1
|
Foord CS, Robb K, Nugegoda D. Trace element concentrations in dolphins of south-east Australia; mercury a cause for concern in the region. MARINE POLLUTION BULLETIN 2024; 209:117130. [PMID: 39461174 DOI: 10.1016/j.marpolbul.2024.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Concentrations of nine trace elements (As, Cd, Cr, Cu, Hg, Mn, Ni, Se, Zn) in hepatic, renal and epidermal tissues were investigated in three dolphin species (Burrunan dolphin, Tursiops australis; common bottlenose dolphin, T. truncatus; short-beaked common dolphin, Delphinus delphis) within southeast Australia. Elevated hepatic Hg was found in critically endangered Burrunan dolphins (62.5-4990 mg/kg dw) and common bottlenose dolphins (102-1770 mg/kg dw), amongst the highest for the taxa globally, exceeding the short-beaked common dolphins (3.24-370 mg/kg dw), likely due to dietary differences. Hepatic Hg:Se molar ratios exceeded 1 in 60 % of dolphins, suggesting Hg toxicity. Essential trace elements showed little variation across species, but epidermal Se was notably low in Burrunan dolphins. Due to ongoing freshwater skin disease/health concerns, and the importance Se plays in epidermal health, it is recommended that epidermal Se and skin health are further investigated within the Burrunan dolphin.
Collapse
Affiliation(s)
- Chantel S Foord
- Ecotoxicology Research Group, School of Science, Royal Melbourne Institute of Technology, Bundoora, VIC 3083, Australia; Marine Mammal Foundation, PO Box 2046, Hampton East, VIC 3188, Australia.
| | - Kate Robb
- Marine Mammal Foundation, PO Box 2046, Hampton East, VIC 3188, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, Royal Melbourne Institute of Technology, Bundoora, VIC 3083, Australia
| |
Collapse
|
2
|
Bielmyer-Fraser GK, Courville JM, Ward A, Hardie MM. Mercury and Selenium Accumulation in the Tissues of Stranded Bottlenose Dolphins ( Tursiops truncatus) in Northeast Florida, 2013-2021. Animals (Basel) 2024; 14:1571. [PMID: 38891616 PMCID: PMC11171161 DOI: 10.3390/ani14111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Bottlenose dolphins (Tursiops truncatus) are long-lived marine mammals, upper-level predators, and they inhabit near-shore environments, which increases their exposure to pollution. Mercury is a ubiquitous and persistent metal pollutant that can bioaccumulate and biomagnify up the food chain. Dolphins are known to accumulate mercury, and limited research has shown that mercury exposure can weaken the immune system of dolphins. The objectives of this study were to assess the mercury concentrations in the tissues (muscle, small intestine, liver) of stranded bottlenose dolphins and to compare the tissue mercury levels in dolphins that were stranded during the 2013-2015 morbillivirus Unusual Mortality Event (UME; immunosuppressed individuals) with the levels of those that were stranded at a normal rate (2016-2021). Selenium has been shown to reduce mercury toxicity in many animals; therefore, tissue selenium concentration and the molar ratio of selenium to mercury were also assessed. The tissue mercury (muscle, liver) and selenium (liver) concentrations increased with the age of the dolphins, with the liver accumulating the highest concentrations. No sex differences were observed in the mercury and selenium concentrations. While differences in tissue mercury concentrations were not observed due to the UME, the selenium accumulation profiles were significantly different between the two time periods. These results suggest that selenium may not have been as protective against mercury toxicity in the bottlenose dolphins that were stranded during the UME, possibly due to infection with morbillivirus.
Collapse
|
3
|
Felipo-Benavent M, Martínez-Romero A, Valls M, Rojo-Solís C, Álvaro T, García-Párraga D, Rubio-Guerri C, O’Connor JE. Physiological values of phagocytic capacity in marine mammals and alterations during pathological situations. Front Vet Sci 2024; 11:1389977. [PMID: 38756511 PMCID: PMC11097660 DOI: 10.3389/fvets.2024.1389977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
The study of the immune function in marine mammals is essential to understand their physiology and can help to improve their welfare in the aquariums. Dedicating efforts to studying marine mammal physiology, pathophysiology, and implementing new diagnostic and therapeutic tools promote progress towards preventive medicine in aquariums by facilitating early detection and treatment of diseases. However, biological and clinical research on marine mammals is currently very limited due to difficult access to these species and their biological samples. With this objective, our group has adapted to marine mammals a commercially available assay routinely used to evaluate the phagocytic capacity of monocytes and granulocytes in human whole blood samples. We adapted IngoflowEx kit to bottlenose dolphins (Tursiops truncatus), beluga whales (Delphinapterus leucas), walruses (Odobenus rosmarus), Patagonian sea lions (Otaria flavescens), and harbor (Phoca vitulina). In this paper, we report the modifications carried out on the original protocol for their correct functioning in marine mammals. We obtained physiological values of phagocytic capacity in each species after repeated sampling for 4 years in various individuals of each species. Specific results revealed that the % phagocytic cells that ingested E.coli in bottlenose dolphins were 59.6 ± 1.27, in walruses 62.6 ± 2.17, in sea lions 57.5 ± 4.3, and in beluga whales 61.7 ± 1.4. In the case of the % phagocytic cells producing respiratory burst in bottlenose dolphins were 34.2 ± 3.6, in walruses 36.3 ± 4.3, in sea lions 40.8 ± 10.2, and in beluga whales 26.3 ± 3.7. These preliminary results can be used as a reference to detect alterations in phagocytic capacity either by immunosuppression or by exacerbation of the response in infectious inflammatory processes. Clinical applicability of the assay was verified in two clinical cases in which Ingoflow was useful to detect immune alterations in two diseased individuals, before and after the onset of clinical signs.
Collapse
Affiliation(s)
- Mar Felipo-Benavent
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | | | - Mónica Valls
- Veterinary Services, Avanqua Oceanográfic SL, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Carlos Rojo-Solís
- Veterinary Services, Avanqua Oceanográfic SL, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Teresa Álvaro
- Veterinary Services, Avanqua Oceanográfic SL, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Daniel García-Párraga
- Veterinary Services, Avanqua Oceanográfic SL, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Consuelo Rubio-Guerri
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
- Department of Pharmacy, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
- Laboratory of Cytomics, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Valencia University, Valencia, Spain
| |
Collapse
|
4
|
Polizzi P, Romero MB, Chiodi Boudet L, Dolagaratz Carricavur A, Gerpe M. What do small cetaceans tell us about trace elements pollution on the Argentinean coast? Franciscana dolphin as a biomonitor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167428. [PMID: 37793446 DOI: 10.1016/j.scitotenv.2023.167428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Trace elements (TEs) constitute the oldest emerging pollutants globally, most occur from natural sources, but a few are derived from anthropogenic sources. Marine mammals are considered bioindicators of ecosystem contamination. The aims of this review is compile reports on essential and nonessential TEs occurrence in small cetaceans from Argentinean waters; and to review the existing information on the concentration of TEs in the Franciscana dolphin, a biomonitor species of the Argentine coastal marine ecosystem. We searched reports where levels of TEs were present in small cetaceans from and eight species were analysed: Pontoporia blainvillei, Tursiops truncatus gephyreus, Kogia breviceps, Delphinus delphis, Lagenorhynchus obscurus, Lagenodelphis hasei, Cephaloryhchus commersonii and Ziphius cavirostris. Essential TEs like Zn, Cu, Mn, Cr, Fe, Co, Ni, Mo, Se, As, Au, Ag, Sn, and nonessential TE as Pb, Cd, Hg, As was considered. The reports compiled in this article analysed kidney, liver, muscle and occasionally brain, skin, lung and spleen, covering a temporal range of 30 years, from 1982 to 2016. Of data analysis, we identify knowledge gaps, species of small cetaceans for which the concentration of trace metals is not yet known and areas on the Argentine coast where there are no reports that analyse them. The most recent information corresponds to the 2010 decade, and in those subsequent publications, the samples were taken at that time. This emphasizes the importance of reviewing this data, in order to compare old and new datasets, create contamination timelines and evaluate possible increases or decreases of contaminants in different study areas. The information recopilated will serve as valuable baselines to detect the future impact of increasing human, even natural, activities on marine ecosystems in the South Atlantic Ocean.
Collapse
Affiliation(s)
- P Polizzi
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3250, CC1260, 7600 Mar del Plata, Argentina.
| | - M B Romero
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3250, CC1260, 7600 Mar del Plata, Argentina
| | - L Chiodi Boudet
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3250, CC1260, 7600 Mar del Plata, Argentina
| | - A Dolagaratz Carricavur
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3250, CC1260, 7600 Mar del Plata, Argentina
| | - M Gerpe
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3250, CC1260, 7600 Mar del Plata, Argentina
| |
Collapse
|
5
|
Pace CN, Haulena M, Drumm HE, Akhurst L, Raverty SA. CAUSES AND TRENDS OF HARBOR SEAL (PHOCA VITULINA) MORTALITY ALONG THE BRITISH COLUMBIA COAST, CANADA, 2012-2020. J Wildl Dis 2023; 59:629-639. [PMID: 37540148 DOI: 10.7589/jwd-d-22-00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 08/05/2023]
Abstract
A retrospective study was conducted to categorize and describe the causes of mortality in harbor seals (Phoca vitulina) along the British Columbia coast that presented to the Vancouver Aquarium Marine Mammal Rescue Centre (MMR) for rehabilitation from 2012 to 2020. Medical records for 1,279 predominantly perinatal live-stranded harbor seals recovered in this region were reviewed. Approximately 20.0% (256 individuals; 137 males, 118 females, 1 unknown) of these animals died while at MMR. Infectious disease was the most common cause of death, accounting for 60.5% of mortality across all age classes. This was followed by nonanthropogenic trauma (7.1%), metabolic illness (5.4%), nutritional deficiency (5.0%), parasitic illness (5.0%), congenital disorders (2.5%), and human-associated trauma (0.4%). Pups were the most common age class (87.4%) amongst mortalities and predominantly died of an infectious process (62.5%). Phocid herpesvirus-1 infection was identified in 18.9% of the mortalities, with the highest prevalence occurring in 2019 (30.8%). Fungal disease was detected in six seals: three cases of pulmonary mycosis due to Cryptococcus gattii and three cases consistent with mucormycosis. In six cases, mortality was attributed to congenital disorders. Two of these cases involved axial skeletal malformities that are not currently described in the literature. This is the first study to describe the causes of mortality in harbor seals undergoing rehabilitation in British Columbia.
