus disease 2019 vaccine should be offered to pregnant women after discussing the lack of safety data, with preferential administration for those at highest risk of severe infection, until safety and efficacy of these novel vaccines are validated.
Collapse
Affiliation(s)
- Irene A Stafford
- Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX.
| | - Jacqueline G Parchem
- Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Baha M Sibai
- Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
32
|
Cullen J, Stone S, Phipps MG, Cypher R. Immunization for Pregnant Women: A Call to Action. J Midwifery Womens Health 2021; 65:713-715. [PMID: 33108063 DOI: 10.1111/jmwh.13163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Rebecca Cypher
- Association of Women's Health, Obstetric and Neonatal Nurses
| |
Collapse
|
33
|
Maltezou HC, Rodolakis A. Vaccination of pregnant women against influenza: what is the optimal timing? Hum Vaccin Immunother 2021; 17:2723-2727. [PMID: 33599569 DOI: 10.1080/21645515.2021.1889934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pregnant women and young infants are at increased risk for severe influenza and its complications. Influenza vaccination during pregnancy is increasingly implemented as a strategy aiming to protect the pregnant woman, the fetus and the young infant. In clinical practice, the achievement of satisfactory protection for the pregnant woman without compromising the protection of her infant during the first months of life remains a challenge. Determinants that are implicated in the optimal timing of influenza vaccination in pregnancy include influenza season, trimester of pregnancy, maternal host factors and infant factors. This article addresses influenza vaccination in pregnancy and presents recent published evidence on issues that affect the optimization of the timing of maternal vaccination.
Collapse
Affiliation(s)
- Helena C Maltezou
- Directorate of Research, Studies and Documentation, National Public Health Organization, Athens, Greece
| | - Alexandros Rodolakis
- First Department of Obstetrics and Gynecology, University of Athens, Alexandra General Hospital, Athens, Greece
| |
Collapse
|
34
|
Cesare N, Oladeji O, Ferryman K, Wijaya D, Hendricks‐Muñoz KD, Ward A, Nsoesie EO. Discussions of miscarriage and preterm births on Twitter. Paediatr Perinat Epidemiol 2020; 34:544-552. [PMID: 31912544 PMCID: PMC7496231 DOI: 10.1111/ppe.12622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/22/2019] [Accepted: 11/17/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Experiences typically considered private, such as, miscarriages and preterm births are being discussed publicly on social media and Internet discussion websites. These data can provide timely illustrations of how individuals discuss miscarriages and preterm births, as well as insights into the wellbeing of women who have experienced a miscarriage. OBJECTIVES To characterise how users discuss the topic of miscarriage and preterm births on Twitter, analyse trends and drivers, and describe the perceived emotional state of women who have experienced a miscarriage. METHODS We obtained 291 443 Twitter postings on miscarriages and preterm births from January 2017 through December 2018. Latent Dirichlet Allocation (LDA) was used to identify major topics of discussion. We applied time series decomposition methods to assess temporal trends and identify major drivers of discussion. Furthermore, four coders labelled the emotional content of 7282 personal miscarriage disclosure tweets into the following non-mutually exclusive categories: grief/sadness/depression, anger, relief, isolation, annoyance, and neutral. RESULTS Topics in our data fell into eight groups: celebrity disclosures, Michelle Obama's disclosure, politics, healthcare, preterm births, loss and anxiety, flu vaccine and ectopic pregnancies. Political discussions around miscarriages were largely due to a misunderstanding between abortions and miscarriages. Grief and annoyance were the most commonly expressed emotions within the miscarriage self-disclosures; 50.6% (95% confidence interval [CI] 49.1, 52.2) and 16.2% (95% CI 15.2, 17.3). Postings increased with celebrity disclosures, pharmacists' refusal of prescribed medications and outrage over the high rate of preterm births in the United States. Miscarriage disclosures by celebrities also led to disclosures by women who had similar experiences. CONCLUSIONS This study suggests that increase in discussions of miscarriage on social media are associated with several factors, including celebrity disclosures. Additionally, there is a misunderstanding of the potential physical, emotional and psychological impacts on individuals who lose a pregnancy due to a miscarriage.
