1
|
Moar P, Premeaux TA, Atkins A, Ndhlovu LC. The latent HIV reservoir: current advances in genetic sequencing approaches. mBio 2023; 14:e0134423. [PMID: 37811964 PMCID: PMC10653892 DOI: 10.1128/mbio.01344-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Multiple cellular HIV reservoirs in diverse anatomical sites can undergo clonal expansion and persist for years despite suppressive antiretroviral therapy, posing a major barrier toward an HIV cure. Commonly adopted assays to assess HIV reservoir size mainly consist of PCR-based measures of cell-associated total proviral DNA, intact proviruses and transcriptionally competent provirus (viral RNA), flow cytometry and microscopy-based methods to measure translationally competent provirus (viral protein), and quantitative viral outgrowth assay, the gold standard to measure replication-competent provirus; yet no assay alone can provide a comprehensive view of the total HIV reservoir or its dynamics. Furthermore, the detection of extant provirus by these measures does not preclude defects affecting replication competence. An accurate measure of the latent reservoir is essential for evaluating the efficacy of HIV cure strategies. Recent approaches have been developed, which generate proviral sequence data to create a more detailed profile of the latent reservoir. These sequencing approaches are valuable tools to understand the complex multicellular processes in a diverse range of tissues and cell types and have provided insights into the mechanisms of HIV establishment and persistence. These advancements over previous sequencing methods have allowed multiplexing and new assays have emerged, which can document transcriptional activity, chromosome accessibility, and in-depth cellular phenotypes harboring latent HIV, enabling the characterization of rare infected cells across restrictive sites such as the brain. In this manuscript, we provide a review of HIV sequencing-based assays adopted to address challenges in quantifying and characterizing the latent HIV reservoir.
Collapse
Affiliation(s)
- Preeti Moar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Thomas A. Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Andrew Atkins
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| |
Collapse
|
2
|
Kuzmichev YV, Lackman-Smith C, Bakkour S, Wiegand A, Bale MJ, Musick A, Bernstein W, Aronson N, Ake J, Tovanabutra S, Stone M, Ptak RG, Kearney MF, Busch MP, Wonderlich ER, Kulpa DA. Application of ultrasensitive digital ELISA for p24 enables improved evaluation of HIV-1 reservoir diversity and growth kinetics in viral outgrowth assays. Sci Rep 2023; 13:10958. [PMID: 37414788 PMCID: PMC10326067 DOI: 10.1038/s41598-023-37223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/18/2023] [Indexed: 07/08/2023] Open
Abstract
The advent of combined antiretroviral therapy (cART) has been instrumental in controlling HIV-1 replication and transmission and decreasing associated morbidity and mortality. However, cART alone is not able to cure HIV-1 due to the presence of long-lived, latently infected immune cells, which re-seed plasma viremia when cART is interrupted. Assessment of HIV-cure strategies using ex vivo culture methods for further understanding of the diversity of reactivated HIV, viral outgrowth, and replication dynamics are enhanced using ultrasensitive digital ELISA based on single-molecule array (Simoa) technology to increase the sensitivity of endpoint detection. In viral outgrowth assays (VOA), exponential HIV-1 outgrowth has been shown to be dependent upon initial virus burst size surpassing a critical growth threshold of 5100 HIV-1 RNA copies. Here, we show an association between ultrasensitive HIV-1 Gag p24 concentrations and HIV-1 RNA copy number that characterize viral dynamics below the exponential replication threshold. Single-genome sequencing (SGS) revealed the presence of multiple identical HIV-1 sequences, indicative of low-level replication occurring below the threshold of exponential outgrowth early during a VOA. However, SGS further revealed diverse related HIV variants detectable by ultrasensitive methods that failed to establish exponential outgrowth. Overall, our data suggest that viral outgrowth occurring below the threshold necessary for establishing exponential growth in culture does not preclude replication competence of reactivated HIV, and ultrasensitive detection of HIV-1 p24 may provide a method to detect previously unquantifiable variants. These data strongly support the use of the Simoa platform in a multi-prong approach to measuring latent viral burden and efficacy of therapeutic interventions aimed at an HIV-1 cure.
Collapse
Affiliation(s)
- Yury V Kuzmichev
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Infectious Disease Research, Southern Research, Frederick, MD, USA.
| | - Carol Lackman-Smith
- Department of Infectious Disease Research, Southern Research, Frederick, MD, USA
| | - Sonia Bakkour
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ann Wiegand
- HIV Dynamics and Replication Program, NCI at Frederick, NIH, Frederick, MD, USA
| | - Michael J Bale
- HIV Dynamics and Replication Program, NCI at Frederick, NIH, Frederick, MD, USA
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Musick
- HIV Dynamics and Replication Program, NCI at Frederick, NIH, Frederick, MD, USA
| | - Wendy Bernstein
- Uniformed Services University, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Naomi Aronson
- Uniformed Services University, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Julie Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Roger G Ptak
- Department of Infectious Disease Research, Southern Research, Frederick, MD, USA
| | - Mary F Kearney
- HIV Dynamics and Replication Program, NCI at Frederick, NIH, Frederick, MD, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Deanna A Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Zhang X, Chen J. HIV Reservoir: How to Measure It? Curr HIV/AIDS Rep 2023; 20:29-41. [PMID: 37004676 DOI: 10.1007/s11904-023-00653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 04/04/2023]
Abstract
PURPOSEOF REVIEW In the current quest for a complete cure for HIV/AIDS, the persistence of a long-lived reservoir of cells carrying replication-competent proviruses is the major challenge. Here, we describe the main elements and characteristics of several widely used assays of HIV latent reservoir detection. RECENT FINDINGS To date, researchers have developed several different HIV latent reservoir detection assays. Among them, the in vitro quantitative viral outgrowth assay (QVOA) has been the gold standard for assessing latent HIV-1 viral load. The intact proviral DNA assay (IPDA) based on PCR also demonstrated the predominance of defective viruses. However, these assays all have some drawbacks and may still be inadequate in detecting the presence of ultralow levels of latent virus in many patients who were initially thought to have been cured, but eventually showed viral rebound. An accurate and precise measurement of the HIV reservoir is therefore needed to evaluate curative strategies, aimed to functional cure or sterilizing cure.
Collapse
Affiliation(s)
- Xinyu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Chen M, Li M, Budai MM, Rice AP, Kimata JT, Mohan M, Wang J. Clearance of HIV-1 or SIV reservoirs by promotion of apoptosis and inhibition of autophagy: Targeting intracellular molecules in cure-directed strategies. J Leukoc Biol 2022; 112:1245-1259. [PMID: 35362118 PMCID: PMC9522917 DOI: 10.1002/jlb.4mr0222-606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
The reservoirs of the HIV display cellular properties resembling long-lived immune memory cells that could be exploited for viral clearance. Our interest in developing a cure for HIV stems from the studies of immunologic memory against infections. We and others have found that long-lived immune memory cells employ prosurvival autophagy and antiapoptotic mechanisms to protect their longevity. Here, we describe the rationale for the development of an approach to clear HIV-1 by selective elimination of host cells harboring replication-competent HIV (SECH). While reactivation of HIV-1 in the host cells with latency reversing agents (LRAs) induces viral gene expression leading to cell death, LRAs also simultaneously up-regulate prosurvival antiapoptotic molecules and autophagy. Mechanistically, transcription factors that promote HIV-1 LTR-directed gene expression, such as NF-κB, AP-1, and Hif-1α, can also enhance the expression of cellular genes essential for cell survival and metabolic regulation, including Bcl-xL, Mcl-1, and autophagy genes. In the SECH approach, we inhibit the prosurvival antiapoptotic molecules and autophagy induced by LRAs, thereby allowing maximum killing of host cells by the induced HIV-1 proteins. SECH treatments cleared HIV-1 infections in humanized mice in vivo and in HIV-1 patient PBMCs ex vivo. SECH also cleared infections by the SIV in rhesus macaque PBMCs ex vivo. Research efforts are underway to improve the efficacy and safety of SECH and to facilitate the development of SECH as a therapeutic approach for treating people with HIV.
