1
|
Takadate Y, Mine J, Tsunekuni R, Sakuma S, Kumagai A, Nishiura H, Miyazawa K, Uchida Y. Genetic diversity of H5N1 and H5N2 high pathogenicity avian influenza viruses isolated from poultry in Japan during the winter of 2022-2023. Virus Res 2024; 347:199425. [PMID: 38906223 PMCID: PMC11250885 DOI: 10.1016/j.virusres.2024.199425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
High pathogenicity avian influenza viruses (HPAIVs) of the H5N1 and H5N2 subtypes were responsible for 84 HPAI outbreaks on poultry premises in Japan during October 2022-April 2023. The number of outbreaks during the winter of 2022-2023 is the largest ever reported in Japan. In this study, we performed phylogenetic analyses using the full genetic sequences of HPAIVs isolated in Japan during 2022-2023 and those obtained from a public database to identify their genetic origin. Based on the hemagglutinin genes, these HPAIVs were classified into the G2 group of clade 2.3.4.4b, whose ancestors were H5 HPAIVs that circulated in Europe in late 2020, and were then further divided into three subgroups (G2b, G2d, and G2c). Approximately one-third of these viruses were classified into the G2b and G2d groups, which also included H5N1 HPAIVs detected in Japan during 2021-2022. In contrast, the remaining two-thirds were classified into the G2c group, which originated from H5N1 HPAIVs isolated in Asian countries and Russia during the winter of 2021-2022. Unlike the G2b and G2d viruses, the G2c viruses were first detected in Japan in the fall of 2022. Importantly, G2c viruses caused the largest number of outbreaks throughout Japan over the longest period during the season. Phylogenetic analyses using eight segment genes revealed that G2b, G2d, and G2c viruses were divided into 2, 4, and 11 genotypes, respectively, because they have various internal genes closely related to those of avian influenza viruses detected in wild birds in recent years in Asia, Russia, and North America, respectively. These results suggest that HPAIVs were disseminated among migratory birds, which may have generated numerous reassortant viruses with various gene constellations, resulting in a considerable number of outbreaks during the winter of 2022-2023.
Collapse
Affiliation(s)
- Yoshihiro Takadate
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Junki Mine
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Ryota Tsunekuni
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Saki Sakuma
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Asuka Kumagai
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Hayate Nishiura
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Kohtaro Miyazawa
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan
| | - Yuko Uchida
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305856, Japan.
| |
Collapse
|
2
|
Graziosi G, Lupini C, Catelli E, Carnaccini S. Highly Pathogenic Avian Influenza (HPAI) H5 Clade 2.3.4.4b Virus Infection in Birds and Mammals. Animals (Basel) 2024; 14:1372. [PMID: 38731377 PMCID: PMC11083745 DOI: 10.3390/ani14091372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses (AIVs) are highly contagious respiratory viruses of birds, leading to significant morbidity and mortality globally and causing substantial economic losses to the poultry industry and agriculture. Since their first isolation in 2013-2014, the Asian-origin H5 highly pathogenic avian influenza viruses (HPAI) of clade 2.3.4.4b have undergone unprecedented evolution and reassortment of internal gene segments. In just a few years, it supplanted other AIV clades, and now it is widespread in the wild migratory waterfowl, spreading to Asia, Europe, Africa, and the Americas. Wild waterfowl, the natural reservoir of LPAIVs and generally more resistant to the disease, also manifested high morbidity and mortality with HPAIV clade 2.3.4.4b. This clade also caused overt clinical signs and mass mortality in a variety of avian and mammalian species never reported before, such as raptors, seabirds, sealions, foxes, and others. Most notably, the recent outbreaks in dairy cattle were associated with the emergence of a few critical mutations related to mammalian adaptation, raising concerns about the possibility of jumping species and acquisition of sustained human-to-human transmission. The main clinical signs and anatomopathological findings associated with clade 2.3.4.4b virus infection in birds and non-human mammals are hereby summarized.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Yamaguchi E, Hayama Y, Murato Y, Sawai K, Kondo S, Yamamoto T. A case-control study of the infection risk of H5N8 highly pathogenic avian influenza in Japan during the winter of 2020-2021. Res Vet Sci 2024; 168:105149. [PMID: 38218062 DOI: 10.1016/j.rvsc.2024.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/21/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
In Japan, outbreaks of H5N8 highly pathogenic avian influenza (HPAI) were reported between November 2020 and March 2021 in 52 poultry farms. Understanding HPAI epidemiology would help poultry industries improve their awareness of the disease and enhance the immediate implementation of biosecurity measures. This study was a simulation-based matched case-control study to elucidate the risk factors associated with HPAI outbreaks in chicken farms in Japan. Data were collected from 42 HPAI-affected farms and 463 control farms that were within a 5-km radius of each case farm but remained uninfected. When infected farms were detected as clusters, one farm was randomly selected from each cluster, considering the possibility that the cluster was formed by farm-to-farm transmission within an epidemic area. For each case farm, up to three control farms were selected within a 5-km radius. Overall, 26 case farms (16 layer and 10 broiler farms) and 75 control farms (45 layer and 30 broiler farms) were resampled 1000 times for the conditional logistic regression model with explanatory variables comprising geographical factors and farm flock size. A larger flock size and shorter distance to water bodies from the farm were found to increase infection risk in layer farms. Similarly, in broiler farms, a shorter distance to water bodies increased infection risk. On larger farms, frequent access of farm staff and instrument carriages to premises could lead to increased infection risk. Waterfowl visiting water bodies around farms may also be associated with infection risk.
Collapse
Affiliation(s)
- Emi Yamaguchi
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoko Hayama
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshinori Murato
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Kotaro Sawai
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Sonoko Kondo
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Takehisa Yamamoto
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki 305-0856, Japan.
| |
Collapse
|
4
|
Mine J, Takadate Y, Kumagai A, Sakuma S, Tsunekuni R, Miyazawa K, Uchida Y. Genetics of H5N1 and H5N8 High-Pathogenicity Avian Influenza Viruses Isolated in Japan in Winter 2021-2022. Viruses 2024; 16:358. [PMID: 38543724 PMCID: PMC10975693 DOI: 10.3390/v16030358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
In winter 2021-2022, H5N1 and H5N8 high-pathogenicity avian influenza (HPAI) viruses (HPAIVs) caused serious outbreaks in Japan: 25 outbreaks of HPAI at poultry farms and 107 cases in wild birds or in the environment. Phylogenetic analyses divided H5 HPAIVs isolated in Japan in the winter of 2021-2022 into three groups-G2a, G2b, and G2d-which were disseminated at different locations and times. Full-genome sequencing analyses of these HPAIVs revealed a strong relationship of multiple genes between Japan and Siberia, suggesting that they arose from reassortment events with avian influenza viruses (AIVs) in Siberia. The results emphasize the complex of dissemination and reassortment events with the movement of migratory birds, and the importance of continual monitoring of AIVs in Japan and Siberia for early alerts to the intrusion of HPAIVs.
Collapse
Affiliation(s)
- Junki Mine
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba 305-0856, Ibaraki, Japan (A.K.); (S.S.); (R.T.); (K.M.); (Y.U.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Baek YG, Lee YN, Cha RM, Park MJ, Lee YJ, Park CK, Lee EK. Research Note: Comparative evaluation of pathogenicity in SPF chicken between different subgroups of H5N6 high pathogenicity avian influenza viruses. Poult Sci 2024; 103:103289. [PMID: 38103528 PMCID: PMC10764262 DOI: 10.1016/j.psj.2023.103289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Since 2014, periodic outbreaks of high pathogenicity avian influenza (HPAI) caused by clade 2.3.4.4 H5 HPAI virus (HPAIV) have resulted in huge economic losses in the Korean poultry industry. During the winter season of 2016-2017, clade 2.3.4.4e H5N6 HPAIVs classified into 5 subgroups (C1-5) were introduced into South Korea. Interestingly, it was revealed that the subgroup C2 and C4 viruses were predominantly distributed throughout the country, whereas detection of the subgroup C3 viruses was confined in a specific local region. In the present study, we conducted comparative evaluation of the pathogenicity of viruses belonging to subgroups C2 and C3 (H15 and HN1 strains) in specific pathogen-free (SPF) chickens, and further compared them with previously determined pathogenicity of subgroup C4 (ES2 strain) virus. The HN1 strain showed lower viral replication in tissues, less transmissibility, and higher mean chicken lethal dose than the H15 and ES2 strains in SPF chickens. Considering that the HN1 strain has a different NS gene segment from the H15 and ES2 strains, the reassortment of the NS gene segment likely affects their infectivity and transmissibility in chickens. These findings emphasize the importance of monitoring the genetic characteristics and pathogenic features of HPAIVs to effectively control their outbreaks in the field.
Collapse
Affiliation(s)
- Yoon-Gi Baek
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea; College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Buk-gu, Daegu 41566, Republic of Korea
| | - Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Ra Mi Cha
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Min-Ji Park
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Buk-gu, Daegu 41566, Republic of Korea.