Collapse
Affiliation(s)
- Nina Cesare
- Department of Global HealthSchool of Public HealthBoston UniversityBostonMAUSA
| | - Olubusola Oladeji
- Department of Global HealthSchool of Public HealthBoston UniversityBostonMAUSA
| | - Kadija Ferryman
- Department of Technology, Culture, and SocietyTandon School of EngineeringNew York UniversityNew YorkNYUSA
| | - Derry Wijaya
- Department of Computer ScienceBoston UniversityBostonMAUSA
| | - Karen D. Hendricks‐Muñoz
- Department of PediatricsVirginia Commonwealth University School of MedicineRichmondVAUSA,Children's Hospital of RichmondRichmondVAUSA
| | - Alyssa Ward
- Children's Hospital of RichmondRichmondVAUSA
| | - Elaine O. Nsoesie
- Department of Global HealthSchool of Public HealthBoston UniversityBostonMAUSA
| |
Collapse
|
35
|
Grohskopf LA, Alyanak E, Broder KR, Blanton LH, Fry AM, Jernigan DB, Atmar RL. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices - United States, 2020-21 Influenza Season. MMWR Recomm Rep 2020; 69:1-24. [PMID: 32820746 PMCID: PMC7439976 DOI: 10.15585/mmwr.rr6908a1] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This report updates the 2019–20 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2019;68[No. RR-3]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. Inactivated influenza vaccines (IIVs), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4) are expected to be available. Most influenza vaccines available for the 2020–21 season will be quadrivalent, with the exception of MF59-adjuvanted IIV, which is expected to be available in both quadrivalent and trivalent formulations. Updates to the recommendations described in this report reflect discussions during public meetings of ACIP held on October 23, 2019; February 26, 2020; and June 24, 2020. Primary updates to this report include the following two items. First, the composition of 2020–21 U.S. influenza vaccines includes updates to the influenza A(H1N1)pdm09, influenza A(H3N2), and influenza B/Victoria lineage components. Second, recent licensures of two new influenza vaccines, Fluzone High-Dose Quadrivalent and Fluad Quadrivalent, are discussed. Both new vaccines are licensed for persons aged ≥65 years. Additional changes include updated discussion of contraindications and precautions to influenza vaccination and the accompanying Table, updated discussion concerning use of LAIV4 in the setting of influenza antiviral medication use, and updated recommendations concerning vaccination of persons with egg allergy who receive either cell culture–based IIV4 (ccIIV4) or RIV4. The 2020–21 influenza season will coincide with the continued or recurrent circulation of SARS-CoV-2 (the novel coronavirus associated with coronavirus disease 2019 [COVID-19]). Influenza vaccination of persons aged ≥6 months to reduce prevalence of illness caused by influenza will reduce symptoms that might be confused with those of COVID-19. Prevention of and reduction in the severity of influenza illness and reduction of outpatient illnesses, hospitalizations, and intensive care unit admissions through influenza vaccination also could alleviate stress on the U.S. health care system. Guidance for vaccine planning during the pandemic is available at https://www.cdc.gov/vaccines/pandemic-guidance/index.html. This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2020–21 season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used within Food and Drug Administration (FDA)–licensed indications. Updates and other information are available from CDC’s influenza website (https://www.cdc.gov/flu). Vaccination and health care providers should check this site periodically for additional information.
