1
|
Petkidis A, Andriasyan V, Murer L, Volle R, Greber UF. A versatile automated pipeline for quantifying virus infectivity by label-free light microscopy and artificial intelligence. Nat Commun 2024; 15:5112. [PMID: 38879641 PMCID: PMC11180103 DOI: 10.1038/s41467-024-49444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Virus infectivity is traditionally determined by endpoint titration in cell cultures, and requires complex processing steps and human annotation. Here we developed an artificial intelligence (AI)-powered automated framework for ready detection of virus-induced cytopathic effect (DVICE). DVICE uses the convolutional neural network EfficientNet-B0 and transmitted light microscopy images of infected cell cultures, including coronavirus, influenza virus, rhinovirus, herpes simplex virus, vaccinia virus, and adenovirus. DVICE robustly measures virus-induced cytopathic effects (CPE), as shown by class activation mapping. Leave-one-out cross-validation in different cell types demonstrates high accuracy for different viruses, including SARS-CoV-2 in human saliva. Strikingly, DVICE exhibits virus class specificity, as shown with adenovirus, herpesvirus, rhinovirus, vaccinia virus, and SARS-CoV-2. In sum, DVICE provides unbiased infectivity scores of infectious agents causing CPE, and can be adapted to laboratory diagnostics, drug screening, serum neutralization or clinical samples.
Collapse
Affiliation(s)
- Anthony Petkidis
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Life Science Zurich Graduate School, ETH and University of Zürich, 8057, Zurich, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Luca Murer
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Roche Diagnostics, Forrenstrasse 2, 6343, Rotkreuz, Switzerland
| | - Romain Volle
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
2
|
Gregori J, Colomer-Castell S, Ibañez-Lligoña M, Garcia-Cehic D, Campos C, Buti M, Riveiro-Barciela M, Andrés C, Piñana M, González-Sánchez A, Rodriguez-Frias F, Cortese MF, Tabernero D, Rando-Segura A, Pumarola T, Esteban JI, Antón A, Quer J. In-Host Flat-like Quasispecies: Characterization Methods and Clinical Implications. Microorganisms 2024; 12:1011. [PMID: 38792840 PMCID: PMC11124460 DOI: 10.3390/microorganisms12051011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The repeated failure to treat patients chronically infected with hepatitis E (HEV) and C (HCV) viruses, despite the absence of resistance-associated substitutions (RAS), particularly in response to prolonged treatments with the mutagenic agents of HEV, suggests that quasispecies structure may play a crucial role beyond single point mutations. Quasispecies structured in a flat-like manner (referred to as flat-like) are considered to possess high average fitness, occupy a significant fraction of the functional genetic space of the virus, and exhibit a high capacity to evade specific or mutagenic treatments. In this paper, we studied HEV and HCV samples using high-depth next-generation sequencing (NGS), with indices scoring the different properties describing flat-like quasispecies. The significance of these indices was demonstrated by comparing the values obtained from these samples with those from acute infections caused by respiratory viruses (betacoronaviruses, enterovirus, respiratory syncytial viruses, and metapneumovirus). Our results revealed that flat-like quasispecies in HEV and HCV chronic infections without RAS are characterized by numerous low-frequency haplotypes with no dominant one. Surprisingly, these low-frequency haplotypes (at the nucleotide level) exhibited a high level of synonymity, resulting in much lower diversity at the phenotypic level. Currently, clinical approaches for managing flat-like quasispecies are lacking. Here, we propose methods to identifying flat-like quasispecies, which represents an essential initial step towards exploring alternative treatment protocols for viruses resistant to conventional therapies.
Collapse
Affiliation(s)
- Josep Gregori
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (M.I.-L.); (D.G.-C.); (C.C.); (M.B.); (M.R.-B.); (D.T.); (J.I.E.)
| | - Sergi Colomer-Castell
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (M.I.-L.); (D.G.-C.); (C.C.); (M.B.); (M.R.-B.); (D.T.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (F.R.-F.); (M.F.C.); (A.R.-S.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain;
| | - Marta Ibañez-Lligoña
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (M.I.-L.); (D.G.-C.); (C.C.); (M.B.); (M.R.-B.); (D.T.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (F.R.-F.); (M.F.C.); (A.R.-S.)