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea.
| |
Collapse
|
6
|
Hayama Y, Sawai K, Yoshinori M, Yamaguchi E, Yamamoto T. Estimation of introduction time window of highly pathogenic avian influenza virus into broiler chicken farms during the 2020 - 2021 winter season outbreak in Japan. Prev Vet Med 2022; 208:105768. [PMID: 36174447 DOI: 10.1016/j.prevetmed.2022.105768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/01/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
Abstract
When an infectious disease occurs in an area, early detection of infected farms is important to respond quickly and contain the outbreak on a small scale. Estimating the time window for the introduction of the infection is important for its prevention and control. The aim of this study was to estimate the farm-specific time window from the introduction of the highly pathogenic avian influenza (HPAI) virus into poultry farms using field data from the HPAI H5N8 outbreak in the 2020-2021 winter season in Japan. Daily mortality data from 12 broiler chicken farms during the outbreak were used for the analysis. A mathematical model (Susceptible-Exposed-Infectious-Removed, SEIR model) was applied to generate the within-flock transmission of HPAI. The model-predicted mortality was fitted to the observed excess mortality data induced by HPAI to estimate the farm-specific transmission rate and the time of virus introduction. The estimated value of the transmission rate in each farm was 1.449 day-1 in median (min: 0.661 day-1, max: 3.387 day-1). The time window from the introduction of the virus to notification in each farm was estimated at 14.0 days in median (min: 8.6 days, max: 24.1 days) in the deterministic model. In addition, in the stochastic model considering the randomness of transmission in the early phase of the outbreak, the upper value of 95 % credible interval of the time window ranged from 12 to 34 days, with a median of 21 days. The results suggest that although one to three weeks had elapsed on most farms until notification after the virus introduction, the time window could exceed three weeks considering the stochasticity of disease transmission. As for the potential farm characteristics affecting within-flock transmission, the transmission rate was smaller (p-value=0.02) and the estimated time window from introduction to notification was longer (p-value=0.02) when birds were older. This study provides reliable information for setting up a tracing period for a potential source farm and enhancing the efforts for early detection.
Collapse
Affiliation(s)
- Yoko Hayama
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Kotaro Sawai
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Murato Yoshinori
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Emi Yamaguchi
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Takehisa Yamamoto
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Tanikawa T, Fujii K, Sugie Y, Tsunekuni R, Nakayama M, Kobayashi S. Comparative susceptibility of mallard (Anas platyrhynchos) to infection with high pathogenicity avian influenza virus strains (Gs/Gd lineage) isolated in Japan in 2004–2017. Vet Microbiol 2022; 272:109496. [DOI: 10.1016/j.vetmic.2022.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
|
8
|
Kwon J, Youk S, Lee DH. Role of wild birds in the spread of clade 2.3.4.4e H5N6 highly pathogenic avian influenza virus into South Korea and Japan. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 101:105281. [PMID: 35395408 DOI: 10.1016/j.meegid.2022.105281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
H5Nx highly pathogenic avian influenza viruses (HPAIVs) have caused transboundary epizootics in poultry and wild birds. In 2016, the H5N6 subtype of clade 2.3.4.4e HPAIVs caused multiple outbreaks in Asia, including China, Japan, Korea, and Vietnam. However, the geographical spread pattern of 2.3.4.4e H5N6 HPAIV has not been clearly identified. To better understand the emergence and transmission history of 2.3.4.4e H5N6 HPAIV, we investigated the underlying epidemiologic processes associated with this viral spread by performing a Bayesian phylogeography analysis. The results revealed that wild waterfowl played a central role in the transboundary spread of clade 2.3.4.4e H5N6 HPAIV into both endemic and non-endemic countries, causing multiple incursions of the 2.3.4.4e H5N6 HPAIV into South Korea, Japan, and Vietnam. In our analysis, Guangdong province, China was estimated to be the most probable site where 2.3.4.4e H5N6 HPAIVs emerged prior to the transboundary transmissions. Continued genomic surveillance in both wild birds and poultry would be necessary for monitoring of HPAIV incursions. In addition, enhanced biosecurity would be key to preventing the HPAIV spread by minimizing contact between domestic poultry and wild birds.
Collapse
Affiliation(s)
- Junghoon Kwon
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sungsu Youk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Mine J, Tsunekuni R, Tanikawa T, Uchida Y, Dubovitskiy N, Derko A, Sobolev I, Shestopalov A, Sharshov K, Saito T. Genetics of Japanese H5N8 high pathogenicity avian influenza viruses isolated in winter 2020-2021 and their genetic relationship with avian influenza viruses in Siberia. Transbound Emerg Dis 2022; 69:e2195-e2213. [PMID: 35445801 DOI: 10.1111/tbed.14559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
Abstract
In winter 2020-2021, Japan experienced multiple serious outbreaks of H5N8 high pathogenicity avian influenza (HPAI)-52 outbreaks at poultry farms and 58 cases in wild birds or the environment-that occurred simultaneously with outbreaks in Europe. Here, we examined how the H5N8 HPAI viruses (HPAIVs) emerged and spread through Japan and across the Eurasian continent. Phylogenetic and phylogeographic analyses were performed using full genetic sequences of the viruses that caused 52 outbreaks at poultry farms or were isolated from 11 infected wild birds. Genetically, the viruses showed five genotypes (E1, E2, E3, E5, E7) that have already been reported in Korea. The viruses showing the E3 genotype were found to have caused most of the HPAI outbreaks at poultry farms and were detected over the longest period of time. The internal genes of the viruses were genetically related to those of AIVs isolated through avian influenza surveillance activities in regions of Siberia including Buryatia, Yakutia, and Amur regions, suggesting that the Japanese viruses emerged via reassortment events with AIVs genetically related to Siberian AIVs. In addition, H5N2 and H5N8 HPAIVs were isolated from wild birds during surveillance activities conducted in the Novosibirsk region of Siberia in summer 2020. Phylogenetic analyses revealed that these viruses possessed hemagglutinin genes that were related to those of H5N8 HPAIVs that were circulating in Europe in winter 2020-2021. These results suggest that the viruses in wild birds during summer in Siberia most likely spread in both Asia and Europe the following winter. Together, the present results emphasize the importance of continual monitoring of AIVs in Siberia for forecasting outbreaks not only in Asia but also further away in Europe. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Junki Mine
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Ryota Tsunekuni
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Taichiro Tanikawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Yuko Uchida
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Nikita Dubovitskiy
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Anastasiya Derko
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Ivan Sobolev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Takehiko Saito
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,United Graduate School of Veterinary Sciences, Gifu University, 1-1, Yanagito, Gifu, 501-1112, Japan
| |
Collapse
|
10
|
Soda K, Tomioka Y, Hidaka C, Matsushita M, Usui T, Yamaguchi T. Susceptibility of common family Anatidae bird species to clade 2.3.4.4e H5N6 high pathogenicity avian influenza virus: an experimental infection study. BMC Vet Res 2022; 18:127. [PMID: 35366864 PMCID: PMC8976319 DOI: 10.1186/s12917-022-03222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
There were large outbreaks of high pathogenicity avian influenza (HPAI) caused by clade 2.3.4.4e H5N6 viruses in the winter of 2016–2017 in Japan, which caused large numbers of deaths among several endangered bird species including cranes, raptors, and birds in Family Anatidae. In this study, susceptibility of common Anatidae to a clade 2.3.4.4e H5N6 HPAI virus was assessed to evaluate their potential to be a source of infection for other birds. Eurasian wigeons (Mareca penelope), mallards (Anas platyrhynchos), and Northern pintails (Anas acuta) were intranasally inoculated with 106, 104, or 102 50% egg infectious dose (EID50) of clade 2.3.4.4e A/teal/Tottori/1/2016 (H5N6).
Results
All birds survived for 10 days without showing any clinical signs of infection. Most ducks inoculated with ≥ 104 EID50 of virus seroconverted within 10 days post-inoculation (dpi). Virus was mainly shed via the oral route for a maximum of 10 days, followed by cloacal route in late phase of infection. Virus remained in the pancreas of some ducks at 10 dpi. Viremia was observed in some ducks euthanized at 3 dpi, and ≤ 106.3 EID50 of virus was recovered from systemic tissues and swab samples including eyeballs and conjunctival swabs.
Conclusions
These results indicate that the subject duck species have a potential to be a source of infection of clade 2.3.4.4e HPAI virus to the environment and other birds sharing their habitats. Captive ducks should be reared under isolated or separated circumstances during the HPAI epidemic season to prevent infection and further viral dissemination.
Collapse
|
11
|
Yoo DS, Chun BC, Kim Y, Lee KN, Moon OK. Dynamics of inter-farm transmission of highly pathogenic avian influenza H5N6 integrating vehicle movements and phylogenetic information. Sci Rep 2021; 11:24163. [PMID: 34921165 PMCID: PMC8683487 DOI: 10.1038/s41598-021-03284-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) in poultry holdings commonly spreads through animal trade, and poultry production and health-associated vehicle (PPHaV) movement. To effectively control the spread of disease, it is essential that the contact structure via those movements among farms is thoroughly explored. However, few attempts have been made to scrutinize PPHaV movement compared to poultry trade. Therefore, our study aimed to elucidate the role of PPHaV movement on HPAI transmission. We performed network analysis using PPHaV movement data based on a global positioning system, with phylogenetic information of the isolates during the 2016–2017 HPAI H5N6 epidemic in the Republic of Korea. Moreover, the contribution of PPHaV movement to the spread of HPAI was estimated by Bayesian modeling. The network analysis revealed that there was the relationship between phylogenetic clusters and the contact network via PPHaV movement. Furthermore, the similarity of farm poultry species and the shared integrators between inter-linked infected premises (IPs) were associated with ties within the same phylogenetic clusters. Additionally, PPHaV movement among phylogenetically clustered IPs was estimated to contribute to approximately 30% of HPAI H5N6 infections in IPs on average. This study provides insight into how HPAI spread via PPHaV movement and scientific basis for control strategies.
