1
|
Memon AM, Chen F, Khan SB, Guo X, Khan R, Khan FA, Zhu Y, He Q. Development and evaluation of polyclonal antibodies based antigen capture ELISA for detection of porcine rotavirus. Anim Biotechnol 2023; 34:1807-1814. [PMID: 35593671 DOI: 10.1080/10495398.2022.2052304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Rotaviruses are rising as zoonotic viruses worldwide, causing the lethal dehydrating diarrhea in children, piglets, and other livestock of economic importance. A simple, swift, cost-effective, highly specific, and sensitive antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) was developed for detection of porcine rotavirus-A (PoRVA) by employing rabbit (capture antibody) and murine polyclonal antibodies (detector antibody) produced against VP6 of PoRVA (RVA/Pig-tc/CHN/TM-a/2009/G9P23). Reactivity of the both polyclonal antibodies was confirmed by using an indirect ELISA, western-blot analysis and indirect fluorescence assay against rVP6 protein and PoRVA. The detection limit of AC-ELISA was found 50 ng/ml of PoRVA protein. The relative sensitivity and specificity of this in-house AC-ELISA were evaluated for detection of PoRVA from 295 porcine diarrhea samples, and results were compared with that of RT-PCR and TaqMan RT-qPCR. The relative sensitivity and specificity of AC-ELISA compared with those of TaqMan RT-qPCR were found as 94.4 and 99.2%, respectively, with the strong agreement (κ -0.58) between these two techniques. Furthermore, AC-ELISA could not detect any cross-reactivity with porcine epidemic diarrhea virus, transmissible gastro-enteritis virus, pseudo rabies virus and porcine circovirus-2. This in-house AC-ELISA efficiently detected PoRVA from clinical samples, which suggests that this technique can be used for large-scale surveillance and timely detection of rotavirus infection in the porcine farms.
Collapse
Affiliation(s)
- Atta Muhammad Memon
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sher Bahadar Khan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Farhan Anwar Khan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yinxing Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Koutsoumanis K, Allende A, Alvarez Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Skandamis P, Suffredini E, Fernandez Escamez P, Gonzales‐Barron U, Roberts H, Ru G, Simmons M, Cruz RB, Lourenço Martins J, Messens W, Ortiz‐Pelaez A, Simon AC, De Cesare A. Assessment on the efficacy of methods 2 to 5 and method 7 set out in Commission Regulation (EU) No 142/2011 to inactivate relevant pathogens when producing processed animal protein of porcine origin intended to feed poultry and aquaculture animals. EFSA J 2023; 21:e08093. [PMID: 37416785 PMCID: PMC10320699 DOI: 10.2903/j.efsa.2023.8093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
An assessment was conducted on the level of inactivation of relevant pathogens that could be present in processed animal protein of porcine origin intended to feed poultry and aquaculture animals when methods 2 to 5 and method 7, as detailed in Regulation (EU) No 142/2011, are applied. Five approved scenarios were selected for method 7. Salmonella Senftenberg, Enterococcus faecalis, spores of Clostridium perfringens and parvoviruses were shortlisted as target indicators. Inactivation parameters for these indicators were extracted from extensive literature search and a recent EFSA scientific opinion. An adapted Bigelow model was fitted to retrieved data to estimate the probability that methods 2 to 5, in coincidental and consecutive modes, and the five scenarios of method 7 are able to achieve a 5 log10 and a 3 log10 reduction of bacterial indicators and parvoviruses, respectively. Spores of C. perfringens were the indicator with the lowest probability of achieving the target reduction by methods 2 to 5, in coincidental and consecutive mode, and by the five considered scenarios of method 7. An expert knowledge elicitation was conducted to estimate the certainty of achieving a 5 log10 reduction of spores of C. perfringens considering the results of the model and additional evidence. A 5 log10 reduction of C. perfringens spores was judged: 99-100% certain for methods 2 and 3 in coincidental mode; 98-100% certain for method 7 scenario 3; 80-99% certain for method 5 in coincidental mode; 66-100% certain for method 4 in coincidental mode and for method 7 scenarios 4 and 5; 25-75% certain for method 7 scenario 2; and 0-5% certain for method 7 scenario 1. Higher certainty is expected for methods 2 to 5 in consecutive mode compared to coincidental mode.
Collapse
|
3
|
Boxman ILA, Verhoef L, Dop PY, Vennema H, Dirks RAM, Opsteegh M. High prevalence of acute hepatitis E virus infection in pigs in Dutch slaughterhouses. Int J Food Microbiol 2022; 379:109830. [PMID: 35908493 DOI: 10.1016/j.ijfoodmicro.2022.109830] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/19/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
Hepatitis E is caused by hepatitis E virus (HEV), one of the causes of acute viral hepatitis. Domestic pigs are considered as the main reservoir of HEV-3. The recently reported high prevalence of HEV in liver- and meat products on the Dutch market warranted a cross-sectional prevalence study on HEV infection among 5-6 months old pigs slaughtered in the Netherlands (n = 250). For this, liver, caecum content and blood samples were analyzed for the presence of genomic HEV RNA by RT-PCR. In addition, a serological test was performed to detect HEV IgG. Background information was retrieved on the corresponding farms to evaluate potential risk factors for HEV at pig slaughter age. HEV IgG was detected in sera from 167 pigs (67.6 %). HEV RNA was detected in 64 (25.6 %) caecum content samples, in 40 (16.1 %) serum samples and in 25 (11.0 %) liver samples. The average level of viral contamination in positive samples was log10 4.6 genome copies (gc)/g (range 3.0-8.2) in caecum content, log10 3.3 gc/ml (range 2.4-5.9) in serum and log10 3.2 gc/0.1 g (range 1.7-6.2) in liver samples. Sequence analyses revealed HEV-3c only. Ten times an identical strain was detected in two or three samples obtained from the same pig. Each animal in this study however appeared to be infected with a unique strain. The presence of sows and gilts and welfare rating at the farm of origin had a significant effect (p < 0.05) on the distribution over the four groups representing different stages of HEV infection based on IgG or RNA in caecum and/or serum. The observed proportion of tested pigs with viremia (16 %) was higher than in other reported studies and was interestingly often observed in combination with a high number of HEV genome copies in liver and caecum content as detected by RT-qPCR. Data provided will be useful for risk assessment for food safety of pork products, will provide baseline data for future monitoring of HEV infections in pigs and new thoughts for mitigation strategies.
Collapse
Affiliation(s)
- Ingeborg L A Boxman
- WFSR, Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands.
| | - Linda Verhoef
- NVWA, Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Petra Y Dop
- NVWA, Netherlands Food and Consumer Product Safety Authority, Utrecht, the Netherlands
| | - Harry Vennema
- RIVM, National Institute of Public Health and the Environment, Bilthoven, the Netherlands
| | - René A M Dirks
- WFSR, Wageningen Food Safety Research, Wageningen University and Research, Mailbox 230, 6700 AE Wageningen, the Netherlands
| | - Marieke Opsteegh
- RIVM, National Institute of Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
4
|
Li J, Liu J, Yu H, Zhao W, Xia X, You S, Zhang J, Tong H, Wei L. Sources, fates and treatment strategies of typical viruses in urban sewage collection/treatment systems: A review. DESALINATION 2022; 534:115798. [PMID: 35498908 PMCID: PMC9033450 DOI: 10.1016/j.desal.2022.115798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The ongoing coronavirus pandemic (COVID-19) throughout the world has severely threatened the global economy and public health. Due to receiving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a wide variety of sources (e.g., households, hospitals, slaughterhouses), urban sewage treatment systems are regarded as an important path for the transmission of waterborne viruses. This review presents a quantitative profile of the concentration distribution of typical viruses within wastewater collection systems and evaluates the influence of different characteristics of sewer systems on virus species and concentration. Then, the efficiencies and mechanisms of virus removal in the units of wastewater treatment plants (WWTPs) are summarized and compared, among which the inactivation efficiencies of typical viruses by typical disinfection approaches under varied operational conditions are elucidated. Subsequently, the occurrence and removal of viruses in treated effluent reuse and desalination, as well as that in sewage sludge treatment, are discussed. Potential dissemination of viruses is emphasized by occurrence via aerosolization from toilets, the collection system and WWTP aeration, which might have a vital role in the transmission and spread of viruses. Finally, the frequency and concentration of viruses in reclaimed water, the probability of infection are also reviewed for discussing the potential health risks.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Geosciences, China University of Petroleum, Qingdao 266580, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Camp JV, Desvars-Larrive A, Nowotny N, Walzer C. Monitoring Urban Zoonotic Virus Activity: Are City Rats a Promising Surveillance Tool for Emerging Viruses? Viruses 2022; 14:v14071516. [PMID: 35891496 PMCID: PMC9316102 DOI: 10.3390/v14071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Urban environments represent unique ecosystems where dense human populations may come into contact with wildlife species, some of which are established or potential reservoirs for zoonotic pathogens that cause human diseases. Finding practical ways to monitor the presence and/or abundance of zoonotic pathogens is important to estimate the risk of spillover to humans in cities. As brown rats (Rattus norvegicus) are ubiquitous in urban habitats, and are hosts of several zoonotic viruses, we conducted longitudinal sampling of brown rats in Vienna, Austria, a large population center in Central Europe. We investigated rat tissues for the presence of several zoonotic viruses, including flaviviruses, hantaviruses, coronaviruses, poxviruses, hepatitis E virus, encephalomyocarditis virus, and influenza A virus. Although we found no evidence of active infections (all were negative for viral nucleic acids) among 96 rats captured between 2016 and 2018, our study supports the findings of others, suggesting that monitoring urban rats may be an efficient way to estimate the activity of zoonotic viruses in urban environments.