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Damir Garcia-Cehic
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (M.I.-L.); (D.G.-C.); (C.C.); (M.B.); (M.R.-B.); (D.T.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (F.R.-F.); (M.F.C.); (A.R.-S.)
| | - Carolina Campos
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (M.I.-L.); (D.G.-C.); (C.C.); (M.B.); (M.R.-B.); (D.T.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (F.R.-F.); (M.F.C.); (A.R.-S.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain;
| | - Maria Buti
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (M.I.-L.); (D.G.-C.); (C.C.); (M.B.); (M.R.-B.); (D.T.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (F.R.-F.); (M.F.C.); (A.R.-S.)
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Mar Riveiro-Barciela
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (M.I.-L.); (D.G.-C.); (C.C.); (M.B.); (M.R.-B.); (D.T.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (F.R.-F.); (M.F.C.); (A.R.-S.)
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Cristina Andrés
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.A.); (M.P.); (A.G.-S.); (A.A.)
- Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Maria Piñana
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.A.); (M.P.); (A.G.-S.); (A.A.)
- Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Alejandra González-Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.A.); (M.P.); (A.G.-S.); (A.A.)
- Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Francisco Rodriguez-Frias
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (F.R.-F.); (M.F.C.); (A.R.-S.)
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Basic Science Department, International University of Catalonia, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Maria Francesca Cortese
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (F.R.-F.); (M.F.C.); (A.R.-S.)
- Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - David Tabernero
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (M.I.-L.); (D.G.-C.); (C.C.); (M.B.); (M.R.-B.); (D.T.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (F.R.-F.); (M.F.C.); (A.R.-S.)
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Ariadna Rando-Segura
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (F.R.-F.); (M.F.C.); (A.R.-S.)
- Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Tomás Pumarola
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.A.); (M.P.); (A.G.-S.); (A.A.)
- Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Biochemistry Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Juan Ignacio Esteban
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (M.I.-L.); (D.G.-C.); (C.C.); (M.B.); (M.R.-B.); (D.T.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (F.R.-F.); (M.F.C.); (A.R.-S.)
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| | - Andrés Antón
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (C.A.); (M.P.); (A.G.-S.); (A.A.)
- Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut of Research (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (S.C.-C.); (M.I.-L.); (D.G.-C.); (C.C.); (M.B.); (M.R.-B.); (D.T.); (J.I.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; (F.R.-F.); (M.F.C.); (A.R.-S.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain;
- Medicine Department, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, 08193 Bellaterra, Spain
| |
Collapse
|
3
|
Waqqar S, Lee K, Lawley B, Bilton T, Quiñones-Mateu ME, Bostina M, Burga LN. Directed Evolution of Seneca Valley Virus in Tumorsphere and Monolayer Cell Cultures of a Small-Cell Lung Cancer Model. Cancers (Basel) 2023; 15:cancers15092541. [PMID: 37174006 PMCID: PMC10177334 DOI: 10.3390/cancers15092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The Seneca Valley virus (SVV) is an oncolytic virus from the picornavirus family, characterized by a 7.3-kilobase RNA genome encoding for all the structural and functional viral proteins. Directed evolution by serial passaging has been employed for oncolytic virus adaptation to increase the killing efficacy towards certain types of tumors. We propagated the SVV in a small-cell lung cancer model under two culture conditions: conventional cell monolayer and tumorspheres, with the latter resembling more closely the cellular structure of the tumor of origin. We observed an increase of the virus-killing efficacy after ten passages in the tumorspheres. Deep sequencing analyses showed genomic changes in two SVV populations comprising 150 single nucleotides variants and 72 amino acid substitutions. Major differences observed in the tumorsphere-passaged virus population, compared to the cell monolayer, were identified in the conserved structural protein VP2 and in the highly variable P2 region, suggesting that the increase in the ability of the SVV to kill cells over time in the tumorspheres is acquired by capsid conservation and positively selecting mutations to counter the host innate immune responses.