Collapse
Affiliation(s)
- Dae-Sung Yoo
- Department of Public Health, College of Medicine, Korea University, Seoul, Republic of Korea. .,Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.
| | - Byung Chul Chun
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Younjung Kim
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kwang-Nyeong Lee
- Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Oun-Kyoung Moon
- Import Risk Assessment Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
12
|
Soda K, Ozaki H, Ito H, Usui T, Okamatsu M, Matsuno K, Sakoda Y, Yamaguchi T, Ito T. Dynamics of invasion and dissemination of H5N6 highly pathogenic avian influenza viruses in 2016-2017 winter in Japan. J Vet Med Sci 2021; 83:1891-1898. [PMID: 34732610 PMCID: PMC8762421 DOI: 10.1292/jvms.21-0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Large highly pathogenic avian influenza (HPAI) outbreaks caused by clade 2.3.4.4e H5N6
viruses occurred in Japan during the 2016–2017 winter. To date, several reports regarding
these outbreaks have been published, however a comprehensive study including geographical
and time course validations has not been performed. Herein, 58 Japanese HPAI virus (HPAIV)
isolates from the 2016–2017 season were added for phylogenetic analyses and the antigenic
relationships among the causal viruses were elucidated. The locations where HPAIVs were
found in the early phase of the outbreaks were clustered into three regions. Genotypes C1,
C5, and C6–8 HPAIVs were found in specific areas. Two strains had phylogenetically
distinct hemagglutinin (HA) and non-structural (NS) genes from other previously identified
strains, respectively. The estimated latest divergence date between the viral genotypes
suggests that genetic reassortment occurred in bird populations before their winter
migration to Japan. Antigenic differences in 2016–2017 HPAIVs were not observed,
suggesting that antibody pressure in the birds did not contribute to the selection of
HPAIV genotypes. In the late phase, the majority of HPAI cases in wild birds occurred
south of the lake freezing line. At the end of the outbreak, HPAI re-occurred in East
coast region, which may be due to the spring migration route of Anas bird
species. These trends were similar to those observed in the 2010–2011 outbreaks,
suggesting there is a typical pattern of seeding and dissemination of HPAIV in Japan.
Collapse
Affiliation(s)
- Kosuke Soda
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Hiroichi Ozaki
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Hiroshi Ito
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Tatsufumi Usui
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University
| | - Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University.,One Health Research Center, Hokkaido University
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University
| | - Tsuyoshi Yamaguchi
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| | - Toshihiro Ito
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University
| |
Collapse
|
13
|
Matsuu A, Tanikawa T, Fujimoto Y, Yabuki M, Tsunekuni R, Sakuma S, Uchida Y, Saito T. Different Sensitivity of Japanese Native-Bred Chickens to H5 Subtypes of Highly Pathogenic Avian Influenza Viruses. Avian Dis 2021; 65:508-515. [PMID: 34699150 DOI: 10.1637/aviandiseases-d-21-00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/20/2021] [Indexed: 11/05/2022]
Abstract
The aim of this study was to investigate the sensitivity of three breeds of Japanese native chickens, commercial broilers, and specific-pathogen-free (SPF) white leghorns to three strains of the H5 subtype of highly pathogenic avian influenza viruses (HPAIVs). Chickens were experimentally inoculated with doses of 102, 104, and 106 50% egg infective dose of A/mandarin duck/Miyazaki/22M-765/2011 (duck-11), A/chicken/Miyazaki/7/2014 (chicken-14), and A/chicken/Kumamoto/1-2C/2016 (chicken-16). The 50% chicken lethal dose of each virus, mean death time, and viral shedding patterns were compared. The Japanese native chickens showed varied susceptibility to the three H5 HPAIV isolates. Although two of the breeds showed some degree of resistance to duck-11 and chicken-14, all three were more sensitive to chicken-16 than commercial broiler chickens. We have shown that Japanese native chickens do not necessarily have resistance to HPAIV and that the pathogenic characteristics of HPAIVs are quite different between native and commercial chickens.
Collapse
Affiliation(s)
- Aya Matsuu
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan,
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshikazu Fujimoto
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Mihoko Yabuki
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Saki Sakuma
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu City 501-1193, Japan
| |
Collapse
|
14
|
Wang D, Li M, Xiong C, Yan Y, Hu J, Hao M, Liang B, Chen J, Chen G, Yang G, Li Y, Zhang J, Gulyaeva M, Shestopalov A, Shi W, Bi Y, Liu H, Wang H, Liu D, Chen J. Ecology of avian influenza viruses in migratory birds wintering within the Yangtze River wetlands. Sci Bull (Beijing) 2021; 66:2014-2024. [PMID: 36654171 DOI: 10.1016/j.scib.2021.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Migratory birds are considered natural reservoirs of avian influenza A viruses (AIVs). To further our viral ecology knowledge and understand the subsequent risk posed by wild birds, we conducted a 4-year surveillance study of AIVs in the bird wintering wetlands of the Yangtze River, China. We collected over 8000 samples and isolated 122 AIV strains. Analyses were then carried out with 108 novel sequenced genomes and data were deposited in GISAID and other public databases. The results showed that the Yangtze River wintering wetlands functioned as a mixing ground, where various subtypes of AIVs were detected harboring a high diversity of nucleotide sequences; moreover, a portion of AIV gene segments were persistent inter-seasonally. Phylogenetic incongruence presented complex reassortment events and distinct patterns among various subtypes. In addition, we observed that viral gene segments in wintering wetlands were closely related to known North American isolates, indicating that intercontinental gene flow occurred. Notably, highly pathogenic H5 and low pathogenic H9 viruses, which usually circulate in poultry, were found to have crossed the poultry/wild bird interface, with the viruses introduced to wintering birds. Overall, this study represented the largest AIV surveillance effort of wild birds within the Yangtze River wintering wetlands. Surveillance data highlighted the important role of wintering wild birds in the ecology of AIVs and may enable future early warnings of novel AIV emergence.
Collapse
Affiliation(s)
- Decheng Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaochao Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juefu Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China
| | - Mengchan Hao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China
| | - Bilin Liang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Guang Chen
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Guoxiang Yang
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Yong Li
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Jun Zhang
- Hubei Wildlife Rescue, Research and Development Center, Wuhan 430074, China
| | - Marina Gulyaeva
- Novosibirsk State University, Novosibirsk 630090, Russia; Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Alexander Shestopalov
- Novosibirsk State University, Novosibirsk 630090, Russia; Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Subclinical Infection and Transmission of Clade 2.3.4.4 H5N6 Highly Pathogenic Avian Influenza Virus in Mandarin Duck ( Aix galericulata) and Domestic Pigeon ( Columbia livia domestica). Viruses 2021; 13:v13061069. [PMID: 34199847 PMCID: PMC8227613 DOI: 10.3390/v13061069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/29/2023] Open
Abstract
Since 2014, H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses (HPAIV) have caused outbreaks in wild birds and poultry in multiple continents, including Asia, Europe, Africa, and North America. Wild birds were suspected to be the sources of the local and global spreads of HPAIV. This study evaluated the infectivity, pathogenicity, and transmissibility of clade 2.3.4.4 H5N6 HPAIV in mandarin ducks (Aixgalericulata) and domestic pigeons (Columbia livia domestica). None of the birds used in this study, 20 mandarin ducks or 8 pigeons, showed clinical signs or mortality due to H5N6 HPAI infection. Two genotypes of H5N6 HPAIV showed replication and transmission by direct and indirect contact between mandarin ducks. H5N6 HPAIV replicated and transmitted by direct contact between pigeons, although the viral shedding titer and duration were relatively lower and shorter than those in mandarin ducks. Influenza virus antigen was detected in various internal organs of infected mandarin ducks and pigeons, indicating systemic infection. Therefore, our results indicate mandarin ducks and pigeons can be subclinically infected with clade 2.3.4.4 H5N6 HPAIV and transfer the virus to adjacent birds. The role of mandarin ducks and pigeons in the spread and prevalence of clade 2.3.4.4 H5N6 viruses should be carefully monitored.
Collapse
|
16
|
Elucidating the Local Transmission Dynamics of Highly Pathogenic Avian Influenza H5N6 in the Republic of Korea by Integrating Phylogenetic Information. Pathogens 2021; 10:pathogens10060691. [PMID: 34199439 PMCID: PMC8230294 DOI: 10.3390/pathogens10060691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) virus is one of the most virulent and infectious pathogens of poultry. As a response to HPAI epidemics, veterinary authorities implement preemptive depopulation as a controlling strategy. However, mass culling within a uniform radius of the infection site can result in unnecessary depopulation. Therefore, it is useful to quantify the transmission distance from infected premises (IPs) before determining the optimal area for preemptive depopulation. Accordingly, we analyzed the transmission risk within spatiotemporal clusters of IPs using transmission kernel estimates derived from phylogenetic clustering information on 311 HPAI H5N6 IPs identified during the 2016–2017 epidemic, Republic of Korea. Subsequently, we explored the impact of varying the culling radius on the local transmission of HPAI given the transmission risk estimates. The domestic duck farm density was positively associated with higher transmissibility. Ring culling over a radius of 3 km may be effective for areas with high dense duck holdings, but this approach does not appear to significantly reduce the risk for local transmission in areas with chicken farms. This study provides the first estimation of the local transmission dynamics of HPAI in the Republic of Korea as well as insight into determining an effective ring culling radius.