Collapse
Affiliation(s)
- Courtney N Pace
- Vancouver Aquarium, 845 Avison Way, Vancouver, British Columbia V6G 3E2, Canada
| | - Martin Haulena
- Vancouver Aquarium, 845 Avison Way, Vancouver, British Columbia V6G 3E2, Canada
| | - Hannah E Drumm
- Vancouver Aquarium, 845 Avison Way, Vancouver, British Columbia V6G 3E2, Canada
| | - Lindsaye Akhurst
- Vancouver Aquarium, 845 Avison Way, Vancouver, British Columbia V6G 3E2, Canada
| | - Stephen A Raverty
- Animal Health Center British Columbia Ministry of Agriculture, 1767 Angus Campbell Rd., Abbotsford, British Columbia V3G 2M3, Canada
| |
Collapse
|
6
|
Malcolm EG, Coleman SE, Smith EM, Cooke ME, Rice Jeff H, Ellick RM, Volker KM. The potential use of skin and liver as biomarkers to estimate mercury in the brain, kidney, and muscle of bottlenose dolphins (Tursiops truncatus). MARINE POLLUTION BULLETIN 2023; 191:114903. [PMID: 37062130 DOI: 10.1016/j.marpolbul.2023.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
For marine cetaceans, Hg biomagnification can negatively affect neurological, hepatic, renal, and immune functions. To evaluate the use of biomarkers for Hg in dolphins, multiple tissues were analyzed from 127 stranded common bottlenose dolphins (Tursiops truncatus) from the estuarine and oceanic waters of Virginia, USA. Twenty-two percent of liver Hg concentrations exceeded the published observed effect level for liver abnormalities, and 26 % of cerebrum samples exceeded the published threshold for neurochemical changes, suggesting that Hg may have impacted dolphin health. Mercury tissue levels were similar to or lower than those reported from other locations (liver range: 1.4-943 μg/g-dw). Significant correlations were found between tissue types, indicating that skin or liver can be used as a biomarker to estimate the total Hg concentrations in the other tissue types (kidney, liver, cerebrum, cerebellum, pons). This is the first study to measure Hg concentrations in multiple brain regions of T. truncatus.
Collapse
Affiliation(s)
- Elizabeth G Malcolm
- Department of Earth and Environmental Sciences, Virginia Wesleyan University, Virginia Beach, VA, USA.
| | - Sherie E Coleman
- Department of Earth and Environmental Sciences, Virginia Wesleyan University, Virginia Beach, VA, USA
| | - Erin M Smith
- Department of Earth and Environmental Sciences, Virginia Wesleyan University, Virginia Beach, VA, USA
| | - Matthew E Cooke
- Department of Earth and Environmental Sciences, Virginia Wesleyan University, Virginia Beach, VA, USA
| | - Hannah Rice Jeff
- Department of Earth and Environmental Sciences, Virginia Wesleyan University, Virginia Beach, VA, USA
| | - Rachel M Ellick
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Kristen M Volker
- Virginia Aquarium & Marine Science Center, Virginia Beach, VA, USA
| |
Collapse
|
7
|
Kakade A, Sharma M, Salama ES, Zhang P, Zhang L, Xing X, Yue J, Song Z, Nan L, Yujun S, Li X. Heavy metals (HMs) pollution in the aquatic environment: Role of probiotics and gut microbiota in HMs remediation. ENVIRONMENTAL RESEARCH 2023; 223:115186. [PMID: 36586709 DOI: 10.1016/j.envres.2022.115186] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The presence of heavy metals (HMs) in aquatic ecosystems is a universal concern due to their tendency to accumulate in aquatic organisms. HMs accumulation has been found to cause toxic effects in aquatic organisms. The common HMs-induced toxicities are growth inhibition, reduced survival, oxidative stress, tissue damage, respiratory problems, and gut microbial dysbiosis. The application of dietary probiotics has been evolving as a potential approach to bind and remove HMs from the gut, which is called "Gut remediation". The toxic effects of HMs in fish, mice, and humans with the potential of probiotics in removing HMs have been discussed previously. However, the toxic effects of HMs and protective strategies of probiotics on the organisms of each trophic level have not been comprehensively reviewed yet. Thus, this review summarizes the toxic effects caused by HMs in the organisms (at each trophic level) of the aquatic food chain, with a special reference to gut microbiota. The potential of bacterial probiotics in toxicity alleviation and their protective strategies to prevent toxicities caused by HMs in them are also explained. The dietary probiotics are capable of removing HMs (50-90%) primarily from the gut of the organisms. Specifically, probiotics have been reported to reduce the absorption of HMs in the intestinal tract via the enhancement of intestinal HM sequestration, detoxification of HMs, changing the expression of metal transporter proteins, and maintaining the gut barrier function. The probiotic is recommended as a novel strategy to minimize aquaculture HMs toxicity and safe human health.
Collapse
Affiliation(s)
- Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Monika Sharma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Lihong Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Xiaohong Xing
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Jianwei Yue
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Zhongzhong Song
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Lan Nan
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Su Yujun
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
8
|
Plön S, Roussouw N, Uren R, Naidoo K, Siebert U, Cliff G, Bouwman H. Elements in muscle tissue of three dolphin species from the east coast of South Africa. MARINE POLLUTION BULLETIN 2023; 188:114707. [PMID: 36860028 DOI: 10.1016/j.marpolbul.2023.114707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
We investigated elemental concentrations in muscle tissue of three species of dolphins incidentally bycaught off the KwaZulu-Natal coastline, South Africa. Thirty-six major, minor and trace elements were analysed in Indian Ocean humpback dolphin Sousa plumbea (n = 36), Indo-Pacific bottlenose dolphin Tursiops aduncus (n = 32) and the Common dolphin Delphinus delphis (n = 8). Significant differences in concentration between the three species were observed for 11 elements (cadmium, iron, manganese, sodium, platinum, antimony, selenium, strontium, uranium, vanadium and zinc). Mercury concentrations (maximum 29 mg/kg dry mass) were generally higher than those reported for coastal dolphin species found elsewhere. Our results reflect a combination of species differences in habitat, feeding ecology, age, and possibly species physiology and exposure to pollution levels. This study confirms the high organic pollutant concentrations documented previously for these species from the same location, and provides a well-founded case for the need to reduce pollutant sources.
Collapse
Affiliation(s)
- S Plön
- Bayworld Centre for Research and Education (BCRE), Port Elizabeth, South Africa; Medical Virology, Institute of Pathology, Stellenbosch University, South Africa.
| | - N Roussouw
- Bayworld Centre for Research and Education (BCRE), Port Elizabeth, South Africa
| | - R Uren
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - K Naidoo
- KwaZulu-Natal Sharks Board (KZNSB), Umhlanga Rocks, South Africa
| | - U Siebert
- Institute for Terrestrial and Aquatic Wildlife (ITAW), University of Veterinary Medicine, Hannover, Germany
| | - G Cliff
- KwaZulu-Natal Sharks Board (KZNSB), Umhlanga Rocks, South Africa; School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - H Bouwman
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Bailey D, Finlayson KA, Dogruer G, Bennett WW, van de Merwe JP. Dose metric evaluation of a cell-based bioassay for assessing the toxicity of metals to Dugong dugon: Effect of metal-media interactions on exposure concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106394. [PMID: 36603369 DOI: 10.1016/j.aquatox.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Cell-based toxicity testing has emerged as a useful tool in (eco)toxicological research, allowing the ethical assessment of the effects of contaminants such as trace metals on marine megafauna. However, metal interactions with various dissolved ligands in the microplate environment may influence the effective exposure concentrations. Hence, the cells are not exposed to the nominal concentrations within the test system. This study aimed to establish and evaluate the effectiveness of cell-based bioassays for investigating the toxicity of selected metals in dugongs through the following objectives: (1) measure the cytotoxic potential of cadmium (Cd2+), and chromium (Cr6+) to dugong skin cell cultures, (2) investigate the interactions between media constituents and selected trace metals in cell-based bioassays, and (3) evaluate the risk to a free-ranging population of dugong based on effect values. Chromium was the most toxic of the metals tested (EC50 = 1.14 µM), followed by Cd (EC50 = 6.35 µM). Assessment of ultrafiltered (< 3 kDa) exposure media showed that 1% and 92.5% of Cr and Cd were associated with larger organic components of the media. Further, the binding of Cd to media constituents was calculated to underestimate Cd toxicity in cell-based assays by an order of magnitude. This understanding of metal partitioning in cell-based bioassays provides a more accurate method for assessing toxicity in cell-based bioassays. In addition, this study illustrated that dugong cells are more sensitive to Cr and Cd than other marine wildlife species. The chemical risk assessment found the dugong population in Moreton Bay to be at high risk from Cd exposure.
Collapse
Affiliation(s)
- David Bailey
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia; Australian Rivers Institute, Griffith University, Queensland, Australia
| | - Kimberly A Finlayson
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia; Australian Rivers Institute, Griffith University, Queensland, Australia.
| | - Gulsah Dogruer
- Australian Rivers Institute, Griffith University, Queensland, Australia; Wageningen Marine Research, Wageningen University and Research, Netherlands
| | - William W Bennett
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia
| | - Jason P van de Merwe
- Coastal and Marine Research Centre, Griffith University, Gold Coast, Queensland, Australia; Australian Rivers Institute, Griffith University, Queensland, Australia
| |
Collapse
|
10
|
Felipo-Benavent M, Martínez-Romero A, Rubio-Guerri C, Álvaro-Álvarez T, Gil D, García-Párraga D, O'Connor JE. Flow cytometric kinetic assay of calcium mobilization in whole blood platelets of bottlenose dolphins (Tursiops truncatus). Cytometry A 2022; 103:347-352. [PMID: 36164987 DOI: 10.1002/cyto.a.24693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022]
Abstract
Marine mammals may suffer alterations in platelet function and hemostasia due to multiple pathologies, environmental conditions (including stress) or exposure to different contaminants that induce platelet activation. Detecting early alterations in platelet function in these animals could be an especially relevant diagnostic tool in these species because they typically do not show signs of weakness or disease until the pathology is in advanced state, in order to avoid attracting predators in natural conditions. The study of early markers of platelet activation is relevant for the detection, monitoring and therapy of inflammation and hemostasis disorders. Flow cytometry provides a convenient method to evaluate platelet activation by following the kinetics of intracellular Ca2+ , using sensitive fluorescent indicators that can be loaded into intact cells. In order to study intraplatelet Ca2+ mobilization in marine mammals, we have adapted a kinetic assay of human platelet activation to study platelet activation in whole-blood samples of bottlenose dolphins (Tursiops truncatus) using the Ca2+ -sensitive dye Fluo-4AM and a clone of the platelet-specific antibody CD41-PE that recognizes dolphin platelets. This no-wash, no-lyse protocol provides a simple and sensitive tool to assess in vitro the time course and intensity of signal-transduction responses to platelet agonists under near-physiological conditions. The adaptation of this technique to marine mammals represents a methodological advance for basic and clinical veterinary applications but also for general environmental studies on these species.