Collapse
|
36
|
Munoz FM, Patel SM, Jackson LA, Swamy GK, Edwards KM, Frey SE, Petrie CR, Sendra EA, Keitel WA. Safety and immunogenicity of three seasonal inactivated influenza vaccines among pregnant women and antibody persistence in their infants. Vaccine 2020; 38:5355-5363. [PMID: 32571718 PMCID: PMC10803065 DOI: 10.1016/j.vaccine.2020.05.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Inactivated influenza virus vaccines (IIVs) are recommended for all pregnant women in the United States. We conducted a prospective, randomized, double blind study of three licensed seasonal trivalent IIVs (IIV3s) to assess their safety and immunogenicity in pregnant women and determine the level and persistence of passively transferred maternal antibody in infants. STUDY DESIGN 139 pregnant women ages 18-39 years and 14-33 weeks' gestation, and 44 non-pregnant women, were randomized 1:1:1 to receive a single intramuscular dose of one of three licensed IIV3s (Agriflu®, Fluzone®, or Fluarix®) prior to the 2010-2011 influenza season. Reactogenicity, adverse events (AEs) and pregnancy outcomes were documented. Serum samples for hemagglutination inhibition (HAI) and neutralization antibody assays were collected prior to and 28 and 180 days after immunization. Maternal sera and cord blood were collected at the time of delivery and sera were obtained from 44 infants at 6 weeks of age. RESULTS Pregnant and non-pregnant women experienced similar frequency of injection site (92% and 86%, respectively) and systemic (95% and 87%, respectively) reactions, the majority of which were mild. There were no vaccine-associated maternal or infant serious AEs. Antibody responses to the three vaccine antigens were not different between pregnant and non-pregnant women. The ratios of cord blood (infant) to maternal HAI antibody titers at delivery ranged between 1.1 and 1.7 for each of the vaccine antigens. Influenza antibody concentrations in infants were 70-40% of the birth titer by 6 weeks of age. CONCLUSIONS The three IIV3s were well tolerated in pregnant women. Antibody responses were comparable in pregnant and non-pregnant women, and after second or third trimester vaccination. Transplacental transfer of maternal antibodies to the infant was efficient. However, antibody titers decline rapidly in the first 6 weeks of life.
Collapse
Affiliation(s)
- Flor M Munoz
- Department of Pediatrics, Houston, TX, United States; Department of Molecular Virology and Microbiology, Houston, TX, United States.
| | - Shital M Patel
- Department of Molecular Virology and Microbiology, Houston, TX, United States; Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Lisa A Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Geeta K Swamy
- Department of Obstetrics & Gynecology, Duke University, Durham, NC, United States
| | - Kathryn M Edwards
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University, Nashville, TN, United States
| | - Sharon E Frey
- Saint Louis University School of Medicine, St. Louis, MO, United States
| | | | - Eli A Sendra
- The EMMES Company, LLC, Rockville, MD, United States
| | - Wendy A Keitel
- Department of Molecular Virology and Microbiology, Houston, TX, United States; Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
37
|
Abu-Raya B, Maertens K, Edwards KM, Omer SB, Englund JA, Flanagan KL, Snape MD, Amirthalingam G, Leuridan E, Damme PV, Papaevangelou V, Launay O, Dagan R, Campins M, Cavaliere AF, Frusca T, Guidi S, O'Ryan M, Heininger U, Tan T, Alsuwaidi AR, Safadi MA, Vilca LM, Wanlapakorn N, Madhi SA, Giles ML, Prymula R, Ladhani S, Martinón-Torres F, Tan L, Michelin L, Scambia G, Principi N, Esposito S. Global Perspectives on Immunization During Pregnancy and Priorities for Future Research and Development: An International Consensus Statement. Front Immunol 2020; 11:1282. [PMID: 32670282 PMCID: PMC7326941 DOI: 10.3389/fimmu.2020.01282] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Immunization during pregnancy has been recommended in an increasing number of countries. The aim of this strategy is to protect pregnant women and infants from severe infectious disease, morbidity and mortality and is currently limited to tetanus, inactivated influenza, and pertussis-containing vaccines. There have been recent advancements in the development of vaccines designed primarily for use in pregnant women (respiratory syncytial virus and group B Streptococcus vaccines). Although there is increasing evidence to support vaccination in pregnancy, important gaps in knowledge still exist and need to be addressed by future studies. This collaborative consensus paper provides a review of the current literature on immunization during pregnancy and highlights the gaps in knowledge and a consensus of priorities for future research initiatives, in order to optimize protection for both the mother and the infant.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kirsten Maertens
- Faculty of Medicine and Health Sciences, Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Kathryn M. Edwards
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Saad B. Omer
- Department of Internal Medicine (Infectious Diseases), Department of Epidemiology of Microbial Diseases, Yale School of Medicine, Yale School of Public Health, New Haven, CT, United States
| | - Janet A. Englund