Collapse
|
17
|
Antibodies to Highly Pathogenic A/H5Nx (Clade 2.3.4.4) Influenza Viruses in the Sera of Vietnamese Residents. Pathogens 2021; 10:pathogens10040394. [PMID: 33806156 PMCID: PMC8064466 DOI: 10.3390/pathogens10040394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
To cause a pandemic, an influenza virus has to overcome two main barriers. First, the virus has to be antigenically new to humans. Second, the virus has to be directly transmitted from humans to humans. Thus, if the avian influenza virus is able to pass the second barrier, it could cause a pandemic, since there is no immunity to avian influenza in the human population. To determine whether the adaptation process is ongoing, analyses of human sera could be conducted in populations inhabiting regions where pandemic virus variant emergence is highly possible. This study aimed to analyze the sera of Vietnamese residents using hemagglutinin inhibition reaction (HI) and microneutralization (MN) with A/H5Nx (clade 2.3.4.4) influenza viruses isolated in Vietnam and the Russian Federation in 2017–2018. In this study, we used sera from 295 residents of the Socialist Republic of Vietnam collected from three groups: 52 samples were collected from households in Nam Dinh province, where poultry deaths have been reported (2017); 96 (2017) and 147 (2018) samples were collected from patients with somatic but not infectious diseases in Hanoi. In all, 65 serum samples were positive for HI, at least to one H5 virus used in the study. In MN, 47 serum samples neutralizing one or two viruses at dilutions of 1/40 or higher were identified. We postulate that the rapidly evolving A/H5Nx (clade 2.3.4.4) influenza virus is possibly gradually adapting to the human host, insofar as healthy individuals have antibodies to a wide spectrum of variants of that subtype.
Collapse
|
18
|
Sakuma S, Uchida Y, Kajita M, Tanikawa T, Mine J, Tsunekuni R, Saito T. First Outbreak of an H5N8 Highly Pathogenic Avian Influenza Virus on a Chicken Farm in Japan in 2020. Viruses 2021; 13:v13030489. [PMID: 33809529 PMCID: PMC8001370 DOI: 10.3390/v13030489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
On 5 November 2020, a confirmed outbreak due to an H5N8 highly pathogenic avian influenza virus (HPAIV) occurred at an egg-hen farm in Kagawa prefecture (western Japan). This virus, A/chicken/Kagawa/11C/2020 (Kagawa11C2020), was the first HPAI poultry isolate in Japan in 2020 and had multiple basic amino acids—a motif conferring high pathogenicity to chickens—at the hemagglutinin cleavage site. Mortality of chickens was 100% through intravenous inoculation tests performed according to World Organization for Animal Health criteria. Phylogenetic analysis showed that the hemagglutinin of Kagawa11C2020 belongs to clade 2.3.4.4B of the H5 Goose/Guangdong lineage and clusters with H5N8 HPAIVs isolated from wild bird feces collected in Hokkaido (Japan) and Korea in October 2020. These H5N8 HPAIVs are closely related to H5N8 HPAIVs isolated in European countries during the winter of 2019–2020. Intranasal inoculation of chickens with 106 fifty-percent egg infectious doses of Kagawa11C2020 revealed that the 50% chicken lethal dose was 104.63 and the mean time to death was 134.4 h. All infected chickens demonstrated viral shedding beginning on 2 dpi—before clinical signs were observed. These results suggest that affected chickens could transmit Kagawa11C2020 to surrounding chickens in the absence of clinical signs for several days before they died.
Collapse
Affiliation(s)
- Saki Sakuma
- Division of Transboundary Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Ibaraki 3050856, Japan; (S.S.); (T.T.); (J.M.); (R.T.); (T.S.)
| | - Yuko Uchida
- Division of Transboundary Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Ibaraki 3050856, Japan; (S.S.); (T.T.); (J.M.); (R.T.); (T.S.)
- Correspondence: ; Tel.: +81-29-838-7758
| | - Momoyo Kajita
- Hokkaido Kamikawa Livestock Hygiene Service Center, Hokkaido 0718154, Japan;
| | - Taichiro Tanikawa
- Division of Transboundary Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Ibaraki 3050856, Japan; (S.S.); (T.T.); (J.M.); (R.T.); (T.S.)
| | - Junki Mine
- Division of Transboundary Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Ibaraki 3050856, Japan; (S.S.); (T.T.); (J.M.); (R.T.); (T.S.)
| | - Ryota Tsunekuni
- Division of Transboundary Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Ibaraki 3050856, Japan; (S.S.); (T.T.); (J.M.); (R.T.); (T.S.)
| | - Takehiko Saito
- Division of Transboundary Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Ibaraki 3050856, Japan; (S.S.); (T.T.); (J.M.); (R.T.); (T.S.)
| |
Collapse
|
19
|
Wang B, Su Q, Luo J, Li M, Wu Q, Chang H, Du J, Huang C, Ma J, Han S, Yuan G, He Y, Guo M, Zhang Q, He H. Differences in Highly Pathogenic H5N6 Avian Influenza Viral Pathogenicity and Inflammatory Response in Chickens and Ducks. Front Microbiol 2021; 12:593202. [PMID: 33584608 PMCID: PMC7878534 DOI: 10.3389/fmicb.2021.593202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/06/2021] [Indexed: 01/09/2023] Open
Abstract
Infection with H5N6 highly pathogenic avian influenza virus caused high mortality in chickens, while ducks often appear to be asymptomatic. But, some recent H5Nx subtype viruses could cause high mortality in ducks. The variation between different species and the mechanisms by which some H5Nx viruses cause death in ducks requires investigation to identify the key processes in influenza susceptibility and pathogenesis. Here, we characterized two representative H5N6 viruses, A/Pavo cristatus/Jiangxi/JA1/2016 (JA1) and A/Anas crecca/shanghai/SH1/2016 (SH1), and compared their pathogenicity and expression profiles of immune-related genes in chickens and ducks to identify the elements of the host immune-related response that were involved in disease lethality. Results suggested that H5N6 HPAIVs had higher pathogenic and inflammatory effect in chickens than in ducks. Importantly, the TNF-α, IL-6, IFN-γ and iNOS levels were significantly higher in the lung of SH1 infected chickens compared to those of ducks. And we found higher systemic levels of IL-6 induced by JA1 in chickens than in ducks. In addition, our experiments demonstrated that JA1 was associated with greater pathogenicity in ducks were accompanied by the excessive expression of iNOS in the brain. These results are helpful to understand the relationship between the pathogenicity of H5N6 AIVs and inflammatory responses to them in chickens and ducks.
Collapse
Affiliation(s)
- Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiaoxing Wu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Han Chang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Du
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chengmei Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiajun Ma
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yapeng He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Minglei Guo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingxun Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Huang J, Wu S, Wu W, Liang Y, Zhuang H, Ye Z, Qu X, Liao M, Jiao P. The Biological Characteristics of Novel H5N6 Highly Pathogenic Avian Influenza Virus and Its Pathogenesis in Ducks. Front Microbiol 2021; 12:628545. [PMID: 33584629 PMCID: PMC7874018 DOI: 10.3389/fmicb.2021.628545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
Clade 2.3.4.4 H5Nx highly pathogenic avian influenza viruses (HPAIVs) have caused outbreaks in poultry in the world. Some of these viruses acquired internal genes from other subtype avian influenza viruses (AIVs) such as H9 and H6 for the generation of novel reassortant viruses and continually circulated in poultry. Here, we applied a duck-origin virus DK87 and a chicken-origin virus CK66 to assess the biological characteristics of novel reassortant H5N6 HPAIVs and its pathogenesis in ducks. A genetic analysis indicated that the HA genes of the two H5N6 HPAIVs were closely related to the H5 viruses of clade 2.3.4.4 circulating in Eastern Asia and classified into H5 AIV/Eastern Asia (EA)-like lineage. Their NA genes fell into Eurasian lineage had close relationship with those of H5N6 viruses circulating in China, Laos, Vietnam, Japan, and Korea. All internal genes of DK87 were aggregated closely with H5 AIV/EA-like viruses. The internal genes (PB1, PA, NP, M, and NS) of CK66 were derived from H9N2 AIV/SH98-like viruses and the PB2 were derived from H5 AIV/EA-like viruses. These results indicate that clade 2.3.4.4 H5N6 AIVs have continually evolved and recombined with the H9N2 viruses circulating in Southern China. Pathogenicity test showed that the two viruses displayed a broader tissue distribution in ducks and caused no clinical signs. These results indicated that ducks were permissive for the replication of the chicken-origin reassortant virus CK66 without prior adaptation, but the duck-origin virus DK87-inoculated ducks showed significantly higher viral titers in some organs than the CK66-inoculated ducks at 5 day post-inoculated (DPI). The recovery of viruses from oropharyngea and cloacal swabs of contacted ducks indicated that they transmitted in native ducks by direct contact. Quantitative reverse transcription PCR (qRT-PCR) results revealed that the immune-relative genes (PRRs, IFNs, Mx-1, IL-6, and IL-8) in the lungs of inoculated ducks were expressed regardless of virus origin, but the expression of these genes was significantly higher in response to infection with the DK87 virus compared to the CK66 virus at 3 DPI. Overall, we should provide further insights into how clade 2.3.4.4 H5N6 AIVs undergo genetic and pathogenic variations to prevent outbreaks of this disease.