Collapse
Affiliation(s)
- Mar Felipo-Benavent
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | | | - Consuelo Rubio-Guerri
- Research Department, Fundació Oceanogràfic de la Comunitat Valenciana, Valencia, Spain.,Department of Pharmacy, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Teresa Álvaro-Álvarez
- Veterinary Services, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - Domingo Gil
- Cytomics Technological Service, Príncipe Felipe Research Center, Valencia, Spain
| | - Daniel García-Párraga
- Research Department, Fundació Oceanogràfic de la Comunitat Valenciana, Valencia, Spain.,Veterinary Services, Oceanogràfic, Ciudad de las Artes y las Ciencias, Valencia, Spain
| | - José-Enrique O'Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
11
|
Vannuci-Silva M, Manhães BMR, Guari EB, Botta S, Colosio AC, Barbosa LA, Bertozzi CP, Azevedo AF, Cunha HA, Bisi TL, Lailson-Brito J. Spatial trends of trace elements bioaccumulation in the most endangered dolphin from the Southwestern Atlantic Ocean: The franciscana (Pontoporia blainvillei). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119655. [PMID: 35764182 DOI: 10.1016/j.envpol.2022.119655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Trace elements bioaccumulation patterns can be an important tool to assess differences among cetaceans' populations. In this work, their use as potential chemical markers to differentiate franciscanas (Pontoporia blainvillei) populations was evaluated. Franciscanas were collected from three states in southeastern Brazil, which comprise three different Franciscana Management Areas (FMAs): Espírito Santo (FMA Ia), southern Rio de Janeiro (FMA IIa), and central São Paulo (FMA IIb). The concentrations of As, Cd, Cu, Fe, Hg, Mn and Zn were determined in the muscle, liver and kidney of the animals. Cadmium was the most valuable chemical marker to differentiate stocks, separating at least FMA IIa from the others. The higher Cd levels in FMA IIa, along with dietary information, indicate that the predominant consumption of cephalopods by this population is the main reason for the differences found. Additionally, environmental characteristics of the areas should also be considered as divergent sources of trace elements. Our findings suggest that non-essential trace elements, such as Cd, can be successful markers to differentiate populations. The Mn concentrations in FMA Ia raised concern and must be carefully monitored, as well as other elements that compose the iron ore tailings that have impacted the Espírito Santo coastal area. Additionally, this is the first study to report trace element concentration in the franciscanas from FMA IIa (southern Rio de Janeiro). Trace element concentrations found in franciscanas may represent different contamination levels in their preys and environments, which might pose specific threats to distinct populations. Therefore, our findings are important to characterize and differentiate franciscana populations and to guide precise management and conservation actions for the distinct stocks of this endangered species.
Collapse
Affiliation(s)
- M Vannuci-Silva
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil.
| | - B M R Manhães
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil
| | - E B Guari
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil
| | - S Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal Do Rio Grande (FURG), Brazil
| | - A C Colosio
- Instituto Baleia Jubarte (IBJ), Caravelas, Brazil
| | - L A Barbosa
- Organização Consciência Ambiental (Instituto ORCA), Vila Velha, Brazil
| | - C P Bertozzi
- Laboratório de Biologia e Conservação de Organismos Pelágicos (LABCOP), Instituto de Biociências, Universidade Estadual Paulista (UNESP), Campus Do Litoral Paulista, São Vicente, SP, Brazil
| | - A F Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil
| | - H A Cunha
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Departamento de Genética, Instituto de Biologia Roberto Alcântara Gomes, Universidade Do Estado Do Rio de Janeiro, Brazil
| | - T L Bisi
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil
| | - J Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil; Programa de Pós-Graduação Em Oceanografia, Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, CEP: 20550-013, Brazil.
| |
Collapse
|
12
|
Campbell E, Alfaro-Shigueto J, Aliaga-Rossel E, Beasley I, Briceño Y, Caballero S, da Silva VMF, Gilleman C, Gravena W, Hines E, Shahnawaz Khan M, Khan U, Kreb D, Mangel JC, Marmontel M, Mei Z, Mintzer VJ, Mosquera-Guerra F, Oliveira-da_Costa MO, Paschoalini Frias M, Paudel S, Sinha RK, Smith BD, Turvey ST, Utreras V, Van Damme PA, Wang D, Sayuri Whitty T, Thurstan RH, Godley BJ. Challenges and priorities for river cetacean conservation. ENDANGER SPECIES RES 2022. [DOI: 10.3354/esr01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Finlayson KA, van de Merwe JP. Differences in marine megafauna in vitro sensitivity highlights the need for species-specific chemical risk assessments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105939. [PMID: 34455206 DOI: 10.1016/j.aquatox.2021.105939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/07/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Sea turtles, dolphins and dugongs can be exposed to large mixtures of contaminants due to the proximity of foraging locations to anthropogenic inputs. Differences in accumulation and effect result in differences of chemical risk to these species. However, little is known about the effect of contaminants in marine wildlife. Cell-based, or in vitro, exposure experiments offer an ethical alternative to investigate the effect of contaminants in wildlife. Data from in vitro studies can then be placed in an environmental context, by using screening risk assessments, comparing effect data with accumulation data from the literature, to identify risk to populations of marine wildlife. Cytotoxicity of Cr6+, Cd2+, Hg2+, 4,4'-DDE, and PFNA were investigated in primary skin fibroblasts of green turtles, loggerhead turtles, hawksbill turtles, dugongs, Burrunan dolphins, and common bottlenose dolphins. The general order of toxicity for all species was Hg2+> Cr6+ > Cd2+> 4,4'-DDE > PFNA, and significant differences in cytotoxicity were found between species for Cr6+, Cd2+ and PFNA. For Cd2+, in particular, cells from turtle species were less sensitive than mammalian species, and dugong cells were by far the most sensitive. The results from the cytotoxicity assay were then used in combination with published data on tissue contaminant concentrations to calculate risk quotients for identifying populations of each species most at risk from these chemicals. Cr, Cd and Hg were identified as posing risk in all six species. Dugongs were particularly at risk from Cd accumulation and dolphin species were particularly at risk from Hg accumulation. These results demonstrate the importance of using species-specific effect and accumulation data for developing chemical risk assessments and can be used to inform managers of priority contaminants, species, or populations. Development of additional in vitro endpoints, and improving links between in vitro and in vivo effects, would further improve this approach to understanding chemical risk in marine megafauna.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
14
|
Lin Y, Yu X, Huang L, Sanganyado E, Bi R, Li P, Liu W. Risk assessment of potentially toxic elements accumulated in fish to Indo-Pacific humpback dolphins in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143256. [PMID: 33172644 DOI: 10.1016/j.scitotenv.2020.143256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/24/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Indo-Pacific humpback dolphins (Sousa chinensis) reside in shallow coastal waters where they are exposed to potentially toxic elements (PTEs) through dietary intake. We quantitatively assessed the risk posed by eight PTEs to the health of S. chinensis by determining their concentration in 13 fish species. The fish species represented the primary prey of S. chinensis in the South China Sea. Zn and Mn were the most dominant elements in fish at all sampling locations with concentrations ranges of 19.93-67.63 mg kg -1 dry weight (dw) and 1.52-68.2 mg kg -1 dw, respectively. The highest Zn concentration in fish was found in Coilia mystus (72.65 mg kg-1 dw) followed by Liza carinatus (62.57 mg kg-1 dw). At Jiangmen, Zn concentration was significantly lower in benthopelagic fish than in pelagic fish (p < 0.05, one-way ANOVA), while no significant difference was observed in other metals. The health risk posed by dietary intake assessed using the toxicity reference value showed that PTEs did not significant health risk to S. chinensis. In contrast, the risk quotient (RQ) based on reference doses ranged from 2.17 to 54.63 in prey fish that were contaminated with Zn and Cr indicating a potential health risk to S. chinensis in the South China Sea. The number of PTEs that posed a health risk varied between sites with seven out of eight PTEs above threshold at Jiangmen and six out of eight at Zhanjiang and Qinzhou. This study showed fish niche and location may influence the health risk posed by consumption of PTE-contaminated fish.
Collapse
Affiliation(s)
- Yao Lin
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China
| | - Xiaoxuan Yu
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China
| | - Linlin Huang
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China
| | - Edmond Sanganyado
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Ran Bi
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Ping Li
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Wenhua Liu
- Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
15
|
Manhães BMR, Santos-Neto EB, Tovar LR, Guari EB, Flach L, Kasper D, Galvão PMA, Malm O, Gonçalves RA, Bisi TL, Azevedo AF, Lailson-Brito J. Changes in mercury distribution and its body burden in delphinids affected by a morbillivirus infection: Evidences of methylmercury intoxication in Guiana dolphin. CHEMOSPHERE 2021; 263:128286. [PMID: 33297230 DOI: 10.1016/j.chemosphere.2020.128286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
An unusual mortality event (UME) attributed to morbillivirus infection was identified in two Guiana dolphin populations from the Southeastern Brazilian coast. The aim of this study was to characterize total mercury (THg), methylmercury (MeHg) and selenium (Se) bioaccumulation and body burden in Guiana dolphins from Sepetiba Bay (RJ) collected before (n = 61) and during the UME (n = 20). Significantly lower Se concentrations were found in the livers of individuals collected during the UME (Mann-Whitney test; p = 0.03), probably due to impairment of the detoxification process in the liver. There were differences in THg and Se concentrations in the organs and tissues of individuals (Kruskal-Wallis test, p < 0.05), but not MeHg (Kruskal-Wallis test, p = 0.07). For THg, the liver showed the higher concentrations and differed among organs and tissues analyzed such as blubber (Tukey's test for unequal N; p = 0.003). For Se concentrations, the skin and kidney presented the higher concentrations and varied among other tissues/organs, like muscle (Tukey's test for unequal N; p = 0.02). Differences in body burdens were observed among specimens collected previously and during the UME probably due to the remobilization and transport of the muscle-stored MeHg to other tissues/organs. This abrupt input of MeHg into the bloodstream may cause serious health damage. Indeed, evidences of methylmercury intoxication was observed in Guiana dolphins in Sepetiba Bay. In conclusion, bioaccumulation patterns, the detoxification process and body burden were affected by morbillivirus.
Collapse
Affiliation(s)
- B M R Manhães
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Em Ciências Biológicas (Biofísica), Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CEP 21941-902, Rio de Janeiro, RJ, Brazil.
| | - E B Santos-Neto
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil
| | - L R Tovar
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil
| | - E B Guari
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil
| | - L Flach
- Instituto Boto Cinza, Mangaratiba, Rio de Janeiro, Av. Do Canal, 141, Brasilinha, CEP 23860-000, Itacuruçá, Mangaratiba, RJ, Brazil
| | - D Kasper
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373 Sala G0-61, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - P M A Galvão
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373 Sala G0-61, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - O Malm
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373 Sala G0-61, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| | - R A Gonçalves
- Departamento de Química, Pontifícia Universidade Catolica Do Rio de Janeiro, Rua Marquês de São Vicente 225, CEP 22451-900, Gávea, Rio de Janeiro, RJ, Brazil
| | - T L Bisi
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil
| | - A F Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil
| | - J Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores ''Prof(a). Izabel Gurgel'' (MAQUA), Faculdade de Oceanografia, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracanã, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Em Ciências Biológicas (Biofísica), Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CEP 21941-902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Hao X, Shan H, Wu C, Zhang D, Chen B. Two Decades' Variation of Trace Elements in Bones of the Endangered East Asian Finless Porpoise (Neophocaena asaeorientalis sunameri) from the East China Sea, China. Biol Trace Elem Res 2020; 198:493-504. [PMID: 32080791 DOI: 10.1007/s12011-020-02080-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
There has been increasing concern about trace element accumulation in finless porpoises over the past decades, while the long-term variation of its concentration has been little known. Since most soft tissues of porpoises in the past were not preserved until now, the bone tissue is the only ideal material available. Here, 27 East Asian finless porpoise bone samples collected from Nantong, the East China Sea during two periods (1984-1992 and 2009) were used to explore the temporal variation of nine typical elements' concentration (Fe, Mn, Cu, Ni, Hg, Cr, Pb, As, and Cd, dry weight). An upward trend for total trace element accumulation from 329.04 mg/kg in 1984-1992 to 1535.81 mg/kg in 2009 was found; this could have resulted from the increasing industrial development in the Nantong region. The Mn, Fe, and As levels increased significantly while the concentrations of Cd, Cu, and Pb significantly decreased. Generally, our results suggested that most trace elements posed low threats to East Asian finless porpoises' health during both periods, while elements Mn (2009), Ni (both periods), Fe (2009), and As (2009) posed a potentially higher health risk to porpoises. Thus, the trace element levels warrant concern and continuous monitoring.