Collapse
Affiliation(s)
- Jeremy V. Camp
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Amélie Desvars-Larrive
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Complexity Science Hub Vienna, 1080 Vienna, Austria
- VetFarm, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Chris Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Wildlife Conservation Society, Global Conservation Program, Bronx, NY 10460, USA
| |
Collapse
|
6
|
Gremmel N, Keuling O, Becher P, Baechlein C. Isolation of 15 hepatitis E virus strains lacking ORF1 rearrangements from wild boar and pig organ samples and efficient replication in cell culture. Transbound Emerg Dis 2022; 69:e2617-e2628. [PMID: 35678772 DOI: 10.1111/tbed.14608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
As a zoonotic pathogen, the hepatitis E virus (HEV) leads to numerous infections in humans with different clinical manifestations. Especially genotype 3, as causative agent of a foodborne zoonosis, is transmitted to humans by ingestion of undercooked or raw meat containing liver from HEV-infected animals. Although the virus' prevalence and dissemination in hosts like wild boar and pig have been well characterized, HEV is greatly understudied on a molecular level and reliable cell culture models are lacking. For this reason, the present study concentrated on the isolation and subsequent characterization of porcine HEV from tissue samples derived from wild boar and domestic pigs: 222 wild boars hunted in Northern Germany were investigated for the presence of HEV RNA with a detection rate of 5.9%. Three additional HEV-positive wild boar liver samples as well as an HEV-positive spleen and a positive kidney from domestic pigs were included. After inoculation of positive samples onto the human hepatoma cell line PLC/PRF/5, cells were grown for several weeks. Successful isolation was confirmed by RT-qPCR, virus passage, immunofluorescence staining and titration. Overall, 15 strains from a total of 18 RNA-positive organ samples could be obtained and viral loads >109 RNA copies/ml were measured in cell culture supernatants. Accordingly, 83.3% of the HEV RNA-positive samples contained infectious hepatitis E viral particles and therefore must be considered as a potential source for human infections. Phylogenetic analyses revealed that all isolated strains belong to genotype 3. Further genetic characterization showed a high degree of sequence variability, but no sequence insertions, in the hypervariable region within the open reading frame 1.
Collapse
Affiliation(s)
- Nele Gremmel
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Oliver Keuling
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine, Hannover, Germany
| | - Paul Becher
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Christine Baechlein
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine, Hannover, Germany.,Present address: Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Braunschweig/Hannover, Hannover, Germany
| |
Collapse
|
7
|
Potential zoonotic swine enteric viruses: The risk ignored for public health. Virus Res 2022; 315:198767. [PMID: 35421434 DOI: 10.1016/j.virusres.2022.198767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 12/28/2022]
Abstract
Swine could serve as a natural reservoir for a large variety of viruses, including potential zoonotic enteric viruses. The presence of viruses with high genetic similarity between porcine and human strains may result in the emergence of zoonotic or xenozoonotic infections. Furthermore, the globalization and intensification of swine industries exacerbate the transmission and evolution of zoonotic viruses among swine herds and individuals working in swine-related occupations. To effectively prevent the public health risks posed by zoonotic swine enteric viruses, designing, and implementing a comprehensive measure for early diagnosis, prevention, and mitigation, requires interdisciplinary a collaborative ''One Health" approach from veterinarians, environmental and public health professionals, and the swine industry. In this paper, we reviewed the current knowledge of selected potential zoonotic swine enteric viruses and explored swine intensive production and its associated public health risks.
Collapse
|
8
|
Development of a Multiplex RT-PCR Assay for Simultaneous Detection of Four Potential Zoonotic Swine RNA Viruses. Vet Sci 2022; 9:vetsci9040176. [PMID: 35448674 PMCID: PMC9029180 DOI: 10.3390/vetsci9040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Swine viruses like porcine sapovirus (SaV), porcine encephalomyocarditis virus (EMCV), porcine rotavirus A (RVA) and porcine astroviruses (AstV) are potentially zoonotic viruses or suspected of potential zoonosis. These viruses have been detected in pigs with or without clinical signs and often occur as coinfections. Despite the potential public health risks, no assay for detecting them all at once has been developed. Hence, in this study, a multiplex RT-PCR (mRT-PCR) assay was developed for the simultaneous detection of SaV, EMCV, RVA and AstV from swine fecal samples. The PCR parameters were optimized using specific primers for each target virus. The assay’s sensitivity, specificity, reproducibility, and application to field samples have been evaluated. Using a pool of plasmids containing the respective viral target fragments as a template, the developed mRT-PCR successfully detected 2.5 × 103 copies of each target virus. The assay’s specificity was tested using six other swine viruses as a template and did not show any cross-reactivity. A total of 280 field samples were tested with the developed mRT-PCR assay. Positive rates for SaV, EMCV, RVA, and AstV were found to be 24.6% (69/280), 5% (14/280), 4.3% (12/280), and 17.5% (49/280), respectively. Compared to performing separate assays for each virus, this mRT-PCR assay is a simple, rapid, and cost-effective method for detecting mixed or single infections of SaV, EMCV, RVA, and AstV.
Collapse
|
9
|
Werid GM, Ibrahim YM, Chen H, Fu L, Wang Y. Molecular Detection and Genetic Characterization of Potential Zoonotic Swine Enteric Viruses in Northern China. Pathogens 2022; 11:pathogens11040417. [PMID: 35456092 PMCID: PMC9031704 DOI: 10.3390/pathogens11040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Despite significant economic and public health implications, swine enteric viruses that do not manifest clinical symptoms are often overlooked, and data on their epidemiology and pathogenesis are still scarce. Here, an epidemiological study was carried out by using reverse transcription-polymerase chain reaction (RT-PCR) and sequence analysis in order to better understand the distribution and genetic diversity of porcine astrovirus (PAstV), porcine encephalomyocarditis virus (EMCV), porcine kobuvirus (PKV), and porcine sapovirus (PSaV) in healthy pigs reared under specific pathogen-free (SPF) or conventional farms. PKV was the most prevalent virus (51.1%, 247/483), followed by PAstV (35.4%, 171/483), then PSaV (18.4%, 89/483), and EMCV (8.7%, 42/483). Overall, at least one viral agent was detected in 300 out of 483 samples. Out of the 300 samples, 54.0% (162/300), 13.0% (39/300), or 1.0% (3/300) were found coinfected by two, three, or four viruses, respectively. To our knowledge, this is the first report of EMCV detection from porcine fecal samples in China. Phylogenetic analysis revealed genetically diverse strains of PAstV, PKV, and PSaV circulating in conventional and SPF farms. Detection of swine enteric viruses with a high coinfection rate in healthy pigs highlights the importance of continuous viral surveillance to minimize future economic and public health risks.
Collapse
Affiliation(s)
- Gebremeskel Mamu Werid
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.M.W.); (Y.M.I.); (H.C.)
| | - Yassein M. Ibrahim
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.M.W.); (Y.M.I.); (H.C.)
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.M.W.); (Y.M.I.); (H.C.)
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing 408599, China
- Correspondence: (L.F.); (Y.W.)
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.M.W.); (Y.M.I.); (H.C.)
- Chongqing Academy of Animal Science, Chongqing 408599, China
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- Correspondence: (L.F.); (Y.W.)
| |
Collapse
|
10
|
Davidson I, Stamelou E, Giantsis IA, Papageorgiou KV, Petridou E, Kritas SK. The Complexity of Swine Caliciviruses. A Mini Review on Genomic Diversity, Infection Diagnostics, World Prevalence and Pathogenicity. Pathogens 2022; 11:pathogens11040413. [PMID: 35456088 PMCID: PMC9030053 DOI: 10.3390/pathogens11040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Caliciviruses are single stranded RNA viruses, non-enveloped structurally, that are implicated in the non-bacterial gastroenteritis in various mammal species. Particularly in swine, viral gastroenteritis represents a major problem worldwide, responsible for significant economic losses for the pig industry. Among the wide range of viruses that are the proven or suspected etiological agents of gastroenteritis, the pathogenicity of the members of Caliciviridae family is among the less well understood. In this context, the present review presents and discusses the current knowledge of two genera belonging to this family, namely the Norovirus and the Sapovirus, in relation to swine. Aspects such as pathogenicity, clinical evidence, symptoms, epidemiology and worldwide prevalence, genomic diversity, identification tools as well as interchanging hosts are not only reviewed but also critically evaluated. Generally, although often asymptomatic in pigs, the prevalence of those microbes in pig farms exhibits a worldwide substantial increasing trend. It should be mentioned, however, that the factors influencing the symptomatology of these viruses are still far from well established. Interestingly, both these viruses are also characterized by high genetic diversity. These high levels of molecular diversity in Caliciviridae family are more likely a result of recombination rather than evolutionary or selective adaptation via mutational steps. Thus, molecular markers for their detection are mostly based on conserved regions such as the RdRp region. Finally, it should be emphasized that Norovirus and the Sapovirus may also infect other domestic, farm and wild animals, including humans, and therefore their surveillance and clarification role in diseases such as diarrhea is a matter of public health importance as well.
Collapse
Affiliation(s)
- Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan 50250, Israel;
| | - Efthymia Stamelou
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
- Correspondence:
| | - Konstantinos V. Papageorgiou
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| | - Evanthia Petridou
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| | - Spyridon K. Kritas
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (K.V.P.); (E.P.); (S.K.K.)
| |
Collapse
|
11
|
Cavicchio L, Laconi A, Piccirillo A, Beato MS. Swine Norovirus: Past, Present, and Future. Viruses 2022; 14:537. [PMID: 35336944 PMCID: PMC8953536 DOI: 10.3390/v14030537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/18/2023] Open
Abstract
Norovirus, an ssRNA + virus of the family Caliciviridae, is a leading disease burden in humans worldwide, causing an estimated 600 million cases of acute gastroenteritis every year. Since the discovery of norovirus in the faeces of swine in Japan in the 1990s, swine norovirus has been reported in several countries on several continents. The identification of the human-associated GII.4 genotype in swine has raised questions about this animal species as a reservoir of norovirus with zoonotic potential, even if species-specific P-types are usually detected in swine. This review summarises the available data regarding the geographic distribution of norovirus in swine, the years of detection, the genotype characterisation, and the prevalence in specific production groups. Furthermore, we discuss the major bottlenecks for the detection and characterisation of swine noroviruses.
Collapse
Affiliation(s)
- Lara Cavicchio
- Diagnostic Virology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVE), Viale dell’Università 10, Legnaro, 35020 Padua, Italy;
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (A.L.); (A.P.)