Collapse
Affiliation(s)
- Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Min Li
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Marietta M. Budai
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
| | - Andrew P. Rice
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason T. Kimata
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
5
|
Schmitt K, Curlin J, Remling‐Mulder L, Morrison J, Moriarty R, Goff K, Stenglein M, O'Connor S, Marx P, Akkina R. Long-term evolutionary adaptation of SIVcpz toward HIV-1 using a humanized mouse model. J Med Primatol 2022; 51:288-291. [PMID: 36030391 PMCID: PMC9536748 DOI: 10.1111/jmp.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022]
Abstract
Critical genetic adaptations needed for SIV chimpanzee to evolve into HIV-1 are not well understood. Using humanized mice, we mimicked the evolution of SIVcpzLB715 into HIV-1 Group M over the course of four generations. Higher initial viral load, increased CD4+ T-cell decline, and nonsynonymous substitutions arose suggesting viral evolution.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - James Curlin
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
- ADEAR Training Program, Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Leila Remling‐Mulder
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Jared Morrison
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Ryan Moriarty
- University of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Kelly Goff
- Tulane National Primate Research CenterCovingtonLouisianaUSA
| | - Mark Stenglein
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Shelby O'Connor
- University of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Preston Marx
- Tulane National Primate Research CenterCovingtonLouisianaUSA
- Department of Tropical MedicineSchool Public Health and Tropical MedicineNew OrleansLouisianaUSA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
6
|
Curlin JZ, Schmitt K, Remling-Mulder L, Moriarty R, Baczenas JJ, Goff K, O’Connor S, Stenglein M, Marx PA, Akkina R. In vivo infection dynamics and human adaptive changes of SIVsm-derived viral siblings SIVmac239, SIV B670 and SIVhu in humanized mice as a paralog of HIV-2 genesis. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2021; 1:813606. [PMID: 37168442 PMCID: PMC10168645 DOI: 10.3389/fviro.2021.813606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Simian immunodeficiency virus native to sooty mangabeys (SIVsm) is believed to have given rise to HIV-2 through cross-species transmission and evolution in the human. SIVmac239 and SIVB670, pathogenic to macaques, and SIVhu, isolated from an accidental human infection, also have origins in SIVsm. With their common ancestral lineage as that of HIV-2 from the progenitor SIVsm, but with different passage history in different hosts, they provide a unique opportunity to evaluate cross-species transmission to a new host and their adaptation/evolution both in terms of potential genetic and phenotypic changes. Using humanized mice with a transplanted human system, we evaluated in vivo replication kinetics, CD4+ T cell dynamics and genetic adaptive changes during serial passage with a goal to understand their evolution under human selective immune pressure. All the three viruses readily infected hu-mice causing chronic viremia. While SIVmac and SIVB670 caused CD4+ T cell depletion during sequential passaging, SIVhu with a deletion in nef gene was found to be less pathogenic. Deep sequencing of the genomes of these viruses isolated at different times revealed numerous adaptive mutations of significance that increased in frequency during sequential passages. The ability of these viruses to infect and replicate in humanized mice provides a new small animal model to study SIVs in vivo in addition to more expensive macaques. Since SIVmac and related viruses have been indispensable in many areas of HIV pathogenesis, therapeutics and cure research, availability of this small animal hu-mouse model that is susceptible to both SIV and HIV viruses is likely to open novel avenues of investigation for comparative studies using the same host.
Collapse
Affiliation(s)
- James Z. Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
- Antiviral Discovery, Evaluation and Application Research (ADEAR) Training Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ryan Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John J. Baczenas
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kelly Goff
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Shelby O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Preston A. Marx
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Tulane National Primate Research Center, Covington, LA, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Su H, Sravanam S, Sillman B, Waight E, Makarov E, Mathews S, Poluektova LY, Gorantla S, Gendelman HE, Dash PK. Recovery of Latent HIV-1 from Brain Tissue by Adoptive Cell Transfer in Virally Suppressed Humanized Mice. J Neuroimmune Pharmacol 2021; 16:796-805. [PMID: 34528173 PMCID: PMC8714687 DOI: 10.1007/s11481-021-10011-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022]
Abstract
Defining the latent human immunodeficiency virus type 1 (HIV-1) burden in the human brain during progressive infection is limited by sample access. Human hematopoietic stem cells (hu-HSCs)-reconstituted humanized mice provide an opportunity for this study. The model mimics, in measure, HIV-1 pathophysiology, transmission, treatment, and elimination in an infected human host. However, to date, brain HIV-1 latency in hu-HSC mice during suppressive antiretroviral therapy (ART) was not studied. To address this need, hu-HSC mice were administered long acting (LA) ART 14 days after HIV-1 infection was established. Animals were maintained under suppressive ART for 3 months, at which time HIV-1 infection was detected at low levels in brain tissue by droplet digital polymerase chain reaction (ddPCR) test on DNA. Notably, adoptive transfer of cells acquired from the hu-HSC mouse brains and placed into naive hu-HSC mice demonstrated viral recovery. These proof-of-concept results demonstrate replication-competent HIV-1 reservoir can be established in hu-HSC mouse brains that persists during long-term ART treatment. Hu-HSC mice-based mouse viral outgrowth assay (hu-MVOA) serves as a sensitive tool to interrogate latent HIV-1 brain reservoirs.
Collapse
Affiliation(s)
- Hang Su
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sruthi Sravanam
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Emiko Waight
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Mehta K, Gohil Y, Mishra S, D’silva A, Amanullah A, Selvam D, Pargain N, Nala N, Sanjeeva GN, Ranga U. An Improved Tat/Rev Induced Limiting Dilution Assay With Enhanced Sensitivity and Breadth of Detection. Front Immunol 2021; 12:715644. [PMID: 34421920 PMCID: PMC8375296 DOI: 10.3389/fimmu.2021.715644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Tat/Rev Induced Limiting Dilution Assay (TILDA) is instrumental in estimating the size of latent reservoirs of HIV-1. Here, we report an optimized TILDA containing a broader detection range compared to the reported methods and high sensitivity. Giving priority to sequence conservation, we positioned the two forward primers and the probe in exon-1 of HIV-1. The reverse primers are positioned in highly conserved regions of exon-7. The optimized TILDA detected eight molecular clones belonging to five major genetic subtypes of HIV-1 with a comparable detection sensitivity. Using the optimized assay, we show that only a minor proportion of CD4+ T cells of primary clinical samples can spontaneously generate multiply spliced viral transcripts. A significantly larger proportion of the cells produced viral transcripts following activation. The optimized TILDA is suitable to characterize HIV-1 latent reservoirs and the therapeutic strategies intended to target the reservoir size.
Collapse
Affiliation(s)
- Kavita Mehta
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Yuvrajsinh Gohil
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Swarnima Mishra
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Anish D’silva
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Afzal Amanullah
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Deepak Selvam
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Neelam Pargain
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Narendra Nala
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - G. N. Sanjeeva
- Department of Pediatric Genetics, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Udaykumar Ranga
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
9
|
Hendricks CM, Cordeiro T, Gomes AP, Stevenson M. The Interplay of HIV-1 and Macrophages in Viral Persistence. Front Microbiol 2021; 12:646447. [PMID: 33897659 PMCID: PMC8058371 DOI: 10.3389/fmicb.2021.646447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
HIV-1 has evolved mechanisms to evade host cell immune responses and persist for lifelong infection. Latent cellular reservoirs are responsible for this persistence of HIV-1 despite the powerful effects of highly active antiretroviral therapies (HAART) to control circulating viral load. While cellular reservoirs have been extensively studied, much of these studies have focused on peripheral blood and resting memory CD4+ T cells containing latent HIV-1 provirus; however, efforts to eradicate cellular reservoirs have been stunted by reservoirs found in tissues compartments that are not easily accessible. These tissues contain resting memory CD4+ T cells and tissue resident macrophages, another latent cellular reservoir to HIV-1. Tissue resident macrophages have been associated with HIV-1 infection since the 1980s, and evidence has continued to grow regarding their role in HIV-1 persistence. Specific biological characteristics play a vital role as to why macrophages are latent cellular reservoirs for HIV-1, and in vitro and in vivo studies exhibit how macrophages contribute to viral persistence in individuals and animals on antiretroviral therapies. In this review, we characterize the role and evolutionary advantages of macrophage reservoirs to HIV-1 and their contribution to HIV-1 persistence. In acknowledging the interplay of HIV-1 and macrophages in the host, we identify reasons why current strategies are incapable of eliminating HIV-1 reservoirs and why efforts must focus on eradicating reservoirs to find a future functional cure.
Collapse
Affiliation(s)
- Chynna M Hendricks
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thaissa Cordeiro
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ana Paula Gomes
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mario Stevenson
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
10
|
Gillgrass A, Wessels JM, Yang JX, Kaushic C. Advances in Humanized Mouse Models to Improve Understanding of HIV-1 Pathogenesis and Immune Responses. Front Immunol 2021; 11:617516. [PMID: 33746940 PMCID: PMC7973037 DOI: 10.3389/fimmu.2020.617516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Although antiretroviral therapy has transformed human immunodeficiency virus-type 1 (HIV-1) from a deadly infection into a chronic disease, it does not clear the viral reservoir, leaving HIV-1 as an uncurable infection. Currently, 1.2 million new HIV-1 infections occur globally each year, with little decrease over many years. Therefore, additional research is required to advance the current state of HIV management, find potential therapeutic strategies, and further understand the mechanisms of HIV pathogenesis and prevention strategies. Non-human primates (NHP) have been used extensively in HIV research and have provided critical advances within the field, but there are several issues that limit their use. Humanized mouse (Hu-mouse) models, or immunodeficient mice engrafted with human immune cells and/or tissues, provide a cost-effective and practical approach to create models for HIV research. Hu-mice closely parallel multiple aspects of human HIV infection and disease progression. Here, we highlight how innovations in Hu-mouse models have advanced HIV-1 research in the past decade. We discuss the effect of different background strains of mice, of modifications on the reconstitution of the immune cells, and the pros and cons of different human cells and/or tissue engraftment methods, on the ability to examine HIV-1 infection and immune response. Finally, we consider the newest advances in the Hu-mouse models and their potential to advance research in emerging areas of mucosal infections, understand the role of microbiota and the complex issues in HIV-TB co-infection. These innovations in Hu-mouse models hold the potential to significantly enhance mechanistic research to develop novel strategies for HIV prevention and therapeutics.
