1
|
Berreiros-Hortala H, Vilchez-Pinto G, Diaz-Perales A, Garrido-Arandia M, Tome-Amat J. Virus-like Particles as Vaccines for Allergen-Specific Therapy: An Overview of Current Developments. Int J Mol Sci 2024; 25:7429. [PMID: 39000536 PMCID: PMC11242184 DOI: 10.3390/ijms25137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.
Collapse
Affiliation(s)
- Helena Berreiros-Hortala
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Gonzalo Vilchez-Pinto
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
2
|
Pseudotyped Viruses for Marburgvirus and Ebolavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:105-132. [PMID: 36920694 DOI: 10.1007/978-981-99-0113-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) of the Filoviridae family are the most lethal viruses in terms of mortality rate. However, the development of antiviral treatment is hampered by the requirement for biosafety level-4 (BSL-4) containment. The establishment of BSL-2 pseudotyped viruses can provide important tools for the study of filoviruses. This chapter summarizes general information on the filoviruses and then focuses on the construction of replication-deficient pseudotyped MARV and EBOV (e.g., lentivirus system and vesicular stomatitis virus system). It also details the potential applications of the pseudotyped viruses, including neutralization antibody detection, the study of infection mechanisms, the evaluation of antibody-dependent enhancement, virus entry inhibitor screening, and glycoprotein mutation analysis.
Collapse
|
3
|
Fernandes B, Correia R, Alves PM, Roldão A. Intensifying Continuous Production of Gag-HA VLPs at High Cell Density Using Stable Insect Cells Adapted to Low Culture Temperature. Front Bioeng Biotechnol 2022; 10:917746. [PMID: 35845394 PMCID: PMC9277389 DOI: 10.3389/fbioe.2022.917746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Protein production processes based on stable insect cell lines require intensification to be competitive with the insect cell-baculovirus expression vector system (IC-BEVS). High cell density (HCD) cultures operate continuously, capable of maintaining specific production rates for extended periods of time which may lead to significant improvements in production yields. However, setting up such processes is challenging (e.g., selection of cell retention device and optimization of dilution rate), often demanding the manipulation of large volumes of culture medium with associated high cost. In this study, we developed a process for continuous production of Gag virus–like particles (VLP) pseudotyped with a model membrane protein (influenza hemagglutinin, HA) at HCD using stable insect cells adapted to low culture temperature. The impact of the cell retention device (ATF vs. TFF) and cell-specific perfusion rate (CSPR) on cell growth and protein expression kinetics was evaluated. Continuous production of Gag-HA VLPs was possible using both retention devices and CSPR of 0.04 nL/cell.d; TFF induces higher cell lysis when compared to ATF at later stages of the process (kD = 0.009 vs. 0.005 h−1, for TFF and ATF, respectively). Reducing CSPR to 0.01–0.02 nL/cell.d using ATF had a negligible impact on specific production rates (rHA = 72–68 titer/109 cell.h and rp24 = 12–11 pg/106 cell.h in all CSPR) and on particle morphology (round-shaped structures displaying HA spikes on their surface) and size distribution profile (peaks at approximately 100 nm). Notably, at these CSPRs, the amount of p24 or HA formed per volume of culture medium consumed per unit of process time increases by up to 3-fold when compared to batch and perfusion operation modes. Overall, this work demonstrates the potential of manipulating CSPRs to intensify the continuous production of Gag-HA VLPs at HCD using stable insect cells to make them an attractive alternative platform to IC-BEVS.
Collapse
Affiliation(s)
- Bárbara Fernandes
- IBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Correia
- IBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- IBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- IBET-Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: António Roldão,
| |
Collapse
|
4
|
Bjornson-Hooper ZB, Fragiadakis GK, Spitzer MH, Chen H, Madhireddy D, Hu K, Lundsten K, McIlwain DR, Nolan GP. A Comprehensive Atlas of Immunological Differences Between Humans, Mice, and Non-Human Primates. Front Immunol 2022; 13:867015. [PMID: 35359965 PMCID: PMC8962947 DOI: 10.3389/fimmu.2022.867015] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Animal models are an integral part of the drug development and evaluation process. However, they are unsurprisingly imperfect reflections of humans, and the extent and nature of many immunological differences are unknown. With the rise of targeted and biological therapeutics, it is increasingly important that we understand the molecular differences in the immunological behavior of humans and model organisms. However, very few antibodies are raised against non-human primate antigens, and databases of cross-reactivity between species are incomplete. Thus, we screened 332 antibodies in five immune cell populations in blood from humans and four non-human primate species generating a comprehensive cross-reactivity catalog that includes cell type-specificity. We used this catalog to create large mass cytometry universal cross-species phenotyping and signaling panels for humans, along with three of the model organisms most similar to humans: rhesus and cynomolgus macaques and African green monkeys; and one of the mammalian models most widely used in drug development: C57BL/6 mice. As a proof-of-principle, we measured immune cell signaling responses across all five species to an array of 15 stimuli using mass cytometry. We found numerous instances of different cellular phenotypes and immune signaling events occurring within and between species, and detailed three examples (double-positive T cell frequency and signaling; granulocyte response to Bacillus anthracis antigen; and B cell subsets). We also explore the correlation of herpes simian B virus serostatus on the immune profile. Antibody panels and the full dataset generated are available online as a resource to enable future studies comparing immune responses across species during the evaluation of therapeutics.
Collapse
Affiliation(s)
| | - Gabriela K. Fragiadakis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
- Department of Medicine, Division of Rheumatology, University of California San Francisco, San Francisco, CA, United States
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, United States
- University of California, San Francisco (UCSF) Data Science CoLab and University of California, San Francisco (UCSF) Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Matthew H. Spitzer
- Immunology Program, Stanford University, Stanford, CA, United States
- Departments of Otolaryngology – Head and Neck Surgery and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Deepthi Madhireddy
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Kevin Hu
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Kelly Lundsten
- BioLegend Inc, Advanced Cytometry, San Diego, CA, United States
| | - David R. McIlwain
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Garry P. Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| |
Collapse
|
5
|
Hepatitis B core-based virus-like particles: A platform for vaccine development in plants. ACTA ACUST UNITED AC 2021; 29:e00605. [PMID: 33732633 PMCID: PMC7937989 DOI: 10.1016/j.btre.2021.e00605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Virus-like particles (VLPs) are a class of structures formed by the self-assembly of viral capsid protein subunits and contain no infective viral genetic material. The Hepatitis B core (HBc) antigen is capable of assembling into VLPs that can elicit strong immune responses and has been licensed as a commercial vaccine against Hepatitis B. The HBc VLPs have also been employed as a platform for the presentation of foreign epitopes to the immune system and have been used to develop vaccines against, for example, influenza A and Foot-and-mouth disease. Plant expression systems are rapid, scalable and safe, and are capable of providing correct post-translational modifications and reducing upstream production costs. The production of HBc-based virus-like particles in plants would thus greatly increase the efficiency of vaccine production. This review investigates the application of plant-based HBc VLP as a platform for vaccine production.
Collapse
|
6
|
Development of a Well-Characterized Rhesus Macaque Model of Ebola Virus Disease for Support of Product Development. Microorganisms 2021; 9:microorganisms9030489. [PMID: 33652589 PMCID: PMC7996724 DOI: 10.3390/microorganisms9030489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022] Open
Abstract
Ebola virus (EBOV) is a negative-sense RNA virus that can infect humans and nonhuman primates with severe health consequences. Development of countermeasures requires a thorough understanding of the interaction between host and pathogen, and the course of disease. The goal of this study was to further characterize EBOV disease in a uniformly lethal rhesus macaque model, in order to support development of a well-characterized model following rigorous quality standards. Rhesus macaques were intramuscularly exposed to EBOV and one group was euthanized at predetermined time points to characterize progression of disease. A second group was not scheduled for euthanasia in order to analyze survival, changes in physiology, clinical pathology, terminal pathology, and telemetry kinetics. On day 3, sporadic viremia was observed and pathological evidence was noted in lymph nodes. By day 5, viremia was detected in all EBOV exposed animals and pathological evidence was noted in the liver, spleen, and gastrointestinal tissues. These data support the notion that EBOV infection in rhesus macaques is a rapid systemic disease similar to infection in humans, under a compressed time scale. Biomarkers that correlated with disease progression at the earliest stages of infection were observed thereby identifying potential "trigger-to-treat" for use in therapeutic studies.