Collapse
Affiliation(s)
- Jianni Huang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Siyu Wu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wenbo Wu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiwen Liang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haibin Zhuang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiyu Ye
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyun Qu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peirong Jiao
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
21
|
Moriguchi S, Hosoda R, Ushine N, Kato T, Hayama SI. Surveillance system for avian influenza in wild birds and implications of its improvement with insights into the highly pathogenic avian influenza outbreaks in Japan. Prev Vet Med 2020; 187:105234. [PMID: 33360671 DOI: 10.1016/j.prevetmed.2020.105234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/03/2020] [Accepted: 12/09/2020] [Indexed: 12/09/2022]
Abstract
Since the re-emergence of a highly pathogenic avian influenza (HPAI) in 2004, outbreaks of the viral subtypes HPAI, H5N1, H5N8, and H5N6 in wild birds, poultry, and zoo birds have occurred in Japan. In 2008, a nation-wide avian influenza (AI) surveillance program was started for the early detection of the HPAI virus (HPAIV) and for the assessment of HPAIV infection among wild birds. In this study, we aimed to conduct an overview of the AI surveillance system of wild birds in Japan, including those in the regions and prefectures, to assess its overall performance and develop insights on its improvement. We analyzed past surveillance data in Japan and conducted questionnaire surveys for the officers in 11 regional branches of the Ministry of Environment and the nature conservation divisions of 47 prefectures to acquire details regarding those AI surveillance. We found that the early detection of HPAIV in wild birds was successfully achieved in only one of the five outbreak seasons during the 2008-2019 period in Japan, and the assessment of HPAIV infection had possibly not been adequate in the national surveillance system. In the winter season, AI surveillance in most prefectures were mainly conducted by means of passive surveillance through reported dead birds and active surveillance through collected waterbird feces. Conversely, less than half of the prefectures conducted bird monitoring, patrolling in migratory bird habitats, and AI antigen testing in rescued birds. In areas surrounding HPAI occurrence sites (<10 km), bird monitoring and patrolling efforts were enhanced. However, AI testing efforts in waterbird feces and rescued birds were decreased. The AI surveillance for endangered bird species and in national wildlife protection areas was conducted by the branches of the Ministry of Environment and by the prefectures. Based on our results, we concluded that for maximum efficiency, legislation which specialized in wildlife pathogens should be necessary to prepare adequate national budget and testing capacity for appropriate surveillance system with periodical assessment for surveillance results and the system.
Collapse
Affiliation(s)
- Sachiko Moriguchi
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan.
| | - Rin Hosoda
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Nana Ushine
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Takuya Kato
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Shin-Ichi Hayama
- Laboratory of Wildlife Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
22
|
Zhang J, Chen Y, Shan N, Wang X, Lin S, Ma K, Li B, Li H, Liao M, Qi W. Genetic diversity, phylogeography, and evolutionary dynamics of highly pathogenic avian influenza A (H5N6) viruses. Virus Evol 2020; 6:veaa079. [PMID: 33324491 PMCID: PMC7724252 DOI: 10.1093/ve/veaa079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
From 2013 onwards, the spread of novel H5N6 highly pathogenic avian influenza (HPAI) viruses in China has posed great threats to not only poultry industry but also human health. Since late-2016 in particular, frequent outbreaks of clade 2.3.4.4 H5N6 HPAI viruses among wild birds have promoted viral dissemination in South Korea, Japan, and European countries. In response to those trends, we conducted molecular genetic analysis of global clade 2.3.4.4 H5N6 viruses in order to characterize spatio-temporal patterns of viral diffusion and genetic diversity among wild birds and poultry. The clade 2.3.4.4 H5N6 viruses were classified into three groups (Group B, C, and D). During the cocirculation of Group C/D H5N6 viruses from 2013 to 2017, viral movements occurred between close or adjacent regions of China, Vietnam, South Korea, and Japan. In addition, viral migration rates from Guangdong and Hunan to multiple adjacent provinces seemed to have been highly supported by transmission routes (Bayes factors >100), suggesting that southern China was an epicenter for the spread of H5N6 viruses in poultry during that period. Since the introduction of H5N6 viruses originating in wild birds in late-2016, evolving H5N6 viruses have lost most previous genotypes (e.g. G1, G2, and G1.2), whereas some prevailing genotypes (e.g. G1.1, G1.1.b, and G3) in aquatic birds have been dominated, and in particular, the effective population size of H5N6 originating in wild birds dramatically increased; however, the population size of poultry-origin H5N6 viruses declined during the same period, indicating that wild bird migration might accelerate the genetic diversity of H5N6 viruses. Phylogeographic approaches revealed that two independent paths of H5N6 viruses into South Korea and Japan from 2016 to 2018 and provided evidence of Group B and Group C H5N6 viruses were originated from Europe and China, respectively, as regions located in the East Asia-Australian migration flyway, which accelerated the genetic variability and dissemination. Altogether, our study provides insights to examine time of origin, evolutionary rate, diversification patterns, and phylogeographical approach of global clade 2.3.4.4 H5N6 HPAI viruses for assessing their evolutionary process and dissemination pathways.
Collapse
Affiliation(s)
- Jiahao Zhang
- College of Veterinary Medicine, South China Agricultural University.,National Avian Influenza Para-Reference Laboratory.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission.,Ministry of Agricultural and Rural Affairs, Key Laboratory of Zoonoses.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Wushan Rd, Tianhe District, Guangzhou, Guangdong 510642, P.R. China
| | - Yiqun Chen
- College of Veterinary Medicine, South China Agricultural University.,National Avian Influenza Para-Reference Laboratory.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission
| | - Nan Shan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China.,Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, Jiangsu 210023, P.R. China
| | - Xiaomin Wang
- College of Veterinary Medicine, South China Agricultural University.,National Avian Influenza Para-Reference Laboratory.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission
| | - Shuxia Lin
- College of Veterinary Medicine, South China Agricultural University.,National Avian Influenza Para-Reference Laboratory.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission
| | - Kaixiong Ma
- College of Veterinary Medicine, South China Agricultural University.,National Avian Influenza Para-Reference Laboratory.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission
| | - Bo Li
- College of Veterinary Medicine, South China Agricultural University.,National Avian Influenza Para-Reference Laboratory.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission
| | - Huanan Li
- College of Veterinary Medicine, South China Agricultural University.,National Avian Influenza Para-Reference Laboratory.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University.,National Avian Influenza Para-Reference Laboratory.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission.,Ministry of Agricultural and Rural Affairs, Key Laboratory of Zoonoses.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Wushan Rd, Tianhe District, Guangzhou, Guangdong 510642, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Rd, Tianhe District, Guangzhou, Guangdong 510642, P.R. China
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University.,National Avian Influenza Para-Reference Laboratory.,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, National Development and Reform Commission.,Ministry of Agricultural and Rural Affairs, Key Laboratory of Zoonoses.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Wushan Rd, Tianhe District, Guangzhou, Guangdong 510642, P.R. China.,Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Rd, Tianhe District, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
23
|
Uno Y, Soda K, Tomioka Y, Ito T, Usui T, Yamaguchi T. Pathogenicity of clade 2.3.2.1 H5N1 highly pathogenic avian influenza virus in American kestrel ( Falco sparverius). Avian Pathol 2020; 49:515-525. [PMID: 32619103 DOI: 10.1080/03079457.2020.1787337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Birds of prey, including endangered species, have been infected with H5 highly pathogenic avian influenza viruses (HPAIVs) in several countries. In this present study, we assessed the pathogenicity of the clade 2.3.2.1 H5N1 HPAIV in American kestrels (Falco sparverius) with a view to preventing future outbreaks in raptors. The kestrels were intranasally inoculated with the virus or fed the meat of chicks that had died from viral infection. Kestrels in both groups initially had reduced food intake, showed clinical signs such as depression and neurologic manifestations, and succumbed to the infection within 6 days. The kestrels primarily shed the virus orally from 1 day post-inoculation until death, with an average titre of 104.5-5.7 EID50/ml, which is comparable to the inoculum titre. The viruses replicated in almost all tested tissues; notably, the feather calamuses also contained infectious virions and/or viral genes. Pancreatic lesions were present in several infected birds, as shown in previous cases of HPAIV infection in raptors. These results indicate that kestrels are highly susceptible to infection by clade 2.3.2.1 H5 HPAIVs, which readily occurs through the consumption of infected bird carcasses. Early detection and removal of HPAIV infected carcasses in the field is essential for preventing outbreaks in raptors. RESEARCH HIGHLIGHTS Clade 2.3.2.1 H5 HPAIV caused lethal infection in American kestrels. Kestrels with the HPAIV showed neurologic signs and eye disorders. The HPAIV replicated in systemic tissues of kestrels, and was orally shed. The HPAIV was recovered from feather calamus of kestrels.