Collapse
Affiliation(s)
- Amy Gillgrass
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jocelyn M. Wessels
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Jack X. Yang
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Schmitt K, Curlin J, Remling-Mulder L, Moriarty R, Goff K, O’Connor S, Stenglein M, Marx P, Akkina R. Mimicking SIV chimpanzee viral evolution toward HIV-1 during cross-species transmission. J Med Primatol 2020; 49:284-287. [PMID: 33460210 PMCID: PMC8177655 DOI: 10.1111/jmp.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022]
Abstract
HIV-1 evolved from SIV during cross-species transmission events, though viral genetic changes are not well understood. Here, we studied the evolution of SIVcpzLB715 into HIV-1 Group M using humanized mice. High viral loads, rapid CD4+ T-cell decline, and non-synonymous substitutions were identified throughout the viral genome suggesting viral adaptation.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - James Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ryan Moriarty
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA
| | - Kelly Goff
- Tulane University School of Public Health and Tropical, Medicine, New Orleans, LA 70112, USA
| | - Shelby O’Connor
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53711, USA
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Preston Marx
- Tulane University School of Public Health and Tropical, Medicine, New Orleans, LA 70112, USA
- Tulane National Primate, Research Center, Covington, LA 70433, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
12
|
Olwenyi OA, Acharya A, Routhu NK, Pierzchalski K, Jones JW, Kane MA, Sidell N, Mohan M, Byrareddy SN. Retinoic Acid Improves the Recovery of Replication-Competent Virus from Latent SIV Infected Cells. Cells 2020; 9:E2076. [PMID: 32932813 PMCID: PMC7565696 DOI: 10.3390/cells9092076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022] Open
Abstract
The accurate estimation and eradication of Human Immunodeficiency Virus (HIV) viral reservoirs is limited by the incomplete reactivation of cells harboring the latent replication-competent virus. We investigated whether the in vitro and in vivo addition of retinoic acid (RA) enhances virus replication and improves the detection of latent virus. Peripheral blood mononuclear cells (PBMCs) from naive and anti-retroviral therapy (ART)-treated SIV-infected rhesus macaques (RMs) were cultured in vitro with anti-CD3/CD28 + IL-2 in the presence/absence of RA. Viral RNA and p27 levels were quantified using RT-qPCR and ELISA, respectively. Viral reservoirs were estimated using the Tat/Rev-Induced Limited Dilution Assay (TILDA) and Quantitative Viral Outgrowth Assay (QVOA). In vitro and in vivo measures revealed that there was also an increase in viral replication in RA-treated versus without RA conditions. In parallel, the addition of RA to either CD3/CD28 or phorbol myristate acetate (PMA)/ionomycin during QVOA and TILDA, respectively, was shown to augment reactivation of the replication-competent viral reservoir in anti-retroviral therapy (ART)-suppressed RMs as shown by a greater than 2.3-fold increase for QVOA and 1 to 2-fold increments for multi-spliced RNA per million CD4+ T cells. The use of RA can be a useful approach to enhance the efficiency of current protocols used for in vitro and potentially in vivo estimates of CD4+ T cell latent reservoirs. In addition, flow cytometry analysis revealed that RA improved estimates of various viral reservoir assays by eliciting broad CD4 T-cell activation as demonstrated by elevated CD25 and CD38 but reduced CD69 and PD-1 expressing cells.
Collapse
Affiliation(s)
- Omalla A. Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
| | - Nanda Kishore Routhu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
| | - Keely Pierzchalski
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.P.); (J.W.J.); (M.A.K.)
| | - Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Mahesh Mohan
- Texas Biomedical Research Institute, Southwest National Primate Research Institute, San Antonio, TX 78227, USA;
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA; (O.A.O.); (A.A.); (N.K.R.)
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| |
Collapse
|
13
|
Li M, Liu W, Bauch T, Graviss EA, Arduino RC, Kimata JT, Chen M, Wang J. Clearance of HIV infection by selective elimination of host cells capable of producing HIV. Nat Commun 2020; 11:4051. [PMID: 32792548 PMCID: PMC7426846 DOI: 10.1038/s41467-020-17753-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The RNA genome of the human immunodeficiency virus (HIV) is reverse-transcribed into DNA and integrated into the host genome, resulting in latent infections that are difficult to clear. Here we show an approach to eradicate HIV infections by selective elimination of host cells harboring replication-competent HIV (SECH), which includes viral reactivation, induction of cell death, inhibition of autophagy and the blocking of new infections. Viral reactivation triggers cell death specifically in HIV-1-infected T cells, which is promoted by agents that induce apoptosis and inhibit autophagy. SECH treatments can clear HIV-1 in >50% mice reconstituted with a human immune system, as demonstrated by the lack of viral rebound after withdrawal of treatments, and by adoptive transfer of treated lymphocytes into uninfected humanized mice. Moreover, SECH clears HIV-1 in blood samples from HIV-1-infected patients. Our results suggest a strategy to eradicate HIV infections by selectively eliminating host cells capable of producing HIV.
Collapse
Affiliation(s)
- Min Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Liu
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Tonya Bauch
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Roberto C Arduino
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Schmitt K, Curlin J, Remling-Mulder L, Moriarty R, Goff K, O'Connor S, Stenglein M, Marx P, Akkina R. Cross-Species Transmission and Evolution of SIV Chimpanzee Progenitor Viruses Toward HIV-1 in Humanized Mice. Front Microbiol 2020; 11:1889. [PMID: 32849468 PMCID: PMC7432304 DOI: 10.3389/fmicb.2020.01889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
The genetic evolution of HIV-1 from its progenitor virus SIV following cross-species transmission is not well understood. Here we simulated the SIVcpz initial transmission to humans using humanized mice and followed the viral evolution during serial passages lasting more than a year. All three SIVcpz progenitor viruses used, namely LB715 and MB897 (group M) as well as EK505 (group N) readily infected hu-mice resulting in chronic viremia. Viral loads increased progressively to higher set-points and the CD4+ T cell decline became more pronounced by the end of the second serial passage indicating viral adaptation and increased pathogenicity. Viral genomes sequenced at different time points revealed many non-synonymous variants not previously reported that occurred throughout the viral genome, including the gag, pol, env, and nef genes. These results shed light on the potential changes that the SIVcpz genome had undergone during the initial stages of human infection and subsequent spread.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - James Curlin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Ryan Moriarty
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Kelly Goff
- Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Shelby O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Preston Marx
- Tulane National Primate Research Center, Tulane University, Covington, LA, United States.,Department of Tropical Medicine, School of Public Health & Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Ramesh Akkina
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Curlin J, Schmitt K, Remling-Mulder L, Moriarty R, Goff K, O'Connor S, Stenglein M, Marx P, Akkina R. Evolution of SIVsm in humanized mice towards HIV-2. J Med Primatol 2020; 49:280-283. [PMID: 32777101 DOI: 10.1111/jmp.12486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
Through the accumulation of adaptive mutations, HIV-2 originated from SIVsm. To identify these evolutionary changes, a humanized mouse model recapitulated the process that likely enabled this cross-species transmission event. Various adaptive mutations arose, as well as increased virulence and CD4+ T-cell decline as the virus was passaged in humanized mice.