Collapse
Affiliation(s)
- Xiuqing Hao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Wenyuan Road 1, Qixia District, Nanjing, 210023, China
| | - Hong Shan
- Nanjing Municipal Research Institute for Fisheries Sciences, 183 Hanzhongmen Boulevard, Jianye District, Nanjing, 210036, China
| | - Caiwen Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Wenyuan Road 1, Qixia District, Nanjing, 210023, China
| | - Di Zhang
- College of Life Science, Shenyang Normal University, Huanghebei Street 253, Shenyang, 110034, China
| | - Bingyao Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Wenyuan Road 1, Qixia District, Nanjing, 210023, China.
| |
Collapse
|
17
|
López-Berenguer G, Peñalver J, Martínez-López E. A critical review about neurotoxic effects in marine mammals of mercury and other trace elements. CHEMOSPHERE 2020; 246:125688. [PMID: 31896013 DOI: 10.1016/j.chemosphere.2019.125688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 05/26/2023]
Abstract
Marine mammals are more exposed to mercury (Hg) than any others animals in the world. As many trace elements, Hg it is able to impair the brain function, which could be a cause of population decline. Nevertheless, these issues have been scarcely studied because of the technical and ethical difficulties. We conducted a systematic review about marine mammals' brain exposition to Hg and other trace elements, and their neurotoxic effects. Information was scarce and the lack of standardization of nomenclature of brain structures, sample collecting and results presentation made it difficult to obtain conclusions. Hg was the most studied metal and toothed whales the most studied group. Despite being its target organ, brain accumulates lesser concentrations of Hg than other tissues as liver. We found a significant positive correlation between both organs' burden (rho = 0.956 for cetaceans; rho = 0.756 for pinnipeds). Reported Hg values in brain of cetaceans (median 3.00 ppm ww) surpassed by one or two orders of magnitude those values found in other species as pinnipeds (median 0.33 ppm ww) or polar bears (median 0.07 ppm ww). Such values exceeded neurotoxicity thresholds. Although marine mammals ingest mostly the organic and more toxic form MeHg, different fractions of inorganic mercury can appear in brain, which could suggest some detoxification mechanisms. Other suggested mechanisms include Se-Hg interaction and liver sequestration. Although other elements are subjected to a rigid homeostatic control, appear in low concentrations or do not exert an important neurotoxic effect, they should be more studied to elucidate their neurotoxicity potential.
Collapse
Affiliation(s)
- G López-Berenguer
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain
| | - J Peñalver
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain; Fisheries and Aquaculture Service (CARM), 30100, Murcia, Spain
| | - E Martínez-López
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
18
|
Imlau M, Conejeros I, Muñoz-Caro T, Zhou E, Gärtner U, Ternes K, Taubert A, Hermosilla C. Dolphin-derived NETosis results in rapid Toxoplasma gondii tachyzoite ensnarement and different phenotypes of NETs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103527. [PMID: 31655127 DOI: 10.1016/j.dci.2019.103527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/20/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Toxoplasma gondii is a cosmopolitan zoonotic parasite and nowadays considered as an emerging neozoan pathogen in the marine environment. Cetacean innate immune reactions against T. gondii stages have not yet been investigated. Thus, T. gondii tachyzoites were utilized to trigger neutrophil extracellular traps (NETs) in bottlenose dolphin (Tursiops truncatus) polymorphonuclear neutrophils (PMN). Scanning electron microscopy unveiled T. gondii tachyzoites as potent and rapid inducers of cetacean-derived NETosis. Co-localization of extracellular chromatin with global histones, granulocytic myeloperoxidase and neutrophil elastase confirmed classical characteristics of NETosis. Interestingly, different phenotypes of NETs were induced by tachyzoites resulting in spread, diffuse and aggregated NET formation and moreover, 'anchored' and 'cell free' NETosis was also detected. Current data indicate that cetacean-derived NETosis might represent an early, ancient and well-conserved host innate defense mechanism that not only acts against T. gondii but might also occur in response to other closely related emerging apicomplexan parasites affecting marine cetaceans.
Collapse
Affiliation(s)
- Michelle Imlau
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany.
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany.
| | - Tamara Muñoz-Caro
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Ershun Zhou
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
19
|
Kershaw JL, Hall AJ. Mercury in cetaceans: Exposure, bioaccumulation and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133683. [PMID: 31394330 DOI: 10.1016/j.scitotenv.2019.133683] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 05/27/2023]
Abstract
The fate and transportation of mercury in the marine environment are driven by a combination of anthropogenic atmospheric and aquatic sources, as well as natural geological inputs. Mercury biomagnifies up the food chain, resulting in the bioaccumulation of toxic concentrations in higher trophic organisms even when concentrations in their habitat remain below the threshold level for direct toxicity. As a result, mercury exposure has been recognised as a health concern for both humans and top marine predators, including cetaceans. There appears to be no overall trend in the global measured concentrations reported in cetaceans between 1975 and 2010, although differences between areas show that the highest concentrations in recent decades have been measured in the tissues of Mediterranean odontocetes. There is increasing concern for the impacts of mercury on the Arctic marine ecosystem with changes in water temperatures, ocean currents, and prey availability, all predicted to affect exposure. The accumulation of mercury in various tissues has been linked to renal and hepatic damage as well as reported neurotoxic, genotoxic, and immunotoxic effects. These effects have been documented through studies on stranded and by-caught cetaceans as well as in vitro cell culture experiments. Demethylation of methylmercury and protection by selenium have been suggested as possible mercury detoxification mechanisms in cetaceans that may explain the very high concentrations measured in tissues of some species with no apparent acute toxicity. Thus, the ratio of selenium to mercury is of importance when aiming to determine the impact of the contaminant load at an individual level. The long-term population level effects of mercury exposure are unknown, and continued monitoring of odontocete populations in particular is advised in order to predict the consequences of mercury uptake on marine food chains in the future.
Collapse
Affiliation(s)
- Joanna L Kershaw
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK.
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| |
Collapse
|
20
|
Marsili L, Di Guardo G, Mazzariol S, Casini S. Insights Into Cetacean Immunology: Do Ecological and Biological Factors Make the Difference? Front Immunol 2019; 10:1219. [PMID: 31214183 PMCID: PMC6554325 DOI: 10.3389/fimmu.2019.01219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to evaluate the expression of Major histocompatibility complex (MHC) class I chain-related protein A (MICA) in fibroblast cell cultures of cetaceans (skin biopsies of free-ranging specimens and skin samples of freshly stranded cetaceans) by an immunofluorescence technique and to outline possible variations in MICA expression linked to different ecological and biological factors, while also investigating MICA expression after in vitro treatments with different contaminants. Free-ranging or stranded specimens of cetaceans were sampled in the Sea of Cortez (Mexico) (Balaenoptera edeni, Delphinus capensis, and Orcinus orca) and in the Mediterranean Sea (Balaenoptera physalus, Physeter macrocephalus, Tursiops truncatus, and Stenella coeruleoalba). Cell cultures were treated with an OC mixture, flame retardants, PAHs, MeHg, and BPA. The three species from the Sea of Cortez showed higher basal activity of MICA and lower levels of DDTs and PCBs than the Mediterranean species. A Pearson's linear coefficient equal to −0.45 also confirmed this tendency to have high levels of MICA and low total OC levels. Treatment of cultured fibroblasts with different contaminants mostly resulted in the upregulation of MICA protein expression by at least one treatment dose; downregulation was also found in some species or treatments. MICA alteration indicates a state of stress of the organism and a modification of the immune system's response and can be proposed as a non-invasive immunological marker that can be measured in skin biopsy samples, thus offering a good alternative to blood measurements.
Collapse
Affiliation(s)
- Letizia Marsili
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | | | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food, University of Padua, Padua, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| |
Collapse
|
21
|
Villagra-Blanco R, Silva LMR, Conejeros I, Taubert A, Hermosilla C. Pinniped- and Cetacean-Derived ETosis Contributes to Combating Emerging Apicomplexan Parasites ( Toxoplasma gondii, Neospora caninum) Circulating in Marine Environments. BIOLOGY 2019; 8:biology8010012. [PMID: 30857289 PMCID: PMC6466332 DOI: 10.3390/biology8010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022]
Abstract
Leukocytes play a major role in combating infections either by phagocytosis, release of antimicrobial granules, or extracellular trap (ET) formation. ET formation is preceded by a certain leukocyte cell death form, known as ETosis, an evolutionarily conserved mechanism of the innate immune system also observed in marine mammals. Besides several biomolecules and microbial stimuli, marine mammal ETosis is also trigged by various terrestrial protozoa and metazoa, considered nowadays as neozoan parasites, which are circulating in oceans worldwide and causing critical emerging marine diseases. Recent studies demonstrated that pinniped- and cetacean-derived polymorphonuclear neutrophils (PMNs) and monocytes are able to form different phenotypes of ET structures composed of nuclear DNA, histones, and cytoplasmic peptides/proteases against terrestrial apicomplexan parasites, e.g., Toxoplasma gondii and Neospora caninum. Detailed molecular analyses and functional studies proved that marine mammal PMNs and monocytes cast ETs in a similar way as terrestrial mammals, entrapping and immobilizing T. gondii and N. caninum tachyzoites. Pinniped- and cetacean leukocytes induce vital and suicidal ETosis, with highly reliant actions of nicotinamide adenine dinucleotide phosphate oxidase (NOX), generation of reactive oxygen species (ROS), and combined mechanisms of myeloperoxidase (MPO), neutrophil elastase (NE), and DNA citrullination via peptidylarginine deiminase IV (PAD4).This scoping review intends to summarize the knowledge on emerging protozoans in the marine environment and secondly to review limited data about ETosis mechanisms in marine mammalian species.
Collapse
Affiliation(s)
| | - Liliana M R Silva
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
22
|
As, Cr, Hg, Pb, and Cd Concentrations and Bioaccumulation in the Dugong Dugong dugon and Manatee Trichechus manatus: A Review of Body Burdens and Distribution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030404. [PMID: 30708981 PMCID: PMC6388294 DOI: 10.3390/ijerph16030404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 11/21/2022]
Abstract
The death of dozens of manatees Trichechus manatus recently in Tabasco, Mexico, has captured international attention. Speculation about possible causes include water and food contamination by metals. Although federal authorities have ruled out water chemical pollution, the cause of these deaths is still awaiting conclusive laboratory results. Present work seeks to summarize information currently available on non-essential metals and those of great toxicological relevance in Sirenia (dugongs and manatees), highlighting its body distribution, presence in blood, and its relationship with their geographical distribution, gender and age, whenever possible. This paper focuses on the five elements: As, Cr, Hg, Pb and Cd, which are commonly considered as threats for marine mammals and reported in Sirenia. Some of these metals (Cr and Cd) were thought to be related to the recent deaths in Tabasco. All five elements are accumulated by Sirenia at different levels. Metal presence is associated to their diet but does not necessarily imply adverse effects for dugongs and manatees. Toxicological aspects and the human consumption risk in case of any illegal or traditional consumption in some cultures are discussed. Important toxicological research areas that need to be addressed are highlighted.