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (A.L.); (A.P.)
| | - Maria Serena Beato
- National Reference Laboratory for African Swine Fever and Ruminant retroviruses, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche (IZSUM), Via G. Salvemini, 1, 06126 Perugia, Italy
| |
Collapse
|
12
|
Stamelou E, Giantsis IA, Papageorgiou KV, Petridou E, Davidson I, Polizopοulou ZS, Papa A, Kritas SK. Epidemiology of Astrovirus, Norovirus and Sapovirus in Greek pig farms indicates high prevalence of Mamastrovirus suggesting the potential need for systematic surveillance. Porcine Health Manag 2022; 8:5. [PMID: 35000615 PMCID: PMC8744241 DOI: 10.1186/s40813-021-00245-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Backround Astrovirus, Norovirus and Sapovirus exhibit a wide distribution in swine pig herds worldwide. However, the association of porcine Astrovirus (PAstV), porcine Norovirus (PoNoV) and porcine Sapovirus (PoSaV) with disease in pigs remains uncertain. In this study, we investigated the prevalence of PAstV, PoNoV and PoSaV in Greek pig farms using both conventional RT-PCR and SYBR-Green Real-time RT-PCR in an effort to compare the sensitivity of the two methods. We examined 1400 stool samples of asymptomatic pigs originating from 28 swine farms throughout Greece in pools of five. Results PAstV was detected in all 28 swine farms examined, with an overall prevalence of 267/280 positive pools (95.4%). Porcine Caliciviruses prevalence was found at 36 and 57 out of the 280 examined samples, by the conventional and SYBR-Green Real time RT-PCR, respectively. Sequencing and phylogenetic analysis of the positive samples revealed that the detected PAstV sequences are clustered within PAstV1, 3 and 4 lineages, with PAstV3 being the predominant haplotype (91.2%). Interestingly, sequencing of the Calicivirus positive samples demonstrated the presence of non-target viruses, i.e. Sapovirus, Kobuvirus and Sapelovirus sequences and one sequence highly similar to bat Astrovirus, while no Norovirus sequence was detected. Conclusions The high prevalence of PAstV in Greek pig farms poses a necessity for further investigation of the pathogenicity of this virus and its inclusion in surveillance programs in case that it proves to be important. To our knowledge, this is the first epidemiological study of these viruses in pig farms in Greece. Supplementary Information The online version contains supplementary material available at 10.1186/s40813-021-00245-8.
Collapse
Affiliation(s)
- Efthymia Stamelou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece.
| | - Konstantinos V Papageorgiou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evanthia Petridou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Irit Davidson
- Kimron Veterinary Institute, 50250, Bet Dagan, Israel
| | - Zoe S Polizopοulou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Spyridon K Kritas
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
13
|
Johne R, Althof N, Nöckler K, Falkenhagen A. [Hepatitis E virus-a zoonotic virus: distribution, transmission pathways, and relevance for food safety]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:202-208. [PMID: 34982174 PMCID: PMC8813789 DOI: 10.1007/s00103-021-03476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
Das Hepatitis-E-Virus (HEV) ist ein Erreger einer akuten Hepatitis beim Menschen. Darüber hinaus treten zunehmend auch chronische Infektionen mit fataler Leberzirrhose bei immunsupprimierten Transplantationspatienten auf. Die Zahl der gemeldeten Hepatitis-E-Fälle in Deutschland hat in den vergangenen Jahren stark zugenommen. Hier kommt vor allem der Genotyp 3 vor, der zoonotisch von Tieren auf den Menschen übertragen werden kann. Haus- und Wildschweine, die ohne die Ausbildung klinischer Symptome infiziert werden, stellen das Hauptreservoir dar. In diesem Artikel werden die Verbreitung von HEV in Tieren in Deutschland, mögliche Übertragungswege des Virus und insbesondere die Bedeutung von Lebensmitteln bei der Übertragung anhand der aktuellen wissenschaftlichen Literatur dargestellt. HEV ist in Haus- und Wildschweinen in Deutschland stark verbreitet und wird hauptsächlich über direkten Kontakt oder den Verzehr von Lebensmitteln, die aus diesen Tieren hergestellt wurden, auf den Menschen übertragen. Beim HEV-RNA-Nachweis in spezifischen Lebensmitteln bleibt allerdings oft unklar, ob das enthaltene Virus noch infektiös ist oder durch die Herstellungsbedingungen inaktiviert wurde. Neuere Studien weisen auf eine hohe Stabilität des HEV unter verschiedenen physikochemischen Bedingungen hin, wohingegen eine Inaktivierung unter anderem durch Erhitzung erreicht wird. Generell wird deshalb ein ausreichendes Erhitzen von Schweinefleisch und -leber vor dem Verzehr empfohlen und für Risikogruppen zusätzlich der Verzicht auf den Verzehr kurzgereifter Rohwürste. Weitere Forschungen sind nötig, um relevante Risikolebensmittel zu identifizieren, alternative Übertragungswege zu untersuchen und effiziente Maßnahmen zu entwickeln, die eine zoonotische Virusübertragung zukünftig verringern oder vermeiden.
Collapse
Affiliation(s)
- Reimar Johne
- Bundesinstitut für Risikobewertung, Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland.
| | - Nadine Althof
- Bundesinstitut für Risikobewertung, Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland
| | - Karsten Nöckler
- Bundesinstitut für Risikobewertung, Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland
| | | |
Collapse
|
14
|
Rawal G, Linhares DCL. Scoping review on the epidemiology, diagnostics and clinical significance of porcine astroviruses. Transbound Emerg Dis 2021; 69:974-985. [PMID: 33900029 DOI: 10.1111/tbed.14123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022]
Abstract
Porcine astroviruses (PoAstVs) have been reported globally and are divided into at least five distinct lineages (PoAstV1-PoAsV5). The primary objective of this review was to summarize the scientific literature about the frequency of detection, associated clinical presentations and type of samples and diagnostic tools used for the detection of porcine astroviruses. The secondary objective was to summarize the body of knowledge about the causal role in disease of PoAstVs using the Bradford Hill framework. A search was conducted using Centre for Biosciences and Agriculture International (CABI), MEDLINE, American Association of Swine Veterinarians (AASV) Swine Information Library (SIL) abstracts, swine conferences including American College of Veterinary Pathologists (ACVP) and American Association of Veterinary Laboratory Diagnosticians (AAVLD). From 168 studies identified by the search, 29 studies were eligible. Results indicated that 69% (20/29) of the literature on PoAstVs have been published between 2011 and 2018. Of 29 papers, 52% were detection studies (15 of 29) and 48% (14 of 29) were case-control studies. Seventy-two per cent (21 of 29) reported differential diagnosis and 10% (3 of 29) reported histologic lesions, out of which 67% (2 of 3) associated the detection of PoAstV3 with development of polioencephalomyelitis. PCR-based assays were the most common diagnostic tools.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Daniel C L Linhares
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
15
|
Wang Y, Toh X, Ong J, Teo XH, Bay P, Fernandez CJ, Huangfu T. Serological prevalence and molecular characterization of hepatitis E virus in imported pigs in Singapore (2000-2019). Transbound Emerg Dis 2021; 69:286-296. [PMID: 33406320 DOI: 10.1111/tbed.13977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 12/25/2022]
Abstract
Hepatitis E is a significant liver disease caused by infection with hepatitis E virus (HEV). The risk factors for hepatitis E in developed countries include blood transfusion and ingestion of undercooked meat or meat products derived from HEV-infected animals. Since 2000, there has been increased human hepatitis E incidence reported in Singapore. Although the causes of this increase have not been established, several studies have linked zoonotic HEV infections in humans to pork consumption. It is therefore important to closely monitor the presence of HEV in food sources for the prevalence and virulence. In this study, we demonstrated the presence of HEV in pigs imported into Singapore for consumption through serological and molecular investigation of live pig and post-slaughter samples collected between 2000 and 2019. Among imported pigs, anti-HEV antibody prevalence remained at a level around 35% until 2017, with a statistically significant increase in 2018. HEV RNA was detected in 8.40% (34/405) of the faecal samples, indicative of an active infection in the pigs. HEV RNA was also detected in 6.67% (4/60) of liver samples obtained post-slaughter. We also report the development of an RT-PCR-based next-generation sequencing (NGS) method that enabled full sequencing of the HEV genome in HEV RNA-positive samples in a relatively short span of time. Phylogenetic analysis identified the HEV in one of the imported pigs (HEV-S28) as genotype 3a, which clustered together with the human HEV strains previously identified in Singapore. We found that the HEV-S28 strain exhibited amino acid substitutions that are associated with reduced HEV replication efficiency. The increase in anti-HEV seroprevalence in the pig population from 2018 is worth further exploration. We will continue to monitor the prevalent HEV strains and assess the genetic diversity of HEV in the imported pigs to confirm the potential association with human infections.
Collapse
Affiliation(s)
- Yifan Wang
- Center for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), Singapore, Singapore
| | - Xinyu Toh
- Center for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), Singapore, Singapore
| | - Jasmine Ong
- Center for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), Singapore, Singapore
| | - Xuan Hui Teo
- Center for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), Singapore, Singapore
| | - Patrick Bay
- Singapore Food Agency (SFA), Singapore, Singapore
| | - Charlene Judith Fernandez
- Center for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), Singapore, Singapore
| | - Taoqi Huangfu
- Center for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), Singapore, Singapore
| |
Collapse
|
16
|
Cavicchio L, Tassoni L, Laconi A, Cunial G, Gagliazzo L, Milani A, Campalto M, Di Martino G, Forzan M, Monne I, Beato MS. Unrevealed genetic diversity of GII Norovirus in the swine population of North East Italy. Sci Rep 2020; 10:9217. [PMID: 32513947 PMCID: PMC7280493 DOI: 10.1038/s41598-020-66140-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/13/2020] [Indexed: 12/02/2022] Open
Abstract
Noroviruses (NoVs) are one of the major causative agents of non-bacterial gastroenteritis in humans worldwide. NoVs, belonging to Caliciviridae, are classified into ten genogroups (G) and eight P-groups based on major capsid protein (VP1) and of the RNA-dependent-RNA-polymerase (RdRp), respectively. In swine, the main genogroup and P-group identified are GII and GII.P; which can infect humans too. To date, only one case of GIIP.11 have been identified in swine in Italy while the circulation of other P-types is currently unknown. In the present study, 225 swine faecal samples were collected from 74 swine herds in Veneto region through on-farm monitoring. NoV circulation was particularly high in older pigs. The phylogenetic analysis showed the co-circulation of NoVs belonging to two different P-types: GII.P11 and GII.P18, here described for the first time in Italy, presenting an extensive genetic diversity, never described before worldwide. Distinct NoV genetic subgroups and unique amino acid mutations were identified for each P-type for the first time. This study demonstrated the co-circulation of diverse swine NoVs subgroups in Italy, raising questions on the origin of such diversity and suggesting that continuous monitoring of swine NoVs is needed to track the emergence of potentially zoonotic viruses by recombination events.