Collapse
Affiliation(s)
- James Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ryan Moriarty
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kelly Goff
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Shelby O'Connor
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Preston Marx
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
16
|
Stuelke EL, James KS, Kirchherr JL, Allard B, Baker C, Kuruc JD, Gay CL, Margolis DM, Archin NM. Measuring the Inducible, Replication-Competent HIV Reservoir Using an Ultra-Sensitive p24 Readout, the Digital ELISA Viral Outgrowth Assay. Front Immunol 2020; 11:1971. [PMID: 32849659 PMCID: PMC7423995 DOI: 10.3389/fimmu.2020.01971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Quantifying the inducible HIV reservoir provides an estimate of the frequency of quiescent HIV-infected cells in humans as well as in animal models, and can help ascertain the efficacy of latency reversing agents (LRAs). The quantitative viral outgrowth assay (QVOA) is used to measure inducible, replication competent HIV and generate estimations of reservoir size. However, traditional QVOA is time and labor intensive and requires large amounts of lymphocytes. Given the importance of reproducible and accurate assessment of both reservoir size and LRA activity in cure strategies, efforts to streamline the QVOA are of high priority. We developed a modified QVOA, the Digital ELISA Viral Outgrowth or DEVO assay, with ultra-sensitive p24 readout, capable of femtogram detection of HIV p24 protein in contrast to the picogram limitations of traditional ELISA. For each DEVO assay, 8–12 × 106 resting CD4 + T cells from aviremic, ART-treated HIV + participants are plated in limiting dilution and maximally stimulated with PHA, IL-2 and uninfected allogeneic irradiated PBMC. CD8-depleted PHA blasts from an uninfected donor or HIV-permissive cells (e.g., Molt4/CCR5) are added to the cultures and virus allowed to amplify for 8–12 days. HIV p24 from culture supernatant is measured at day 8 by Simoa (single molecule array, ultra-sensitive p24 assay) confirmed at day 12, and infectious units per million CD4 + T cells (IUPM) are calculated using the maximum likelihood method. In all DEVO assays performed, HIV p24 was detected in the supernatant of cultures as early as 8 days post stimulation. Importantly, DEVO IUPM values at day 8 were comparable or higher than traditional QVOA IUPM values obtained at day 15. Interestingly, DEVO IUPM values were similar with or without the addition of allogeneic CD8-depleted target PHA blasts or HIV permissive cells traditionally used to expand virus. The DEVO assay uses fewer resting CD4 + T cells and provides an assessment of reservoir size in less time than standard QVOA. This assay offers a new platform to quantify replication competent HIV during limited cell availability. Other potential applications include evaluating LRA activity, and measuring clearance of infected cells during latency clearance assays.
Collapse
Affiliation(s)
- Erin L Stuelke
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Katherine S James
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Jennifer L Kirchherr
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Brigitte Allard
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Caroline Baker
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States
| | - Joann D Kuruc
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States.,Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Cindy L Gay
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States.,Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - David M Margolis
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States.,Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States.,Department of Epidemiology, UNC Chapel Hill School of Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nancie M Archin
- University of North Carolina HIV Cure Center, UNC Institute for Global Health and Infectious Diseases, Chapel Hill, NC, United States.,Department of Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Thomas J, Ruggiero A, Paxton WA, Pollakis G. Measuring the Success of HIV-1 Cure Strategies. Front Cell Infect Microbiol 2020; 10:134. [PMID: 32318356 PMCID: PMC7154081 DOI: 10.3389/fcimb.2020.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-1 eradication strategies aim to achieve viral remission in the absence of antiretroviral therapy (ART). The development of an HIV-1 cure remains challenging due to the latent reservoir (LR): long-lived CD4 T cells that harbor transcriptionally silent HIV-1 provirus. The LR is stable despite years of suppressive ART and is the source of rebound viremia following therapy interruption. Cure strategies such as "shock and kill" aim to eliminate or reduce the LR by reversing latency, exposing the infected cells to clearance via the immune response or the viral cytopathic effect. Alternative strategies include therapeutic vaccination, which aims to prime the immune response to facilitate control of the virus in the absence of ART. Despite promising advances, these strategies have been unable to significantly reduce the LR or increase the time to viral rebound but have provided invaluable insight in the field of HIV-1 eradication. The development and assessment of an HIV-1 cure requires robust assays that can measure the LR with sufficient sensitivity to detect changes that may occur following treatment. The viral outgrowth assay (VOA) is considered the gold standard method for LR quantification due to its ability to distinguish intact and defective provirus. However, the VOA is time consuming and resource intensive, therefore several alternative assays have been developed to bridge the gap between practicality and accuracy. Whilst a cure for HIV-1 infection remains elusive, recent advances in our understanding of the LR and methods for its eradication have offered renewed hope regarding achieving ART free viral remission.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Immune and Infectious Disease Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Su H, Sravanam S, Gorantla S, Kaminski R, Khalili K, Poluektova L, Gendelman HE, Dash PK. Amplification of Replication Competent HIV-1 by Adoptive Transfer of Human Cells From Infected Humanized Mice. Front Cell Infect Microbiol 2020; 10:38. [PMID: 32117811 PMCID: PMC7026001 DOI: 10.3389/fcimb.2020.00038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
Detection of latent human immunodeficiency virus type 1 (HIV-1) in "putative" infectious reservoirs is required for determining treatment efficiency and for viral elimination strategies. Such tests require induction of replication competent provirus and quantitative testing of viral load for validation. Recently, humanized mice were employed in the development of such tests by employing a murine viral outgrowth assay (mVOA). Here blood cells were recovered from virus infected antiretroviral therapy suppressed patients. These cells were adoptively transferred to uninfected humanized mice where replication competent virus was recovered. Prior reports supported the notion that an mVOA assay provides greater sensitivity than cell culture-based quantitative VOA tests for detection of latent virus. In the current study, the mVOA assays was adapted using donor human hematopoietic stem cells-reconstituted mice to affirm research into HIV-1 elimination. We simulated an antiretroviral therapy (ART)-treated virus-infected human by maintaining the infected humanized mice under suppressive treatment. This was operative prior to human cell adoptive transfers. Replication-competent HIV-1 was easily detected in recipient animals from donors with undetectable virus in plasma. Moreover, when the assay was used to investigate viral presence in tissue reservoirs, quantitative endpoints were determined in "putative" viral reservoirs not possible in human sample analyses. We conclude that adoptive transfer of cells between humanized mice is a sensitive and specific assay system for detection of replication competent latent HIV-1.
Collapse
Affiliation(s)
- Hang Su
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sruthi Sravanam
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rafal Kaminski
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Kamel Khalili
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Larisa Poluektova
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmaceutical Sciences, Center for Neurovirology, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Prasanta K. Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
19
|
Akkina R, Barber DL, Bility MT, Bissig KD, Burwitz BJ, Eichelberg K, Endsley JJ, Garcia JV, Hafner R, Karakousis PC, Korba BE, Koshy R, Lambros C, Menne S, Nuermberger EL, Ploss A, Podell BK, Poluektova LY, Sanders-Beer BE, Subbian S, Wahl A. Small Animal Models for Human Immunodeficiency Virus (HIV), Hepatitis B, and Tuberculosis: Proceedings of an NIAID Workshop. Curr HIV Res 2020; 18:19-28. [PMID: 31870268 PMCID: PMC7403688 DOI: 10.2174/1570162x18666191223114019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
Abstract
The main advantage of animal models of infectious diseases over in vitro studies is the gain in the understanding of the complex dynamics between the immune system and the pathogen. While small animal models have practical advantages over large animal models, it is crucial to be aware of their limitations. Although the small animal model at least needs to be susceptible to the pathogen under study to obtain meaningful data, key elements of pathogenesis should also be reflected when compared to humans. Well-designed small animal models for HIV, hepatitis viruses and tuberculosis require, additionally, a thorough understanding of the similarities and differences in the immune responses between humans and small animals and should incorporate that knowledge into the goals of the study. To discuss these considerations, the NIAID hosted a workshop on 'Small Animal Models for HIV, Hepatitis B, and Tuberculosis' on May 30, 2019. Highlights of the workshop are outlined below.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Brigitte E. Sanders-Beer
- Address correspondence to this author at the Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Bethesda, MD 20892-9830, USA; Tel: (240) 627-3209; E-mail:
| | | | | |
Collapse
|
20
|
Falcinelli SD, Ceriani C, Margolis DM, Archin NM. New Frontiers in Measuring and Characterizing the HIV Reservoir. Front Microbiol 2019; 10:2878. [PMID: 31921056 PMCID: PMC6930150 DOI: 10.3389/fmicb.2019.02878] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
A cure for HIV infection remains elusive due to the persistence of replication-competent HIV proviral DNA during suppressive antiretroviral therapy (ART). With the exception of rare elite or post-treatment controllers of viremia, withdrawal of ART invariably results in the rebound of viremia and progression of HIV disease. A thorough understanding of the reservoir is necessary to develop new strategies in order to reduce or eliminate the reservoir. However, there is significant heterogeneity in the sequence composition, genomic location, stability, and expression of the HIV reservoir both within and across individuals, and a majority of proviral sequences are replication-defective. These factors, and the low frequency of persistently infected cells in individuals on suppressive ART, make understanding the reservoir and its response to experimental reservoir reduction interventions challenging. Here, we review the characteristics of the HIV reservoir, state-of-the-art assays to measure and characterize the reservoir, and how these assays can be applied to accurately detect reductions in reservoir during efforts to develop a cure for HIV infection. In particular, we highlight recent advances in the development of direct measures of provirus, including intact proviral DNA assays and full-length HIV DNA sequencing with integration site analysis. We also focus on novel techniques to quantitate persistent and inducible HIV, including RNA sequencing and RNA/gag protein staining techniques, as well as modified viral outgrowth methods that seek to improve upon throughput, sensitivity and dynamic range.