Collapse
|
23
|
Li WT, Chang HW, Yang WC, Lo C, Wang LY, Pang VF, Chen MH, Jeng CR. Immunotoxicity of Silver Nanoparticles (AgNPs) on the Leukocytes of Common Bottlenose Dolphins (Tursiops truncatus). Sci Rep 2018; 8:5593. [PMID: 29618730 PMCID: PMC5884781 DOI: 10.1038/s41598-018-23737-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been extensively used and are considered as an emerging contaminant in the ocean. The environmental contamination of AgNPs is expected to increase greatly over time, and cetaceans, as the top ocean predators, will suffer the negative impacts of AgNPs. In the present study, we investigate the immunotoxicity of AgNPs on the leukocytes of cetaceans using several methods, including cytomorphology, cytotoxicity, and functional activity assays. The results reveal that 20 nm Citrate-AgNPs (C-AgNP20) induce different cytomorphological alterations and intracellular distributions in cetacean polymorphonuclear cells (cPMNs) and peripheral blood mononuclear cells (cPBMCs). At high concentrations of C-AgNP20 (10 and 50 μg/ml), the time- and dose-dependent cytotoxicity in cPMNs and cPBMCs involving apoptosis is demonstrated. C-AgNP20 at sub-lethal doses (0.1 and 1 μg/ml) negatively affect the functional activities of cPMNs (phagocytosis and respiratory burst) and cPBMCs (proliferative activity). The current study presents the first evidence of the cytotoxicity and immunotoxicity of AgNPs on the leukocytes of cetaceans and improves our understanding of environmental safety concerning AgNPs. The dose-response data of AgNPs on the leukocytes of cetaceans are invaluable for evaluating the adverse health effects in cetaceans and for proposing a conservation plan for marine mammals.
Collapse
Affiliation(s)
- Wen-Ta Li
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Cheng Yang
- College of Veterinary Medicine, National Chiayi University, Chiayi, 60004, Taiwan
| | - Chieh Lo
- Farglory Ocean Park, Hualien, 97449, Taiwan
| | - Lei-Ya Wang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Meng-Hsien Chen
- Department of Oceanography and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
24
|
Sun X, Yu RQ, Zhang M, Zhang X, Chen X, Xiao Y, Ding Y, Wu Y. Correlation of trace element concentrations between epidermis and internal organ tissues in Indo-Pacific humpback dolphins (Sousa chinensis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:238-245. [PMID: 28667850 DOI: 10.1016/j.scitotenv.2017.06.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Trace element accumulation in the epidermis of cetaceans has been less studied. This study explored the feasibility of using epidermis as a surrogate tissue to evaluate internal contaminant burdens in Indo-Pacific humpback dolphin (Sousa chinensis). Eleven trace elements were analyzed in the epidermis, muscle and liver tissues from 46 individuals of dolphins stranded along the Pearl River Estuary (PRE) coast between 2007 and 2013. Trace elemental concentrations varied among the three tissues, generally with the highest concentrations found in liver tissues and lowest in the epidermis (except Zn, As, and Pb). Zn concentration in the epidermis was the highest among all tissues, indicating that Zn could be an important element for the epidermis physiology. High concentrations of Hg and Cr in liver were likely due to an excessive intake by dolphins which consumed high Hg and Cr contaminated fishes in the PRE. Hg concentrations in epidermis and muscle tissues were significantly higher in the females than in males. Concentrations of V and Pb in liver, Se and Cd in both muscle and liver, and As and Hg in all tissue samples showed significantly positive relationships with body length. Hepatic Cu concentrations were significantly negatively correlated with the body length. Hg and As concentrations in epidermis showed significantly positive correlations with those in liver tissues. Thus this study proposed that epidermis could be used as a non-invasive monitoring tissue to evaluate Hg and As bioaccumulation in internal tissues of Indo-Pacific humpback dolphins populations.
Collapse
Affiliation(s)
- Xian Sun
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Mei Zhang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiyang Zhang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xi Chen
- Pearl River Estuary Chinese White Dolphin National Nature Reserve, Zhuhai 519080, China
| | - Yousheng Xiao
- Pearl River Estuary Chinese White Dolphin National Nature Reserve, Zhuhai 519080, China
| | - Yulong Ding
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuping Wu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
25
|
Villagra-Blanco R, Silva L, Aguilella-Segura A, Arcenillas-Hernández I, Martínez-Carrasco C, Seipp A, Gärtner U, Ruiz de Ybañez R, Taubert A, Hermosilla C. Bottlenose dolphins ( Tursiops truncatus) do also cast neutrophil extracellular traps against the apicomplexan parasite Neospora caninum. Int J Parasitol Parasites Wildl 2017; 6:287-294. [PMID: 28951834 PMCID: PMC5607148 DOI: 10.1016/j.ijppaw.2017.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear DNA decorated with histones and cytoplasmic peptides which antiparasitic properties have not previously been investigated in cetaceans. Polymorphonuclear neutrophils (PMN) were isolated from healthy bottlenose dolphins (Tursiops truncatus), and stimulated with Neospora caninum tachyzoites and the NETs-agonist zymosan. In vitro interactions of PMN with the tachyzoites resulted in rapid extrusion of NETs. For the demonstration and quantification of cetacean NETs, extracellular DNA was stained by using either Sytox Orange® or Pico Green®. Scanning electron microscopy (SEM) and fluorescence analyses demonstrated PMN-derived release of NETs upon exposure to tachyzoites of N. caninum. Co-localization studies of N. caninum induced cetacean NETs proved the presence of DNA adorned with histones (H1, H2A/H2B, H3, H4), neutrophil elastase (NE), myeloperoxidase (MPO) and pentraxin (PTX) confirming the molecular properties of mammalian NETosis. Dolphin-derived N. caninum-NETosis were efficiently suppressed by DNase I and diphenyleneiodonium (DPI) treatments. Our results indicate that cetacean-derived NETs represent an ancient, conserved and relevant defense effector mechanism of the host innate immune system against N. caninum and probably other related neozoan parasites circulating in the marine environment.
Collapse
Affiliation(s)
- R. Villagra-Blanco
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - L.M.R. Silva
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - A. Aguilella-Segura
- Department of Animal Health, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - I. Arcenillas-Hernández
- Department of Animal Health, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - C. Martínez-Carrasco
- Department of Animal Health, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - A. Seipp
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - U. Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - R. Ruiz de Ybañez
- Department of Animal Health, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - A. Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - C. Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
26
|
Perrault JR, Stacy NI, Lehner AF, Poor SK, Buchweitz JP, Walsh CJ. Toxic elements and associations with hematology, plasma biochemistry, and protein electrophoresis in nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1398-1411. [PMID: 28939125 DOI: 10.1016/j.envpol.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 05/06/2023]
Abstract
Toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) are a group of contaminants that are known to elicit developmental, reproductive, general health, and immune system effects in reptiles, even at low concentrations. Reptiles, including marine turtles, are susceptible to accumulation of toxic elements due to their long life span, low metabolic rate, and highly efficient conversion of prey into biomass. The objectives of this study were to (1) document concentrations of arsenic, cadmium, lead, mercury, selenium, and thallium in whole blood and keratin from nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida and document correlations thereof and (2) correlate whole blood toxic element concentrations to various hematological and plasma biochemistry analytes. Baselines for various hematological and plasma analytes and toxic elements in whole blood and keratin (i.e., scute) in nesting loggerheads are documented. Various correlations between the toxic elements and hematological and plasma biochemistry analytes were identified; however, the most intriguing were negative correlations between arsenic, cadmium, lead, and selenium with and α- and γ-globulins. Although various extrinsic and intrinsic variables such as dietary and feeding changes in nesting loggerheads need to be considered, this finding may suggest a link to altered humoral immunity. This study documents a suite of health variables of nesting loggerheads in correlation to contaminants and identifies the potential of toxic elements to impact the overall health of nesting turtles, thus presenting important implications for the conservation and management of this species.
Collapse
Affiliation(s)
- Justin R Perrault
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Nicole I Stacy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, PO Box 100136, Gainesville, FL 32610, USA; Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA.
| | - Andreas F Lehner
- Diagnostic Center for Population and Animal Health, Michigan State University, 4125 Beaumont Road, Lansing, MI 48910, USA.
| | - Savannah K Poor
- University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - John P Buchweitz
- Diagnostic Center for Population and Animal Health, Michigan State University, 4125 Beaumont Road, Lansing, MI 48910, USA.
| | - Catherine J Walsh
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| |
Collapse
|
27
|
Naranjo-Gómez JS, Vargas-Rojas LF, Rondón-Barragán IS. Toxicidad aguda de cloruro de mercurio (HGCL2) en Cachama blanca; <i>Piaractus brachypomus</i> (Cuvier, 1818). ACTUALIDADES BIOLÓGICAS 2017. [DOI: 10.17533/udea.acbi.329220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
La disposición inapropiada de sustancias que contienen mercurio puede causar toxicidad y acumulación en tejidos de peces. En el presente estudio se registra la concentración letal cincuenta (CL50) a 96 horas del mercurio para la cachama blanca [Piaractus brachypomus (Cuvier, 1818)]. Se calculó a través de una prueba semiestática de toxicidad aguda utilizando cloruro de mercurio (HgCl2) como fuente del metal. El experimento fue realizado en el Laboratorio de Toxicología de la Universidad del Tolima (Colombia), en condiciones controladas (28,09 ± 1,86 °C) y un fotoperiodo 12:12 (luz:oscuridad). Los alevinos (6,55 ± 1,3 g) fueron mantenidos en acuarios de vidrio con aireación constante, sin filtro y la alimentación fue suprimida 24 horas antes del inicio del experimento. Se emplearon 4 concentraciones de mercurio (Hg), con su respectiva replica, incluyendo un grupo control. Las concentraciones fueron: 0,45, 0,55, 0,65 y 0,75 mg Hg/l. Se realizó un análisis histopatológico con dos peces de cada tratamiento tomando muestras de branquias, cerebro y hígado. Los especímenes expuestos a las concentraciones más bajas (0,45 y 0,55 mg Hg/l) mostraron hiperactividad, a diferencia de los de las concentraciones más altas (0,65 y 0,75 mg Hg/l) los cuales evidenciaron disminución de su actividad. El análisis histopatológico mostró anomalías en branquias e hígado, como hiperplasia interlamelar y vaculizaciones lipídicas respectivamente, en respuesta a procesos de detoxificación. El valor de la CL50-96 h fue estimado utilizando el programa TSK (Trimmed-Spearman-Karber) y presentó un valor de 0,56 mg Hg/l. Este valor es cercano a lo registrado en otras especies de peces y representa el primer registro de toxicidad aguda para el mercurio en cachama blanca.