Collapse
|
7
|
Müller H, Fehling SK, Dorna J, Urbanowicz RA, Oestereich L, Krebs Y, Kolesnikova L, Schauflinger M, Krähling V, Magassouba N, Fichet-Calvet E, Ball JK, Kaufmann A, Bauer S, Becker S, von Messling V, Strecker T. Adjuvant formulated virus-like particles expressing native-like forms of the Lassa virus envelope surface glycoprotein are immunogenic and induce antibodies with broadly neutralizing activity. NPJ Vaccines 2020; 5:71. [PMID: 32802410 PMCID: PMC7403343 DOI: 10.1038/s41541-020-00219-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/10/2020] [Indexed: 01/11/2023] Open
Abstract
Lassa mammarenavirus (LASV) is a rodent-borne arenavirus endemic to several West African countries. It is the causative agent of human Lassa fever, an acute viral hemorrhagic fever disease. To date, no therapeutics or vaccines against LASV have obtained regulatory approval. Polyclonal neutralizing antibodies derived from hyperimmunized animals may offer a useful strategy for prophylactic and therapeutic intervention to combat human LASV infections. The LASV envelope surface glycoprotein complex (GP) is the major target for neutralizing antibodies, and it is the main viral antigen used for the design of an LASV vaccine. Here, we assessed the immunogenic potential of mammalian cell-derived virus-like particles (VLPs) expressing GP from the prototypic LASV strain Josiah in a native-like conformation as the sole viral antigen. We demonstrate that an adjuvanted prime-boost immunization regimen with GP-derived VLPs elicited neutralizing antibody responses in rabbits, suggesting that effective antigenic epitopes of GP were displayed. Notably, these antibodies exhibited broad reactivity across five genetic lineages of LASV. VLP-based immunization strategies may represent a powerful approach for generating polyclonal sera containing cross-reactive neutralizing antibodies against LASV.
Collapse
Affiliation(s)
- Helena Müller
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | | | - Jens Dorna
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| | - Richard A Urbanowicz
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Lisa Oestereich
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Yvonne Krebs
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | - Verena Krähling
- Institute of Virology, Philipps University Marburg, Marburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | | | - Elisabeth Fichet-Calvet
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Jonathan K Ball
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, UK.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andreas Kaufmann
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| | - Stefan Bauer
- Institute of Immunology, Philipps University Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Veronika von Messling
- German Center for Infection Research (DZIF), Partner Sites Gießen-Marburg-Langen and Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany.,Veterinary Medicine Division, Paul-Ehrlich-Institut, Langen, Germany.,Present Address: Federal Ministry for Education and Research, Berlin, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
8
|
Identification of Novel Adjuvants for Ebola Virus-Like Particle Vaccine. Vaccines (Basel) 2020; 8:vaccines8020215. [PMID: 32397625 PMCID: PMC7349346 DOI: 10.3390/vaccines8020215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 11/16/2022] Open
Abstract
Ebola virus disease is a severe disease, often fatal, with a mortality rate of up to 90%. Presently, effective treatment and safe prevention options for Ebola virus disease are not available. Therefore, there is an urgent need to develop control measures to prevent or limit future Ebola virus outbreaks. Ebola virus protein-based virus-like particle (VLP) and inactivated whole virion vaccines have demonstrated efficacy in animal models, and the addition of appropriate adjuvants may provide additional benefits to these vaccines, including enhanced immune responses. In this study, we screened 24 compounds from injectable excipients approved for human use in Japan and identified six compounds that significantly enhanced the humoral response to Ebola VLP vaccine in a murine model. Our novel adjuvant candidates for Ebola VLP vaccine have already been demonstrated to be safe when administered intramuscularly or subcutaneously, and therefore, they are closer to clinical trials than adjuvants whose safety profiles are unknown.
Collapse
|
9
|
A Bivalent, Spherical Virus-Like Particle Vaccine Enhances Breadth of Immune Responses against Pathogenic Ebola Viruses in Rhesus Macaques. J Virol 2020; 94:JVI.01884-19. [PMID: 32075939 DOI: 10.1128/jvi.01884-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
The 2013-2016 Ebola outbreak in West Africa led to accelerated efforts to develop vaccines against these highly virulent viruses. A live, recombinant vesicular stomatitis virus-based vaccine has been deployed in outbreak settings and appears highly effective. Vaccines based on replication-deficient adenovirus vectors either alone or in combination with a multivalent modified vaccinia Ankara (MVA) Ebola vaccine also appear promising and are progressing in clinical evaluation. However, the ability of current live vector-based approaches to protect against multiple pathogenic species of Ebola is not yet established, and eliciting durable responses may require additional booster vaccinations. Here, we report the development of a bivalent, spherical Ebola virus-like particle (VLP) vaccine that incorporates glycoproteins (GPs) from Zaire Ebola virus (EBOV) and Sudan Ebola virus (SUDV) and is designed to extend the breadth of immunity beyond EBOV. Immunization of rabbits with bivalent Ebola VLPs produced antibodies that neutralized all four pathogenic species of Ebola viruses and elicited antibody-dependent cell-mediated cytotoxicity (ADCC) responses against EBOV and SUDV. Vaccination of rhesus macaques with bivalent VLPs generated strong humoral immune responses, including high titers of binding, as well as neutralizing antibodies and ADCC responses. VLP vaccination led to a significant increase in the frequency of Ebola GP-specific CD4 and CD8 T cell responses. These results demonstrate that a novel bivalent Ebola VLP vaccine elicits strong humoral and cellular immune responses against pathogenic Ebola viruses and support further evaluation of this approach as a potential addition to Ebola vaccine development efforts.IMPORTANCE Ebola outbreaks result in significant morbidity and mortality in affected countries. Although several leading candidate Ebola vaccines have been developed and advanced in clinical testing, additional vaccine candidates may be needed to provide protection against different Ebola species and to extend the durability of protection. A novel approach demonstrated here is to express two genetically diverse glycoproteins on a spherical core, generating a vaccine that can broaden immune responses against known pathogenic Ebola viruses. This approach provides a new method to broaden and potentially extend protective immune responses against Ebola viruses.
Collapse
|
10
|
Liu Y, Wen Z, Carrion R, Nunneley J, Staples H, Ticer A, Patterson JL, Compans RW, Ye L, Yang C. Intradermal Immunization of EBOV VLPs in Guinea Pigs Induces Broader Antibody Responses Against GP Than Intramuscular Injection. Front Microbiol 2020; 11:304. [PMID: 32174901 PMCID: PMC7056717 DOI: 10.3389/fmicb.2020.00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/11/2020] [Indexed: 11/20/2022] Open
Abstract
Ebolavirus (EBOV) infection in humans causes severe hemorrhagic fevers with high mortality rates that range from 30 to 80% as shown in different outbreaks. Thus the development of safe and efficacious EBOV vaccines remains an important goal for biomedical research. We have shown in early studies that immunization with insect cell-produced EBOV virus-like particles (VLPs) is able to induce protect vaccinated mice against lethal EBOV challenge. In the present study, we investigated immune responses induced by Ebola VLPs via two different routes, intramuscular and intradermal immunizations, in guinea pigs. Analyses of antibody responses revealed that similar levels of total IgG antibodies against the EBOV glycoprotein (GP) were induced by the two different immunization methods. However, further characterization showed that the EBOV GP-specific antibodies induced by intramuscular immunization were mainly of the IgG2 subtype whereas both IgG1 and IgG2 antibodies against EBOV GP were induced by intradermal immunization. In contrast, antibody responses against the EBOV matrix protein VP40 induced by intramuscular or intradermal immunizations exhibited similar IgG1 and IgG2 profiles. More interestingly, we found that the sites that the IgG1 antibodies induced by intradermal immunizations bind to in GP are different from those that bind to the IgG2 antibodies induced by intramuscular immunization. Further analyses revealed that sera from all vaccinated guinea pigs exhibited neutralizing activity against Ebola GP-mediated HIV pseudovirion infection at high levels. Moreover, all EBOV VLP-vaccinated guinea pigs survived the challenge by a high dose (1000 pfu) of guinea pig-adapted EBOV, while all control guinea pigs immunized with irrelevant VLPs succumbed to the challenge. The induction of both IgG1 and IgG2 antibody responses that recognized broader sites in GP by intradermal immunization of EBOV VLPs indicates that this approach may represent a more advantageous route of vaccination against virus infection.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Department of Microbiology and Immunology and Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, United States
| | - Zhiyuan Wen
- Department of Microbiology and Immunology and Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, United States
- Harbin Veterinary Research Institute, Harbin, China
| | - Ricardo Carrion
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jerritt Nunneley
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Hilary Staples
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Anysha Ticer
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Richard W. Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ling Ye
- Department of Microbiology and Immunology and Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, United States
| | - Chinglai Yang
- Department of Microbiology and Immunology and Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
Abstract
Baculoviruses are arthropod-specific, enveloped viruses with circular, supercoiled double-stranded deoxyribonucleic acid genomes. While many viruses are studied to seek solutions for their adverse impact on human, veterinary, and plant health, the study of baculoviruses was stimulated initially by their potential utility to control insect pests. Later, the utility of baculovirus as gene expression vectors was evidenced leading to numerous applications. Several strategies are employed to obtain recombinant viruses that express large quantities of heterologous proteins. A major step forward was the development of bacmid technology (the construction of bacterial artificial chromosomes containing the genome of the baculovirus) which allows the manipulation of the baculovirus genome in bacteria. With this technology, foreign genes can be introduced into the bacmid by homologous and site-directed recombination or by transposition. Baculoviruses have been used to explore fundamental questions in molecular biology such as the nature of programmed cell-death. Moreover, the ability of baculoviruses to transduce mammalian cells led to the consideration of their use as gene-therapy and vaccine vectors. Strategies for genetic engineering of baculoviruses have been developed to meet the requirements of new application areas. Display of foreign proteins on the surface of virions or in nucleocapsid structures, the assembly of expressed proteins to form virus-like particles or protein complexes have been explored and validated as vaccines. The aim of this chapter is to update the areas of application of the baculoviruses in protein expression, alternative vaccine designs and gene therapy of infectious diseases and genetic disorders. Finally, we review the baculovirus-derived products on the market and in the pipeline for biomedical and veterinary use.