Collapse
Affiliation(s)
- Shane D Falcinelli
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cristina Ceriani
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David M Margolis
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nancie M Archin
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
21
|
Schmitt K, Curlin J, Kumar DM, Remling-Mulder L, Feely S, Stenglein M, O'Connor S, Marx P, Akkina R. SIV progenitor evolution toward HIV: A humanized mouse surrogate model for SIVsm adaptation toward HIV-2. J Med Primatol 2019; 47:298-301. [PMID: 30255956 DOI: 10.1111/jmp.12380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/14/2018] [Indexed: 11/28/2022]
Abstract
How SIV progenitors evolved into deadly HIV-1 and HIV-2 following initial cross-species transmission still remains a mystery. Here, we used humanized mice as a human surrogate system to evaluate SIVsm evolution into HIV-2. Increased viral virulence to human CD4+ T cells and adaptive genetic changes were observed during serial passages.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - James Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Dipu Mohan Kumar
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Stephanie Feely
- Tulane National Primate Research Center, Covington, Louisiana
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Shelby O'Connor
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Preston Marx
- Tulane National Primate Research Center, Covington, Louisiana.,Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
22
|
Curlin J, Schmitt K, Remling-Mulder L, Moriarty R, Stenglein M, O'Connor S, Marx P, Akkina R. SIVcpz cross-species transmission and viral evolution toward HIV-1 in a humanized mouse model. J Med Primatol 2019; 49:40-43. [PMID: 31576587 DOI: 10.1111/jmp.12440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
HIV-1 evolved from its progenitor SIV strains, but details are lacking on its adaptation to the human host. We followed the evolution of SIVcpz in humanized mice to mimic cross-species transmission. Increasing viral loads, CD4+ T-cell decline, and non-synonymous mutations were seen in the entire genome reflecting viral adaptation.
Collapse
Affiliation(s)
- James Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ryan Moriarty
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Shelby O'Connor
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Preston Marx
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
23
|
Wong ME, Jaworowski A, Hearps AC. The HIV Reservoir in Monocytes and Macrophages. Front Immunol 2019; 10:1435. [PMID: 31297114 PMCID: PMC6607932 DOI: 10.3389/fimmu.2019.01435] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
In people living with HIV (PLWH) who are failing or unable to access combination antiretroviral therapy (cART), monocytes and macrophages are important drivers of pathogenesis and progression to AIDS. The relevance of the monocyte/macrophage reservoir in PLWH receiving cART is debatable as in vivo evidence for infected cells is limited and suggests the reservoir is small. Macrophages were assumed to have a moderate life span and lack self-renewing potential, but recent discoveries challenge this dogma and suggest a potentially important role of these cells as long-lived HIV reservoirs. This, combined with new HIV infection animal models, has led to a resurgence of interest in monocyte/macrophage reservoirs. Infection of non-human primates with myeloid-tropic SIV implicates monocyte/macrophage activation and infection in the brain with neurocognitive disorders, and infection of myeloid-only humanized mouse models are consistent with the potential of the monocyte/macrophage reservoir to sustain infection and be a source of rebound viremia following cART cessation. An increased resistance to HIV-induced cytopathic effects and a reduced susceptibility to some antiretroviral drugs implies macrophages may be relevant to residual replication under cART and to rebound viremia. With a reappraisal of monocyte circulation dynamics, and the development of techniques to differentiate between self-renewing tissue-resident, and monocyte-derived macrophages in different tissues, a new framework exists to contextualize and evaluate the significance and relevance of the monocyte/macrophage HIV reservoir. In this review, we discuss recent developments in monocyte and macrophage biology and appraise current and emerging techniques to quantify the reservoir. We discuss how this knowledge influences our evaluation of the myeloid HIV reservoir, the implications for HIV pathogenesis in both viremic and virologically-suppressed PLWH and the need to address the myeloid reservoir in future treatment and cure strategies.
Collapse
Affiliation(s)
- Michelle E Wong
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Anthony Jaworowski
- Chronic Inflammatory and Infectious Diseases Program, School of Health and Biomedical Sciences, Bundoora, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Anna C Hearps
- Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Humanized Mouse Model of HIV-1 Latency with Enrichment of Latent Virus in PD-1 + and TIGIT + CD4 T Cells. J Virol 2019; 93:JVI.02086-18. [PMID: 30842333 DOI: 10.1128/jvi.02086-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
Combination anti-retroviral drug therapy (ART) potently suppresses HIV-1 replication but does not result in virus eradication or a cure. A major contributing factor is the long-term persistence of a reservoir of latently infected cells. To study this reservoir, we established a humanized mouse model of HIV-1 infection and ART suppression based on an oral ART regimen. Similar to humans, HIV-1 levels in the blood of ART-treated animals were frequently suppressed below the limits of detection. However, the limited timeframe of the mouse model and the small volume of available samples makes it a challenging model with which to achieve full viral suppression and to investigate the latent reservoir. We therefore used an ex vivo latency reactivation assay that allows a semiquantitative measure of the latent reservoir that establishes in individual animals, regardless of whether they are treated with ART. Using this assay, we found that latently infected human CD4 T cells can be readily detected in mouse lymphoid tissues and that latent HIV-1 was enriched in populations expressing markers of T cell exhaustion, PD-1 and TIGIT. In addition, we were able to use the ex vivo latency reactivation assay to demonstrate that HIV-specific TALENs can reduce the fraction of reactivatable virus in the latently infected cell population that establishes in vivo, supporting the use of targeted nuclease-based approaches for an HIV-1 cure.IMPORTANCE HIV-1 can establish latent infections that are not cleared by current antiretroviral drugs or the body's immune responses and therefore represent a major barrier to curing HIV-infected individuals. However, the lack of expression of viral antigens on latently infected cells makes them difficult to identify or study. Here, we describe a humanized mouse model that can be used to detect latent but reactivatable HIV-1 in both untreated mice and those on ART and therefore provides a simple system with which to study the latent HIV-1 reservoir and the impact of interventions aimed at reducing it.
Collapse
|
25
|
Establishment of a Novel Humanized Mouse Model To Investigate In Vivo Activation and Depletion of Patient-Derived HIV Latent Reservoirs. J Virol 2019; 93:JVI.02051-18. [PMID: 30626677 DOI: 10.1128/jvi.02051-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Curing HIV infection has been thwarted by the persistent reservoir of latently infected CD4+ T cells, which reinitiate systemic infection after antiretroviral therapy (ART) interruption. To evaluate reservoir depletion strategies, we developed a novel preclinical in vivo model consisting of immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells (PBMC) from long-term ART-suppressed HIV-infected donors. In the absence of ART, these mice developed rebound viremia which, 2 weeks after PBMC injection, was 1,000-fold higher (mean = 9,229,281 HIV copies/ml) in mice injected intrasplenically than in mice injected intraperitoneally (mean = 6,838 HIV copies/ml) or intravenously (mean = 591 HIV copies/ml). One week after intrasplenic PBMC injection, in situ hybridization of the spleen demonstrated extensive disseminated HIV infection, likely initiated from in vivo-reactivated primary latently infected cells. The time to viremia was delayed significantly by treatment with a broadly neutralizing antibody, 10-1074, compared to treatment with 10-1074-FcRnull, suggesting that 10-1074 mobilized Fc-mediated effector mechanisms to deplete the replication-competent reservoir. This was supported by phylogenetic analysis of Env sequences from viral-outgrowth cultures and untreated, 10-1074-treated, or 10-1074-FcRnull-treated mice. The predominant sequence cluster detected in viral-outgrowth cultures and untreated mouse plasma was significantly reduced in the plasma of 10-1074-treated mice, whereas two new clusters emerged that were not detected in viral-outgrowth cultures or plasma from untreated mice. These new clusters lacked mutations associated with 10-1074 resistance. Taken together, these data indicated that 10-1074 treatment depletes the reservoir of latently infected cells harboring replication competent HIV. Furthermore, this mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.IMPORTANCE Sustained remission of HIV infection is prevented by a persistent reservoir of latently infected cells capable of reinitiating systemic infection and viremia. To evaluate strategies to reactivate and deplete this reservoir, we developed and characterized a new humanized mouse model consisting of highly immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells from long-term ART-suppressed HIV-infected donors. Reactivation and dissemination of HIV infection was visualized in the mouse spleens in parallel with the onset of viremia. The applicability of this model for evaluating reservoir depletion treatments was demonstrated by establishing, through delayed time to viremia and phylogenetic analysis of plasma virus, that treatment of these humanized mice with a broadly neutralizing antibody, 10-1074, depleted the patient-derived population of latently infected cells. This mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.