Collapse
Affiliation(s)
- Yukiko Uno
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kosuke Soda
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yukiko Tomioka
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Toshihiro Ito
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tatsufumi Usui
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tsuyoshi Yamaguchi
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
24
|
Abstract
In 1918, a strain of influenza A virus caused a human pandemic resulting in the deaths of 50 million people. A century later, with the advent of sequencing technology and corresponding phylogenetic methods, we know much more about the origins, evolution and epidemiology of influenza epidemics. Here we review the history of avian influenza viruses through the lens of their genetic makeup: from their relationship to human pandemic viruses, starting with the 1918 H1N1 strain, through to the highly pathogenic epidemics in birds and zoonoses up to 2018. We describe the genesis of novel influenza A virus strains by reassortment and evolution in wild and domestic bird populations, as well as the role of wild bird migration in their long-range spread. The emergence of highly pathogenic avian influenza viruses, and the zoonotic incursions of avian H5 and H7 viruses into humans over the last couple of decades are also described. The threat of a new avian influenza virus causing a human pandemic is still present today, although control in domestic avian populations can minimize the risk to human health. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Collapse
Affiliation(s)
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
25
|
Usui T, Soda K, Sumi K, Ozaki H, Tomioka Y, Ito H, Murase T, Kawamoto T, Miura M, Komatsu M, Imanishi T, Kurobe M, Ito T, Yamaguchi T. Outbreaks of highly pathogenic avian influenza in zoo birds caused by HA clade 2.3.4.4 H5N6 subtype viruses in Japan in winter 2016. Transbound Emerg Dis 2019; 67:686-697. [PMID: 31605424 DOI: 10.1111/tbed.13386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 11/27/2022]
Abstract
In late 2016, two zoos, one in northern Japan and the other in central Japan, experienced highly pathogenic avian influenza (HPAI) outbreaks, in which multiple zoo birds were infected with H5N6 subtype HPAI virus (HPAIV). Here, we report an overview of these HPAI outbreaks. HPAIV infections were confirmed by virus isolation in three black swans (Cygnus atratus) and three snowy owls (Bubo scandiacus) kept in the Omoriyama Zoo hospital. At Higashiyama Zoo and Botanical Gardens, following the death of a black swan at a zoo pond, nine waterfowl, including two black swans, four cackling geese (Branta hutchinsii leucopareia), two mallards (Anas platyrhynchos), and a wigeon (Anas penelope), died after HPAIV infection in isolation facilities. Based on the presence of H5-specific antibodies in their sera, two surviving black swans and a surviving mallard at Higashiyama Zoo appeared to have HPAIV infection, although the virus was not isolated. The detectable levels of antibodies (≥10 HI) were maintained for at least 5-9 months, as determined by haemagglutinin inhibition test. Isolation of two H5N6 subtype HPAIVs from an open-air pond where affected zoo birds were previously housed at Higashiyama Zoo strongly indicates that wild waterfowl associated with aquatic environments brought the virus to the zoo. The phylogenetic relationships of the 18 isolates indicated direct viral transmission among birds within each zoo. In both zoos, containment of suspected birds in isolation facilities might have allowed the virus spread among birds inside the facility. However, maintaining containment measures and strict sanitation procedures could facilitate successful physical containment and clearance of HPAIV in both zoos.
Collapse
Affiliation(s)
- Tatsufumi Usui
- Avian Zoonosis Research Center, Tottori University, Tottori, Japan
| | - Kosuke Soda
- Avian Zoonosis Research Center, Tottori University, Tottori, Japan
| | - Kanae Sumi
- Avian Zoonosis Research Center, Tottori University, Tottori, Japan
| | - Hiroichi Ozaki
- Avian Zoonosis Research Center, Tottori University, Tottori, Japan
| | - Yukiko Tomioka
- Laboratory of Experimental Animal, Tottori University, Tottori, Japan
| | - Hiroshi Ito
- Avian Zoonosis Research Center, Tottori University, Tottori, Japan
| | - Toshiyuki Murase
- Avian Zoonosis Research Center, Tottori University, Tottori, Japan
| | | | | | | | | | - Masami Kurobe
- Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Toshihiro Ito
- Avian Zoonosis Research Center, Tottori University, Tottori, Japan
| | | |
Collapse
|
26
|
Tsunekuni R, Sudo K, Nguyen PT, Luu BD, Phuong TD, Tan TM, Nguyen T, Mine J, Nakayama M, Tanikawa T, Sharshov K, Takemae N, Saito T. Isolation of highly pathogenic H5N6 avian influenza virus in Southern Vietnam with genetic similarity to those infecting humans in China. Transbound Emerg Dis 2019; 66:2209-2217. [PMID: 31309743 DOI: 10.1111/tbed.13294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 11/30/2022]
Abstract
Since 2013, H5N6 highly pathogenic avian influenza viruses (HPAIVs) have been responsible for outbreaks in poultry and wild birds around Asia. H5N6 HPAIV is also a public concern due to sporadic human infections being reported in China. In the current study, we isolated an H5N6 HPAIV strain (A/Muscovy duck/Long An/AI470/2018; AI470) from an outbreak at a Muscovy duck farm in Long An Province in Southern Vietnam in July 2018 and genetically characterized it. Basic Local Alignment Search Tool (BLAST) analysis revealed that the eight genomic segments of AI470 were most closely related (99.6%-99.9%) to A/common gull/Saratov/1676/2018 (H5N6), which was isolated in October 2018 in Russia. Furthermore, AI470 also shared 99.4%-99.9% homology with A/Guangxi/32797/2018, an H5N6 HPAIV strain that infected humans in China in 2018. Phylogenetic analyses of the entire genome showed that AI470 was directly derived from H5N6 HPAIVs that were in South China from 2015 to 2018 and clustered with four H5N6 HPAIV strains of human origin in South China from 2017 to 2018. This indicated that AI470 was introduced into Vietnam from China. In addition, molecular characteristics related to mammalian adaptation among the recent human H5N6 HPAIV viruses, except PB2 E627K, were shared by AI470. These findings are cause for concern since H5N6 HPAIV strains that possess a risk of human infection have crossed the Chinese border.
Collapse
Affiliation(s)
- Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, Tsukuba, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Kasumi Sudo
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
| | - Phuong Thanh Nguyen
- Department of Animal Health, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Bach Duc Luu
- Department of Animal Health, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Thai Duy Phuong
- Department of Animal Health, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tran Minh Tan
- Department of Animal Health, Regional Animal Health Office No. 6, Ho Chi Minh City, Vietnam
| | - Tung Nguyen
- Division of International Cooperation and Communications, Department of Animal Health, Hanoi, Vietnam
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, Tsukuba, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Momoko Nakayama
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, Tsukuba, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, Tsukuba, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, Tsukuba, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, Tsukuba, Japan.,Thailand-Japan Zoonotic Diseases Collaboration Center, Bangkok, Thailand.,United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
27
|
Mine J, Uchida Y, Sharshov K, Sobolev I, Shestopalov A, Saito T. Phylogeographic evidence for the inter- and intracontinental dissemination of avian influenza viruses via migration flyways. PLoS One 2019; 14:e0218506. [PMID: 31242207 PMCID: PMC6594620 DOI: 10.1371/journal.pone.0218506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 01/31/2023] Open
Abstract
Genetically related highly pathogenic avian influenza viruses (HPAIVs) of H5N6 subtype caused outbreaks simultaneously in East Asia and Europe—geographically distinct regions—during winter 2017–2018. This situation prompted us to consider whether the application of phylogeographic analysis to a particular gene segment of AIVs could provide clues for understanding how AIV had been disseminated across the continent. Here, the N6 NA genes of influenza viruses isolated across the world were subjected to phylogeographic analysis to illustrate the inter- and intracontinental dissemination of AIVs. Those isolated in East Asia during winter and in Mongolia/Siberia during summer were comingled within particular clades of the phylogeographic tree. For AIVs in one clade, their dissemination in eastern Eurasia extended from Yakutia, Russia, in the north to East Asia in the south. AIVs in western Asia, Europe, and Mongolia were also comingled within other clades, indicating that Mongolia/Siberia plays an important role in the dissemination of AIVs across the Eurasian continent. Mongolia/Siberia may therefore have played a role in the simultaneous outbreaks of H5N6 HPAIVs in Europe and East Asia during the winter of 2017–2018. In addition to the long-distance intracontinental disseminations described above, intercontinental disseminations of AIVs between Eurasia and Africa and between Eurasia and North America were also observed. Integrating these results and known migration flyways suggested that the migration of wild birds and the overlap of flyways, such as that observed in Mongolia/Siberia and along the Alaskan Peninsula, contributed to the long-distance intra- and intercontinental dissemination of AIVs. These findings highlight the importance of understanding the movement of migratory birds and the dynamics of AIVs in breeding areas—especially where several migration flyways overlap—in forecasting outbreaks caused by HPAIVs.
Collapse
Affiliation(s)
- Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Ivan Sobolev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- * E-mail:
| |
Collapse
|
28
|
Antigua KJC, Choi WS, Baek YH, Song MS. The Emergence and Decennary Distribution of Clade 2.3.4.4 HPAI H5Nx. Microorganisms 2019; 7:microorganisms7060156. [PMID: 31146461 PMCID: PMC6616411 DOI: 10.3390/microorganisms7060156] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022] Open
Abstract
Reassortment events among influenza viruses occur naturally and may lead to the development of new and different subtypes which often ignite the possibility of an influenza outbreak. Between 2008 and 2010, highly pathogenic avian influenza (HPAI) H5 of the N1 subtype from the A/goose/Guangdong/1/96-like (Gs/GD) lineage generated novel reassortants by introducing other neuraminidase (NA) subtypes reported to cause most outbreaks in poultry. With the extensive divergence of the H5 hemagglutinin (HA) sequences of documented viruses, the WHO/FAO/OIE H5 Evolutionary Working Group clustered these viruses into a systematic and unified nomenclature of clade 2.3.4.4 currently known as “H5Nx” viruses. The rapid emergence and circulation of these viruses, namely, H5N2, H5N3, H5N5, H5N6, H5N8, and the regenerated H5N1, are of great concern based on their pandemic potential. Knowing the evolution and emergence of these novel reassortants helps to better understand their complex nature. The eruption of reports of each H5Nx reassortant through time demonstrates that it could persist beyond its usual seasonal activity, intensifying the possibility of these emerging viruses’ pandemic potential. This review paper provides an overview of the emergence of each novel HPAI H5Nx virus as well as its current epidemiological distribution.