Collapse
|
12
|
Liu Y, Ye L, Lin F, Gomaa Y, Flyer D, Carrion R, Patterson JL, Prausnitz MR, Smith G, Glenn G, Wu H, Compans RW, Yang C. Intradermal Vaccination With Adjuvanted Ebola Virus Soluble Glycoprotein Subunit Vaccine by Microneedle Patches Protects Mice Against Lethal Ebola Virus Challenge. J Infect Dis 2019; 218:S545-S552. [PMID: 29893888 DOI: 10.1093/infdis/jiy267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study, we investigated immune responses induced by purified Ebola virus (EBOV) soluble glycoprotein (sGP) subunit vaccines via intradermal immunization with microneedle (MN) patches in comparison with intramuscular (IM) injection in mice. Our results showed that MN delivery of EBOV sGP was superior to IM injection in eliciting higher levels and longer lasting antibody responses against EBOV sGP and GP antigens. Moreover, sGP-specific immune responses induced by MN or IM immunizations were effectively augmented by formulating sGP with a saponin-based adjuvant, and they were shown to confer complete protection of mice against lethal mouse-adapted EBOV (MA-EBOV) challenge. In comparison, mice that received sGP without adjuvant by MN or IM immunizations succumbed to lethal MA-EBOV challenge. These results show that immunization with EBOV sGP subunit vaccines with adjuvant by MN patches, which have been shown to provide improved safety and thermal stability, is a promising approach to protect against EBOV infection.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences (CAAS), Changchun, Jilin, China.,Emory University School of Medicine, Atlanta, Georgia
| | - Ling Ye
- Emory University School of Medicine, Atlanta, Georgia
| | - Fang Lin
- Emory University School of Medicine, Atlanta, Georgia.,Central Laboratory, Tangdu Hospital at the Fourth Military Medical University, Xi'An, China
| | - Yasmine Gomaa
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta
| | | | | | | | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta
| | | | | | - Hua Wu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences (CAAS), Changchun, Jilin, China
| | | | - Chinglai Yang
- Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
13
|
Pastor AR, González-Domínguez G, Díaz-Salinas MA, Ramírez OT, Palomares LA. Defining the multiplicity and time of infection for the production of Zaire Ebola virus-like particles in the insect cell-baculovirus expression system. Vaccine 2019; 37:6962-6969. [PMID: 31262589 DOI: 10.1016/j.vaccine.2019.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/24/2019] [Accepted: 06/14/2019] [Indexed: 11/16/2022]
Abstract
The Ebola virus disease is a public health challenge. To date, the only available treatments are medical support or the emergency administration of experimental drugs. The absence of licensed vaccines against Ebola virus impedes the prevention of infection. Vaccines based on recombinant virus-like particles (VLP) are a promising alternative. The Zaire Ebola virus serotype (ZEBOV) is the most aggressive with the highest mortality rates. Production of ZEBOV-VLP has been accomplished in mammalian and insect cells by the recombinant coexpression of three structural proteins, the glycoprotein (GP), the matrix structural protein VP40, and the nucleocapsid protein (NP). However, specific conditions to manipulate protein concentrations and improve assembly into VLP have not been determined to date. Here, we used a design of experiments (DoE) approach to determine the best MOI and TOI for three recombinant baculoviruses: bac-GP, bac-VP40 and bac-NP, each coding for one of the main structural proteins of ZEBOV. We identified two conditions where the simultaneous expression of the three recombinant proteins was observed. Interestingly, a temporal and stoichiometric interplay between the three structural proteins was observed. VP40 was required for the correct assembly of ZEBOV-VLP. High NP concentrations reduced the accumulation of GP, which has been reported to be necessary for inducing a protective immune response. Electron microscopy showed that the ZEBOV-VLP produced were morphologically similar to the native virus micrographs previously reported in the literature. A strategy for producing ZEBOV in insect cells, which consists in using a high MOI of bac-VP40 and bac-GP, and reducing expression of NP, either by delaying infection or reducing the MOI of bac-NP, was the most adequate for the production of VLP.
Collapse
Affiliation(s)
- Ana Ruth Pastor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Cuernavaca, Morelos 62210, Mexico.
| | - Gonzalo González-Domínguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Cuernavaca, Morelos 62210, Mexico; Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| | - Marco A Díaz-Salinas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Cuernavaca, Morelos 62210, Mexico.
| | - Octavio T Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Cuernavaca, Morelos 62210, Mexico.
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Ave. Universidad 2001, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
14
|
An HER2-Displaying Virus-Like Particle Vaccine Protects from Challenge with Mammary Carcinoma Cells in a Mouse Model. Vaccines (Basel) 2019; 7:vaccines7020041. [PMID: 31137559 PMCID: PMC6631560 DOI: 10.3390/vaccines7020041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Human epidermal growth factor receptor-2 (HER2) is upregulated in 20% to 30% of breast cancers and is a marker of a poor outcome. Due to the development of resistance to passive immunotherapy with Trastuzumab, active anti-HER2 vaccination strategies that could potentially trigger durable tumor-specific immune responses have become an attractive research area. Recently, we have shown that budded virus-like particles (VLPs) produced in Sf9 insect cells are an ideal platform for the expression of complex membrane proteins. To assess the efficacy of antigen-displaying VLPs as active cancer vaccines, BALB/c mice were immunized with insect cell glycosylated and mammalian-like glycosylated HER2-displaying VLPs in combination with two different adjuvants and were challenged with HER2-positive tumors. Higher HER2-specific antibody titers and effector functions were induced in mice vaccinated with insect cell glycosylated HER2 VLPs compared to mammalian-like glycosylated counterparts. Moreover, insect cell glycosylated HER2 VLPs elicited a protective effect in mice grafted with HER2-positive mammary carcinoma cells. Interestingly, no protection was observed in mice that were adjuvanted with Poly (I:C). Here, we show that antigen-displaying VLPs produced in Sf9 insect cells were able to induce robust and durable immune responses in vivo and have the potential to be utilized as active cancer vaccines.
Collapse
|
15
|
Liu Y, Ye L, Lin F, Gomaa Y, Flyer D, Carrion R, Patterson JL, Prausnitz MR, Smith G, Glenn G, Wu H, Compans RW, Yang C. Intradermal immunization by Ebola virus GP subunit vaccines using microneedle patches protects mice against lethal EBOV challenge. Sci Rep 2018; 8:11193. [PMID: 30046140 PMCID: PMC6060117 DOI: 10.1038/s41598-018-29135-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/17/2018] [Indexed: 11/09/2022] Open
Abstract
Development of a safe and efficacious filovirus vaccine is of high importance to public health. In this study, we compared immune responses induced by Ebola virus (EBOV) glycoprotein (GP) subunit vaccines via intradermal immunization with microneedle (MN) patches and the conventional intramuscular (IM) injection in mice, which showed that MN delivery of GP induced higher levels and longer lasting antibody responses against GP than IM injection. Further, we found that EBOV GP in formulation with a saponin-based adjuvant, Matrix-M, can be efficiently loaded onto MN patches. Co-delivery of Matrix-M with GP significantly enhanced induction of antibody responses by MN delivery, as also observed for IM injection. Results from challenge studies showed that all mice that received the GP/adjuvant formulation by MN or IM immunizations were protected from lethal EBOV challenge. Further, 4 out of 5 mice vaccinated by MN delivery of unadjuvanted GP also survived the challenge, whereas only 1 out of 5 mice vaccinated by IM injection of unadjuvanted GP survived the challenge. These results demonstrate that MN patch delivery of EBOV GP subunit vaccines, which is expected to enable improved safety and thermal stability, can confer effective protection against EBOV infection that is superior to IM vaccination.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibody Formation/immunology
- Ebola Vaccines/immunology
- Ebolavirus/immunology
- Ebolavirus/pathogenicity
- Glycoproteins/administration & dosage
- Glycoproteins/immunology
- Hemorrhagic Fever, Ebola/genetics
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Immunization
- Injections, Intradermal
- Mice
- Vaccination
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture of China, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences CAAS, Changchun, Jilin 130112, P. R. China
- Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Ling Ye
- Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Fang Lin
- Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA, 30322, USA
- Central Laboratory, Tangdu Hospital at the Fourth Military Medical University, Xi'An, 710038, China
| | - Yasmine Gomaa
- Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - David Flyer
- Novavax Inc., 20 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX, 78227, USA
| | - Jean L Patterson
- Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX, 78227, USA
| | - Mark R Prausnitz
- Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Gale Smith
- Novavax Inc., 20 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Gregory Glenn
- Novavax Inc., 20 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Hua Wu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture of China, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences CAAS, Changchun, Jilin 130112, P. R. China
| | - Richard W Compans
- Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA, 30322, USA
| | - Chinglai Yang
- Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
16
|
Ren S, Wei Q, Cai L, Yang X, Xing C, Tan F, Leavenworth JW, Liang S, Liu W. Alphavirus Replicon DNA Vectors Expressing Ebola GP and VP40 Antigens Induce Humoral and Cellular Immune Responses in Mice. Front Microbiol 2018; 8:2662. [PMID: 29375526 PMCID: PMC5767729 DOI: 10.3389/fmicb.2017.02662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP) is the major protective antigen of EBOV, and can generate virus-like particles (VLPs) by co-expression with matrix protein (VP40). In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV) replicon vector DREP to express EBOV GP and matrix viral protein (VP40). EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40). Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention.