Collapse
|
28
|
Gui D, Yu RQ, Karczmarski L, Ding Y, Zhang H, Sun Y, Zhang M, Wu Y. Spatiotemporal Trends of Heavy Metals in Indo-Pacific Humpback Dolphins (Sousa chinensis) from the Western Pearl River Estuary, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1848-1858. [PMID: 28075564 DOI: 10.1021/acs.est.6b05566] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We assessed the spatiotemporal trends of the concentrations of 11 heavy metals (HMs) in the liver and kidney of Indo-Pacific humpback dolphins (Sousa chinensis) from western Pearl River Estuary (PRE) during 2004-2015. The hepatic levels of Cr, As, and Cu in these dolphins were among the highest reported for cetaceans globally, and the levels of Zn, Cu, and Hg were sufficiently high to cause toxicological effects in some of the animals. Between same age-sex groups, dolphins from Lingdingyang were significantly more contaminated with Hg, Se, and V than those from the West-four region, while the opposite was true for Cd. Generalized additive mixed models showed that most metals had significant but dissimilar temporal trends over a 10-year period. The concentrations of Cu and Zn increased significantly in recent years, corresponding to the high input of these metals in the region. Body-length-adjusted Cd levels peaked in 2012, accompanied by the highest annual number of dolphin stranding events. In contrast to the significant decrease in HM levels in the dolphins in Hong Kong waters (the eastern reaches of the PRE), the elevated metal exposure in the western PRE raises serious concerns.
Collapse
Affiliation(s)
- Duan Gui
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, 510275, China
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler , Tyler, Texas 75799, United States
| | - Leszek Karczmarski
- The Swire Institute of Marine Sciences, School of Biological Sciences, The University of Hong Kong , Cape d'Aguilar, Shek O, Hong Kong
| | - Yulong Ding
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, 510275, China
| | - Haifei Zhang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, 510275, China
| | - Yong Sun
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, 510275, China
| | - Mei Zhang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, 510275, China
| | - Yuping Wu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, 510275, China
| |
Collapse
|
29
|
Das K, Dupont A, De Pauw-Gillet MC, Debier C, Siebert U. Absence of selenium protection against methylmercury toxicity in harbour seal leucocytes in vitro. MARINE POLLUTION BULLETIN 2016; 108:70-76. [PMID: 27197766 DOI: 10.1016/j.marpolbul.2016.04.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 04/23/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
Previous studies described high concentrations of mercury (Hg) and selenium (Se) in the blood of harbour seals, Phoca vitulina from the North Sea. In the present study, we evaluated the in vitro potential protective effects of sodium selenite (Na2SeO3) and selenomethionine (SeMet) on cell proliferation of harbour seal lymphocytes exposed to MeHgCl 0.75μM. In vitro exposure of ConA-stimulated T lymphocytes resulted in severe inhibition of DNA synthesis, likely linked to severe loss of mitochondrial membrane potential at 0.75μM. Neither selenite nor SeMet showed a protective effect against MeHg toxicity expressed at the T lymphocyte proliferation level for harbour seals. Selenite and SeMet did not show negative effects regarding lymphocyte proliferation and mitochondrial membrane potential. To conclude, our results clearly demonstrated that MeHg affected in vitro immune cells exposure with no protective effects of selenium at a molar ratio Hg:Se of 1:10 in harbour seals from the North Sea.
Collapse
Affiliation(s)
- Krishna Das
- Laboratory of Oceanology, MARE Center, University of Liège, B6c, Allée du 6 Août 15, 4000 Liège, Belgium.
| | - Aurélie Dupont
- Laboratory of Oceanology, MARE Center, University of Liège, B6c, Allée du 6 Août 15, 4000 Liège, Belgium
| | - Marie-Claire De Pauw-Gillet
- Laboratory of Mammalian Cell Culture (GIGA-R), University of Liège, B6c, Allée du 6 Août 15, 4000 Liège, Belgium
| | - Cathy Debier
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| |
Collapse
|
30
|
Domiciano IG, Domit C, Broadhurst MK, Koch MS, Bracarense APFRL. Assessing Disease and Mortality among Small Cetaceans Stranded at a World Heritage Site in Southern Brazil. PLoS One 2016; 11:e0149295. [PMID: 26871703 PMCID: PMC4752507 DOI: 10.1371/journal.pone.0149295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/29/2016] [Indexed: 01/05/2023] Open
Abstract
Cetaceans are considered environmental sentinels and their health often reflects either anthropogenic or natural spatio-temporal disturbances. This study investigated the pathological findings and mortality of small cetaceans with the aim of detecting hazards and monitoring health trends in a high-biodiversity area. Between 2007 and 2012, 218 stranded cetaceans were recorded on the Paraná coast, southern Brazil. Fifty-seven (26.1%) of these animals, including 50 Sotalia guianensis, 2 Pontoporia blainvillei, 2 Stenella frontalis, 1 Stenella longirostris, 1 Tursiops truncatus and 1 Globicephala melas were necropsied and samples were collected for histopathology. Causes of death were determined in 46 of the 57 (80.7%) animals and most (30 or 65.2%) were ascribed to anthropogenic activities, including fisheries bycatch (28/30) and trauma (2/30). The remaining 16 fatalities were considered natural, and attributed to pneumonia (10/16), emaciation (3/16), septicemia (1/16), neonatal pathology (1/16) and choking via food obstruction (1/16). Irrespective of the cause, bronchointerstitial pneumonia, associated with parasitism, lymphadenitis and membranous glomerulonephritis were common findings among all fatalities. These results suggest, that while anthropogenic activities are a leading cause of cetacean strandings in Paraná, underlying pre-existing diseases may contribute towards deaths. Although the studied area is considered a biosphere reserve by UNESCO, complex anthropogenic and natural interactions might be occurring, increasing cetacean susceptibility to hazards. This study may help facilitate developing an effective conservation plan for coastal cetaceans focusing on reducing fisheries interactions, habitat degradation and pollution as mechanisms for ultimately increasing species resilience.
Collapse
Affiliation(s)
- Isabela G. Domiciano
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratory of Ecology and Conservation, Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, Paraná, Brazil
| | - Camila Domit
- Laboratory of Ecology and Conservation, Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, Paraná, Brazil
| | - Matt K. Broadhurst
- NSW Department of Primary Industries, Fisheries Conservation Technology Unit, Coffs Harbour, Australia
- Marine and Estuarine Ecology Unit, School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Mariana S. Koch
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Laboratory of Ecology and Conservation, Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, Paraná, Brazil
| | - Ana Paula F. R. L. Bracarense
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
31
|
Hansen AMK, Bryan CE, West K, Jensen BA. Trace Element Concentrations in Liver of 16 Species of Cetaceans Stranded on Pacific Islands from 1997 through 2013. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:75-95. [PMID: 26283019 PMCID: PMC4988065 DOI: 10.1007/s00244-015-0204-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/27/2015] [Indexed: 05/06/2023]
Abstract
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.
Collapse
Affiliation(s)
- Angela M K Hansen
- College of Natural and Computational Science, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, HI, 96744-5297, USA
| | - Colleen E Bryan
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, SC, 29412, USA.
| | - Kristi West
- College of Natural and Computational Science, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, HI, 96744-5297, USA
| | - Brenda A Jensen
- College of Natural and Computational Science, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, HI, 96744-5297, USA
| |
Collapse
|
32
|
Weijs L, Zaccaroni A. Toxicology of Marine Mammals: New Developments and Opportunities. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:1-8. [PMID: 26499130 DOI: 10.1007/s00244-015-0233-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
It is widely recognized that marine mammals are exposed to a wide variety of pollutants, with a weight of evidence indicating impacts on their health. Since hundreds of new chemicals enter the global market every year,the methods, approaches and technologies used to characterize pollution levels or impacts are also in a constant state of flux. However, legal and ethical constraints often limit the type and extent of toxicological research being carried out in marine mammals. Nevertheless, new and emerging in vivo, in vitro as well as in silico research opportunities abound in the field of marine mammal toxicology. In the application of findings to population-, species-, or habitat-related risk assessments, the identification of causal relationships which inform source apportionment is important. This, in turn, is informed by a comprehensive understanding of contaminant classes, profiles and fate overspace and time. Such considerations figure prominently in the design and interpretation of marine mammal (eco)-toxicology research. This mini-review attempts to follow the evolution behind marine mammal toxicology until now,highlight some of the research that has been done and suggest opportunities for future research. This Special Issue will showcase new developments in marine mammal toxicology, approaches for exposure-effect research in risk assessment as well as future opportunities.
Collapse
|
33
|
Desforges JPW, Sonne C, Levin M, Siebert U, De Guise S, Dietz R. Immunotoxic effects of environmental pollutants in marine mammals. ENVIRONMENT INTERNATIONAL 2016; 86:126-139. [PMID: 26590481 DOI: 10.1016/j.envint.2015.10.007] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/04/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Due to their marine ecology and life-history, marine mammals accumulate some of the highest levels of environmental contaminants of all wildlife. Given the increasing prevalence and severity of diseases in marine wildlife, it is imperative to understand how pollutants affect the immune system and consequently disease susceptibility. Advancements and adaptations of analytical techniques have facilitated marine mammal immunotoxicology research. Field studies, captive-feeding experiments and in vitro laboratory studies with marine mammals have associated exposure to environmental pollutants, most notable polychlorinated biphenyls (PCBs), organochlorine pesticides and heavy metals, to alterations of both the innate and adaptive arms of immune systems, which include aspects of cellular and humoral immunity. For marine mammals, reported immunotoxicology endpoints fell into several major categories: immune tissue histopathology, haematology/circulating immune cell populations, functional immune assays (lymphocyte proliferation, phagocytosis, respiratory burst, and natural killer cell activity), immunoglobulin production, and cytokine gene expression. Lymphocyte proliferation is by far the most commonly used immune assay, with studies using different organic pollutants and metals predominantly reporting immunosuppressive effects despite the many differences in study design and animal life history. Using combined field and laboratory data, we determined effect threshold levels for suppression of lymphocyte proliferation to be between b0.001-10 ppm for PCBs, 0.002-1.3 ppm for Hg, 0.009-0.06 for MeHg, and 0.1-2.4 for cadmium in polar bears and several pinniped and cetacean species. Similarly, thresholds for suppression of phagocytosis were 0.6-1.4 and 0.08-1.9 ppm for PCBs and mercury, respectively. Although data are lacking for many important immune endpoints and mechanisms of specific immune alterations are not well understood, this review revealed a systemic suppression of immune function in marine mammals exposed to environmental contaminants. Exposure to immunotoxic contaminants may have significant population level consequences as a contributing factor to increasing anthropogenic stress in wildlife and infectious disease outbreaks.
Collapse
Affiliation(s)
- Jean-Pierre W Desforges
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, United States
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269-3089, United States
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| |
Collapse
|
34
|
Reed LA, McFee WE, Pennington PL, Wirth EF, Fulton MH. A survey of trace element distribution in tissues of the dwarf sperm whale (Kogia sima) stranded along the South Carolina coast from 1990-2011. MARINE POLLUTION BULLETIN 2015; 100:501-506. [PMID: 26386505 DOI: 10.1016/j.marpolbul.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/17/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Few studies report trace elements in dwarf sperm whale (Kogia sima). As high trophic level predators, marine mammals are exposed through diet to environmental contaminants including metals from anthropogenic sources. Inputs of Hg, Pb, and Cd are of particular concern due to toxicity and potential for atmospheric dispersion and subsequent biomagnification. Liver and kidney tissues of stranded K. sima from coastal South Carolina, USA, were analyzed for 22 trace elements. Age-related correlations with tissue concentrations were found for some metals. Mean molar ratio of Hg:Se varied with age with higher ratios found in adult males. Maximum concentrations of Cd and Hg in both tissues exceeded historical FDA levels of concern, but none exceeded the minimum 100μg/g Hg threshold for hepatic damage. Tissue concentrations of some metals associated with contamination were low, suggesting that anthropogenic input may not be a significant source of some metals for these pelagic marine mammals.