Collapse
|
26
|
Salgado M, Kwon M, Gálvez C, Badiola J, Nijhuis M, Bandera A, Balsalobre P, Miralles P, Buño I, Martinez-Laperche C, Vilaplana C, Jurado M, Clotet B, Wensing A, Martinez-Picado J, Diez-Martin JL. Mechanisms That Contribute to a Profound Reduction of the HIV-1 Reservoir After Allogeneic Stem Cell Transplant. Ann Intern Med 2018; 169:674-683. [PMID: 30326031 DOI: 10.7326/m18-0759] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED This article has been corrected. The original version (PDF) is appended to this article as a Supplement. BACKGROUND The multifactorial mechanisms associated with radical reductions in HIV-1 reservoirs after allogeneic hematopoietic stem cell transplant (allo-HSCT), including a case of HIV cure, are not fully understood. OBJECTIVE To investigate the mechanism of HIV-1 eradication associated with allo-HSCT. DESIGN Nested case series within the IciStem observational cohort. SETTING Multicenter European study. PARTICIPANTS 6 HIV-infected, antiretroviral-treated participants who survived more than 2 years after allo-HSCT with CCR5 wild-type donor cells. MEASUREMENTS HIV DNA analysis, HIV RNA analysis, and quantitative viral outgrowth assay were performed in blood, and HIV DNA was also measured in lymph nodes, ilea, bone marrow, and cerebrospinal fluid. A humanized mouse model was used for in vivo detection of the replication-competent blood cell reservoir. HIV-specific antibodies were measured in plasma. RESULTS Analysis of the viral reservoir showed that 5 of 6 participants had full donor chimera in T cells within the first year after transplant, undetectable proviral HIV DNA in blood and tissue, and undetectable replication-competent virus (<0.006 infectious unit per million cells). The only participant with detectable virus received cord blood stem cells with an antithymocyte globulin-containing conditioning regimen, did not develop graft-versus-host disease, and had delayed complete standard chimerism in T cells (18 months) with mixed ultrasensitive chimera. Adoptive transfer of peripheral CD4+ T cells to immunosuppressed mice resulted in no viral rebound. HIV antibody levels decreased over time, with 1 case of seroreversion. LIMITATION Few participants. CONCLUSION Allo-HSCT resulted in a profound long-term reduction in the HIV reservoir. Such factors as stem cell source, conditioning, and a possible "graft-versus-HIV-reservoir" effect may have contributed. Understanding the mechanisms involved in HIV eradication after allo-HSCT can enable design of new curative strategies. PRIMARY FUNDING SOURCE The Foundation for AIDS Research (amfAR).
Collapse
Affiliation(s)
- Maria Salgado
- IrsiCaixa AIDS Research Institute, Badalona, Spain (M.S.)
| | - Mi Kwon
- Gregorio Marañón G. University Hospital, Gregorio Marañón Health Research Institute, Madrid, Spain (M.K., P.B., P.M., I.B., C.M.)
| | - Cristina Gálvez
- IrsiCaixa AIDS Research Institute, Badalona, Spain, and Autonomous University of Barcelona, Barcelona, Spain (C.G.)
| | - Jon Badiola
- Virgen de las Nieves University Hospital, Granada, Spain (J.B., M.J.)
| | - Monique Nijhuis
- University Medical Center Utrecht, Utrecht, the Netherlands (M.N., A.W.)
| | | | - Pascual Balsalobre
- Gregorio Marañón G. University Hospital, Gregorio Marañón Health Research Institute, Madrid, Spain (M.K., P.B., P.M., I.B., C.M.)
| | - Pilar Miralles
- Gregorio Marañón G. University Hospital, Gregorio Marañón Health Research Institute, Madrid, Spain (M.K., P.B., P.M., I.B., C.M.)
| | - Ismael Buño
- Gregorio Marañón G. University Hospital, Gregorio Marañón Health Research Institute, Madrid, Spain (M.K., P.B., P.M., I.B., C.M.)
| | - Carolina Martinez-Laperche
- Gregorio Marañón G. University Hospital, Gregorio Marañón Health Research Institute, Madrid, Spain (M.K., P.B., P.M., I.B., C.M.)
| | - Cristina Vilaplana
- Germans Trias i Pujol Research Institute, Badalona, Spain, Universitat Autònoma de Barcelona, Barcelona, Spain, and CIBER Enfermedades Respiratorias, Madrid, Spain (C.V.)
| | - Manuel Jurado
- Virgen de las Nieves University Hospital, Granada, Spain (J.B., M.J.)
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain, and University of Vic - Central University of Catalonia, Vic, Spain (B.C.)
| | - Annemarie Wensing
- University Medical Center Utrecht, Utrecht, the Netherlands (M.N., A.W.)
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain, University of Vic - Central University of Catalonia, Vic, Spain, and Catalan Institution for Research and Advanced Studies, Barcelona, Spain (J.M.)
| | - Jose Luis Diez-Martin
- Gregorio Marañón G. University Hospital, Gregorio Marañón Health Research Institute, and Complutense University of Madrid, Madrid, Spain (J.L.D.)
| | | |
Collapse
|
27
|
Relationship between intact HIV-1 proviruses in circulating CD4 + T cells and rebound viruses emerging during treatment interruption. Proc Natl Acad Sci U S A 2018; 115:E11341-E11348. [PMID: 30420517 PMCID: PMC6275529 DOI: 10.1073/pnas.1813512115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Combination antiretroviral therapy controls but does not cure HIV-1 infection because a small fraction of cells harbor latent viruses that can produce rebound viremia when therapy is interrupted. The circulating latent virus reservoir has been documented by a variety of methods, most prominently by viral outgrowth assays (VOAs) in which CD4+ T cells are activated to produce virus in vitro, or more recently by amplifying proviral near full-length (NFL) sequences from DNA. Analysis of samples obtained in clinical studies in which individuals underwent analytical treatment interruption (ATI), showed little if any overlap between circulating latent viruses obtained from outgrowth cultures and rebound viruses from plasma. To determine whether intact proviruses amplified from DNA are more closely related to rebound viruses than those obtained from VOAs, we assayed 12 individuals who underwent ATI after infusion of a combination of two monoclonal anti-HIV-1 antibodies. A total of 435 intact proviruses obtained by NFL sequencing were compared with 650 latent viruses from VOAs and 246 plasma rebound viruses. Although, intact NFL and outgrowth culture sequences showed similar levels of stability and diversity with 39% overlap, the size of the reservoir estimated from NFL sequencing was larger than and did not correlate with VOAs. Finally, intact proviruses documented by NFL sequencing showed no sequence overlap with rebound viruses; however, they appear to contribute to recombinant viruses found in plasma during rebound.
Collapse
|
28
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
29
|
Schmitt K, Akkina R. Ultra-Sensitive HIV-1 Latency Viral Outgrowth Assays Using Humanized Mice. Front Immunol 2018; 9:344. [PMID: 29556230 PMCID: PMC5844934 DOI: 10.3389/fimmu.2018.00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
In the current quest for a complete cure for HIV/AIDS, highly sensitive HIV-1 latency detection methods are critical to verify full viral eradication. Until now, the in vitro quantitative viral outgrowth assays (qVOA) have been the gold standard for assessing latent HIV-1 viral burden. However, these assays have been inadequate in detecting the presence of ultralow levels of latent virus in a number of patients who were initially thought to have been cured, but eventually showed viral rebound. In this context, new approaches utilizing in vivo mouse-based VOAs are promising. In the murine VOA (mVOA), large numbers of CD4+ T cells or PBMC from aviremic subjects are xenografted into immunodeficient NSG mice, whereas in the humanized mouse-based VOA (hmVOA) patient CD4+ T cell samples are injected into BLT or hu-hematopoetic stem cells (hu-HSC) humanized mice. While latent virus could be recovered in both of these systems, the hmVOA provides higher sensitivity than the mVOA using a fewer number of input cells. In contrast to the mVOA, the hmVOA provides a broader spectrum of highly susceptible HIV-1 target cells and enables newly engrafted cells to home into preformed human lymphoid organs where they can infect cells in situ after viral activation. Hu-mice also allow for both xenograft- and allograft-driven cell expansions with less severe GvH providing a longer time frame for potential viral outgrowth from cells with a delayed latent viral activation. Based on these advantages, the hmVOA has great potential in playing an important role in HIV-1 latency and cure research.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
30
|
Humanized mouse models to study pathophysiology and treatment of HIV infection. Curr Opin HIV AIDS 2018; 13:143-151. [DOI: 10.1097/coh.0000000000000440] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Huang SH, Ren Y, Thomas AS, Chan D, Mueller S, Ward AR, Patel S, Bollard CM, Cruz CR, Karandish S, Truong R, Macedo AB, Bosque A, Kovacs C, Benko E, Piechocka-Trocha A, Wong H, Jeng E, Nixon DF, Ho YC, Siliciano RF, Walker BD, Jones RB. Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. J Clin Invest 2018; 128:876-889. [PMID: 29355843 PMCID: PMC5785246 DOI: 10.1172/jci97555] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
The presence of persistent, latent HIV reservoirs in CD4+ T cells obstructs current efforts to cure infection. The so-called kick-and-kill paradigm proposes to purge these reservoirs by combining latency-reversing agents with immune effectors such as cytotoxic T lymphocytes. Support for this approach is largely based on success in latency models, which do not fully reflect the makeup of latent reservoirs in individuals on long-term antiretroviral therapy (ART). Recent studies have shown that CD8+ T cells have the potential to recognize defective proviruses, which comprise the vast majority of all infected cells, and that the proviral landscape can be shaped over time due to in vivo clonal expansion of infected CD4+ T cells. Here, we have shown that treating CD4+ T cells from ART-treated individuals with combinations of potent latency-reversing agents and autologous CD8+ T cells consistently reduced cell-associated HIV DNA, but failed to deplete replication-competent virus. These CD8+ T cells recognized and potently eliminated CD4+ T cells that were newly infected with autologous reservoir virus, ruling out a role for both immune escape and CD8+ T cell dysfunction. Thus, our results suggest that cells harboring replication-competent HIV possess an inherent resistance to CD8+ T cells that may need to be addressed to cure infection.