Collapse
Affiliation(s)
- Shoufeng Ren
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Qimei Wei
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Liya Cai
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xuejing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuicui Xing
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Feng Tan
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shaohui Liang
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Wenquan Liu
- Department of Human Parasitology, Wenzhou Medical University, Wenzhou, China.,Institute of Pathogen and Immunology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Preventive, Diagnostic and Therapeutic Applications of Baculovirus Expression Vector System. TRENDS IN INSECT MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2018. [PMCID: PMC7115001 DOI: 10.1007/978-3-319-61343-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Different strategies are being worked out for engineering the original baculovirus expression vector (BEV) system to produce cost-effective clinical biologics at commercial scale. To date, thousands of highly variable molecules in the form of heterologous proteins, virus-like particles, surface display proteins/antigen carriers, heterologous viral vectors and gene delivery vehicles have been produced using this system. These products are being used in vaccine production, tissue engineering, stem cell transduction, viral vector production, gene therapy, cancer treatment and development of biosensors. Recombinant proteins that are expressed and post-translationally modified using this system are also suitable for functional, crystallographic studies, microarray and drug discovery-based applications. Till now, four BEV-based commercial products (Cervarix®, Provenge®, Glybera® and Flublok®) have been approved for humans, and myriad of others are in different stages of preclinical or clinical trials. Five products (Porcilis® Pesti, BAYOVAC CSF E2®, Circumvent® PCV, Ingelvac CircoFLEX® and Porcilis® PCV) got approval for veterinary use, and many more are in the pipeline. In the present chapter, we have emphasized on both approved and other baculovirus-based products produced in insect cells or larvae that are important from clinical perspective and are being developed as preventive, diagnostic or therapeutic agents. Further, the potential of recombinant adeno-associated virus (rAAV) as gene delivery vector has been described. This system, due to its relatively extended gene expression, lack of pathogenicity and the ability to transduce a wide variety of cells, gained extensive popularity just after the approval of first AAV-based gene therapy drug alipogene tiparvovec (Glybera®). Numerous products based on AAV which are presently in different clinical trials have also been highlighted.
Collapse
|
18
|
Recent advances in vaccine development against Ebola threat as bioweapon. Virusdisease 2017; 28:242-246. [PMID: 29291209 DOI: 10.1007/s13337-017-0398-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022] Open
Abstract
With the increasing rate of Ebola virus appearance, with multiple natural outbreaks of Ebola hemorrhagic fever, it is worthy of consideration as bioweapon by anti-national groups. Further, with the non-availability of the vaccines against Ebola virus, concerns about the public health emerge. In this regard, this review summarizes the structure, genetics and potential of Ebola virus to be used as a bioweapon. We highlight the recent advances in the treatment strategies and vaccine development against Ebola virus. The understanding of these aspects might lead to effective treatment practices which can be applied during the future outbreaks of Ebola.
Collapse
|
19
|
Blockage of regulatory T cells augments induction of protective immune responses by influenza virus-like particles in aged mice. Microbes Infect 2017; 19:626-634. [PMID: 28899815 DOI: 10.1016/j.micinf.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 01/10/2023]
Abstract
Elderly humans over 65 years old are at great risk to pathogenesis by influenza virus infection. However, although influenza vaccines provide effective protection in healthy young adults, protection of elderly adults is substantially lower even with a good match between the vaccine and the circulating influenza virus. To gain insight of the underlying mechanism for the reduced immunogenicity of influenza vaccines in the aged population, we investigated immunogenicity of influenza virus-like particle vaccines in aged mice, which represent a useful model for studying aging associated impairment in immune responses. Specifically, we investigated the effect of inhibiting regulatory T cells in aged mice on induction of protective immune responses by influenza vaccines. Our results showed that injecting anti-CD25 antibodies could down-regulate CD25 on the surface of regulatory T cells and significantly increase the levels of antibody responses induced by VLP immunization in aged mice. Further, the profiles of antibody responses were also changed towards Th1 type by regulatory T cell blockage in aged mice. Moreover, aged mice that were treated by anti-CD25 antibodies prior to vaccination were more effectively protected against lethal influenza virus challenge.
Collapse
|
20
|
Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Protective, Noninfectious Vaccine against Ebola Virus Challenge in Mice. J Virol 2017; 91:JVI.00479-17. [PMID: 28615211 DOI: 10.1128/jvi.00479-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
The recent Ebola virus (EBOV) epidemic in West Africa demonstrates the potential for a significant public health burden caused by filoviral infections. No vaccine or antiviral is currently FDA approved. To expand the vaccine options potentially available, we assessed protection conferred by an EBOV vaccine composed of vesicular stomatitis virus pseudovirions that lack native G glycoprotein (VSVΔG) and bear EBOV glycoprotein (GP). These pseudovirions mediate a single round of infection. Both single-dose and prime/boost vaccination regimens protected mice against lethal challenge with mouse-adapted Ebola virus (ma-EBOV) in a dose-dependent manner. The prime/boost regimen provided significantly better protection than a single dose. As N-linked glycans are thought to shield conserved regions of the EBOV GP receptor-binding domain (RBD), thereby blocking epitopes within the RBD, we also tested whether VSVΔG bearing EBOV GPs that lack GP1 N-linked glycans provided effective immunity against challenge with ma-EBOV or a more distantly related virus, Sudan virus. Using a prime/boost strategy, high doses of GP/VSVΔG partially or fully denuded of N-linked glycans on GP1 protected mice against ma-EBOV challenge, but these mutants were no more effective than wild-type (WT) GP/VSVΔG and did not provide cross protection against Sudan virus. As reported for other EBOV vaccine platforms, the protection conferred correlated with the quantity of EBOV GP-specific Ig produced but not with the production of neutralizing antibodies. Our results show that EBOV GP/VSVΔG pseudovirions serve as a successful vaccination platform in a rodent model of Ebola virus disease and that GP1 N-glycan loss does not influence immunogenicity or vaccination success.IMPORTANCE The West African Ebola virus epidemic was the largest to date, with more than 28,000 people infected. No FDA-approved vaccines are yet available, but in a trial vaccination strategy in West Africa, recombinant, infectious VSV encoding the Ebola virus glycoprotein effectively prevented virus-associated disease. VSVΔG pseudovirion vaccines may prove as efficacious and have better safety, but they have not been tested to date. Thus, we tested the efficacy of VSVΔG pseudovirions bearing Ebola virus glycoprotein as a vaccine platform. We found that wild-type Ebola virus glycoprotein, in the context of this platform, provides robust protection of EBOV-challenged mice. Further, we found that removal of the heavy glycan shield surrounding conserved regions of the glycoprotein does not enhance vaccine efficacy.
Collapse
|
21
|
Nika L, Wallner J, Palmberger D, Koczka K, Vorauer-Uhl K, Grabherr R. Expression of full-length HER2 protein in Sf 9 insect cells and its presentation on the surface of budded virus-like particles. Protein Expr Purif 2017; 136:27-38. [DOI: 10.1016/j.pep.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 06/11/2017] [Indexed: 12/11/2022]
|
22
|
Abstract
The filoviruses, Ebola virus (EBOV), and Marburg virus (MARV), are among the most pathogenic viruses known to man and the causative agents of viral hemorrhagic fever outbreaks in Africa with case fatality rates of up to 90%. Nearly 30,000 infections were observed in the latest EBOV epidemic in West Africa; previous outbreaks were much smaller, typically only affecting less than a few hundred people. Compared to other diseases such as AIDS or Malaria with millions of cases annually, filovirus hemorrhagic fever (FHF) is one of the neglected infectious diseases. There are no licensed vaccines or therapeutics available to treat EBOV and MARV infections; therefore, these pathogens can only be handled in maximum containment laboratories and are classified as select agents. Under these limitations, a very few laboratories worldwide conducted basic research and countermeasure development for EBOV and MARV since their respective discoveries in 1967 (MARV) and 1976 (EBOV). In this review, we discuss several vaccine platforms against EBOV and MARV, which have been assessed for their protective efficacy in animal models of FHF. The focus is on the most promising approaches, which were accelerated in clinical development (phase I-III trials) during the EBOV epidemic in West Africa.