Collapse
Affiliation(s)
- Shakeel Waqqar
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Kai Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Timothy Bilton
- Invermay Agricultural Centre, AgResearch, Mosgiel 9092, New Zealand
| | | | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Gomari MM, Tarighi P, Choupani E, Abkhiz S, Mohamadzadeh M, Rostami N, Sadroddiny E, Baammi S, Uversky VN, Dokholyan NV. Structural evolution of Delta lineage of SARS-CoV-2. Int J Biol Macromol 2023; 226:1116-1140. [PMID: 36435470 PMCID: PMC9683856 DOI: 10.1016/j.ijbiomac.2022.11.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
One of the main obstacles in prevention and treatment of COVID-19 is the rapid evolution of the SARS-CoV-2 Spike protein. Given that Spike is the main target of common treatments of COVID-19, mutations occurring at this virulent factor can affect the effectiveness of treatments. The B.1.617.2 lineage of SARS-CoV-2, being characterized by many Spike mutations inside and outside of its receptor-binding domain (RBD), shows high infectivity and relative resistance to existing cures. Here, utilizing a wide range of computational biology approaches, such as immunoinformatics, molecular dynamics (MD), analysis of intrinsically disordered regions (IDRs), protein-protein interaction analyses, residue scanning, and free energy calculations, we examine the structural and biological attributes of the B.1.617.2 Spike protein. Furthermore, the antibody design protocol of Rosetta was implemented for evaluation the stability and affinity improvement of the Bamlanivimab (LY-CoV55) antibody, which is not capable of interactions with the B.1.617.2 Spike. We observed that the detected mutations in the Spike of the B1.617.2 variant of concern can cause extensive structural changes compatible with the described variation in immunogenicity, secondary and tertiary structure, oligomerization potency, Furin cleavability, and drug targetability. Compared to the Spike of Wuhan lineage, the B.1.617.2 Spike is more stable and binds to the Angiotensin-converting enzyme 2 (ACE2) with higher affinity.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Student Research Committee, Iran University of Medical Sciences, Tehran 1449614535, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Edris Choupani
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Shadi Abkhiz
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Masoud Mohamadzadeh
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 3848177584, Iran
| | - Esmaeil Sadroddiny
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 16802, USA.
| |
Collapse
|
5
|
Quasispecies Fitness Partition to Characterize the Molecular Status of a Viral Population. Negative Effect of Early Ribavirin Discontinuation in a Chronically Infected HEV Patient. Int J Mol Sci 2022; 23:ijms232314654. [PMID: 36498981 PMCID: PMC9739305 DOI: 10.3390/ijms232314654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.
Collapse
|
6
|
Takeuchi N, Mitarai N, Kaneko K. A scaling law of multilevel evolution: how the balance between within- and among-collective evolution is determined. Genetics 2021; 220:6409194. [PMID: 34849893 PMCID: PMC9208640 DOI: 10.1093/genetics/iyab182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/15/2021] [Indexed: 11/14/2022] Open
Abstract
Numerous living systems are hierarchically organised, whereby replicating components are grouped into reproducing collectives-e.g., organelles are grouped into cells, and cells are grouped into multicellular organisms. In such systems, evolution can operate at two levels: evolution among collectives, which tends to promote selfless cooperation among components within collectives (called altruism), and evolution within collectives, which tends to promote cheating among components within collectives. The balance between within- and among-collective evolution thus exerts profound impacts on the fitness of these systems. Here, we investigate how this balance depends on the size of a collective (denoted by N) and the mutation rate of components (m) through mathematical analyses and computer simulations of multiple population genetics models. We first confirm a previous result that increasing N or m accelerates within-collective evolution relative to among-collective evolution, thus promoting the evolution of cheating. Moreover, we show that when within- and among-collective evolution exactly balance each other out, the following scaling relation generally holds: Nmα is a constant, where scaling exponent α depends on multiple parameters, such as the strength of selection and whether altruism is a binary or quantitative trait. This relation indicates that although N and m have quantitatively distinct impacts on the balance between within- and among-collective evolution, their impacts become identical if m is scaled with a proper exponent. Our results thus provide a novel insight into conditions under which cheating or altruism evolves in hierarchically-organised replicating systems.