Collapse
Affiliation(s)
- Khristine Joy C Antigua
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Won-Suk Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Yun Hee Baek
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
29
|
Mine J, Uchida Y, Nakayama M, Tanikawa T, Tsunekuni R, Sharshov K, Takemae N, Sobolev I, Shestpalov A, Saito T. Genetics and pathogenicity of H5N6 highly pathogenic avian influenza viruses isolated from wild birds and a chicken in Japan during winter 2017-2018. Virology 2019; 533:1-11. [PMID: 31071540 DOI: 10.1016/j.virol.2019.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/27/2023]
Abstract
An H5N6 highly pathogenic avian influenza virus (HPAIV) outbreak occurred in poultry in Japan during January 2018, and H5N6 HPAIVs killed several wild birds in 3 prefectures during Winter 2017-2018. Time-measured phylogenetic analyses demonstrated that the Hemagglutinin (HA) and internal genes of these isolates were genetically similar to clade 2.3.4.4.B H5N8 HPAIVs in Europe during Winter 2016-2017, and Neuraminidase (NA) genes of the poultry and wild bird isolates were gained through distinct reassortments with AIVs that were estimated to have circulated possibly in Siberia during Summer 2017 and Summer 2016, respectively. Lethal infectious dose to chickens was similar between the poultry and wild-bird isolates. H5N6 HPAIVs during Winter 2017-2018 in Japan had higher 50% chicken lethal doses and lower transmission efficiency than the H5Nx HPAIVs that caused previous outbreaks in Japan, thus explaining in part why cases during the 2017-2018 outbreak were sporadic.
Collapse
Affiliation(s)
- Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Momoko Nakayama
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand
| | - Ivan Sobolev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Shestpalov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, 10900, Thailand; United Graduate School of Veterinary Sciences, Gifu University, 1-1, Yanagito, Gifu, Gifu, 501-1112, Japan.
| |
Collapse
|
30
|
Chen LH, Lee DH, Liu YP, Li WC, Swayne DE, Chang JC, Chen YP, Lee F, Tu WJ, Lin YJ. Reassortant Clade 2.3.4.4 of Highly Pathogenic Avian Influenza A(H5N6) Virus, Taiwan, 2017. Emerg Infect Dis 2019; 24:1147-1149. [PMID: 29774853 PMCID: PMC6004838 DOI: 10.3201/eid2406.172071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A highly pathogenic avian influenza A(H5N6) virus of clade 2.3.4.4 was detected in a domestic duck found dead in Taiwan during February 2017. The endemic situation and continued evolution of various reassortant highly pathogenic avian influenza viruses in Taiwan warrant concern about further reassortment and a fifth wave of intercontinental spread.
Collapse
|
31
|
Uchida Y, Mine J, Takemae N, Tanikawa T, Tsunekuni R, Saito T. Comparative pathogenicity of H5N6 subtype highly pathogenic avian influenza viruses in chicken, Pekin duck and Muscovy duck. Transbound Emerg Dis 2019; 66:1227-1251. [DOI: 10.1111/tbed.13141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Yuko Uchida
- Influenza Unit, Division of Transboundary Animal DiseasesNational Institute of Animal Health, National Agriculture and Food Research Organization (NARO) Kannondai, Tsukuba Ibaraki Japan
| | - Junki Mine
- Influenza Unit, Division of Transboundary Animal DiseasesNational Institute of Animal Health, National Agriculture and Food Research Organization (NARO) Kannondai, Tsukuba Ibaraki Japan
| | - Nobuhiro Takemae
- Influenza Unit, Division of Transboundary Animal DiseasesNational Institute of Animal Health, National Agriculture and Food Research Organization (NARO) Kannondai, Tsukuba Ibaraki Japan
| | - Taichiro Tanikawa
- Influenza Unit, Division of Transboundary Animal DiseasesNational Institute of Animal Health, National Agriculture and Food Research Organization (NARO) Kannondai, Tsukuba Ibaraki Japan
| | - Ryota Tsunekuni
- Influenza Unit, Division of Transboundary Animal DiseasesNational Institute of Animal Health, National Agriculture and Food Research Organization (NARO) Kannondai, Tsukuba Ibaraki Japan
| | - Takehiko Saito
- Influenza Unit, Division of Transboundary Animal DiseasesNational Institute of Animal Health, National Agriculture and Food Research Organization (NARO) Kannondai, Tsukuba Ibaraki Japan
| |
Collapse
|
32
|
Lee YN, Cheon SH, Kye SJ, Lee EK, Sagong M, Heo GB, Kang YM, Cho HK, Kim YJ, Kang HM, Lee MH, Lee YJ. Novel reassortants of clade 2.3.4.4 H5N6 highly pathogenic avian influenza viruses possessing genetic heterogeneity in South Korea in late 2017. J Vet Sci 2019; 19:850-854. [PMID: 30173498 PMCID: PMC6265581 DOI: 10.4142/jvs.2018.19.6.850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 01/23/2023] Open
Abstract
Novel H5N6 highly pathogenic avian influenza viruses (HPAIVs) were isolated from duck farms and migratory bird habitats in South Korea in November to December 2017. Genetic analysis demonstrated that at least two genotypes of H5N6 were generated through reassortment between clade 2.3.4.4 H5N8 HPAIVs and Eurasian low pathogenic avian influenza virus in migratory birds in late 2017, suggesting frequent reassortment of clade 2.3.4.4 H5 HPAIVs and highlighting the need for systematic surveillance in Eurasian breeding grounds.
Collapse
Affiliation(s)
- Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Sun-Ha Cheon
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Soo-Jeong Kye
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Gyeong-Beom Heo
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Yong-Myung Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hyun-Kyu Cho
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Yong-Joo Kim
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hyun-Mi Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Myoung-Heon Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| |
Collapse
|
33
|
Bazarragchaa E, Okamatsu M, Ulaankhuu A, Twabela AT, Matsuno K, Kida H, Sakoda Y. Evaluation of a rapid isothermal nucleic acid amplification kit, Alere™ i Influenza A&B, for the detection of avian influenza viruses. J Virol Methods 2019; 265:121-125. [PMID: 30633948 DOI: 10.1016/j.jviromet.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 11/16/2022]
Abstract
Rapid and accurate diagnosis of influenza virus infection is essential for quick responses for both human and animal health. The Alere™ i Influenza A&B is a novel isothermal nucleic acid amplification kit that can detect and differentiate between influenza A and B viruses in human specimens in approximately 15 min. In the present study, the performance of the Alere™ i Influenza A&B kit was evaluated for its ability to detect avian influenza virus in chickens. The kit was able to detect representative avian influenza virus strains (hemagglutinin subtypes H1-H16, including the recently isolated H5 and H7 highly pathogenic avian influenza viruses), and the detection limit of the kit for these viruses varied between 10-1.4-102.1 50% egg-infective dose per test, which is higher than the analytical sensitivity of the antigen detection immunochromatography kit ESPLINE® A INFLUENZA. In experimentally infected chickens inoculated with a highly pathogenic avian influenza virus strain A/chicken/Hokkaido/002/2016 (H5N6), viral RNA was detected in the tracheal and cloacal swabs. These results indicate that this kit has the potential to be used as a rapid screening test of influenza A virus infection in chickens.
Collapse
Affiliation(s)
- Enkhbold Bazarragchaa
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Division of Transboundary Animal Diseases Diagnosis and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17024, Mongolia
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Ankhanbaatar Ulaankhuu
- Division of Transboundary Animal Diseases Diagnosis and Surveillance, State Central Veterinary Laboratory, Ulaanbaatar 17024, Mongolia
| | - Augustin Tshibwabwa Twabela
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Keita Matsuno
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Global Station of Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Hiroshi Kida
- Global Station of Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan; Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Global Station of Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan.
| |
Collapse
|
34
|
Ozawa M, Matsuu A, Khalil AM, Nishi N, Tokorozaki K, Masatani T, Horie M, Okuya K, Ueno K, Kuwahara M, Toda S. Phylogenetic variations of highly pathogenic H5N6 avian influenza viruses isolated from wild birds in the Izumi plain, Japan, during the 2016-17 winter season. Transbound Emerg Dis 2018; 66:797-806. [PMID: 30499632 DOI: 10.1111/tbed.13087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 11/27/2022]
Abstract
During the 2016-2017 winter season, we isolated 33 highly pathogenic avian influenza viruses (HPAIVs) of H5N6 subtype and three low pathogenic avian influenza viruses (LPAIVs) from debilitated or dead wild birds, duck faeces, and environmental water samples collected in the Izumi plain, an overwintering site for migratory birds in Japan. Genetic analyses of the H5N6 HPAIV isolates revealed previously unreported phylogenetic variations in the PB2, PB1, PA, and NS gene segments and allowed us to propose two novel genotypes for the contemporary H5N6 HPAIVs. In addition, analysis of the four gene segments identified close phylogenetic relationships between our three LPAIV isolates and the contemporary H5N6 HPAIV isolates. Our results implied the co-circulation and co-evolution of HPAIVs and LPAIVs within the same wild bird populations, thereby highlighting the importance of avian influenza surveillance targeting not only for HPAIVs but also for LPAIVs.