Collapse
Affiliation(s)
- Pierce Reynolds
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
23
|
Monreal-Escalante E, Ramos-Vega AA, Salazar-González JA, Bañuelos-Hernández B, Angulo C, Rosales-Mendoza S. Expression of the VP40 antigen from the Zaire ebolavirus in tobacco plants. PLANTA 2017; 246:123-132. [PMID: 28389867 DOI: 10.1007/s00425-017-2689-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
MAIN CONCLUSION The plant cell is able to produce the VP40 antigen from the Zaire ebolavirus , retaining the antigenicity and the ability to induce immune responses in BALB/c mice. The recent Ebola outbreak evidenced the need for having vaccines approved for human use. Herein we report the expression of the VP40 antigen from the Ebola virus as an initial effort in the development of a plant-made vaccine that could offer the advantages of being cheap and scalable, which is proposed to overcome the rapid need for having vaccines to deal with future outbreaks. Tobacco plants were transformed by stable DNA integration into the nuclear genome using the CaMV35S promoter and a signal peptide to access the endoplasmic reticulum, reaching accumulation levels up to 2.6 µg g-1 FW leaf tissues. The antigenicity of the plant-made VP40 antigen was evidenced by Western blot and an initial immunogenicity assessment in test animals that revealed the induction of immune responses in BALB/c mice following three weekly oral or subcutaneous immunizations at very low doses (125 and 25 ng, respectively) without accessory adjuvants. Therefore, this plant-based vaccination prototype is proposed as an attractive platform for the production of vaccines in the fight against Ebola virus disease outbreaks.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
| | - Abel A Ramos-Vega
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, BCS, Mexico
| | - Jorge A Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
| | - Bernardo Bañuelos-Hernández
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
| | - Carlos Angulo
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, BCS, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
24
|
Ro YT, Ticer A, Carrion R, Patterson JL. Rapid detection and quantification of Ebola Zaire virus by one-step real-time quantitative reverse transcription-polymerase chain reaction. Microbiol Immunol 2017; 61:130-137. [PMID: 28332721 DOI: 10.1111/1348-0421.12475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/09/2017] [Accepted: 03/02/2017] [Indexed: 11/26/2022]
Abstract
Given that Ebola virus causes severe hemorrhagic fever in humans with mortality rates as high as 90%, rapid and accurate detection of this virus is essential both for controlling infection and preventing further transmission. Here, a one-step qRT-PCR assay for rapid and quantitative detection of an Ebola Zaire strain using GP, VP24 or VP40 genes as a target is introduced. Routine assay conditions for hydrolysis probe detection were established from the manufacturer's protocol used in the assays. The analytical specificity and sensitivity of each assay was evaluated using in vitro synthesized viral RNA transcripts. The assays were highly specific for the RNA transcripts, no cross-reactivity being observed among them. The limits of detection of the assays ranged from 102 to 103 copies per reaction. The assays were also evaluated using viral RNAs extracted from cell culture-propagated viruses (Ebola Zaire, Sudan and Reston strains), confirming that they are gene- and strain-specific. The RT-PCR assays detected viral RNAs in blood samples from virus-infected animal, suggesting that they can be also a useful method for identifying Ebola virus in clinical samples.
Collapse
Affiliation(s)
- Young-Tae Ro
- Department of Biochemistry, Graduate School of Medicine, Konkuk University, Seoul 143-701, Korea.,Department of Virology and Immunology, Texas Biomedical Research Institute 7620 NW Loop 410, San Antonio, TX78227, USA
| | - Anysha Ticer
- Department of Virology and Immunology, Texas Biomedical Research Institute 7620 NW Loop 410, San Antonio, TX78227, USA
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute 7620 NW Loop 410, San Antonio, TX78227, USA
| | - Jean L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute 7620 NW Loop 410, San Antonio, TX78227, USA
| |
Collapse
|
25
|
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this chapter, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitoring, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
26
|
Zai J, Yi Y, Xia H, Zhang B, Yuan Z. A new strategy for full-length Ebola virus glycoprotein expression in E.coli. Virol Sin 2016; 31:500-508. [PMID: 28000060 DOI: 10.1007/s12250-016-3845-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/22/2016] [Indexed: 11/26/2022] Open
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fever in humans and non-human primates with high rates of fatality. Glycoprotein (GP) is the only envelope protein of EBOV, which may play a critical role in virus attachment and entry as well as stimulating host protective immune responses. However, the lack of expression of full-length GP in Escherichia coli hinders the further study of its function in viral pathogenesis. In this study, the vp40 gene was fused to the full-length gp gene and cloned into a prokaryotic expression vector. We showed that the VP40-GP and GP-VP40 fusion proteins could be expressed in E.coli at 16 °C. In addition, it was shown that the position of vp40 in the fusion proteins affected the yields of the fusion proteins, with a higher level of production of the fusion protein when vp40 was upstream of gp compared to when it was downstream. The results provide a strategy for the expression of a large quantity of EBOV full-length GP, which is of importance for further analyzing the relationship between the structure and function of GP and developing an antibody for the treatment of EBOV infection.
Collapse
Affiliation(s)
- Junjie Zai
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinhua Yi
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Xia
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
27
|
Collar AL, Clarke EC, Anaya E, Merrill D, Yarborough S, Anthony SM, Kuhn JH, Merle C, Theisen M, Bradfute SB. Comparison of N- and O-linked glycosylation patterns of ebolavirus glycoproteins. Virology 2016; 502:39-47. [PMID: 27984785 DOI: 10.1016/j.virol.2016.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022]
Abstract
Ebolaviruses are emerging pathogens that cause severe and often fatal viral hemorrhagic fevers. Four distinct ebolaviruses are known to cause Ebola virus disease in humans. The ebolavirus envelope glycoprotein (GP1,2) is heavily glycosylated, but the precise glycosylation patterns of ebolaviruses are largely unknown. Here we demonstrate that approximately 50 different N-glycan structures are present in GP1,2 derived from the four pathogenic ebolaviruses, including high mannose, hybrid, and bi-, tri-, and tetra-antennary complex glycans with and without fucose and sialic acid. The overall N-glycan composition is similar between the different ebolavirus GP1,2s. In contrast, the amount and type of O-glycan structures varies widely between ebolavirus GP1,2s. Notably, this O-glycan dissimilarity is also present between two variants of Ebola virus, the original Yambuku variant and the Makona variant responsible for the most recent Western African epidemic. The data presented here should serve as the foundation for future ebolaviral entry and immunogenicity studies.
Collapse
Affiliation(s)
- Amanda L Collar
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Elizabeth C Clarke
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Eduardo Anaya
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Denise Merrill
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Sarah Yarborough
- Undergraduate Pipeline Network, University of New Mexico, Albuquerque, NM, USA
| | - Scott M Anthony
- Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD, USA
| | | | | | - Steven B Bradfute
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
28
|
Wang Y, Li J, Hu Y, Liang Q, Wei M, Zhu F. Ebola vaccines in clinical trial: The promising candidates. Hum Vaccin Immunother 2016; 13:153-168. [PMID: 27764560 DOI: 10.1080/21645515.2016.1225637] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ebola virus disease (EVD) has become a great threat to humans across the world in recent years. The 2014 Ebola epidemic in West Africa caused numerous deaths and attracted worldwide attentions. Since no specific drugs and treatments against EVD was available, vaccination was considered as the most promising and effective method of controlling this epidemic. So far, 7 vaccine candidates had been developed and evaluated through clinical trials. Among them, the recombinant vesicular stomatitis virus-based vaccine (rVSV-EBOV) is the most promising candidate, which demonstrated a significant protection against EVD in phase III clinical trial. However, several concerns were still associated with the Ebola vaccine candidates, including the safety profile in some particular populations, the immunization schedule for emergency vaccination, and the persistence of the protection. We retrospectively reviewed the current development of Ebola vaccines and discussed issues and challenges remaining to be investigated in the future.
Collapse
Affiliation(s)
- Yuxiao Wang
- a School of Public Health; Southeast University , Nanjing , PR China
| | - Jingxin Li
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| | - Yuemei Hu
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| | - Qi Liang
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| | - Mingwei Wei
- c School of Public Health, Nanjing Medical University , Nanjing , PR China
| | - Fengcai Zhu
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| |
Collapse
|
29
|
Johnson RF, Kurup D, Hagen KR, Fisher C, Keshwara R, Papaneri A, Perry DL, Cooper K, Jahrling PB, Wang JT, Ter Meulen J, Wirblich C, Schnell MJ. An Inactivated Rabies Virus-Based Ebola Vaccine, FILORAB1, Adjuvanted With Glucopyranosyl Lipid A in Stable Emulsion Confers Complete Protection in Nonhuman Primate Challenge Models. J Infect Dis 2016; 214:S342-S354. [PMID: 27456709 PMCID: PMC5050469 DOI: 10.1093/infdis/jiw231] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The 2013-2016 West African Ebola virus (EBOV) disease outbreak was the largest filovirus outbreak to date. Over 28 000 suspected, probable, or confirmed cases have been reported, with a 53% case-fatality rate. The magnitude and international impact of this EBOV outbreak has highlighted the urgent need for a safe and efficient EBOV vaccine. To this end, we demonstrate the immunogenicity and protective efficacy of FILORAB1, a recombinant, bivalent, inactivated rabies virus-based EBOV vaccine, in rhesus and cynomolgus monkeys. Our results demonstrate that the use of the synthetic Toll-like receptor 4 agonist glucopyranosyl lipid A in stable emulsion (GLA-SE) as an adjuvant increased the efficacy of FILORAB1 to 100% protection against lethal EBOV challenge, with no to mild clinical signs of disease. Furthermore, all vaccinated subjects developed protective anti-rabies virus antibody titers. Taken together, these results support further development of FILORAB1/GLA-SE as an effective preexposure EBOV vaccine.