Collapse
Affiliation(s)
- Nobuto Takeuchi
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo 153-8902, Japan
- Corresponding author: School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Namiko Mitarai
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo 153-8902, Japan
- The Niels Bohr Institute, University of Copenhagen, Copenhagen 2100-DK, Denmark
| | - Kunihiko Kaneko
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo 153-8902, Japan
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Nishi T, Fukai K, Kato T, Sawai K, Yamamoto T. Genome variability of classical swine fever virus during the 2018-2020 epidemic in Japan. Vet Microbiol 2021; 258:109128. [PMID: 34058522 DOI: 10.1016/j.vetmic.2021.109128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/20/2021] [Indexed: 11/18/2022]
Abstract
Although RNA viruses exhibit extensive sequence diversity, the mutation rate must be limited to ensure protein functions that maintain the viral life cycle. Here, we compared the whole genome sequences of 150 isolates of classical swine fever virus (CSFV), obtained from a single epidemic that occurred in Japan during 2018-2020. After the detection of the first case, the disease spread among both farm pigs and wild boars and caused severe impact on the pig industry. To evaluate the diversification of the CSFV genome that eliminated mutations negatively affecting viral transmission, the substitution sets inherited by at least two isolates were separately evaluated as shared single nucleotide variants (SNVs) or shared single amino acid variants (SAVs). Comparisons of 12 protein-coding regions indicated that the percentages of SNVs and SAVs in the multifunctional nonstructural protein NS3 were the lowest, and shared SAVs were not detected in another nonstructural protein, NS4A. This demonstrated purifying negative selection suppressing changes in the protein sequences of NS3 and NS4A during virus transmission in the field. In contrast, a high possibility of nonsynonymous substitution among shared SNVs was detected only in genes encoding the secreted protein Erns and the nonstructural protein NS2, suggesting positive selection during the epidemic. Mapping of shared SAVs to the three-dimensional structure of Erns revealed that shared SAVs were not present in the substrate-binding sites but were instead localized to the peripheral region of the protein. These data will support efforts toward the development of diagnostic methods, recombinant vaccines, and antiviral agents targeting conserved and indispensable viral genes.
Collapse
Affiliation(s)
- Tatsuya Nishi
- Exotic Disease Research Unit, Division of Transboundary Animal Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo, Japan
| | - Katsuhiko Fukai
- Exotic Disease Research Unit, Division of Transboundary Animal Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo, Japan
| | - Tomoko Kato
- Exotic Disease Research Unit, Division of Transboundary Animal Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Tokyo, Japan
| | - Kotaro Sawai
- Epidemiology Research Unit, Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki, Japan
| | - Takehisa Yamamoto
- Epidemiology Research Unit, Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Abstract
More than a year after its emergence, COVID-19, the disease caused by SARS-CoV-2, continues to plague the world and dominate our daily lives. Even with the development of effective vaccines, this coronavirus pandemic continues to cause a fervor with the identification of major new variants hailing from the United Kingdom, South Africa, Brazil, and California. Coupled with worries over a distinct mink strain that has caused human infections and potential for further mutations, SARS-CoV-2 variants bring concerns for increased spread and escape from both vaccine and natural infection immunity. Here, we outline factors driving SARS-CoV-2 variant evolution, explore the potential impact of specific mutations, examine the risk of further mutations, and consider the experimental studies needed to understand the threat these variants pose. In this review, Plante et al. examine SARS-CoV-2 variants including B.1.1.7 (UK), B.1.351 (RSA), P.1 (Brazil), and B.1.429 (California). They focus on what factors contribute to variant emergence, mutations in and outside the spike protein, and studies needed to understand the impact of variants on infection, transmission, and vaccine efficacy.