Collapse
Affiliation(s)
- Lou Ann Reed
- NOAA, NOS, NCCOS, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA.
| | - Wayne E McFee
- NOAA, NOS, NCCOS, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA.
| | - Paul L Pennington
- NOAA, NOS, NCCOS, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA.
| | - Edward F Wirth
- NOAA, NOS, NCCOS, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA.
| | - Michael H Fulton
- NOAA, NOS, NCCOS, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA.
| |
Collapse
|
35
|
Bhagat J, Ingole BS. Genotoxic potency of mercuric chloride in gill cells of marine gastropod Planaxis sulcatus using comet assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10758-10768. [PMID: 25758417 DOI: 10.1007/s11356-015-4263-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
In vivo and in vitro exposures were used to investigate the genotoxicity of mercuric chloride (HgCl2) to the marine snail, Planaxis sulcatus. The comet assay protocol was validated on gill cells exposed in vitro to hydrogen peroxide (H2O2, 0-50 μM). Snails were exposed in vivo for 96 h to HgCl2 (10, 20, 50, and 100 μg/l). Our results showed significant concentration-dependent increase in the tail DNA (TDNA) and olive tail moment (OTM) in exposed snails for all doses compared with controls. In vitro exposure to HgCl2 (10-100 μg/l) resulted in significantly higher values for TDNA at all concentrations. Our results showed that DNA damage increased in the gill cell with increasing exposure time. This study demonstrates the usefulness of comet assay for detection of DNA damage after exposure to HgCl2 and the sensitivity of marine snail P. sulcatus as a good candidate species for metal pollution.
Collapse
Affiliation(s)
- J Bhagat
- Biological Oceanographic Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India,
| | | |
Collapse
|
36
|
Lassiter MG, Owens EO, Patel MM, Kirrane E, Madden M, Richmond-Bryant J, Hines EP, Davis JA, Vinikoor-Imler L, Dubois JJ. Cross-species coherence in effects and modes of action in support of causality determinations in the U.S. Environmental Protection Agency's Integrated Science Assessment for Lead. Toxicology 2015; 330:19-40. [PMID: 25637851 DOI: 10.1016/j.tox.2015.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/24/2014] [Accepted: 01/26/2015] [Indexed: 01/26/2023]
Abstract
The peer-reviewed literature on the health and ecological effects of lead (Pb) indicates common effects and underlying modes of action across multiple organisms for several endpoints. Based on such observations, the United States (U.S.) Environmental Protection Agency (EPA) applied a cross-species approach in the 2013 Integrated Science Assessment (ISA) for Lead for evaluating the causality of relationships between Pb exposure and specific endpoints that are shared by humans, laboratory animals, and ecological receptors (i.e., hematological effects, reproductive and developmental effects, and nervous system effects). Other effects of Pb (i.e., cardiovascular, renal, and inflammatory responses) are less commonly assessed in aquatic and terrestrial wildlife limiting the application of cross-species comparisons. Determinations of causality in ISAs are guided by a framework for classifying the weight of evidence across scientific disciplines and across related effects by considering aspects such as biological plausibility and coherence. As illustrated for effects of Pb where evidence across species exists, the integration of coherent effects and common underlying modes of action can serve as a means to substantiate conclusions regarding the causal nature of the health and ecological effects of environmental toxicants.
Collapse
Affiliation(s)
- Meredith Gooding Lassiter
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Elizabeth Oesterling Owens
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Molini M Patel
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Ellen Kirrane
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Meagan Madden
- Oak Ridge Institute for Science and Education Research Participation Program, National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Jennifer Richmond-Bryant
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Erin Pias Hines
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - J Allen Davis
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Lisa Vinikoor-Imler
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Jean-Jacques Dubois
- Southern Region Integrated Pest Management Center, North Carolina State University, 1730 Varsity Drive, Suite 110, Raleigh, NC 27606, USA.
| |
Collapse
|
37
|
Wirth JR, Peden-Adams MM, White ND, Bossart GD, Fair PA. In vitro exposure of DE-71, a penta-PBDE mixture, on immune endpoints in bottlenose dolphins (Tursiops truncatus) and B6C3F1 mice. J Appl Toxicol 2014; 35:191-8. [PMID: 24706408 DOI: 10.1002/jat.3008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/17/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are an emerging contaminant of concern with low level exposures demonstrating toxicity in laboratory animals and wildlife, although immunotoxicity studies have been limited. Bottlenose dolphin peripheral blood leukocytes (PBLs) and mouse splenocytes were exposed to environmentally relevant DE-71 (a penta-PBDE mixture) concentrations (0-50 µg ml(-1) ) in vitro. Natural killer (NK) cell activity and lymphocyte (B and T cell) proliferation were evaluated using the parallelogram approach for risk assessment. This study aimed to substantiate results from field studies with dolphins, assess the sensitivities between the mouse model and dolphins, and to evaluate risk using the parallelogram approach. In mouse cells, NK cell activity increased at in vitro doses 0.05, 0.5 and 25 µg DE-71 ml(-1) , whereas proliferation was not modulated. In dolphin cells, NK cell activity and lymphocyte proliferation was not altered after in vitro exposure. In vitro exposure of dolphin PBLs to DE-71 showed similar results to correlative field studies; NK cell activity in mice was more sensitive to in vitro exposure than dolphins, and the parallelogram approach showed correlation with all three endpoints to predict risk in bottlenose dolphins.
Collapse
Affiliation(s)
- Jena R Wirth
- Graduate Program in Marine Biology, College of Charleston, 205 Fort Johnson Road, Charleston, SC, 29412, USA
| | | | | | | | | |
Collapse
|
38
|
Dupont A, Siebert U, Covaci A, Weijs L, Eppe G, Debier C, De Pauw-Gillet MC, Das K. Relationships between in vitro lymphoproliferative responses and levels of contaminants in blood of free-ranging adult harbour seals (Phoca vitulina) from the North Sea. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:210-220. [PMID: 24051082 DOI: 10.1016/j.aquatox.2013.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/18/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
In vitro culture of peripheral blood leucocytes (PBLs) is currently used in toxicological studies of marine mammals. However, blood cells of wild individuals are exposed in vivo to environmental contaminants before being isolated and exposed to contaminants in vitro. The aim of this study was to highlight potential relationships between blood contaminant levels and in vitro peripheral blood lymphocyte proliferation in free-ranging adult harbour seals (Phoca vitulina) from the North Sea. Blood samples of 18 individuals were analyzed for trace elements (Fe, Zn, Se, Cu, Hg, Pb, Cd) and persistent organic contaminants and metabolites (ΣPCBs, ΣHO-PCBs, ΣPBDEs, 2-MeO-BDE68 and 6-MeO-BDE47, ΣDDXs, hexachlorobenzene, oxychlordane, trans-nonachlor, pentachlorophenol and tribromoanisole). The same samples were used to determine the haematology profiles, cell numbers and viability, as well as the in vitro ConA-induced lymphocyte proliferation expressed as a stimulation index (SI). Correlation tests (Bravais-Pearson) and Principal Component Analysis with multiple regression revealed no statistically significant relationship between the lymphocyte SI and the contaminants studied. However, the number of lymphocytes per millilitre of whole blood appeared to be negatively correlated to pentachlorophenol (r=-0.63, p=0.005). In adult harbour seals, the interindividual variations of in vitro lymphocyte proliferation did not appear to be directly linked to pollutant levels present in the blood, and it is likely that other factors such as age, life history, or physiological parameters have an influence. In a general manner, experiments with in vitro immune cell cultures of wild marine mammals should be designed so as to minimize confounding factors in which case they remain a valuable tool to study pollutant effects in vitro.
Collapse
Affiliation(s)
- Aurélie Dupont
- Laboratory of Oceanology - MARE Center, University of Liège, B6c, allée de la chimie 3, B-4000 Liège (Sart-Tilman), Belgium
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wirth JR, Peden-Adams MM, White ND, Bossart GD, Fair PA. In vitroPFOS exposure on immune endpoints in bottlenose dolphins (Tursiops truncatus) and mice. J Appl Toxicol 2013; 34:658-66. [DOI: 10.1002/jat.2891] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Jena R. Wirth
- Graduate Program in Marine Biology; College of Charleston; 205 Fort Johnson Road Charleston SC 29412 USA
| | - Margie M. Peden-Adams
- Harry Reid Center for Environmental Studies; University of Nevada Las Vegas; 4505 S. Maryland Parkway Las Vegas NV 89154-4009 USA
| | - Natasha D. White
- National Oceanic and Atmospheric Administration, National Ocean Service; Center for Coastal Environmental Health & Biomolecular Research; 219 Fort Johnson Road Charleston SC 29412 USA
| | | | - Patricia A. Fair
- National Oceanic and Atmospheric Administration, National Ocean Service; Center for Coastal Environmental Health & Biomolecular Research; 219 Fort Johnson Road Charleston SC 29412 USA
| |
Collapse
|
40
|
Ganly S, Hynes SO, Sharif F, Aied A, Barron V, McCullagh K, McMahon J, McHugh P, Crowley J, Wang W, O'Brien T, Greiser U. Liposomal surface coatings of metal stents for efficient non-viral gene delivery to the injured vasculature. J Control Release 2013; 167:109-19. [DOI: 10.1016/j.jconrel.2013.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/14/2013] [Accepted: 01/31/2013] [Indexed: 11/16/2022]
|
41
|
Frouin H, Loseto LL, Stern GA, Haulena M, Ross PS. Mercury toxicity in beluga whale lymphocytes: limited effects of selenium protection. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 109:185-193. [PMID: 22018916 DOI: 10.1016/j.aquatox.2011.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
Increasing emissions of anthropogenic mercury represents a growing concern to the health of high trophic level marine mammals. In its organic form, this metal bioaccumulates, and can be toxic to several physiological endpoints, including the immune system. In this study, we (1) evaluated the effects of inorganic mercury (mercuric chloride, HgCl2) and organic mercury (methylmercuric chloride, MeHgCl) on the in vitro function of lymphocytes isolated from the peripheral blood of beluga whales (Delphinapterus leucas); (2) characterized the potential protective effects of sodium selenite (Na2SeO3) on cell proliferation of HgCl2 or MeHgCl-treated beluga whale lymphocytes; and (3) compared these dose-dependent effects to measurements of blood Hg in samples collected from traditionally harvested beluga whales in the western Canadian Arctic. Lymphocyte proliferative responses were reduced following exposure to 1 μM of HgCl2 and 0.33 μM of MeHgCl. Decreased intracellular thiol levels were observed at 10 μM of HgCl2 and 0.33 μM of MeHgCl. Metallothionein induction was noted at 0.33 μM of MeHgCl. Concurrent exposure of Se provided a degree of protection against the highest concentrations of inorganic Hg (3.33 and 10 μM) or organic Hg (10 μM) for T-lymphocytes. This in vitro protection of Se against Hg toxicity to lymphocytes may contribute to the in vivo protection in beluga whales exposed to high Hg concentrations. Current Hg levels in free-ranging beluga whales from the Arctic fall into the range of exposures which elicited effects on lymphocytes in our study, highlighting the potential for effects on host resistance to disease. The implications of a changing Arctic climate on Hg fate in beluga food webs and the consequences for the health of beluga whales remain pressing research needs.