Collapse
Affiliation(s)
| | - Drishya Kurup
- Department of Microbiology and Immunology, Sidney Kimmel Medical College
| | - Katie R Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland
| | - Christine Fisher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College
| | - Rohan Keshwara
- Department of Microbiology and Immunology, Sidney Kimmel Medical College
| | | | - Donna L Perry
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland
| | - Kurt Cooper
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland
| | - Peter B Jahrling
- Emerging Viral Pathogens Section Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland
| | | | - Jan Ter Meulen
- Immune Design, South San Francisco, California Immune Design, Seattle, Washington
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Generation of porcine reproductive and respiratory syndrome (PRRS) virus-like-particles (VLPs) with different protein composition. J Virol Methods 2016; 236:77-86. [PMID: 27435337 DOI: 10.1016/j.jviromet.2016.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 01/03/2023]
Abstract
The causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS) is an enveloped ssRNA (+) virus belonging to the Arteriviridae family. Gp5 and M proteins form disulfide-linked heterodimers that constitute the major components of PRRSV envelope. Gp2, Gp3, Gp4 and E are the minor structural proteins, being the first three incorporated as multimeric complexes in the virus surface. The disease has become one of the most important causes of economic losses in the swine industry. Despite efforts to design an effective vaccine, the available ones allow only partial protection. In the last years, VLPs have become good vaccine alternatives because of safety issues and their potential to activate both branches of the immunological response. The characteristics of recombinant baculoviruses as heterologous expression system have been exploited for the production of VLPs of a wide variety of viruses. In this work, two multiple baculovirus expression vectors (BEVs) with PRRS virus envelope proteins were engineered in order to generate PRRS VLPs: on the one hand, Gp5 and M cDNAs were cloned to generate the pBAC-Gp5M vector; on the other hand, Gp2, Gp3, Gp4 and E cDNAs have been cloned to generate the pBAC-Gp234E vector. The corresponding recombinant baculoviruses BAC-Gp5M and BAC-Gp234E were employed to produce two types of VLPs: basic Gp5M VLPs, by the simultaneous expression of Gp5 and M proteins; and complete VLPs, by the co-expression of the six PRRS proteins after co-infection. The characterization of VLPs by Western blot confirmed the presence of the recombinant proteins using the available specific antibodies (Abs). The analysis by Electron microscopy showed that the two types of VLPs were indistinguishable between them, being similar in shape and size to the native PRRS virus. This system represents a potential alternative for vaccine development and a useful tool to study the implication of specific PRRS proteins in the response against the virus.
Collapse
|
32
|
Ladd Effio C, Oelmeier SA, Hubbuch J. High-throughput characterization of virus-like particles by interlaced size-exclusion chromatography. Vaccine 2016; 34:1259-67. [PMID: 26845741 DOI: 10.1016/j.vaccine.2016.01.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/12/2016] [Accepted: 01/17/2016] [Indexed: 11/26/2022]
Abstract
The development and manufacturing of safe and effective vaccines relies essentially on the availability of robust and precise analytical techniques. Virus-like particles (VLPs) have emerged as an important and valuable class of vaccines for the containment of infectious diseases. VLPs are produced by recombinant protein expression followed by purification procedures to minimize the levels of process- and product-related impurities. The control of these impurities is necessary during process development and manufacturing. Especially monitoring of the VLP size distribution is important for the characterization of the final vaccine product. Currently used methods require long analysis times and tailor-made assays. In this work, we present a size-exclusion ultra-high performance liquid chromatography (SE-UHPLC) method to characterize VLPs and quantify aggregates within 3.1min per sample applying interlaced injections. Four analytical SEC columns were evaluated for the analysis of human B19 parvo-VLPs and murine polyoma-VLPs. The optimized method was successfully used for the characterization of five recombinant protein-based VLPs including human papillomavirus (HPV) VLPs, human enterovirus 71 (EV71) VLPs, and chimeric hepatitis B core antigen (HBcAg) VLPs pointing out the generic applicability of the assay. Measurements were supported by transmission electron microscopy and dynamic light scattering. It was demonstrated that the iSE-UHPLC method provides a rapid, precise and robust tool for the characterization of VLPs. Two case studies on purification tools for VLP aggregates and storage conditions of HPV VLPs highlight the relevance of the analytical method for high-throughput process development and process monitoring of virus-like particles.
Collapse
Affiliation(s)
- Christopher Ladd Effio
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Stefan A Oelmeier
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany.
| |
Collapse
|
33
|
Visual detection of Ebola virus using reverse transcription loop-mediated isothermal amplification combined with nucleic acid strip detection. Arch Virol 2016; 161:1125-33. [DOI: 10.1007/s00705-016-2763-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
|
34
|
Abstract
The ability to make a large variety of virus-like particles (VLPs) has been successfully achieved in the baculovirus expression vector system (BEVS)/insect cell system. The production and scale-up of these particles, which are mostly sought as vaccine candidates, are currently being addressed. Furthermore, these VLPs are being investigated as delivery agents for use as therapeutics. The use of host insect cells allows mass production of VLPs in a proven scalable system.
Collapse
Affiliation(s)
- Christine M Thompson
- Department of Chemical Engineering, Ecole Polytechnique de Montreal, 2500, Chemin de Polytechnique, Montreal, QC, Canada
- National Research Council Canada, Montreal, QC, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, Canada, N2L 3G1.
| | - Amine A Kamen
- National Research Council Canada, Montreal, QC, Canada
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
35
|
Determination and Therapeutic Exploitation of Ebola Virus Spontaneous Mutation Frequency. J Virol 2015; 90:2345-55. [PMID: 26676781 DOI: 10.1128/jvi.02701-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/28/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Ebola virus (EBOV) is an RNA virus that can cause hemorrhagic fever with high fatality rates, and there are no approved vaccines or therapies. Typically, RNA viruses have high spontaneous mutation rates, which permit rapid adaptation to selection pressures and have other important biological consequences. However, it is unknown if filoviruses exhibit high mutation frequencies. Ultradeep sequencing and a recombinant EBOV that carries the gene encoding green fluorescent protein were used to determine the spontaneous mutation frequency of EBOV. The effects of the guanosine analogue ribavirin during EBOV infections were also assessed. Ultradeep sequencing revealed that the mutation frequency for EBOV was high and similar to those of other RNA viruses. Interestingly, significant genetic diversity was not observed in viable viruses, implying that changes were not well tolerated. We hypothesized that this could be exploited therapeutically. In vitro, the presence of ribavirin increased the error rate, and the 50% inhibitory concentration (IC50) was 27 μM. In a mouse model of ribavirin therapy given pre-EBOV exposure, ribavirin treatment corresponded with a significant delay in time to death and up to 75% survival. In mouse and monkey models of therapy given post-EBOV exposure, ribavirin treatment also delayed the time to death and increased survival. These results demonstrate that EBOV has a spontaneous mutation frequency similar to those of other RNA viruses. These data also suggest a potential for therapeutic use of ribavirin for human EBOV infections. IMPORTANCE Ebola virus (EBOV) causes a severe hemorrhagic disease with high case fatality rates; there are no approved vaccines or therapies. We determined the spontaneous mutation frequency of EBOV, which is relevant to understanding the potential for the virus to adapt. The frequency was similar to those of other RNA viruses. Significant genetic diversity was not observed in viable viruses, implying that changes were not well tolerated. We hypothesized that this could be exploited therapeutically. Ribavirin is a viral mutagen approved for treatment of several virus infections; it is also cheap and readily available. In cell culture, we showed that ribavirin was effective at reducing production of infectious EBOV. In mouse and monkey models of therapy given post-EBOV exposure, ribavirin treatment delayed the time to death and increased survival. These data provide a better understanding of EBOV spontaneous mutation and suggest that ribavirin may have great value in the context of human disease.
Collapse
|
36
|
Li H, Li Z, Xie Y, Qin X, Qi X, Sun P, Bai X, Ma Y, Zhang Z. Novel chimeric foot-and-mouth disease virus-like particles harboring serotype O VP1 protect guinea pigs against challenge. Vet Microbiol 2015; 183:92-6. [PMID: 26790940 DOI: 10.1016/j.vetmic.2015.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
Foot-and-mouth disease is a highly contagious, acute viral disease of cloven-hoofed animal species causing severe economic losses worldwide. Among the seven serotypes of foot-and-mouth disease virus (FMDV), serotype O is predominant, but its viral capsid is more acid sensitive than other serotypes, making it more difficult to produce empty serotype O VLPs in the low pH insect hemolymph. Therefore, a novel chimeric virus-like particle (VLP)-based candidate vaccine for serotype O FMDV was developed and characterized in the present study. The chimeric VLPs were composed of antigenic VP1 from serotype O and segments of viral capsid proteins from serotype Asia1. These VLPs elicited significantly higher FMDV-specific antibody levels in immunized mice than did the inactivated vaccine. Furthermore, the chimeric VLPs protected guinea pigs from FMDV challenge with an efficacy similar to that of the inactivated vaccine. These results suggest that chimeric VLPs have the potential for use in vaccines against serotype O FMDV infection.