Collapse
Affiliation(s)
- Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Brooke M Mitchell
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Kari Debbink
- Department of Natural Sciences, Bowie State University, Bowie, MD, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
9
|
Posada-Céspedes S, Seifert D, Topolsky I, Jablonski KP, Metzner KJ, Beerenwinkel N. V-pipe: a computational pipeline for assessing viral genetic diversity from high-throughput data. Bioinformatics 2021; 37:1673-1680. [PMID: 33471068 PMCID: PMC8289377 DOI: 10.1093/bioinformatics/btab015] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Motivation High-throughput sequencing technologies are used increasingly not only in viral genomics research but also in clinical surveillance and diagnostics. These technologies facilitate the assessment of the genetic diversity in intra-host virus populations, which affects transmission, virulence and pathogenesis of viral infections. However, there are two major challenges in analysing viral diversity. First, amplification and sequencing errors confound the identification of true biological variants, and second, the large data volumes represent computational limitations. Results To support viral high-throughput sequencing studies, we developed V-pipe, a bioinformatics pipeline combining various state-of-the-art statistical models and computational tools for automated end-to-end analyses of raw sequencing reads. V-pipe supports quality control, read mapping and alignment, low-frequency mutation calling, and inference of viral haplotypes. For generating high-quality read alignments, we developed a novel method, called ngshmmalign, based on profile hidden Markov models and tailored to small and highly diverse viral genomes. V-pipe also includes benchmarking functionality providing a standardized environment for comparative evaluations of different pipeline configurations. We demonstrate this capability by assessing the impact of three different read aligners (Bowtie 2, BWA MEM, ngshmmalign) and two different variant callers (LoFreq, ShoRAH) on the performance of calling single-nucleotide variants in intra-host virus populations. V-pipe supports various pipeline configurations and is implemented in a modular fashion to facilitate adaptations to the continuously changing technology landscape. Availabilityand implementation V-pipe is freely available at https://github.com/cbg-ethz/V-pipe. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Susana Posada-Céspedes
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, 4058, Switzerland
| | - David Seifert
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, 4058, Switzerland
| | - Ivan Topolsky
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, 4058, Switzerland
| | - Kim Philipp Jablonski
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, 4058, Switzerland
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland.,4 Institute of Medical Virology, University of Zurich, Zurich, 8091, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, Basel, 4058, Switzerland
| |
Collapse
|
10
|
Ghosh P. Global efforts on vaccines development against SARS-CoV-2 and Indian endeavor. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_85_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Woodford L, Evans DJ. Deformed wing virus: using reverse genetics to tackle unanswered questions about the most important viral pathogen of honey bees. FEMS Microbiol Rev 2020; 45:6035241. [PMID: 33320949 DOI: 10.1093/femsre/fuaa070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022] Open
Abstract
Deformed wing virus (DWV) is the most important viral pathogen of honey bees. It usually causes asymptomatic infections but, when vectored by the ectoparasitic mite Varroa destructor, it is responsible for the majority of overwintering colony losses globally. Although DWV was discovered four decades ago, research has been hampered by the absence of an in vitro cell culture system or the ability to culture pure stocks of the virus. The recent developments of reverse genetic systems for DWV go some way to addressing these limitations. They will allow the investigation of specific questions about strain variation, host tropism and pathogenesis to be answered, and are already being exploited to study tissue tropism and replication in Varroa and non-Apis pollinators. Three areas neatly illustrate the advances possible with reverse genetic approaches: (i) strain variation and recombination, in which reverse genetics has highlighted similarities rather than differences between virus strains; (ii) analysis of replication kinetics in both honey bees and Varroa, in studies that likely explain the near clonality of virus populations often reported; and (iii) pathogen spillover to non-Apis pollinators, using genetically tagged viruses to accurately monitor replication and infection.