Collapse
Affiliation(s)
- H Frouin
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Rd, P.O. Box 6000, Sidney, BC, Canada V8L 4B2
| | | | | | | | | |
Collapse
|
42
|
Simultaneous measurement of phagocytosis and respiratory burst of leukocytes in whole blood from bottlenose dolphins (Tursiops truncatus) utilizing flow cytometry. Vet Immunol Immunopathol 2011; 144:468-75. [DOI: 10.1016/j.vetimm.2011.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/17/2011] [Accepted: 08/26/2011] [Indexed: 11/21/2022]
|
43
|
D'Ilio S, Mattei D, Blasi MF, Alimonti A, Bogialli S. The occurrence of chemical elements and POPs in loggerhead turtles (Caretta caretta): an overview. MARINE POLLUTION BULLETIN 2011; 62:1606-1615. [PMID: 21700299 DOI: 10.1016/j.marpolbul.2011.05.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/11/2011] [Accepted: 05/20/2011] [Indexed: 05/31/2023]
Abstract
Chemical elements and persistent organic pollutants (POPs) are globally present in aquatic systems and their potential transfer to loggerhead marine turtles (Caretta caretta) has become a serious threat for their health status. The environmental fate of these xenobiotics may be traced by the analysis of turtles' tissues and blood. Generally, loggerhead turtles exhibited a higher metal load than other turtle species, this could be explained by differences in diet habits being food the main source of exposure. Literature shows that muscle, liver and kidney are most considered for the quantification of chemical elements, while, organic compounds are typically investigated in liver and fat. This paper is an overview of the international studies carried out on the quantification of chemical elements, polychlorinated biphenyls (PCBs), organochlorines (OCs) and perfluorinated compounds (PFCs), in tissues, organs and fluids of C. caretta from the Mediterranean Sea, the Atlantic and the Pacific Oceans.
Collapse
Affiliation(s)
- S D'Ilio
- Italian National Institute for Health, Department of Primary Prevention, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | |
Collapse
|
44
|
Stavros HCW, Stolen M, Durden WN, McFee W, Bossart GD, Fair PA. Correlation and toxicological inference of trace elements in tissues from stranded and free-ranging bottlenose dolphins (Tursiops truncatus). CHEMOSPHERE 2011; 82:1649-1661. [PMID: 21126751 DOI: 10.1016/j.chemosphere.2010.11.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
The significance of metal concentrations in marine mammals is not well understood and relating concentrations between stranded and free-ranging populations has been difficult. In order to predict liver concentrations in free-ranging dolphins, we examined concentrations of trace elements (Al, As, Ba, Be, Cd, Co, Cu, Fe, Li, Mn, Ni, Pb, Sb, Se, Sn, total Hg (THg), V, Zn) in skin and liver of stranded bottlenose dolphins (Tursiops truncatus) from the South Carolina (SC) coast and the Indian River Lagoon, Florida (FL) during 2000-2008. Significantly higher concentrations of Zn, Fe, Se, Al, Cu and THg were found in skin while liver exhibited significantly higher Cu, Fe, Mn and THg concentrations for both study sites. Mean skin concentrations of Cu and Mn were significantly higher in SC dolphins while higher concentrations of THg and V were found in FL dolphins. In addition, liver tissues in SC dolphins exhibited significantly higher As concentrations while higher Fe, Pb, Se, THg, and V levels were found in FL dolphins. Two elements (Cu and THg) showed significant age-related correlations with skin concentration while five elements (Cu, Se, THg, Zn and V) showed age-related correlations with liver concentrations. Geographic location influenced age-related accumulation of several trace elements and age-related accumulation of THg in hepatic tissue was observed for both sites to have the highest correlations (r² = 0.90SC; r² = 0.69FL). Mean THg concentration in liver was about 10 times higher in FL dolphins (330 μg g⁻¹ dw) than those samples from SC dolphins (34.3 μg g⁻¹ dw). The mean molar ratio of Hg to Se was 0.93 ± 0.32 and 1.08 ± 0.38 for SC and FL dolphins, respectively. However, the Hg:Se ratio varied with age as much lower ratios (0.2-0.4) were found in younger animals. Of the 18 measured elements, only THg was significantly correlated in skin and liver of stranded dolphins and skin of free-ranging dolphins from both sites suggesting that skin may be useful in predicting Hg concentrations in liver tissue of free-ranging dolphins. Results indicate that 33% of the stranded and 15% of the free-ranging dolphins from FL exceed the minimum 100 μg g⁻¹ wet weight (ww) (~ 400 dw) Hg threshold for hepatic damage while none from SC reached this level. Hepatic concentrations of As in SC dolphins and V in FL dolphins were also highly correlated with skin concentrations which may have some regional specificity predictive value. The present study provides the first application of trace element concentrations derived from stranded bottlenose dolphins to predict liver concentrations in free-ranging populations.
Collapse
Affiliation(s)
- Hui-Chen W Stavros
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health & Biomolecular Research, Charleston, SC 29412, USA
| | | | | | | | | | | |
Collapse
|
45
|
Effects of a derivative thiazoline/thiazolidine azine ligand and its cadmium complexes on phagocytic activity by human neutrophils. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2010.11.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Korn MGA, dos Santos GL, Rosa SM, Teixeira LS, de Oliveira PV. Determination of cadmium and lead in cetacean Dolphinidae tissue from the coast of Bahia state in Brazil by GFAAS. Microchem J 2010. [DOI: 10.1016/j.microc.2010.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Phagocytosis in pup and adult harbour, grey and harp seals. Vet Immunol Immunopathol 2010; 134:160-8. [DOI: 10.1016/j.vetimm.2009.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 11/23/2022]
|
48
|
Dufresne MM, Frouin H, Pillet S, Lesage V, De Guise S, Fournier M. Comparative sensitivity of harbour and grey seals to several environmental contaminants using in vitro exposure. MARINE POLLUTION BULLETIN 2010; 60:344-349. [PMID: 19945719 DOI: 10.1016/j.marpolbul.2009.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/19/2009] [Accepted: 10/22/2009] [Indexed: 05/28/2023]
Abstract
In this study, we investigated the effects of cadmium chloride (CdCl(2)), mercury chloride (HgCl(2)), methylmercury chloride (CH(3)HgCl), and PCBs on lymphocyte proliferation in phocids. PBMCs isolated from harbour and grey seals were exposed in vitro to varying concentrations of contaminants. A reduction of viability occurred when cells were exposed to 10(-4)M HgCl(2) or CH(3)HgCl or to 50ppm of Aroclor 1254. In both grey and harbour seals, T-lymphocyte proliferation was suppressed when their cells were incubated with 5 x 10(-5)M CdCl(2) or 10(-4)M HgCl(2). An inhibition of proliferation occurred with CH(3)HgCl from 10(-6)M in grey seals and from 10(-5)M in harbour seals. In grey seals, Aroclor 1254 reduced lymphocyte proliferation at 15ppm. In both harbour and grey seals, CH(3)HgCl was ten times more immunotoxic that HgCl(2). From IC(50), chemicals were ranked in terms of toxicity as followed: CH(3)HgCl>CdCl(2)>HgCl(2)>Aroclor 1254.
Collapse
Affiliation(s)
- M M Dufresne
- Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Beineke A, Siebert U, Wohlsein P, Baumgärtner W. Immunology of whales and dolphins. Vet Immunol Immunopathol 2009; 133:81-94. [PMID: 19700205 DOI: 10.1016/j.vetimm.2009.06.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/08/2009] [Accepted: 06/22/2009] [Indexed: 11/25/2022]
Abstract
The increasing disease susceptibility in different whale and dolphin populations has led to speculation about a possible negative influence of environmental contaminants on the immune system and therefore on the health status of marine mammals. Despite current efforts in the immunology of marine mammals several aspects of immune functions in aquatic mammals remain unknown. However, assays for evaluating cellular immune responses, such as lymphocyte proliferation, respiratory burst as well as phagocytic and cytotoxic activity of leukocytes and humoral immune responses have been established for different cetacean species. Additionally, immunological and molecular techniques enable the detection and quantification of pro- and anti-inflammatory cytokines in lymphoid cells during inflammation or immune responses, respectively. Different T and B cell subsets as well as antigen-presenting cells can be detected by flow cytometry and immunohistochemistry. Despite great homologies between marine and terrestrial mammal lymphoid organs, some unique anatomical structures, particularly the complex lymphoepithelial laryngeal glands in cetaceans represent an adaptation to the marine environment. Additionally, physiological changes, such as age-related thymic atrophy and cystic degeneration of the "anal tonsil" of whales have to be taken into account when investigating these lymphoid structures. Systemic morbillivirus infections lead to fatalities in cetaceans associated with generalized lymphoid depletion. Similarly, chronic diseases and starvation are associated with a loss of functional lymphoid cells and decreased resistance against opportunistic infections. There is growing evidence for an immunotoxic effect of different environmental contaminants in whales and dolphins, as demonstrated in field studies. Furthermore, immunomodulatory properties of different persistent xenobiotics have been confirmed in cetacean lymphoid cells in vitro as well as in animal models in vivo. However, species-specific differences of the immune system and detoxification of xenobiotics between cetaceans and laboratory rodents have to be considered when interpreting these toxicological data for risk assessment in whales and dolphins.
Collapse
Affiliation(s)
- Andreas Beineke
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | | | | | | |
Collapse
|
50
|
Kakuschke A, Valentine-Thon E, Fonfara S, Kramer K, Prange A. Effects of methyl-, phenyl-, ethylmercury and mercurychlorid on immune cells of harbor seals (Phoca vitulina). J Environ Sci (China) 2009; 21:1716-1721. [PMID: 20131603 DOI: 10.1016/s1001-0742(08)62478-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mercury (Hg) is present in the marine environment as a natural metal often enhanced through human activities. Depending on its chemical form, Hg can cause a wide range of immunotoxic effects. In this study, the influence of methyl-, ethyl- and phenylmercury as well as mercurychloride on immune functions was evaluated. Two parameters of cellular immunity, proliferation and mRNA cytokine expression of interleukin-2, -4, and transforming growth factor beta, were investigated in harbor seal lymphocytes after in vitro exposure to Hg compounds. While all Hg compounds had a suppressive effect on proliferation, differences between juvenile and adult seals were found. Lymphocytes from juveniles showed a higher susceptibility to the toxic effect compared to lymphocytes from adults. Furthermore, the degree of inhibition of proliferation varied among the four Hg compounds. The organic compounds seem to be more immunotoxic than the inorganic compound. Finally, for the cytokine expression of methylmercury-incubated lymphocytes, time-dependent changes were observed, but no dose-dependency was found. Marine mammals of the North Sea are burdened with Hg, and lymphocytes of harbor seals may be functionally impaired by this metal. The present in vitro study provides baseline information for future studies on the immunotoxic effects of Hg on cellular immunity of harbor seals.
Collapse
Affiliation(s)
- Antje Kakuschke
- GKSS Research Center Institute for Coastal Research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany.
| | | | | | | | | |
Collapse
|