Collapse
Affiliation(s)
- Szu-Han Huang
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Yanqin Ren
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Allison S. Thomas
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Dora Chan
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Stefanie Mueller
- Ragon Institute of Massachusetts Institute of Technology (MIT), Massachusetts General Hospital (MGH), and Harvard University, Cambridge, Massachusetts, USA
| | - Adam R. Ward
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Shabnum Patel
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
- Children’s National Health System, Washington DC, USA
| | - Catherine M. Bollard
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
- Children’s National Health System, Washington DC, USA
| | - Conrad Russell Cruz
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
- Children’s National Health System, Washington DC, USA
| | - Sara Karandish
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Ronald Truong
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Amanda B. Macedo
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts Institute of Technology (MIT), Massachusetts General Hospital (MGH), and Harvard University, Cambridge, Massachusetts, USA
| | - Hing Wong
- Altor Bioscience Corporation, Miramar, Florida, USA
| | - Emily Jeng
- Altor Bioscience Corporation, Miramar, Florida, USA
| | - Douglas F. Nixon
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Ya-Chi Ho
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Bruce D. Walker
- Ragon Institute of Massachusetts Institute of Technology (MIT), Massachusetts General Hospital (MGH), and Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Institute for Medical Engineering and Sciences, MIT, Cambridge, Massachusetts, USA
| | - R. Brad Jones
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
- Ragon Institute of Massachusetts Institute of Technology (MIT), Massachusetts General Hospital (MGH), and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
32
|
Olvera A, Martinez JP, Casadellà M, Llano A, Rosás M, Mothe B, Ruiz-Riol M, Arsequell G, Valencia G, Noguera-Julian M, Paredes R, Meyerhans A, Brander C. Benzyl-2-Acetamido-2-Deoxy-α-d-Galactopyranoside Increases Human Immunodeficiency Virus Replication and Viral Outgrowth Efficacy In Vitro. Front Immunol 2018; 8:2010. [PMID: 29472913 PMCID: PMC5810283 DOI: 10.3389/fimmu.2017.02010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023] Open
Abstract
Glycosylation of host and viral proteins is an important posttranslational modification needed to ensure correct function of glycoproteins. For this reason, we asked whether inhibition of O-glycosylation during human immunodeficiency virus (HIV) in vitro replication could affect HIV infectivity and replication rates. We used benzyl-2-acetamido-2-deoxy-α-d-galactopyranoside (BAGN), a compound that has been widely used to inhibit O-glycosylation in several cell lines. Pretreatment and culture of PHA-blast target cells with BAGN increased the percentage of HIV-infected cells (7.6-fold, p = 0.0115), the per-cell amount of HIV p24 protein (1.3-fold, p = 0.2475), and the viral particles in culture supernatants (7.1-fold, p = 0.0029) compared to BAGN-free cultures. Initiating infection with virus previously grown in the presence of BAGN further increased percentage of infected cells (30-fold, p < 0.0001), intracellular p24 (1.5-fold, p = 0.0433), and secreted viral particles (74-fold, p < 0.0001). BAGN-treated target cells showed less CD25 and CCR5 expression, but increased HLA-DR surface expression, which positively correlated with the number of infected cells. Importantly, BAGN improved viral outgrowth kinetics in 66% of the samples tested, including samples from HIV controllers and subjects in whom no virus could be expanded in the absence of BAGN. Sequencing of the isolated virus indicated no skewing of viral quasi-species populations when compared to BAGN-free culture conditions. BAGN also increased virus production in the ACH2 latency model when used together with latency-reversing agents. Taken together, our results identify BAGN treatment as a simple strategy to improve viral outgrowth in vitro and may provide novel insights into host restriction mechanisms and O-glycosylation-related therapeutic targets for HIV control strategies.
Collapse
Affiliation(s)
- Alex Olvera
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain
| | - Javier P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Maria Casadellà
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
| | - Anuska Llano
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
| | - Míriam Rosás
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
| | - Beatriz Mothe
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain.,Unitat VIH, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Gregorio Valencia
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Marc Noguera-Julian
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain
| | - Roger Paredes
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain.,Unitat VIH, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain.,Universitat Autonoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Christian Brander
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
33
|
Norton NJ, Fun A, Bandara M, Wills MR, Mok HP, Lever AML. Innovations in the quantitative virus outgrowth assay and its use in clinical trials. Retrovirology 2017; 14:58. [PMID: 29268753 PMCID: PMC5740843 DOI: 10.1186/s12977-017-0381-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023] Open
Abstract
A robust measure of the size of the latent HIV reservoir is essential to quantifying the effect of interventions designed to deplete the pool of reactivatable, replication competent proviruses. In addition to the ability to measure a biologically relevant parameter, any assay designed to be used in a clinical trial needs to be reproducible and scalable. The need to quantify the number of resting CD4+ T cells capable of releasing infectious virus has led to the development of the quantitative viral outgrowth assay (VOA). The assay as originally described has a number of features that limit its scalability for use in clinical trials; however recent developments reducing the time and manpower requirements of the assay, while importantly improving reproducibility mean that it is becoming much more practical for it to enter into more widespread use. This review describes the background to VOA development and the practical issues that they present in utilising them in clinical trials. It describes the innovations that have made their usage more practical and the limitations that still exist.
Collapse
Affiliation(s)
| | - Axel Fun
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mikaila Bandara
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mark R Wills
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hoi Ping Mok
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Cambridge, UK. .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
34
|
Metcalf Pate KA, Blankson JN. The mouse viral outgrowth assay: avatars for the detection of HIV-1 reservoirs. Retrovirology 2017; 14:52. [PMID: 29157283 PMCID: PMC5697021 DOI: 10.1186/s12977-017-0376-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/12/2017] [Indexed: 11/10/2022] Open
Abstract
Sensitive assays are needed for the detection of residual viral reservoirs in HIV-1-infected subjects on suppressive combination antiretroviral therapy regimens to determine whether eradication strategies are effective. Mouse viral outgrowth assays have recently been developed and have the potential to be more sensitive than traditional in vitro quantitative viral outgrowth assays. In this article we describe these assays and review several studies that have used them to measure the latent reservoir.
Collapse
Affiliation(s)
- Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Center for AIDS Research, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joel N Blankson
- Department of Molecular and Comparative Pathobiology, Center for AIDS Research, The Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Center for AIDS Research, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Henrich TJ, Hatano H, Bacon O, Hogan LE, Rutishauser R, Hill A, Kearney MF, Anderson EM, Buchbinder SP, Cohen SE, Abdel-Mohsen M, Pohlmeyer CW, Fromentin R, Hoh R, Liu AY, McCune JM, Spindler J, Metcalf-Pate K, Hobbs KS, Thanh C, Gibson EA, Kuritzkes DR, Siliciano RF, Price RW, Richman DD, Chomont N, Siliciano JD, Mellors JW, Yukl SA, Blankson JN, Liegler T, Deeks SG. HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: An observational study. PLoS Med 2017; 14:e1002417. [PMID: 29112956 PMCID: PMC5675377 DOI: 10.1371/journal.pmed.1002417] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND It is unknown if extremely early initiation of antiretroviral therapy (ART) may lead to long-term ART-free HIV remission or cure. As a result, we studied 2 individuals recruited from a pre-exposure prophylaxis (PrEP) program who started prophylactic ART an estimated 10 days (Participant A; 54-year-old male) and 12 days (Participant B; 31-year-old male) after infection with peak plasma HIV RNA of 220 copies/mL and 3,343 copies/mL, respectively. Extensive testing of blood and tissue for HIV persistence was performed, and PrEP Participant A underwent analytical treatment interruption (ATI) following 32 weeks of continuous ART. METHODS AND FINDINGS Colorectal and lymph node tissues, bone marrow, cerebral spinal fluid (CSF), plasma, and very large numbers of peripheral blood mononuclear cells (PBMCs) were obtained longitudinally from both participants and were studied for HIV persistence in several laboratories using molecular and culture-based detection methods, including a murine viral outgrowth assay (mVOA). Both participants initiated PrEP with tenofovir/emtricitabine during very early Fiebig stage I (detectable plasma HIV-1 RNA, antibody negative) followed by 4-drug ART intensification. Following peak viral loads, both participants experienced full suppression of HIV-1 plasma viremia. Over the following 2 years, no further HIV could be detected in blood or tissue from PrEP Participant A despite extensive sampling from ileum, rectum, lymph nodes, bone marrow, CSF, circulating CD4+ T cell subsets, and plasma. No HIV was detected from tissues obtained from PrEP Participant B, but low-level HIV RNA or DNA was intermittently detected from various CD4+ T cell subsets. Over 500 million CD4+ T cells were assayed from both participants in a humanized mouse outgrowth assay. Three of 8 mice infused with CD4+ T cells from PrEP Participant B developed viremia (50 million input cells/surviving mouse), but only 1 of 10 mice infused with CD4+ T cells from PrEP Participant A (53 million input cells/mouse) experienced very low level viremia (201 copies/mL); sequence confirmation was unsuccessful. PrEP Participant A stopped ART and remained aviremic for 7.4 months, rebounding with HIV RNA of 36 copies/mL that rose to 59,805 copies/mL 6 days later. ART was restarted promptly. Rebound plasma HIV sequences were identical to those obtained during acute infection by single-genome sequencing. Mathematical modeling predicted that the latent reservoir size was approximately 200 cells prior to ATI and that only around 1% of individuals with a similar HIV burden may achieve lifelong ART-free remission. Furthermore, we observed that lymphocytes expressing the tumor marker CD30 increased in frequency weeks to months prior to detectable HIV-1 RNA in plasma. This study was limited by the small sample size, which was a result of the rarity of individuals presenting during hyperacute infection. CONCLUSIONS We report HIV relapse despite initiation of ART at one of the earliest stages of acute HIV infection possible. Near complete or complete loss of detectable HIV in blood and tissues did not lead to indefinite ART-free HIV remission. However, the small numbers of latently infected cells in individuals treated during hyperacute infection may be associated with prolonged ART-free remission.