Collapse
Affiliation(s)
- Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan.,Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Aya Matsuu
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Ahmed Magdy Khalil
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Natsuko Nishi
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan
| | | | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Masayuki Horie
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan.,United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Kosuke Okuya
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Kosei Ueno
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan
| | | | - Shigehisa Toda
- Kagoshima Crane Conservation Committee, Izumi, Kagoshima, Japan
| |
Collapse
|
35
|
Arai Y, Kawashita N, Hotta K, Hoang PVM, Nguyen HLK, Nguyen TC, Vuong CD, Le TT, Le MTQ, Soda K, Ibrahim MS, Daidoji T, Takagi T, Shioda T, Nakaya T, Ito T, Hasebe F, Watanabe Y. Multiple polymerase gene mutations for human adaptation occurring in Asian H5N1 influenza virus clinical isolates. Sci Rep 2018; 8:13066. [PMID: 30166556 PMCID: PMC6117316 DOI: 10.1038/s41598-018-31397-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022] Open
Abstract
The role of the influenza virus polymerase complex in host range restriction has been well-studied and several host range determinants, such as the polymerase PB2-E627K and PB2-D701N mutations, have been identified. However, there may be additional, currently unknown, human adaptation polymerase mutations. Here, we used a database search of influenza virus H5N1 clade 1.1, clade 2.3.2.1 and clade 2.3.4 strains isolated from 2008-2012 in Southern China, Vietnam and Cambodia to identify polymerase adaptation mutations that had been selected in infected patients. Several of these mutations acted either alone or together to increase viral polymerase activity in human airway cells to levels similar to the PB2-D701N and PB2-E627K single mutations and to increase progeny virus yields in infected mouse lungs to levels similar to the PB2-D701N single mutation. In particular, specific mutations acted synergistically with the PB2-D701N mutation and showed synergistic effects on viral replication both in human airway cells and mice compared with the corresponding single mutations. Thus, H5N1 viruses in infected patients were able to acquire multiple polymerase mutations that acted cooperatively for human adaptation. Our findings give new insight into the human adaptation of AI viruses and help in avian influenza virus risk assessment.
Collapse
Affiliation(s)
- Yasuha Arai
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Norihito Kawashita
- Graduate School of Science and Engineering, Kindai University, Osaka, Japan.,Graduate School of Pharmaceutical Science, Osaka University, Osaka, Japan
| | - Kozue Hotta
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Hanoi, Vietnam.,Laboratory of Veterinary Public Health, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Phuong Vu Mai Hoang
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Hang Le Khanh Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Thach Co Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Cuong Duc Vuong
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Thanh Thi Le
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Mai Thi Quynh Le
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Kosuke Soda
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Madiha S Ibrahim
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Science, Osaka University, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiro Ito
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Futoshi Hasebe
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Hanoi, Vietnam
| | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
36
|
Wang X, Zeng Z, Zhang Z, Zheng Y, Li B, Su G, Li H, Huang L, Qi W, Liao M. The Appropriate Combination of Hemagglutinin and Neuraminidase Prompts the Predominant H5N6 Highly Pathogenic Avian Influenza Virus in Birds. Front Microbiol 2018; 9:1088. [PMID: 29896169 PMCID: PMC5987672 DOI: 10.3389/fmicb.2018.01088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Haemagglutinin (HA) and neuraminidase (NA) are two vital surface glycoproteins of influenza virus. The HA of H5N6 highly pathogenic avian influenza virus is divided into Major/H5 and Minor/H5, and its NA consists of short stalk NA and full-length stalk NA. The strain combined with Major/H5 and short stalk NA account for 76.8% of all strains, and the proportion was 23.0% matched by Minor/H5 and full-length stalk NA. Our objective was to investigate the influence of HA-NA matching on the biological characteristics and the effects of the epidemic trend of H5N6 on mice and chickens. Four different strains combined with two HAs and two NAs of the represented H5N6 viruses with the fixed six internal segments were rescued and analyzed. Plaque formation, NA activity of infectious particles, and virus growth curve assays, as well as a saliva acid receptor experiment, with mice and chickens were performed. We found that all the strains can replicate well on Madin-Darby canine kidney (MDCK) cells and chicken embryo fibroblasts (CEF) cells, simultaneously, mice and infection group chickens were complete lethal. However, the strain combined with Major/H5 and short stalk N6 formed smaller plaque on MDCK, showed a moderate replication ability in both MDCK and CEF, and exhibited a higher survival rate among the contact group of chickens. Conversely, strains with opposite biological characters which combined with Minor/H5 and short stalk N6 seldom exist in nature. Hence, we drew the conclusion that the appropriate combination of Major/H5 and short stalk N6 occur widely in nature with appropriate biological characteristics for the proliferation and transmission, whereas other combinations of HA and NA had a low proportion and even have not yet been detected.
Collapse
Affiliation(s)
- Xiuhui Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoyong Zeng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zaoyue Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yi Zheng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bo Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guanming Su
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huanan Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihong Huang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Wenbao Qi
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
37
|
Adlhoch C, Brouwer A, Kuiken T, Mulatti P, Smietanka K, Staubach C, Willeberg P, Barrucci F, Verdonck F, Amato L, Baldinelli F. Avian influenza overview November 2017 - February 2018. EFSA J 2018; 16:e05240. [PMID: 32625858 PMCID: PMC7009675 DOI: 10.2903/j.efsa.2018.5240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Between 16 November 2017 and 15 February 2018, one highly pathogenic avian influenza (HPAI) A(H5N6) and five HPAI A(H5N8) outbreaks in poultry holdings, two HPAI A(H5N6) outbreaks in captive birds and 22 HPAI A(H5N6) wild bird events were reported within Europe. There is a lower incursion of HPAI A(H5N6) in poultry compared to HPAI A(H5N8). There is no evidence to date that HPAI A(H5N6) viruses circulating in Europe are associated with clades infecting humans. Clinical signs in ducks infected with HPAI A(H5N8) seemed to be decreasing, based on reports from Bulgaria. However, HPAI A(H5N8) is still present in Europe and is widespread in neighbouring areas. The majority of mortality events of wild birds from HPAIV A(H5) in this three-month period involved single birds. This indicates that the investigation of events involving single dead birds of target species is important for comprehensive passive surveillance for HPAI A(H5). Moreover, 20 low pathogenic avian influenza (LPAI) outbreaks were reported in three Member States. The risk of zoonotic transmission to the general public in Europe is considered to be very low. The first human case due to avian influenza A(H7N4) was notified in China underlining the threat that newly emerging avian influenza viruses pose for transmission to humans. Close monitoring is required of the situation in Africa and the Middle East with regards to HPAI A(H5N1) and A(H5N8). Uncontrolled spread of virus and subsequent further genetic evolution in regions geographically connected to Europe may increase uncertainty and risk for further dissemination of virus. The risk of HPAI introduction from Third countries via migratory wild birds to Europe is still considered much lower for wild birds crossing the southern borders compared to birds crossing the north-eastern borders, whereas the introduction via trade is still very to extremely unlikely.
Collapse
|
38
|
Shimizu Y, Hayama Y, Yamamoto T, Murai K, Tsutsui T. Matched case-control study of the influence of inland waters surrounding poultry farms on avian influenza outbreaks in Japan. Sci Rep 2018; 8:3306. [PMID: 29459761 PMCID: PMC5818671 DOI: 10.1038/s41598-018-21695-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/07/2018] [Indexed: 11/24/2022] Open
Abstract
To successfully control highly pathogenic avian influenza (HPAI), understanding the risk factors related to the incursion of the virus into poultry farms is essential. In this study, we focused on the presence of inland waters surrounding poultry farms as a potential risk factor of incursion of the virus. To evaluate the influence of inland waters surrounding poultry farms on HPAI outbreaks in Japan, a simple matched case-control study was conducted. The results of the conditional regression analyses indicated that the number of farms with neighbouring inland waters was significantly high among the affected farms during the 2016-2017 outbreak period. These results provide good grounds for strengthening biosecurity management at farms located near inland waters.
Collapse
Affiliation(s)
- Yumiko Shimizu
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yoko Hayama
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takehisa Yamamoto
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan.
| | - Kiyokazu Murai
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Toshiyuki Tsutsui
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
39
|
Tsunekuni R, Yaguchi Y, Kashima Y, Yamashita K, Takemae N, Mine J, Tanikawa T, Uchida Y, Saito T. Spatial transmission of H5N6 highly pathogenic avian influenza viruses among wild birds in Ibaraki Prefecture, Japan, 2016-2017. Arch Virol 2018; 163:1195-1207. [PMID: 29392495 DOI: 10.1007/s00705-018-3752-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/10/2018] [Indexed: 11/25/2022]
Abstract
From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high susceptibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases concentrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple invasions had occurred during winter 2016-2017.
Collapse
Affiliation(s)
- Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Yuji Yaguchi
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, 966-1 Nakagachityo, Mito, Ibaraki, 310-0002, Japan
| | - Yuki Kashima
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, 966-1 Nakagachityo, Mito, Ibaraki, 310-0002, Japan
| | - Kaoru Yamashita
- Ibaraki Prefecture Kenpoku Livestock Hygiene Service Center, 966-1 Nakagachityo, Mito, Ibaraki, 310-0002, Japan
| | - Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0854, Japan.
| |
Collapse
|
40
|
Zhang J, Lao G, Zhang R, Wei Z, Wang H, Su G, Shan N, Li B, Li H, Yu Y, Jia W, Liao M, Qi W. Genetic diversity and dissemination pathways of highly pathogenic H5N6 avian influenza viruses from birds in Southwestern China along the East Asian-Australian migration flyway. J Infect 2017; 76:418-422. [PMID: 29246638 DOI: 10.1016/j.jinf.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Jiahao Zhang
- CNational and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Guangjie Lao
- CNational and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Ronghua Zhang
- Center for Animal Disease Control and Prevention, Honghe, Yunnan 654400, PR China
| | - Zhengji Wei
- Center for Animal Disease Control and Prevention, Liuzhou, Guangxi 545005, PR China
| | - Hexing Wang
- Center for Animal Disease Control and Prevention, Honghe, Yunnan 654400, PR China
| | - Guanming Su
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Nan Shan
- Nanjing Institution of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, Jiangsu 210093, PR China
| | - Bo Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Huanan Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yuandi Yu
- Chongqing Academy of Animal Sciences, Chongqing 402460, PR China
| | - Weixin Jia
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, Guangdong 510642, PR China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, Guangdong 510642, PR China.
| | - Wenbao Qi
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|