Collapse
Affiliation(s)
- L Cavicchio
- Diagnostic Virology Laboratory, Department of Animal Health, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - L Tassoni
- Diagnostic Virology Laboratory, Department of Animal Health, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - A Laconi
- EU, OIE/FAO and National Reference Laboratory for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - G Cunial
- Epidemiology Department, Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - L Gagliazzo
- Epidemiology Department, Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - A Milani
- EU, OIE/FAO and National Reference Laboratory for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - M Campalto
- Diagnostic Virology Laboratory, Department of Animal Health, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - G Di Martino
- Epidemiology Department, Istituto Zooprofilattico Sperimentale Delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - M Forzan
- Department of Veterinary Virology, University of Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| | - I Monne
- EU, OIE/FAO and National Reference Laboratory for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy
| | - M S Beato
- Diagnostic Virology Laboratory, Department of Animal Health, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università 10, 35020, Legnaro, Padua, Italy.
| |
Collapse
|
17
|
Qin Y, Fang Q, Li X, Li F, Liu H, Wei Z, Ouyang K, Chen Y, Huang W. Molecular epidemiology and viremia of porcine astrovirus in pigs from Guangxi province of China. BMC Vet Res 2019; 15:471. [PMID: 31881886 PMCID: PMC6935060 DOI: 10.1186/s12917-019-2217-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/19/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Porcine astroviruses (PAstVs) are common in pigs worldwide. There are five distinct lineages with each lineage representing a different ancestral origin. Recently, multiple reports have demonstrated the evidence of extra-intestinal infection of PAstVs, but little is known about viremia. RESULTS In this study, a total of 532 fecal samples and 120 serum samples from healthy pigs were collected and tested from 2013 to 2015 in Guangxi province, China; of these 300/532 (56.4%) and 7/120 (5.8%) of fecal samples tested positive for PAstVs, respectively. Our study revealed that there was wide genetic diversity and high prevalence of the virus in the pig population. All five of the known PAstVs genotypes (1-5) prevailed in the pig population of Guangxi province and were distributed in all age groups of pigs, from suckling piglets to sows, with PAstV2 (47.7%), PAstV1 (26.2%) and PAstV5 (21.5%) seen predominantly. Phylogenetic analysis of partial ORF1b and partial capsid sequences from fecal and serum samples revealed that they were divided into the five lineages. Among these genotypes, based on partial ORF2 genes sequencing 23 strains were grouped as PAstV1, including 6 serum-derived strains, and were regarded as the causative agents of viremia in pigs. CONCLUSIONS Due to the information regarding the types of PAstV in blood is limit. This is the first report for the presence of PAstV1 in blood and PAstV3 in the feces of nursery pigs of China. This study provides a reference for understanding the prevalence and genetic evolution of PAstVs in pigs in Guangxi province, China. It also provides a new perspective for understanding of the extra-intestinal infection of PAstVs in pigs.
Collapse
Affiliation(s)
- Yifeng Qin
- Laboratory of animal infectious disease and immunology, College of Animal Science and Technology, Guangxi University, No.100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Qingli Fang
- Laboratory of animal infectious disease and immunology, College of Animal Science and Technology, Guangxi University, No.100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Xunjie Li
- Laboratory of animal infectious disease and immunology, College of Animal Science and Technology, Guangxi University, No.100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Fakai Li
- Laboratory of animal infectious disease and immunology, College of Animal Science and Technology, Guangxi University, No.100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Huan Liu
- Laboratory of animal infectious disease and immunology, College of Animal Science and Technology, Guangxi University, No.100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Zuzhang Wei
- Laboratory of animal infectious disease and immunology, College of Animal Science and Technology, Guangxi University, No.100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Kang Ouyang
- Laboratory of animal infectious disease and immunology, College of Animal Science and Technology, Guangxi University, No.100 Daxue Road, Nanning, 530004, People's Republic of China
| | - Ying Chen
- Laboratory of animal infectious disease and immunology, College of Animal Science and Technology, Guangxi University, No.100 Daxue Road, Nanning, 530004, People's Republic of China.
| | - Weijian Huang
- Laboratory of animal infectious disease and immunology, College of Animal Science and Technology, Guangxi University, No.100 Daxue Road, Nanning, 530004, People's Republic of China.
| |
Collapse
|
18
|
Fang Q, Wang C, Liu H, Wu Q, Liang S, Cen M, Dong Q, Wei Y, Chen Y, Ouyang K, Wei Z, Huang W. Pathogenic Characteristics of a Porcine Astrovirus Strain Isolated in China. Viruses 2019; 11:E1156. [PMID: 31847270 PMCID: PMC6949928 DOI: 10.3390/v11121156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022] Open
Abstract
Astroviral infection is considered to be one of the causes of mammalian diarrheal diseases. It has been shown that astrovirus infections cause varying degrees of diarrhea in turkeys and mice. However, the pathogenesis of porcine astrovirus is unknown. In this study, the virulence of a cytopathic porcine astrovirus (PAstV) strain (PAstV1-GX1) isolated from the PK-15 cell line was tested using seven-day-old nursing piglets. The results showed that PAstV1-GX1 infection could cause mild diarrhea, growth retardation, and damage of the villi of the small intestinal mucosa. However, all the above symptoms could be restored within 7 to 10days post inoculation (dpi). To evaluate the innate immunity response of PAstV in vivo, the alteration of inflammatory cytokine expression in piglets infected with PAstV1-GX1 was determined using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The mRNA expression levels of the IFNβ and ISG54 were found to be significantly elevated in virus-infected piglets. In contrast, expression of IFNλ was downregulated in piglets infected with PAstV1-GX1. In addition, the mRNA expression of the tight junction protein 1 and 2 and zonula occludin 1, which are associated with the intestinal barrier permeability, were affected after PAstV1 infection. The present study adds to our understanding of the pathogenic mechanism of PAstV and has established an animal model for further study of pig astrovirus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zuzhang Wei
- College of Animal Science and Technology, Guangxi University, No.100 Daxue Road, Nanning 530004, China; (Q.F.); (C.W.); (H.L.); (Q.W.); (S.L.); (M.C.); (Q.D.); (Y.W.); (Y.C.); (K.O.)
| | - Weijian Huang
- College of Animal Science and Technology, Guangxi University, No.100 Daxue Road, Nanning 530004, China; (Q.F.); (C.W.); (H.L.); (Q.W.); (S.L.); (M.C.); (Q.D.); (Y.W.); (Y.C.); (K.O.)
| |
Collapse
|
19
|
Rawal G, Ferreyra FM, Macedo NR, Bradner LK, Harmon KM, Mueller A, Allison G, Linhares DC, Arruda BL. Detection and Cellular Tropism of Porcine Astrovirus Type 3 on Breeding Farms. Viruses 2019; 11:v11111051. [PMID: 31718108 PMCID: PMC6893673 DOI: 10.3390/v11111051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/22/2023] Open
Abstract
Astroviruses cause disease in a variety of species. Yet, little is known about the epidemiology of a majority of astroviruses including porcine astrovirus type 3 (PoAstV3), which is a putative cause of polioencephalomyelitis in swine. Accordingly, a cross-sectional study was conducted on sow farms with or without reported PoAstV3-associated neurologic disease in growing pigs weaned from those farms. Additionally, a conveniently selected subset of piglets from one farm was selected for gross and histologic evaluation. The distribution of PoAstV3 in the enteric system was evaluated through in situ hybridization. PoAstV3, as detected by RT-qPCR on fecal samples, was frequently detected across sows and piglets (66–90%) on all farms (65–85%). PoAstV3 was detected subsequently at a similar detection frequency (77% vs 85%) on one farm after three months. Viral shedding, as determined by the cycle quantification value, suggests that piglets shed higher quantities of virus than adult swine. No link between gastrointestinal disease and PoAstV3 was found. However, PoAstV3 was detected by in situ in myenteric plexus neurons of piglets elucidating a possible route of spread of the virus from the gastrointestinal tract to the central nervous system. These data suggest PoAstV3 has endemic potential, is shed in the feces at greater quantities by suckling piglets when compared to sows, and infection is widespread on farms in which it is detected.
Collapse
Affiliation(s)
- Gaurav Rawal
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
| | - Franco Matias Ferreyra
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
| | - Nubia R. Macedo
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
| | - Laura K. Bradner
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
| | - Karen M. Harmon
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
| | - Adam Mueller
- Swine Services Unlimited, Inc., Rice, MN 56367, USA;
| | - Grant Allison
- Walcott Veterinary Clinic, Durant St. Walcott, IA 52773, USA;
| | - Daniel C.L. Linhares
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
| | - Bailey L. Arruda
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA; (G.R.); (F.M.F.); (N.R.M.); (L.K.B.); (K.M.H.); (D.C.L.L.)
- Correspondence:
| |
Collapse
|
20
|
Animals as Reservoir for Human Norovirus. Viruses 2019; 11:v11050478. [PMID: 31130647 PMCID: PMC6563253 DOI: 10.3390/v11050478] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/12/2023] Open
Abstract
Norovirus is the most common cause of non-bacterial gastroenteritis and is a burden worldwide. The increasing norovirus diversity is currently categorized into at least 10 genogroups which are further classified into more than 40 genotypes. In addition to humans, norovirus can infect a broad range of hosts including livestock, pets, and wild animals, e.g., marine mammals and bats. Little is known about norovirus infections in most non-human hosts, but the close genetic relatedness between some animal and human noroviruses coupled with lack of understanding where newly appearing human norovirus genotypes and variants are emerging from has led to the hypothesis that norovirus may not be host restricted and might be able to jump the species barrier. We have systematically reviewed the literature to describe the diversity, prevalence, and geographic distribution of noroviruses found in animals, and the pathology associated with infection. We further discuss the evidence that exists for or against interspecies transmission including surveillance data and data from in vitro and in vivo experiments.