Collapse
Affiliation(s)
- Luke Woodford
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - David J Evans
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
12
|
Patterson EI, Khanipov K, Swetnam DM, Walsdorf S, Kautz TF, Thangamani S, Fofanov Y, Forrester NL. Measuring Alphavirus Fidelity Using Non-Infectious Virus Particles. Viruses 2020; 12:v12050546. [PMID: 32429270 PMCID: PMC7291308 DOI: 10.3390/v12050546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/17/2023] Open
Abstract
Mutations are incorporated into the genomes of RNA viruses at an optimal frequency and altering this precise frequency has been proposed as a strategy to create live-attenuated vaccines. However, determining the effect of specific mutations that alter fidelity has been difficult because of the rapid selection of the virus population during replication. By deleting residues of the structural polyprotein PE2 cleavage site, E3Δ56-59, in Venezuelan equine encephalitis virus (VEEV) TC-83 vaccine strain, non-infectious virus particles were used to assess the effect of single mutations on mutation frequency without the interference of selection that results from multiple replication cycles. Next-generation sequencing analysis revealed a significantly lower frequency of transversion mutations and overall mutation frequency for the fidelity mutants compared to VEEV TC-83 E3Δ56-59. We demonstrate that deletion of the PE2 cleavage site halts virus infection while making the virus particles available for downstream sequencing. The conservation of the site will allow the evaluation of suspected fidelity mutants across alphaviruses of medical importance.
Collapse
Affiliation(s)
- Edward I. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.W.); (S.T.); (N.L.F.)
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Correspondence:
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.K.); (Y.F.)
| | - Daniele M. Swetnam
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA;
| | - Samantha Walsdorf
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.W.); (S.T.); (N.L.F.)
| | - Tiffany F. Kautz
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.W.); (S.T.); (N.L.F.)
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.K.); (Y.F.)
| | - Naomi L. Forrester
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.W.); (S.T.); (N.L.F.)
| |
Collapse
|
13
|
The effect of genetic complementation on the fitness and diversity of viruses spreading as collective infectious units. Virus Res 2019; 267:41-48. [PMID: 31077765 DOI: 10.1016/j.virusres.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022]
Abstract
Viruses can spread collectively using different types of structures such as extracellular vesicles, virion aggregates, polyploid capsids, occlusion bodies, and even cells that accumulate virions at their surface, such as bacteria and dendritic cells. Despite the mounting evidence for collective spread, its implications for viral fitness and diversity remain poorly understood. It has been postulated that, by increasing the cellular multiplicity of infection, collective spread could enable mutually beneficial interactions among different viral genetic variants. One such interaction is genetic complementation, whereby deleterious mutations carried by different genomes are compensated. Here, we used simulations to evaluate whether complementation is likely to increase the fitness of viruses spreading collectively. We show that complementation among co-spreading viruses initially buffers the deleterious effects of mutations, but has no positive effect on mean population fitness over the long term, and even promotes error catastrophe at high mutation rates. Additionally, we found that collective spread increases the risk of invasion by social cheaters such as defective interfering particles. We also show that mutation accumulation depends on the type of collective infectious units considered. Co-spreading viral genomes produced in the same cell (e.g. extracellular vesicles, polyploid capsids, occlusion bodies) should exhibit higher genetic relatedness than groups formed extracellularly by viruses released from different cells (aggregates, binding to bacterial or dendritic cell surfaces), and we found that increased relatedness limits the adverse effects of complementation as well cheater invasion risk. Finally, we found that the costs of complementation can be offset by recombination. Based on our results, we suggest that alternative factors promoting collective spread should be considered.