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Katie L. Flanagan
- Faculty of Health Sciences, School of Medicine, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Matthew D. Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Gayatri Amirthalingam
- Immunisation and Countermeasures Division, National Infection Service, Public Health England, London, United Kingdom
| | - Elke Leuridan
- Faculty of Medicine and Health Sciences, Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Pierre Van Damme
- Faculty of Medicine and Health Sciences, Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Vana Papaevangelou
- Third Department of Pediatrics, University Hospital ATTIKON, National and Kapodistrian University of Athens, Athens, Greece
| | - Odile Launay
- Université de Paris, Inserm, CIC 1417, F-CRIN I REIVAC, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Magda Campins
- Preventive Medicine and Epidemiology Department, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Anna Franca Cavaliere
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tiziana Frusca
- Department of Medicine and Surgery, Obstetrics and Gynaecology Unit, University of Parma, Parma, Italy
| | - Sofia Guidi
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Miguel O'Ryan
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences and Associate Researcher, Millennium Institute of Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Ulrich Heininger
- Pediatric Infectious Diseases, University of Basel Children's Hospital, Basel, Switzerland
| | - Tina Tan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Ahmed R. Alsuwaidi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marco. A. Safadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Luz M. Vilca
- Unit of Obstetrics and Gynecology, Buzzi Hospital - ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shabir A. Madhi
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michelle L. Giles
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Roman Prymula
- School of Medicine Hradec Kralove, Institute of Social Medicine, Charles University Prague, Prague, Czechia
| | - Shamez Ladhani
- Immunisation and Countermeasures Division, National Infection Service, Public Health England, London, United Kingdom
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, University of Santiago, Santiago de Compostela, Spain
| | - Litjen Tan
- Immunization Action Coalition, St. Paul, MN, United States
| | - Lessandra Michelin
- Infectious Diseases and Vaccinology Division, Health Sciences Post Graduation Program, University of Caxias Do Sul, Caxias Do Sul, Brazil
| | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Susanna Esposito
- Department of Medicine and Surgery, Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| |
Collapse
|
38
|
Rasmussen SA, Kancherla V, Conover E. Joint position statement on vaccines from the Society for Birth Defects Research and Prevention and the Organization of Teratology Information Specialists. Birth Defects Res 2020; 112:527-534. [PMID: 32270605 DOI: 10.1002/bdr2.1674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Sonja A Rasmussen
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Epidemiology, University of Florida College of Public Health and Health Professions and College of Medicine, Gainesville, Florida, USA
| | - Vijaya Kancherla
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Elizabeth Conover
- Department of Genetic Medicine, Munroe Meyer Institute, University of Nebraska Medical Center Omaha, Omaha, Nebraska, USA
| |
Collapse
|
39
|
Geoghegan S, O'Callaghan KP, Offit PA. Vaccine Safety: Myths and Misinformation. Front Microbiol 2020; 11:372. [PMID: 32256465 PMCID: PMC7090020 DOI: 10.3389/fmicb.2020.00372] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/19/2020] [Indexed: 01/17/2023] Open
Abstract
The World Health Organization has named vaccine hesitancy as one of the top ten threats to global health in 2019. The reasons why people choose not to vaccinate are complex, but lack of confidence in vaccine safety, driven by concerns about adverse events, has been identified as one of the key factors. Healthcare workers, especially those in primary care, remain key influencers on vaccine decisions. It is important, therefore, that they be supported by having easy access to trusted, evidence-based information on vaccines. Although parents and patients have a number of concerns about vaccine safety, among the most common are fears that adjuvants like aluminum, preservatives like mercury, inactivating agents like formaldehyde, manufacturing residuals like human or animal DNA fragments, and simply the sheer number of vaccines might be overwhelming, weakening or perturbing the immune system. As a consequence, some fear that vaccines are causing autism, diabetes, developmental delays, hyperactivity, and attention-deficit disorders, amongst others. In this review we will address several of these topics and highlight the robust body of scientific evidence that refutes common concerns about vaccine safety.
Collapse
Affiliation(s)
- Sarah Geoghegan
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.,National Children's Research Centre, Dublin, Ireland
| | - Kevin P O'Callaghan
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul A Offit
- Division of Infectious Diseases, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|