Collapse
|
21
|
Kozyra I, Kozyra J, Dors A, Rzeżutka A. Molecular chracterisation of porcine group A rotaviruses: Studies on the age-related occurrence and spatial distribution of circulating virus genotypes in Poland. Vet Microbiol 2019; 232:105-113. [PMID: 31030833 DOI: 10.1016/j.vetmic.2019.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/17/2023]
Abstract
Rotaviruses of group A (RVAs) commonly occur in farm animals. In pigs, they cause acute gastrointestinal disease which is considered as significant factor of economic losses in pig farming. The aim of the study was an assessment of the prevalence of rotavirus (RV) infections in farmed pigs in Poland, genotype identification of the virus strains in conjunction with their age-related occurrence and regional (province) distribution pattern in pig herds. In total, 920 pig faecal samples were collected from pigs between the ages of one week and two years old from 131 farms. RVAs were detected using ELISA and molecular methods followed by a sequence-based identification of G (VP7) and P (VP4) virus genotypes. RV antigen was found in 377 (41%) of pig faecal samples. The correlation between pig age and frequency of RV infections was shown. In the Polish pig population, 145 RVA strains representing 33 GP genotypes were identified. Subsequent molecular analysis revealed an age-dependent and regional diversity in distribution of genotypes and virus strains. Besides typical pig RVA strains, novel strains such as G5P [34], G9P[34], and human G1P[8] were identified in this animal host. Findings from this study showed a change over time in the genotype occurrence of circulating pig RVAs in Poland. The high genetic variability of RV strains and acquisition of new virus genotypes have led to the emergence of novel, genetically distinct RVAs. The changes in the genotype occurrence of RVA strains in pigs indicate the need for their continuous epidemiological surveillance.
Collapse
Affiliation(s)
- Iwona Kozyra
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Jerzy Kozyra
- Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation, ul. Czartoryskich 8, 24-100, Puławy, Poland
| | - Arkadiusz Dors
- Department of Swine Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland.
| |
Collapse
|
22
|
Liu G, Jiang Y, Opriessnig T, Gu K, Zhang H, Yang Z. Detection and differentiation of five diarrhea related pig viruses utilizing a multiplex PCR assay. J Virol Methods 2019; 263:32-37. [DOI: 10.1016/j.jviromet.2018.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/05/2018] [Accepted: 10/12/2018] [Indexed: 01/16/2023]
|
23
|
Kattoor JJ, Malik YS, Saurabh S, Sircar S, Vinodhkumar OR, Bora DP, Dhama K, Ghosh S, Banyai K, Touil N, Abdel-Moneim AS, Vlasova AN, Kobayashi N, Singh RK. First report and genetic characterization of porcine astroviruses of lineage 4 and 2 in diarrhoeic pigs in India. Transbound Emerg Dis 2018; 66:47-53. [PMID: 30379411 DOI: 10.1111/tbed.13058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022]
Abstract
Porcine astroviruses (PAstVs) have extended their distribution globally and have a high prevalence; however, their clinical significance is still under investigation. Thus far, information about their prevalence and diversity in the Indian pig population is unknown. This study is the first report on the prevalence and genetic characterization of PAstVs in diarrhoeic piglets in India. From January 2013 to December 2017, 757 samples were screened using an RT-PCR assay and PAstV infection was detected in 17.6% (133/757) pigs. Of the 133 positive samples, 79 (59.4%) were positive for PAstV alone, whereas 54 (40.6%) were found to be co-infected with porcine rotavirus A (PoRVA). Phylogenetic analysis of RdRp/capsid gene region revealed high genetic heterogeneity among PAstV sequences, with a predominance of PAstV lineage 4 and detection of lineage 2. The lineage 4 PAstVs exhibited 61.2%-94.5% sequence similarity at the nucleotide level to other reported sequences, whereas lineage 2 strain shared 66.0%-71.6% sequence identity with cognate sequences of the same lineage. This is the first report on PAstV and circulation of lineages 4 and 2 in India. Further, phylogenetic analysis indicates a multiphyletic origin of PAstV strains and suggests cross-border circulation of PAstVs with a similar genetic configuration in Asian countries.
Collapse
Affiliation(s)
- Jobin Jose Kattoor
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Sharad Saurabh
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.,Department of Molecular and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, Uttar Pradesh, India
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Obli Rajendran Vinodhkumar
- Division of Veterinary Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Durlav Prasad Bora
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Krisztian Banyai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nadia Touil
- Laboratoire de Biosécuritéet de Recherche, HôpitalMilitaired'Instruction Med V de Rabat, Rabat, Morocco
| | - Ahmed S Abdel-Moneim
- Microbiology Department, College of Medicine, Taif University, Taif, Saudi Arabia.,Virology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | | | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
24
|
Salamunova S, Jackova A, Mandelik R, Novotny J, Vlasakova M, Vilcek S. Molecular detection of enteric viruses and the genetic characterization of porcine astroviruses and sapoviruses in domestic pigs from Slovakian farms. BMC Vet Res 2018; 14:313. [PMID: 30340595 PMCID: PMC6194665 DOI: 10.1186/s12917-018-1640-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/02/2018] [Indexed: 11/11/2022] Open
Abstract
Background Surveillance and characterization of pig enteric viruses such as transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), rotavirus, astrovirus (PAstV), sapovirus (PSaV), kobuvirus and other agents is essential to evaluate the risks to animal health and determination of economic impacts on pig farming. This study reports the detection and genetic characterization of PAstV, PSaV in healthy and diarrheic domestic pigs and PEDV and TGEV in diarrheic pigs of different age groups. Results The presence of PAstV and PSaV was studied in 411 rectal swabs collected from healthy (n = 251) and diarrheic (n = 160) pigs of different age categories: suckling (n = 143), weaned (n = 147) and fattening (n = 121) animals on farms in Slovakia. The presence of TGEV and PEDV was investigated in the diarrheic pigs (n = 160). A high presence of PAstV infections was detected in both healthy (94.4%) and diarrheic (91.3%) pigs. PSaV was detected less often, but also equally in clinically healthy (8.4%) and diarrheic (10%) pigs. Neither TGEV nor PEDV was detected in any diarrheic sample. The phylogenetic analysis of a part of the RdRp region revealed the presence of all five lineages of PAstV in Slovakia (PAstV-1 – PAstV-5), with the most frequent lineages being PAstV-2 and PAstV-4. Analysis of partial capsid genome sequences of the PSaVs indicated that virus strains belonged to genogroup GIII. Most of the PSaV sequences from Slovakia clustered with sequences originating from neighbouring countries. Conclusions Due to no significant difference between healthy and diarrheic pigs testing of the presence of PAstV and PSaV provides no diagnostic value. Genetic diversity of PAstV was very high as all five lineages were identified in pig farms in Slovakia. PSaV strains were genetically related to the strains circulating in Central European region.
Collapse
Affiliation(s)
- Slavomira Salamunova
- University of Veterinary Medicine and Pharmacy, Komenskeho 73, 040 00, Kosice, Slovakia
| | - Anna Jackova
- University of Veterinary Medicine and Pharmacy, Komenskeho 73, 040 00, Kosice, Slovakia
| | - Rene Mandelik
- University of Veterinary Medicine and Pharmacy, Komenskeho 73, 040 00, Kosice, Slovakia
| | - Jaroslav Novotny
- University of Veterinary Medicine and Pharmacy, Komenskeho 73, 040 00, Kosice, Slovakia
| | - Michaela Vlasakova
- University of Veterinary Medicine and Pharmacy, Komenskeho 73, 040 00, Kosice, Slovakia
| | - Stefan Vilcek
- University of Veterinary Medicine and Pharmacy, Komenskeho 73, 040 00, Kosice, Slovakia.
| |
Collapse
|
25
|
Goecke NB, Hjulsager CK, Kongsted H, Boye M, Rasmussen S, Granberg F, Fischer TK, Midgley SE, Rasmussen LD, Angen Ø, Nielsen JP, Jorsal SE, Larsen LE. No evidence of enteric viral involvement in the new neonatal porcine diarrhoea syndrome in Danish pigs. BMC Vet Res 2017; 13:315. [PMID: 29115952 PMCID: PMC5678564 DOI: 10.1186/s12917-017-1239-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate whether the syndrome New Neonatal Porcine Diarrhoea Syndrome (NNPDS) is associated with a viral aetiology. Four well-managed herds experiencing neonatal diarrhoea and suspected to be affected by NNPDS were included in a case-control set up. A total of 989 piglets were clinically examined on a daily basis. Samples from diarrhoeic and non-diarrhoeic piglets at the age of three to seven days were selected for extensive virological examination using specific real time polymerase chain reactions (qPCRs) and general virus detection methods. RESULTS A total of 91.7% of the animals tested positive by reverse transcription qPCR (RT-qPCR) for porcine kobuvirus 1 (PKV-1) while 9% and 3% were found to be positive for rotavirus A and porcine teschovirus (PTV), respectively. The overall prevalence of porcine astrovirus (PAstV) was 75% with 69.8% of the PAstV positive pigs infected with PAstV type 3. No animals tested positive for rotavirus C, coronavirus (TGEV, PEDV and PRCV), sapovirus, enterovirus, parechovirus, saffoldvirus, cosavirus, klassevirus or porcine circovirus type 2 (PCV2). Microarray analyses performed on a total of 18 animals were all negative, as were eight animals examined by Transmission Electron Microscopy (TEM). Using Next Generation de novo sequencing (de novo NGS) on pools of samples from case animals within all herds, PKV-1 was detected in four herds and rotavirus A, rotavirus C and PTV were detected in one herd each. CONCLUSIONS Our detailed analyses of piglets from NNPDS-affected herds demonstrated that viruses did not pose a significant contribution to NNPDS. However, further investigations are needed to investigate if a systemic virus infection plays a role in the pathogenesis of NNPDS.