Collapse
Affiliation(s)
- Timothy J. Henrich
- Division of Experimental Medicine, University of California, San Francisco, California, United States of America
- * E-mail:
| | - Hiroyu Hatano
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, California, United States of America
| | - Oliver Bacon
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, California, United States of America
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Louise E. Hogan
- Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Rachel Rutishauser
- Division of Experimental Medicine, University of California, San Francisco, California, United States of America
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, California, United States of America
| | - Alison Hill
- Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Elizabeth M. Anderson
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Susan P. Buchbinder
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, California, United States of America
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Stephanie E. Cohen
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, California, United States of America
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Mohamed Abdel-Mohsen
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, California, United States of America
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Christopher W. Pohlmeyer
- Center for AIDS Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Remi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, California, United States of America
| | - Albert Y. Liu
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, California, United States of America
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Joseph M. McCune
- Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Jonathan Spindler
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Kelly Metcalf-Pate
- Center for AIDS Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kristen S. Hobbs
- Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Cassandra Thanh
- Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Erica A. Gibson
- Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Daniel R. Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert F. Siliciano
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Baltimore, Maryland, United States of America
| | - Richard W. Price
- Department of Neurology, University of California, San Francisco, California, United States of America
| | - Douglas D. Richman
- University of California San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | | | - John W. Mellors
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Steven A. Yukl
- San Francisco Veterans Affairs Medical Center, San Francisco, California, United States of America
- University of California, San Francisco, California, Unites States of America
| | - Joel N. Blankson
- Center for AIDS Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Teri Liegler
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, California, United States of America
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, California, United States of America
| |
Collapse
|
36
|
Beck SE, Queen SE, Metcalf Pate KA, Mangus LM, Abreu CM, Gama L, Witwer KW, Adams RJ, Zink MC, Clements JE, Mankowski JL. An SIV/macaque model targeted to study HIV-associated neurocognitive disorders. J Neurovirol 2017; 24:204-212. [PMID: 28975505 DOI: 10.1007/s13365-017-0582-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/25/2017] [Accepted: 09/14/2017] [Indexed: 02/01/2023]
Abstract
Simian immunodeficiency virus (SIV) infection of pigtailed macaques is a highly representative and well-characterized animal model for HIV neuropathogenesis studies that provides an excellent opportunity to study and develop prognostic markers of HIV-associated neurocognitive disorders (HAND) for HIV-infected individuals. SIV studies can be performed in a controlled setting that enhances reproducibility and offers high-translational value. Similar to observations in HIV-infected patients receiving antiretroviral therapy (ART), ongoing neurodegeneration and inflammation are present in SIV-infected pigtailed macaques treated with suppressive ART. By developing quantitative viral outgrowth assays that measure both CD4+ T cells and macrophages harboring replication competent SIV as well as a highly sensitive mouse-based viral outgrowth assay, we have positioned the SIV/pigtailed macaque model to advance our understanding of latent cellular reservoirs, including potential CNS reservoirs, to promote HIV cure. In addition to contributing to our understanding of the pathogenesis of HAND, the SIV/pigtailed macaque model also provides an excellent opportunity to test innovative approaches to eliminate the latent HIV reservoir in the brain.
Collapse
Affiliation(s)
- Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Celina M Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Robert J Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
37
|
Schmitt K, Mohan Kumar D, Curlin J, Remling-Mulder L, Stenglein M, O'Connor S, Marx P, Akkina R. Modeling the evolution of SIV sooty mangabey progenitor virus towards HIV-2 using humanized mice. Virology 2017; 510:175-184. [PMID: 28750321 PMCID: PMC5906053 DOI: 10.1016/j.virol.2017.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 11/27/2022]
Abstract
HIV-2 is thought to have originated from an SIV progenitor native to sooty mangabeys. To model the initial human transmission and understand the sequential viral evolution, humanized mice were infected with SIVsm and serially passaged for five generations. Productive infection was seen by week 3 during the initial challenge followed by chronic viremia and gradual CD4+ T cell decline. Viral loads increased by the 5th generation resulting in more rapid CD4+ T cell decline. Genetic analysis revealed several amino acid substitutions that were nonsynonymous and fixed in multiple hu-mice across each of the 5 generations in the nef, env and rev regions. The highest rate of substitution occurred in the nef and env regions and most were observed within the first two generations. These data demonstrated the utility of hu-mice in modeling the SIVsm transmission to the human and to evaluate its potential sequential evolution into a human pathogen of HIV-2 lineage.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dipu Mohan Kumar
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - James Curlin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Shelby O'Connor
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Preston Marx
- Department of Tropical Medicine, School Public Health and Tropical Medicine, New Orleans, LA 70112, USA; Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
38
|
Abstract
The indomitable aspect of HIV-1 infection is not that HIV-1 proviral DNA is integrated into host DNA but that it can also turn itself off, remaining invisible to drug or immune surveillance. Thus, the goals of eradication include ways to precisely excise HIV-1 DNA or wake up the silent HIV-1 provirus and eliminate the infected cells thus identified. Methods to identify and fish out the latently infected cells or to delineate their characteristics are being rapidly developed. In 2016, Baxter et al. (A. E. Baxter, J. Niessl, R. Fromentin, J. Richard, F. Porichis, R. Charlebois, M. Massanella, N. Brassard, N. Alsahafi, G. G. Delgado, J. P. Routy, B. D. Walker, A. Finzi, N. Chomont, and D. E. Kaufmann, Cell Host Microbe 20:368–380, 2016, https://doi.org/10.1016/j.chom.2016.07.015) and Martrus et al. (G. Martrus, A. Niehrs, R. Cornelis, A. Rechtien, W. García-Beltran, M. Lütgehetmann, C. Hoffmann, and M. Altfeld, J Virol 90:9018–9028, 2016, https://doi.org/10.1128/JVI.01448-16) reported using the fluorescence in situ hybridization-flow cytometry technique to identify and quantify cells expressing HIV-1 RNA and Gag protein, as well as bearing unique cell surface markers. In a recent article in mBio, Grau-Expósito et al. (J. Grau-Expósito, C. Serra-Peinado, L. Miguel, J. Navarro, A. Curran, J. Burgos, I. Ocaña, E. Ribera, A. Torrella, B. Planas, R. Badía, J. Castellví, V. Falcó, M. Crespo, and M. J. Buzon, mBio 8:e00876-17, 2017, https://doi.org/10.1128/mBio.00876-17) reported a similar method that they claim to be more sensitive. With these methods, researchers are one step closer to measuring latent reservoirs and eliminating critical barriers to HIV eradication.
Collapse
|
39
|
Deruaz M, Tager AM. Humanized mouse models of latent HIV infection. Curr Opin Virol 2017; 25:97-104. [PMID: 28810166 DOI: 10.1016/j.coviro.2017.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/16/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022]
Abstract
Antiretroviral therapy can efficiently control HIV viral replication, resulting in low viral loads and sustained CD4+ T cell counts in HIV-infected persons. However, fast viral rebound occurs in most infected persons when therapy is interrupted. The principal component of persistent infection is a latent but replication-competent HIV reservoir. The long half-life of this reservoir is a major barrier to cure, and its elimination is the target of important research efforts. Animal models that can recapitulate this aspect of human infection are needed to examine the HIV reservoir in tissues in vivo, and to test eradication strategies. In this review, we will summarize recent studies using humanized mouse models to examine different aspects of the viral reservoir.
Collapse
Affiliation(s)
- Maud Deruaz
- Human Immune System Mouse Program, Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, USA
| | - Andrew M Tager
- Human Immune System Mouse Program, Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|