Collapse
Affiliation(s)
- Haitao Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China; College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhiyong Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| | - Yinli Xie
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xingcai Qi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Peng Sun
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhidong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
37
|
Willet M, Kurup D, Papaneri A, Wirblich C, Hooper JW, Kwilas SA, Keshwara R, Hudacek A, Beilfuss S, Rudolph G, Pommerening E, Vos A, Neubert A, Jahrling P, Blaney JE, Johnson RF, Schnell MJ. Preclinical Development of Inactivated Rabies Virus-Based Polyvalent Vaccine Against Rabies and Filoviruses. J Infect Dis 2015; 212 Suppl 2:S414-24. [PMID: 26063224 PMCID: PMC4564550 DOI: 10.1093/infdis/jiv251] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We previously described the generation of a novel Ebola virus (EBOV) vaccine based on inactivated rabies virus (RABV) containing EBOV glycoprotein (GP) incorporated in the RABV virion. Our results demonstrated safety, immunogenicity, and protective efficacy in mice and nonhuman primates (NHPs). Protection against viral challenge depended largely on the quality of the humoral immune response against EBOV GP.Here we present the extension and improvement of this vaccine by increasing the amount of GP incorporation into virions via GP codon-optimization as well as the addition of Sudan virus (SUDV) and Marburg virus (MARV) GP containing virions. Immunogenicity studies in mice indicate similar immune responses for both SUDV GP and MARV GP compared to EBOV GP. Immunizing mice with multiple antigens resulted in immune responses similar to immunization with a single antigen. Moreover, immunization of NHP with the new inactivated RABV EBOV vaccine resulted in high titer neutralizing antibody levels and 100% protection against lethal EBOV challenge when applied with adjuvant.Our results indicate that an inactivated polyvalent vaccine against RABV filoviruses is achievable. Finally, the novel vaccines are produced on approved VERO cells and a clinical grade RABV/EBOV vaccine for human trials has been produced.
Collapse
Affiliation(s)
| | | | - Amy Papaneri
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | | | - Jay W. Hooper
- US Army Medical Research Institute of Infectious Diseases
| | | | | | | | | | - Grit Rudolph
- IDT Biologika GmbH, Am Pharmapark, Dessau-Rosslau, Germany
| | | | - Adriaan Vos
- IDT Biologika GmbH, Am Pharmapark, Dessau-Rosslau, Germany
| | | | - Peter Jahrling
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland
| | - Joseph E. Blaney
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | - Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | - Matthias J. Schnell
- Department of Microbiology and Immunology
- Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Li W, Ye L, Carrion R, Mohan GS, Nunneley J, Staples H, Ticer A, Patterson JL, Compans RW, Yang C. Characterization of Immune Responses Induced by Ebola Virus Glycoprotein (GP) and Truncated GP Isoform DNA Vaccines and Protection Against Lethal Ebola Virus Challenge in Mice. J Infect Dis 2015; 212 Suppl 2:S398-403. [PMID: 25877553 DOI: 10.1093/infdis/jiv186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In addition to its surface glycoprotein (GP), Ebola virus directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. We recently reported that sGP actively diverts host antibody responses against the epitopes that it shares with GP and thereby allows itself to absorb anti-GP antibodies, a phenomenon we termed "antigenic subversion." To investigate the effect of antigenic subversion by sGP on protection against virus infection, we compared immune responses induced by different prime-boost immunization regimens with GP and sGP DNA vaccines in mice and their efficacy against lethal Ebola virus challenge. Similar levels of anti-GP antibodies were induced by 2 immunizations with sGP and GP DNA vaccines. However, 2 immunizations with GP but not sGP DNA vaccine fully protected mice from lethal challenge. Boosting with sGP or GP DNA vaccine in mice that had been primed by GP or sGP DNA vaccine augmented the levels of anti-GP antibody responses and further improved protective efficacy against Ebola virus infection. These results show that both the quality and the levels of anti-GP antibody responses affect the efficacy of protection against Ebola virus infection.
Collapse
Affiliation(s)
- Wenfang Li
- Department of Microbiology and Immunology Emory Vaccine Center, Emory University, Atlanta, Georgia
| | - Ling Ye
- Department of Microbiology and Immunology Emory Vaccine Center, Emory University, Atlanta, Georgia
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Gopi S Mohan
- Department of Microbiology and Immunology Emory Vaccine Center, Emory University, Atlanta, Georgia
| | - Jerritt Nunneley
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Hilary Staples
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Anysha Ticer
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Jean L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Richard W Compans
- Department of Microbiology and Immunology Emory Vaccine Center, Emory University, Atlanta, Georgia
| | - Chinglai Yang
- Department of Microbiology and Immunology Emory Vaccine Center, Emory University, Atlanta, Georgia
| |
Collapse
|
39
|
Fulton A, Lai H, Chen Q, Zhang C. Purification of monoclonal antibody against Ebola GP1 protein expressed in Nicotiana benthamiana. J Chromatogr A 2015; 1389:128-32. [PMID: 25746758 PMCID: PMC4843992 DOI: 10.1016/j.chroma.2015.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 01/22/2023]
Abstract
Monoclonal antibodies (mAbs) are one of the fastest growing drug molecules targeting the treatment of diseases ranging from arthritis, immune disorders, and infectious diseases to cancer. Due to its unique application principle, antibodies are commonly produced in large quantities. Plants, such as Nicotiana benthamiana, offer a unique production platform for bio-therapeutics due to their ability to produce large amounts of biomolecules in a relatively quick manner. However, purification of a target protein from plant is an arduous task due to the presence of toxic compounds in ground plant tissue and the large quantities of plant tissues to be processed. Here, a process was developed prior to the chromatographic purification of a mAb against Ebola GP1 protein expressed in N. benthamiana. The process includes a diafiltration step and a charged polyelectrolyte precipitation. The diafiltration step significantly improved the precipitation efficiency, reducing the usage of polyelectrolyte by more than 2000 fold while improving the native plant protein removed from 60% to 80%. The mAb can then be purified to near homogeneity judging from SDS-PAGE by either Protein A affinity chromatography or a tandem of hydrophobic interaction chromatography and a hydrophobic charge induction chromatography. The purified mAbs were shown to retain their binding specificity to irradiated Ebola virus.
Collapse
Affiliation(s)
- Andrew Fulton
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Huafang Lai
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
40
|
Warfield KL, Dye JM, Wells JB, Unfer RC, Holtsberg FW, Shulenin S, Vu H, Swenson DL, Bavari S, Aman MJ. Homologous and heterologous protection of nonhuman primates by Ebola and Sudan virus-like particles. PLoS One 2015; 10:e0118881. [PMID: 25793502 PMCID: PMC4368629 DOI: 10.1371/journal.pone.0118881] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/23/2015] [Indexed: 11/18/2022] Open
Abstract
Filoviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs) have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV) and Marburg virus (MARV) following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV) following vaccination with MARV VLPs. The objectives of the current studies were to determine the minimum number of vaccine doses required for protection (using EBOV as the test system) and then demonstrate protection against Sudan virus (SUDV) and Taï Forest virus (TAFV). Using the EBOV nonhuman primate model, we show that one or two doses of VLP vaccine can confer protection from lethal infection. VLPs containing the SUDV glycoprotein, nucleoprotein and VP40 matrix protein provide complete protection against lethal SUDV infection in macaques. Finally, we demonstrate protective efficacy mediated by EBOV, but not SUDV, VLPs against TAFV; this is the first demonstration of complete cross-filovirus protection using a single component heterologous vaccine within the Ebolavirus genus. Along with our previous results, this observation provides strong evidence that it will be possible to develop and administer a broad-spectrum VLP-based vaccine that will protect against multiple filoviruses by combining only three EBOV, SUDV and MARV components.
Collapse
Affiliation(s)
- Kelly L. Warfield
- Integrated Biotherapeutics, Inc., Gaithersburg, Maryland, United States of America
- * E-mail:
| | - John M. Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jay B. Wells
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Robert C. Unfer
- Integrated Biotherapeutics, Inc., Gaithersburg, Maryland, United States of America
| | | | - Sergey Shulenin
- Integrated Biotherapeutics, Inc., Gaithersburg, Maryland, United States of America
| | - Hong Vu
- Integrated Biotherapeutics, Inc., Gaithersburg, Maryland, United States of America
| | - Dana L. Swenson
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - M. Javad Aman
- Integrated Biotherapeutics, Inc., Gaithersburg, Maryland, United States of America
| |
Collapse
|
41
|
Ye L, Yang C. Development of vaccines for prevention of Ebola virus infection. Microbes Infect 2015; 17:98-108. [DOI: 10.1016/j.micinf.2014.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 01/25/2023]
|
42
|
Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E, Chisti Y. Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 2014; 30:1-18. [PMID: 24265112 DOI: 10.1002/btpr.1842] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/21/2022]
Abstract
The baculovirus-insect cell expression system is widely used in producing recombinant proteins. This review is focused on the use of this expression system in developing bioprocesses for producing proteins of interest. The issues addressed include: the baculovirus biology and genetic manipulation to improve protein expression and quality; the suppression of proteolysis associated with the viral enzymes; the engineering of the insect cell lines for improved capability in glycosylation and folding of the expressed proteins; the impact of baculovirus on the host cell and its implications for protein production; the effects of the growth medium on metabolism of the host cell; the bioreactors and the associated operational aspects; and downstream processing of the product. All these factors strongly affect the production of recombinant proteins. The current state of knowledge is reviewed.