Collapse
Affiliation(s)
- N B Goecke
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, Lyngby, DK-2800, Denmark.
| | - C K Hjulsager
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, Lyngby, DK-2800, Denmark
| | - H Kongsted
- Pig Research Centre, Danish Agriculture and Food Council, Vinkelvej 13, DK-8620, Kjellerup, Denmark
| | - M Boye
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, Lyngby, DK-2800, Denmark.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 15, DK-1870, Frederiksberg, Denmark
| | - S Rasmussen
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, Lyngby, DK-2800, Denmark
| | - F Granberg
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - T K Fischer
- Statens Serum Institut (SSI), Artillerivej 5, Copenhagen S, DK-2300, Denmark
| | - S E Midgley
- Statens Serum Institut (SSI), Artillerivej 5, Copenhagen S, DK-2300, Denmark
| | - L D Rasmussen
- Statens Serum Institut (SSI), Artillerivej 5, Copenhagen S, DK-2300, Denmark.,National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, DK-4771, Denmark
| | - Ø Angen
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, Lyngby, DK-2800, Denmark.,Statens Serum Institut (SSI), Artillerivej 5, Copenhagen S, DK-2300, Denmark
| | - J P Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 15, DK-1870, Frederiksberg, Denmark
| | - S E Jorsal
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, Lyngby, DK-2800, Denmark
| | - L E Larsen
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, Lyngby, DK-2800, Denmark
| |
Collapse
|
26
|
Frequency of hepatitis E virus, rotavirus and porcine enteric calicivirus at various stages of pork carcass processing in two pork processing plants. Int J Food Microbiol 2017; 259:29-34. [DOI: 10.1016/j.ijfoodmicro.2017.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022]
|
27
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernandez Escamez PS, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Di Bartolo I, Johne R, Pavio N, Rutjes S, van der Poel W, Vasickova P, Hempen M, Messens W, Rizzi V, Latronico F, Girones R. Public health risks associated with hepatitis E virus (HEV) as a food-borne pathogen. EFSA J 2017; 15:e04886. [PMID: 32625551 PMCID: PMC7010180 DOI: 10.2903/j.efsa.2017.4886] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is an important infection in humans in EU/EEA countries, and over the last 10 years more than 21,000 acute clinical cases with 28 fatalities have been notified with an overall 10-fold increase in reported HEV cases; the majority (80%) of cases were reported from France, Germany and the UK. However, as infection in humans is not notifiable in all Member States, and surveillance differs between countries, the number of reported cases is not comparable and the true number of cases would probably be higher. Food-borne transmission of HEV appears to be a major route in Europe; pigs and wild boars are the main source of HEV. Outbreaks and sporadic cases have been identified in immune-competent persons as well as in recognised risk groups such as those with pre-existing liver damage, immunosuppressive illness or receiving immunosuppressive treatments. The opinion reviews current methods for the detection, identification, characterisation and tracing of HEV in food-producing animals and foods, reviews literature on HEV reservoirs and food-borne pathways, examines information on the epidemiology of HEV and its occurrence and persistence in foods, and investigates possible control measures along the food chain. Presently, the only efficient control option for HEV infection from consumption of meat, liver and products derived from animal reservoirs is sufficient heat treatment. The development of validated quantitative and qualitative detection methods, including infectivity assays and consensus molecular typing protocols, is required for the development of quantitative microbial risk assessments and efficient control measures. More research on the epidemiology and control of HEV in pig herds is required in order to minimise the proportion of pigs that remain viraemic or carry high levels of virus in intestinal contents at the time of slaughter. Consumption of raw pig, wild boar and deer meat products should be avoided.
Collapse
|
28
|
Salines M, Andraud M, Rose N. From the epidemiology of hepatitis E virus (HEV) within the swine reservoir to public health risk mitigation strategies: a comprehensive review. Vet Res 2017; 48:31. [PMID: 28545558 PMCID: PMC5445439 DOI: 10.1186/s13567-017-0436-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans, an emerging zoonosis mainly transmitted via food in developed countries and for which domestic pigs are recognised as the main reservoir. It therefore appears important to understand the features and drivers of HEV infection dynamics on pig farms in order to implement HEV surveillance programmes and to assess and manage public health risks. The authors have reviewed the international scientific literature on the epidemiological characteristics of HEV in swine populations. Although prevalence estimates differed greatly from one study to another, all consistently reported high variability between farms, suggesting the existence of multifactorial conditions related to infection and within-farm transmission of the virus. Longitudinal studies and experimental trials have provided estimates of epidemiological parameters governing the transmission process (e.g. age at infection, transmission parameters, shedding period duration or lag time before the onset of an immune response). Farming practices, passive immunity and co-infection with immunosuppressive agents were identified as the main factors influencing HEV infection dynamics, but further investigations are needed to clarify the different HEV infection patterns observed in pig herds as well as HEV transmission between farms. Relevant surveillance programmes and control measures from farm to fork also have to be fostered to reduce the prevalence of contaminated pork products entering the food chain.
Collapse
Affiliation(s)
- Morgane Salines
- ANSES-Ploufragan-Plouzané Laboratory, BP 53, 22440, Ploufragan, France. .,Université Bretagne Loire, Rennes, France.
| | - Mathieu Andraud
- ANSES-Ploufragan-Plouzané Laboratory, BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Nicolas Rose
- ANSES-Ploufragan-Plouzané Laboratory, BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| |
Collapse
|
29
|
Phylogenetic analysis of Hepatitis E virus strains isolated from slaughter-age pigs in Colombia. INFECTION GENETICS AND EVOLUTION 2017; 49:138-145. [DOI: 10.1016/j.meegid.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/06/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022]
|
30
|
Intharasongkroh D, Sa-Nguanmoo P, Tuanthap S, Thongmee T, Duang-In A, Klinfueng S, Chansaenroj J, Vongpunsawad S, Theamboonlers A, Payungporn S, Chirathaworn C, Poovorawan Y. Hepatitis E Virus in Pork and Variety Meats Sold in Fresh Markets. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:45-53. [PMID: 27580911 DOI: 10.1007/s12560-016-9258-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/25/2016] [Indexed: 05/25/2023]
Abstract
Swine is an economically important livestock, yet pork consumption and close contact with pigs are associated with the risk of hepatitis E virus (HEV) infection. Limited data on the prevalence of HEV in Southeast Asia have mainly examined farm animals. To investigate the potential zoonotic transmission of HEV from dietary consumption of pork and variety meats (i.e., offal or organ meats), we obtained 1090 liver, 559 pork meat, and 556 intestine samples from fresh markets in the Bangkok metropolitan area between November 2014 and February 2015. The presence of HEV was assessed using reverse-transcription polymerase chain reaction. Concurrently, 720 bile and 553 fecal samples from a slaughterhouse were also examined. Overall, HEV RNA was found in 0.23 % of the market samples and 3.93 % of the slaughterhouse samples. Fecal and bile samples were more likely to test positive compared to liver, pork, and intestine samples (p < 0.001). Phylogenetic analysis showed that all HEV sequences obtained in this study formed a cluster closely related to genotype 3f. Pork and variety meats derived from pigs are commonly sold in fresh markets throughout Southeast Asia. Here, a relatively low HEV prevalence from pork and variety meats sold in Bangkok was found. Additional studies will be required to further assess potential dietary transmission of HEV elsewhere in the region.
Collapse
Affiliation(s)
- Duangnapa Intharasongkroh
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattaratida Sa-Nguanmoo
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Tuanthap
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ausanee Duang-In
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiradee Theamboonlers
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
31
|
Bat Astroviruses: Towards Understanding the Transmission Dynamics of a Neglected Virus Family. Viruses 2017; 9:v9020034. [PMID: 28230787 PMCID: PMC5332953 DOI: 10.3390/v9020034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/11/2023] Open
Abstract
Bats belong to the order Chiroptera that represents the second largest order of mammals with more than 1200 species and an almost global distribution. Environmental changes and deforestation have severely influenced many ecosystems, intensifying the contact between wildlife and humans. In recent years, bats have been found to harbor a number of different viruses with zoonotic potential, as well as a great diversity of astroviruses, for which the question of zoonotic potential remains unanswered to date. Human astroviruses have been identified as the causative agent for diarrhea in children and immunocompromised patients. For a long time, astroviruses have been considered to be strictly species-specific. However, a great genetic diversity has recently been discovered among animal and human astroviruses that might indicate the potential of these viruses to cross species barriers. Furthermore, our knowledge about the tissue tropism of astroviruses has been expanded to some neurotropic strains that have recently been shown to be responsible for encephalitis in humans and livestock. This review gives an overview on what is known about astroviruses in bats, humans and livestock, especially bovines and pigs. Future research activities are suggested to unravel astrovirus infection dynamics in bat populations to further assess the zoonotic potential of these viruses.
Collapse
|
32
|
Ito M, Kuroda M, Masuda T, Akagami M, Haga K, Tsuchiaka S, Kishimoto M, Naoi Y, Sano K, Omatsu T, Katayama Y, Oba M, Aoki H, Ichimaru T, Mukono I, Ouchi Y, Yamasato H, Shirai J, Katayama K, Mizutani T, Nagai M. Whole genome analysis of porcine astroviruses detected in Japanese pigs reveals genetic diversity and possible intra-genotypic recombination. INFECTION GENETICS AND EVOLUTION 2017; 50:38-48. [PMID: 28189887 DOI: 10.1016/j.meegid.2017.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/30/2022]
Abstract
Porcine astroviruses (PoAstVs) are ubiquitous enteric virus of pigs that are distributed in several countries throughout the world. Since PoAstVs are detected in apparent healthy pigs, the clinical significance of infection is unknown. However, AstVs have recently been associated with a severe neurological disorder in animals, including humans, and zoonotic potential has been suggested. To date, little is known about the epidemiology of PoAstVs among the pig population in Japan. In this report, we present an analysis of nearly complete genomes of 36 PoAstVs detected by a metagenomics approach in the feces of Japanese pigs. Based on a phylogenetic analysis and pairwise sequence comparison, 10, 5, 15, and 6 sequences were classified as PoAstV2, PoAstV3, PoAstV4, and PoAstV5, respectively. Co-infection with two or three strains was found in individual fecal samples from eight pigs. The phylogenetic trees of ORF1a, ORF1b, and ORF2 of PoAstV2 and PoAstV4 showed differences in their topologies. The PoAstV3 and PoAstV5 strains shared high sequence identities within each genotype in all ORFs; however, one PoAstV3 strain and one PoAstV5 strain showed considerable sequence divergence from the other PoAstV3 and PoAstV5 strains, respectively, in ORF2. Recombination analysis using whole genomes revealed evidence of multiple possible intra-genotype recombination events in PoAstV2 and PoAstV4, suggesting that recombination might have contributed to the genetic diversity and played an important role in the evolution of Japanese PoAstVs.