Collapse
|
14
|
Lycett S, Tanya VN, Hall M, King DP, Mazeri S, Mioulet V, Knowles NJ, Wadsworth J, Bachanek-Bankowska K, Ngu Ngwa V, Morgan KL, Bronsvoort BMDC. The evolution and phylodynamics of serotype A and SAT2 foot-and-mouth disease viruses in endemic regions of Africa. Sci Rep 2019; 9:5614. [PMID: 30948742 PMCID: PMC6449503 DOI: 10.1038/s41598-019-41995-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/20/2019] [Indexed: 11/09/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a major livestock disease with direct clinical impacts as well as indirect trade implications. Control through vaccination and stamping-out has successfully reduced or eradicated the disease from Europe and large parts of South America. However, sub-Saharan Africa remains endemically affected with 5/7 serotypes currently known to be circulating across the continent. This has significant implications both locally for livestock production and poverty reduction but also globally as it represents a major reservoir of viruses, which could spark new epidemics in disease free countries or vaccination zones. This paper describes the phylodynamics of serotypes A and SAT2 in Africa including recent isolates from Cameroon in Central Africa. We estimated the most recent common ancestor for serotype A was an East African virus from the 1930s (median 1937; HPD 1922-1950) compared to SAT2 which has a much older common ancestor from the early 1700s (median 1709; HPD 1502-1814). Detailed analysis of the different clades shows clearly that different clades are evolving and diffusing across the landscape at different rates with both serotypes having a particularly recent clade that is evolving and spreading more rapidly than other clades within their serotype. However, the lack of detailed sequence data available for Africa seriously limits our understanding of FMD epidemiology across the continent. A comprehensive view of the evolutionary history and dynamics of FMD viruses is essential to understand many basic epidemiological aspects of FMD in Africa such as the scale of persistence and the role of wildlife and thus the opportunities and scale at which vaccination and other controls could be applied. Finally we ask endemic countries to join the OIE/FAO supported regional networks and take advantage of new cheap technologies being rolled out to collect isolates and submit them to the World Reference Laboratory.
Collapse
Affiliation(s)
- S Lycett
- The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Epidemiology Economics and Risk Assessment Group, Roslin, Midlothian, EH25 9RG, UK
| | - V N Tanya
- Cameroon Academy of Sciences, P.O. Box 1457, Yaoundé, Cameroon
| | - M Hall
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JR, United Kingdom
| | - D P King
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - S Mazeri
- The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Epidemiology Economics and Risk Assessment Group, Roslin, Midlothian, EH25 9RG, UK
| | - V Mioulet
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - N J Knowles
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - J Wadsworth
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | | | - Victor Ngu Ngwa
- School of Veterinary Medicine and Sciences, B.P. 454, University of Ngaoundere, Ngaoundere, Cameroon
| | - K L Morgan
- Institute of Ageing and Chronic Disease and School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral, CH64 7TE, UK
| | - B M de C Bronsvoort
- The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Epidemiology Economics and Risk Assessment Group, Roslin, Midlothian, EH25 9RG, UK.