Collapse
|
43
|
Ansari AA. Clinical features and pathobiology of Ebolavirus infection. J Autoimmun 2014; 55:1-9. [PMID: 25260583 DOI: 10.1016/j.jaut.2014.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/25/2022]
Abstract
There has clearly been a deluge of international press coverage of the recent outbreak of Ebolavirus in Africa and is partly related to the "fear factor" that comes across when one is confronted with the fact that once infected, not only is the speed of death in a majority of cases rapid but also the images of the cause of death such as bleeding from various orifices gruesome and frightening. The fact that it leads to infection and death of health care providers (10% during the current epidemic) and the visualization of protective gear worn by these individuals to contain such infection adds to this "fear factor". Finally, there is a clear perceived notion that such an agent can be utilized as a bioterrorism agent that adds to the apprehension. Thus, in efforts to gain an objective view of the growing threat Ebolavirus poses to the general public, it is important to provide some basic understanding for the lethality of Ebolavirus infection that is highlighted in Fig. 1. This virus infection first appears to disable the immune system (the very system needed to fight the infection) and subsequently disables the vascular system that leads to blood leakage (hemorrhage), hypotension, drop in blood pressure, followed by shock and death. The virus appears to sequentially infect dendritic cells disabling the interferon system (one of the major host anti-viral immune systems) then macrophages (that trigger the formation of blood clots, release of inflammatory proteins and nitric oxide damaging the lining of blood vessels leading to blood leakage) and finally endothelial cells that contribute to blood leakage. The virus also affects organs such as the liver (that dysregulates the formation of coagulation proteins), the adrenal gland (that destroys the ability of the patient to synthesize steroids and leads to circulation failure and disabling of regulators of blood pressure) and the gastro-intestinal tract (leading to diarrhea). The ability of the virus to disable such major mechanisms in the body facilitates the ability of the virus to replicate in an uncontrolled fashion leading to the rapidity by which the virus can cause lethality. Various laboratories have been working on defining such mechanisms utilizing in vitro culture systems, a variety of animal models including inbred strains of normal and select gene knock out mice, guinea pigs and nonhuman primates that have led to a better understanding of the potential mechanisms involved. There have also been some major advances made in the identification of therapies from the very simple (major supportive type of therapy), to the identification of a number of highly effective chemotherapeutic agents, a variety of highly effective preventive (demonstrating 100% effectiveness in nonhuman primate models) recombinant formulations (adenovirus based, VSV-based, rabies virus based), therapeutic candidate vaccines (cocktail of monoclonal antibodies such as ZMAPP) and alternate approaches (RNAi-based such as TKM-Ebola and antisense based such as AVI-7537) that show great promise and at an unprecedented rate of discovery that speaks well for the scientific research community at large.
Collapse
Affiliation(s)
- Aftab A Ansari
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
44
|
Lin SY, Chung YC, Hu YC. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2014; 13:1501-21. [DOI: 10.1586/14760584.2014.951637] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Liu F, Wu X, Zhao Y, Li L, Wang Z. Budding of peste des petits ruminants virus-like particles from insect cell membrane based on intracellular co-expression of peste des petits ruminants virus M, H and N proteins by recombinant baculoviruses. J Virol Methods 2014; 207:78-85. [PMID: 24992672 DOI: 10.1016/j.jviromet.2014.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/01/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023]
Abstract
Peste des petits ruminants virus (PPRV), an etiological agent of peste des petits ruminants (PPR), is classified into the genus Morbillivirus in the family Paramyxovirida. In this study, two full-length open reading frames (ORF) corresponding to the PPRV matrix (M) and haemagglutinin (H) genes underwent a codon-optimization based on insect cells, respectively. Two codon-optimized ORFs along with one native nucleocapsid (N) ORF were used to construct recombinant baculoviruses co-expressing the PPRV M, H and N proteins in insect cells. Analysis of Western blot, immunofluorescence, confocal microscopy and flow cytometry demonstrated co-expression of the three proteins but at different levels in insect cells, and PPR virus-like particles (VLPs) budded further from cell membrane based on self-assembly of the three proteins by viewing of ultrathin section with a transmission electron microscope (TEM). Subsequently, a small number of VLPs were purified by sucrose density gradient centrifugation for TEM viewing. The PPR VLPs, either purified by sucrose density gradient centrifugation or budding from insect cell membrane on ultrathin section, morphologically resembled authentic PPRVs but were smaller in diameter by the TEM examination.
Collapse
Affiliation(s)
- Fuxiao Liu
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, Shandong, China
| | - Xiaodong Wu
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, Shandong, China
| | - Yonggang Zhao
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, Shandong, China
| | - Lin Li
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, Shandong, China
| | - Zhiliang Wang
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, Shandong, China.
| |
Collapse
|
46
|
Mena JA, Kamen AA. Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 2014; 10:1063-81. [DOI: 10.1586/erv.11.24] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Nakayama E, Saijo M. Animal models for Ebola and Marburg virus infections. Front Microbiol 2013; 4:267. [PMID: 24046765 PMCID: PMC3763195 DOI: 10.3389/fmicb.2013.00267] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/19/2013] [Indexed: 11/16/2022] Open
Abstract
Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.
Collapse
Affiliation(s)
- Eri Nakayama
- Department of Virology 1, National Institute of Infectious Diseases Tokyo, Japan
| | | |
Collapse
|
48
|
Fernandes F, Teixeira AP, Carinhas N, Carrondo MJT, Alves PM. Insect cells as a production platform of complex virus-like particles. Expert Rev Vaccines 2013; 12:225-36. [PMID: 23414412 DOI: 10.1586/erv.12.153] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Virus-like particles (VLPs) are multiprotein structures that resemble the conformation of native viruses but lack a viral genome, potentiating their application as safer and cheaper vaccines. The production of VLPs has been strongly linked with the use of insect cells and the baculovirus expression vector system, especially those particles composed of two or more structural viral proteins. In fact, this expression platform has been extensively improved over the years to address the challenges of coexpression of multiple proteins and their proper assembly into complexes in the same cell. In this article, the role of insect cell technology in the development and production of complex VLPs is overviewed; recent achievements, current bottlenecks and future trends are also highlighted.
Collapse
Affiliation(s)
- Fabiana Fernandes
- ITQB-Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
49
|
Liu F, Wu X, Li L, Liu Z, Wang Z. Use of baculovirus expression system for generation of virus-like particles: successes and challenges. Protein Expr Purif 2013; 90:104-16. [PMID: 23742819 PMCID: PMC7128112 DOI: 10.1016/j.pep.2013.05.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 11/10/2022]
Abstract
A brief overview of principles and applications of BES. Generation of VLPs using BES. Major properties of BES: promoting generation of VLPs. Bioprocess considerations for generation of VLPs.
The baculovirus expression system (BES) has been one of the versatile platforms for the production of recombinant proteins requiring multiple post-translational modifications, such as folding, oligomerization, phosphorylation, glycosylation, acylation, disulfide bond formation and proteolytic cleavage. Advances in recombinant DNA technology have facilitated application of the BES, and made it possible to express multiple proteins simultaneously in a single infection and to produce multimeric proteins sharing functional similarity with their natural analogs. Therefore, the BES has been used for the production of recombinant proteins and the construction of virus-like particles (VLPs), as well as for the development of subunit vaccines, including VLP-based vaccines. The VLP, which consists of one or more structural proteins but no viral genome, resembles the authentic virion but cannot replicate in cells. The high-quality recombinant protein expression and post-translational modifications obtained with the BES, along with its capacity to produce multiple proteins, imply that it is ideally suited to VLP production. In this article, we critically review the pros and cons of using the BES as a platform to produce both enveloped and non-enveloped VLPs.
Collapse
Affiliation(s)
- Fuxiao Liu
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | | | | | | | | |
Collapse
|
50
|
Blaney JE, Marzi A, Willet M, Papaneri AB, Wirblich C, Feldmann F, Holbrook M, Jahrling P, Feldmann H, Schnell MJ. Antibody quality and protection from lethal Ebola virus challenge in nonhuman primates immunized with rabies virus based bivalent vaccine. PLoS Pathog 2013; 9:e1003389. [PMID: 23737747 PMCID: PMC3667758 DOI: 10.1371/journal.ppat.1003389] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/10/2013] [Indexed: 12/25/2022] Open
Abstract
We have previously described the generation of a novel Ebola virus (EBOV) vaccine platform based on (a) replication-competent rabies virus (RABV), (b) replication-deficient RABV, or (c) chemically inactivated RABV expressing EBOV glycoprotein (GP). Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine. Ebola virus (EBOV) has been associated with outbreaks in human and nonhuman primate populations since 1976. With a fatality rate approaching 90%, EBOV is one of the most lethal infectious diseases in humans. The increased frequency of EBOV outbreaks along with its potential to be used as a bioterrorism agent has dramatically strengthened filovirus vaccine research and development. While there are currently no approved vaccines or post exposure treatments available for human use, several vaccine candidates have shown to protect nonhuman primates from lethal EBOV challenge. Our primary focus is to develop vaccine candidates to protect humans and endangered wildlife species at risk of infection in Africa. Here, we evaluated the efficacy and immunogenicity of our dual vaccines against EBOV and rabies virus (RABV) in rhesus macaques. Our live replication-competent vaccine provided 100% protection following EBOV challenge while the replication-deficient and inactivated candidates provided 50% protection. Interestingly, protection is dependent on the quality of the antibodies rather than the quantity. All three RABV-based EBOV vaccines did induce antibody levels necessary for protection from RABV infection. These results encourage the further development of these novel dual vaccines directed against two of the most lethal viral diseases.
Collapse
Affiliation(s)
- Joseph E. Blaney
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Mallory Willet
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Amy B. Papaneri
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Friederike Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Michael Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, United States of America
| | - Peter Jahrling
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|