Collapse
Affiliation(s)
- Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Moegi Kuroda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 683-0017, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 683-0017, Japan
| | - Masataka Akagami
- Kenhoku Livestock Hygiene Service Center, Mito, Ibaraki 310-0002, Japan
| | - Kei Haga
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Minato, Tokyo 108-8641, Japan
| | - Shinobu Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mai Kishimoto
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Toru Ichimaru
- Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Kahoku, Ishikawa, 929-1210, Japan
| | - Itsuro Mukono
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Yoshinao Ouchi
- Kenhoku Livestock Hygiene Service Center, Mito, Ibaraki 310-0002, Japan
| | - Hiroshi Yamasato
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 683-0017, Japan
| | - Junsuke Shirai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Minato, Tokyo 108-8641, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Bioproduction Science, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan.
| |
Collapse
|
33
|
Dynamics of Virus Distribution in a Defined Swine Production Network Using Enteric Viruses as Molecular Markers. Appl Environ Microbiol 2017; 83:AEM.03187-16. [PMID: 27940545 DOI: 10.1128/aem.03187-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
Modern swine production systems represent complex and dynamic networks involving numerous stakeholders. For instance, livestock transporters carry live animals between fattening sites, abattoirs, and other premises on a daily basis. This interconnected system may increase the risk of microbial spread within and between networks, although little information is available in that regard. In the present study, a swine network composed of 10 finishing farms, one abattoir, and three types of stakeholders (veterinarians, livestock transporters, and nutritional technicians) in Quebec, Canada, was selected to investigate specific vectors and reservoirs of enteric viruses. Environmental samples were collected from the premises over a 12-month period. Samples were screened using targeted reverse transcription-PCR and sequencing of two selected viral markers, group A rotaviruses (RVA) and porcine astroviruses (PoAstV), both prevalent and genetically heterogeneous swine enteric viruses. The results revealed frequent contamination of farm sites (21.4 to 100%), livestock transporter vehicles (30.6 to 68.8%) and, most importantly, the abattoir yard (46.7 to 94.1%), depending on the sample types. Although high levels of strain diversity for both viruses were found, identical PoAstV and RVA strains were detected in specific samples from farms, the abattoir yard, and the livestock transporter vehicle, suggesting interconnections between these premises and transporters. Overall, the results from this study underscore the potential role of abattoirs and livestock transport as a reservoir and transmission route for enteric viruses within and between animal production networks, respectively. IMPORTANCE Using rotaviruses and astroviruses as markers of enteric contamination in a swine network has revealed the potential role of abattoirs and livestock transporters as a reservoir and vectors of enteric pathogens. The results from this study highlight the importance of tightening biosecurity measures. For instance, implementing sanitary vacancy between animal batches and emphasizing washing, disinfection, and drying procedures on farms and for transportation vehicles, as well as giving limited access and circulation of vehicles throughout the production premises, are some examples of measures that should be applied properly. The results also emphasize the need to closely monitor the dynamics of enteric contamination in the swine industry in order to better understand and potentially prevent the spread of infectious diseases. This is especially relevant when a virulent and economically damaging agent is involved, as seen with the recent introduction of the porcine epidemic diarrhea virus in the country.
Collapse
|
34
|
Norovirus Infection. EMERGING AND RE-EMERGING INFECTIOUS DISEASES OF LIVESTOCK 2017. [PMCID: PMC7122952 DOI: 10.1007/978-3-319-47426-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Identification and characterization of multiple porcine astrovirus genotypes in Hunan province, China. Arch Virol 2016; 162:943-952. [PMID: 27990567 DOI: 10.1007/s00705-016-3185-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
Abstract
Astroviruses (AstVs) can infect a variety of hosts, including mammalian and avian species, and are commonly associated with enteric infections. Recently, mammalian AstVs have been linked to extra-intestinal manifestations, including neurologic disorders in humans, cattle and minks, demonstrating zoonotic potential. So far, five porcine AstV (PAstV) genotypes have been identified, with PAstV1, PAstV2, PAstV3 and PAstV5 implicated in cross-species transmission. Our knowledge about PAstV epidemiology in China is still limited. In this study, two duplex differential RT-PCR assays were developed to investigate the distribution and prevalence of PAstV1, PAstV2, PAstV4 and PAstV5. Two hundred eighteen samples were collected from 33 farms and pigs with known diarrhea status in nine regions of Hunan province in China. Specifically, 126 small intestines, 51 fecal swabs, 20 lungs, 19 spleens and two kidneys were obtained. PAstVs were detected in all nine regions and in 81.8% (27/33) of the pig farms investigated. The overall prevalence of PAstV was 46.3% (101/218), with PAstV5 as the predominant type, with a positive rate of 24.8% (54/218). The prevalence of PAstV4, PAstV1 and PAstV2 was 16.1% (35/218), 14.7% (32/218) and 10.1% (22/218), respectively. Besides being present in intestines and fecal swabs, PAstV RNA was also detected in lungs, spleens and kidneys. Sequencing revealed a high level of genetic divergence within each genotype, and a higher positive rate of PAstV5 was associated with pigs with diarrhea compared to pigs without diarrhea. This study revealed for the first time that PAstV4 is circulating in China, and that PAstV5 is the dominant genotype in pig herds in Hunan province in China.
Collapse
|
36
|
Lelli D, Beato MS, Cavicchio L, Lavazza A, Chiapponi C, Leopardi S, Baioni L, De Benedictis P, Moreno A. First identification of mammalian orthoreovirus type 3 in diarrheic pigs in Europe. Virol J 2016; 13:139. [PMID: 27519739 PMCID: PMC4983005 DOI: 10.1186/s12985-016-0593-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022] Open
Abstract
Mammalian Orthoreoviruses 3 (MRV3) have been described in diarrheic pigs from USA and Asia. We firstly detected MRV3 in Europe (Italy) in piglets showing severe diarrhea associated with Porcine Epidemic Diarrhea. The virus was phylogenetically related to European reoviruses of human and bat origin and to US and Chinese pig MRV3.
Collapse
Affiliation(s)
- Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi 9, 25124 Brescia, Italy
| | - Maria Serena Beato
- Istituto Zooprofilattico Sperimentale delle Venezie, IZSVE, Viale dell’Università 10, Legnaro Padova, 35020 Italy
| | - Lara Cavicchio
- Istituto Zooprofilattico Sperimentale delle Venezie, IZSVE, Viale dell’Università 10, Legnaro Padova, 35020 Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi 9, 25124 Brescia, Italy
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi 9, 25124 Brescia, Italy
| | - Stefania Leopardi
- Istituto Zooprofilattico Sperimentale delle Venezie, IZSVE, Viale dell’Università 10, Legnaro Padova, 35020 Italy
| | - Laura Baioni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi 9, 25124 Brescia, Italy
| | - Paola De Benedictis
- Istituto Zooprofilattico Sperimentale delle Venezie, IZSVE, Viale dell’Università 10, Legnaro Padova, 35020 Italy
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, IZSLER, Via Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
37
|
Jamnikar-Ciglenecki U, Kuhar U, Sturm S, Kirbis A, Racki N, Steyer A. The first detection and whole genome characterization of the G6P[15] group A rotavirus strain from roe deer. Vet Microbiol 2016; 191:52-9. [PMID: 27374907 DOI: 10.1016/j.vetmic.2016.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/23/2023]
Abstract
Although rotaviruses have been detected in a variety of host species, there are only limited records of their occurrence in deer, where their role is unknown. In this study, group A rotavirus was identified in roe deer during a study of enteric viruses in game animals. 102 samples of intestinal content were collected from roe deer (56), wild boars (29), chamois (10), red deer (6) and mouflon (1), but only one sample from roe deer was positive. Following whole genome sequence analysis, the rotavirus strain D38/14 was characterized by next generation sequencing. The genotype constellation, comprising 11 genome segments, was G6-P[15]-I2-R2-C2-M2-A3-N2-T6-E2-H3. Phylogenetic analysis of the VP7 genome segment showed that the D38/14 rotavirus strain is closely related to the various G6 zoonotic rotavirus strains of bovine-like origin frequently detected in humans. In the VP4 segment, this strain showed high variation compared to that in the P[15] strain found in sheep and in a goat. This finding suggests that rotaviruses from deer are similar to those in other DS-1 rotavirus groups and could constitute a source of zoonotically transmitted rotaviruses. The epidemiological status of group A rotaviruses in deer should be further investigated.
Collapse
Affiliation(s)
- Urska Jamnikar-Ciglenecki
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia.
| | - Urska Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Sabina Sturm
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Andrej Kirbis
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Nejc Racki
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Andrej Steyer
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4,1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Cai Y, Yin W, Zhou Y, Li B, Ai L, Pan M, Guo W. Molecular detection of Porcine astrovirus in Sichuan Province, China. Virol J 2016; 13:6. [PMID: 26739067 PMCID: PMC4704384 DOI: 10.1186/s12985-015-0462-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/30/2015] [Indexed: 11/10/2022] Open
Abstract
Background Porcine astrovirus (PoAstV) is widely distributed worldwide, and is highly prevalent among piglets with or without diarrhea, existing as at least five distinct lineages (PoAstV1–PoAstV5) within the genus Mamastrovirus. However, our knowledge of the diversity and epidemiology of PoAstV in China is limited. Results In this study, fecal samples from 21/120 (17.5 %) domestic pigs, including 18/100 (18 %) diarrheic and 3/20 (15 %) healthy pigs, and from 1/9 (11.1 %) healthy wild boars tested in Sichuan Province were positive for PoAstV on reverse transcription–PCR. Of the 22 positive samples, 13.6 % were positive for PoAstV only, whereas 40.9 % also contained Porcine epidemic diarrhea virus (PEDV), 22.7 % also contained porcine group A rotavirus (PRoVA), and 22.7 % also contained PEDV and PRoVA. A phylogenetic analysis of the RdRp gene revealed genetic heterogeneity among the PoAstV sequences and two lineages were detected in this study, with PoAstV-2 predominant. PoAstV-5 was detected in wild boars for the first time. Conclusions PoAstV infections exist in Sichuan Province regardless of the disease status in the pig population, either alone or in combination with other enteric viruses, and may be associated with diarrhea. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0462-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuhan Cai
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Veterinary Biologicals engineering and technology Research Center of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Institute of Animal Nutrition, Sichuan Academy of Animal Science, Chengdu, 610299, China
| | - Wenqi Yin
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Veterinary Biologicals engineering and technology Research Center of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Institute of Animal Nutrition, Sichuan Academy of Animal Science, Chengdu, 610299, China
| | - Yuanchen Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China. .,Veterinary Biologicals engineering and technology Research Center of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China. .,Institute of Animal Nutrition, Sichuan Academy of Animal Science, Chengdu, 610299, China.
| | - Bi Li
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Veterinary Biologicals engineering and technology Research Center of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Institute of Animal Nutrition, Sichuan Academy of Animal Science, Chengdu, 610299, China
| | - Lun Ai
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China.,Veterinary Biologicals engineering and technology Research Center of Sichuan Province, Huashen Veterinary Biological Products Co., LTD, Chengdu, 610299, China
| | - Meng Pan
- Institute of Animal Nutrition, Sichuan Academy of Animal Science, Chengdu, 610299, China
| | - Wanzhu Guo
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611134, China
| |
Collapse
|
39
|
Zhou W, Ullman K, Chowdry V, Reining M, Benyeda Z, Baule C, Juremalm M, Wallgren P, Schwarz L, Zhou E, Pedrero SP, Hennig-Pauka I, Segales J, Liu L. Molecular investigations on the prevalence and viral load of enteric viruses in pigs from five European countries. Vet Microbiol 2015; 182:75-81. [PMID: 26711031 PMCID: PMC7125590 DOI: 10.1016/j.vetmic.2015.10.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/25/2022]
Abstract
Porcine astrovirus type 4 was prevalent in the 49 European farms with a high viral load. Rotaviruses were mainly found in diarrheic pigs. Kobuvirus and porcine circovirus 2 were ubiquitous.
Enteric viral infections in pigs may cause diarrhea resulting in ill-thrift and substantial economic losses. This study reports the enteric infections with porcine astrovirus type 4 (PAstV4), porcine group A rotavirus (GARV), porcine group C rotavirus (GCRV), porcine circovirus type 2 (PCV2) and porcine kobuvirus (PKoV) in 419 pigs, comprising both healthy and diarrheic animals, from 49 farms in five European countries (Austria, Germany, Hungary, Spain and Sweden). Real-time RT-PCR assays were developed to test fecal samples and to compare the prevalence and viral load in relation to health status, farms of origin and age groups. The results showed that PAstV4 (70.4%) was the dominant virus species, followed by PKoV (56.7%), PCV2 (42.2%), GCRV (3%) and GARV (0.9%). Diarrheic pigs had a higher viral load of PAstV4 in the nursery and growing-finishing groups. Rotaviruses were mainly detected in diarrheic pigs, whereas PCV2 was more often detected in clinically healthy than in diarrheic pigs, suggesting that most PCV2 infections were subclinical. PAstV4, PCV2 and PKoV were considered ubiquitous in the European pig livestock and co-infections among them were frequent, independently of the disease status, in contrast to a low prevalence of classical rotavirus infections.
Collapse
Affiliation(s)
- Weiguang Zhou
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, China; National Veterinary Institute (SVA), Uppsala, Sweden
| | - Karin Ullman
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Vinay Chowdry
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | | | - Claudia Baule
- National Veterinary Institute (SVA), Uppsala, Sweden
| | | | - Per Wallgren
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Lukas Schwarz
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Enmin Zhou
- College of Veterinary Medicine Northwest A&F University, Shaanxi, China
| | - Sonia Pina Pedrero
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Isabel Hennig-Pauka
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Joaquim Segales
- Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Lihong Liu
- National Veterinary Institute (SVA), Uppsala, Sweden.
| |
Collapse
|
40
|
Otto PH, Rosenhain S, Elschner MC, Hotzel H, Machnowska P, Trojnar E, Hoffmann K, Johne R. Detection of rotavirus species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A rotavirus strains. Vet Microbiol 2015. [DOI: 10.1016/j.vetmic.2015.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Detection and molecular characterization of zoonotic viruses in swine fecal samples in Italian pig herds. Arch Virol 2015. [PMID: 26215443 DOI: 10.1007/s00705-015-2538-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Gastrointestinal disease is frequent in pigs, and among the different etiological agents involved, viruses are considered the leading cause of infection in this animal species. Furthermore, about half of the newly identified swine pathogens are viruses, many of which may be transmitted to humans by direct contact or by indirect transmission pathways. In this study, the prevalence of astrovirus (AstV), group A rotavirus (RVA), norovirus (NoV) and hepatitis E virus (HEV) infections in pigs was investigated. During 2012-2014, 242 fecal samples were collected from pigs at different production stages (5 to 220 days old) on eight swine farms located in northern, central and southern Italy. Seven out of eight farms analyzed were positive for AstV, which was detected in 163 out of 242 (67.4%) samples and was the most prevalent virus; 61 of the 163 AstV-positive animals (37.4%) had diarrhea. HEV was detected on six farms and in 45 (18.6%) of the 242 samples analyzed. Twenty-three HEV-infected pigs had diarrhea (51.1%). A lower prevalence was observed for RVA, which was found in 10 of the 242 samples (4.1%) from three positive farms, and diarrhea was present only in six infected pigs (60.0%). No swine samples were found to be positive for NoV. Genetic diversity and phylogenetic relationships of some strains representative of the different viruses detected were investigated, confirming a wide heterogeneity of viral strains circulating among pigs.
Collapse
|
42
|
Brnić D, Jemeršić L, Keros T, Prpić J. High prevalence and genetic heterogeneity of porcine astroviruses in domestic pigs. Vet J 2014; 202:390-2. [DOI: 10.1016/j.tvjl.2014.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
43
|
Abstract
Human astroviruses (HAtVs) are positive-sense single-stranded RNA viruses that were discovered in 1975. Astroviruses infecting other species, particularly mammalian and avian, were identified and classified into the genera Mamastrovirus and Avastrovirus. Through next-generation sequencing, many new astroviruses infecting different species, including humans, have been described, and the Astroviridae family shows a high diversity and zoonotic potential. Three divergent groups of HAstVs are recognized: the classic (MAstV 1), HAstV-MLB (MAstV 6), and HAstV-VA/HMO (MAstV 8 and MAstV 9) groups. Classic HAstVs contain 8 serotypes and account for 2 to 9% of all acute nonbacterial gastroenteritis in children worldwide. Infections are usually self-limiting but can also spread systemically and cause severe infections in immunocompromised patients. The other groups have also been identified in children with gastroenteritis, but extraintestinal pathologies have been suggested for them as well. Classic HAstVs may be grown in cells, allowing the study of their cell cycle, which is similar to that of caliciviruses. The continuous emergence of new astroviruses with a potential zoonotic transmission highlights the need to gain insights on their biology in order to prevent future health threats. This review focuses on the basic virology, pathogenesis, host response, epidemiology, diagnostic assays, and prevention strategies for HAstVs.
Collapse
Affiliation(s)
- Albert Bosch
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Zhang W, Li L, Deng X, Kapusinszky B, Delwart E. What is for dinner? Viral metagenomics of US store bought beef, pork, and chicken. Virology 2014; 468-470:303-310. [PMID: 25217712 PMCID: PMC4252299 DOI: 10.1016/j.virol.2014.08.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 12/16/2022]
Abstract
We describe here the metagenomics-derived viral sequences detected in beef, pork, and chicken purchased from stores in San Francisco. In beef we detected four previously reported viruses (two parvoviruses belonging to different genera, an anellovirus, and one circovirus-like virus) and one novel bovine polyomavirus species (BPyV2-SF) whose closest relatives infect primates. Detection of porcine hokovirus in beef indicated that this parvovirus can infect both ungulate species. In pork we detected four known parvoviruses from three genera, an anellovirus, and pig circovirus 2. Chicken meat contained numerous gyrovirus sequences including those of chicken anemia virus and of a novel gyrovirus species (GyV7-SF). Our results provide an initial characterization of some of the viruses commonly found in US store-bought meats which included a diverse group of parvoviruses and viral families with small circular DNA genomes. Whether any of these viruses can infect humans will require testing human sera for specific antibodies. Eukaryotic viral genomes in store-bought beef, pork, and chicken are identified. A novel bovine polyomavirus genome, closest to a group of viruses from primates, is sequenced. Porcine hokovirus is detected in beef samples. A small circovirus-like circular DNA genome in beef is genetically characterized. Several species of gyrovirus including a novel species are detected in chicken meat.
Collapse
Affiliation(s)
- Wen Zhang
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Microbiology, School of Medicine, Jiangsu University, Jiangsu, Zhenjiang 212013, China; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.
| |
Collapse
|
45
|
Sachsenröder J, Braun A, Machnowska P, Ng TFF, Deng X, Guenther S, Bernstein S, Ulrich RG, Delwart E, Johne R. Metagenomic identification of novel enteric viruses in urban wild rats and genome characterization of a group A rotavirus. J Gen Virol 2014; 95:2734-2747. [PMID: 25121550 DOI: 10.1099/vir.0.070029-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rats are known as reservoirs and vectors for several zoonotic pathogens. However, information on the viruses shed by urban wild rats that could pose a zoonotic risk to human health is scare. Here, intestinal contents from 20 wild Norway rats (Rattus norvegicus) collected in the city of Berlin, Germany, were subjected to metagenomic analysis of viral nucleic acids. The determined faecal viromes of rats consisted of a variety of known and unknown viruses, and were highly variable among the individuals. Members of the families Parvoviridae and Picobirnaviridae represented the most abundant species. Novel picornaviruses, bocaviruses, sapoviruses and stool-associated circular ssDNA viruses were identified, which showed only low sequence identity to known representatives of the corresponding taxa. In addition, noroviruses and rotaviruses were detected as potential zoonotic gastroenteritis viruses. However, partial-genome sequence analyses indicated that the norovirus was closely related to the recently identified rat norovirus and the rotavirus B was closely related to the rat rotavirus strain IDIR; both viruses clustered separately from respective human virus strains in phylogenetic trees. In contrast, the rotavirus A sequences showed high identity to human and animal strains. Analysis of the nearly complete genome of this virus revealed the known genotypes G3, P[3] and N2 for three of the genome segments, whereas the remaining eight genome segments represented the novel genotypes I20-R11-C11-M10-A22-T14-E18-H13. Our results indicated a high heterogeneity of enteric viruses present in urban wild rats; their ability to be transmitted to humans remains to be assessed in the future.
Collapse
Affiliation(s)
- Jana Sachsenröder
- Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Anne Braun
- Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Patrycja Machnowska
- Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Terry Fei Fan Ng
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA
| | - Xutao Deng
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA
| | - Sebastian Guenther
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Strasse 7-13, 14163 Berlin, Germany
| | - Samuel Bernstein
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Eric Delwart
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA
| | - Reimar Johne
- Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|