| |
Collapse
|
15
|
Bai XW, Bao HF, Li PH, Ma XQ, Sun P, Bai QF, Zhang M, Yuan H, Chen DD, Li K, Chen YL, Cao YM, Fu YF, Zhang J, Li D, Lu ZJ, Liu ZX, Luo JX. Engineering Responses to Amino Acid Substitutions in the VP0- and VP3-Coding Regions of PanAsia-1 Strains of Foot-and-Mouth Disease Virus Serotype O. J Virol 2019; 93:e02278-18. [PMID: 30700601 PMCID: PMC6430551 DOI: 10.1128/jvi.02278-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/15/2019] [Indexed: 12/05/2022] Open
Abstract
The presence of sequence divergence through adaptive mutations in the major capsid protein VP1, and also in VP0 (VP4 and VP2) and VP3, of foot-and-mouth disease virus (FMDV) is relevant to a broad range of viral characteristics. To explore the potential role of isolate-specific residues in the VP0 and VP3 coding regions of PanAsia-1 strains in genetic and phenotypic properties of FMDV, a series of recombinant full-length genomic clones were constructed using Cathay topotype infectious cDNA as the original backbone. The deleterious and compensatory effects of individual amino acid substitutions at positions 4008 and 3060 and in several different domains of VP2 illustrated that the chain-based spatial interaction patterns of VP1, VP2, and VP3 (VP1-3), as well as between the internal VP4 and the three external capsid proteins of FMDV, might contribute to the assembly of eventually viable viruses. The Y2079H site-directed mutants dramatically induced a decrease in plaque size on BHK-21 cells and viral pathogenicity in suckling mice. Remarkably, the 2079H-encoding viruses displayed a moderate increase in acid sensitivity correlated with NH4Cl resistance compared to the Y2079-encoding viruses. Interestingly, none of all the 16 rescued viruses were able to infect heparan sulfate-expressing CHO-K1 cells. However, viral infection in BHK-21 cells was facilitated by utilizing non-integrin-dependent, heparin-sensitive receptor(s) and replacements of four uncharged amino acids at position 3174 in VP3 of FMDV had no apparent influence on heparin affinity. These results provide particular insights into the correlation of evolutionary biology with genetic diversity in adapting populations of FMDV.IMPORTANCE The sequence variation within the capsid proteins occurs frequently in the infection of susceptible tissue cultures, reflecting the high levels of genetic diversity of FMDV. A systematic study for the functional significance of isolate-specific residues in VP0 and VP3 of FMDV PanAsia-1 strains suggested that the interaction of amino acid side chains between the N terminus of VP4 and several potential domains of VP1-3 had cascading effects on the viability and developmental characteristics of progeny viruses. Y2079H in VP0 of the indicated FMDVs could affect plaque size and pathogenicity, as well as acid sensitivity correlated with NH4Cl resistance, whereas there was no inevitable correlation in viral plaque and acid-sensitive phenotypes. The high affinity of non-integrin-dependent FMDVs for heparin might be explained by the differences in structures of heparan sulfate proteoglycans on the surfaces of different cell lines. These results may contribute to our understanding of the distinct phenotypic properties of FMDV in vitro and in vivo.
Collapse
Affiliation(s)
- Xing-Wen Bai
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hui-Fang Bao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ping-Hua Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xue-Qing Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qi-Feng Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Meng Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hong Yuan
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong-Dong Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Ying-Li Chen
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yi-Mei Cao
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yuan-Fang Fu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zeng-Jun Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zai-Xin Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Huang SW, Hung SJ, Wang JR. Application of deep sequencing methods for inferring viral population diversity. J Virol Methods 2019; 266:95-102. [PMID: 30690049 DOI: 10.1016/j.jviromet.2019.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
The first deep sequencing method was announced in 2005. Due to an increasing number of sequencing data and a reduction in the costs of each sequencing dataset, this innovative technique was soon applied to genetic investigations of viral genome diversity in various viruses, particularly RNA viruses. These deep sequencing findings documented viral epidemiology and evolution and provided high-resolution data on the genetic changes in viral populations. Here, we review deep sequencing platforms that have been applied in viral quasispecies studies. Further, we discuss recent deep sequencing studies on viral inter- and intrahost evolution, drug resistance, and humoral immune selection, especially in emerging and re-emerging viruses. Deep sequencing methods are becoming the standard for providing comprehensive results of viral population diversity, and their applications are discussed.
Collapse
Affiliation(s)
- Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Su-Jhen Hung
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.
| |
Collapse
|
17
|
Li J, Meng F, Li W, Wang Y, Chang S, Zhao P, Cui Z. Characterization of avian leukosis virus subgroup J isolated between 1999 and 2013 in China. Poult Sci 2018; 97:3532-3539. [PMID: 29924363 DOI: 10.3382/ps/pey241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 05/25/2018] [Indexed: 01/17/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) has successively infected white feather chickens, layer hens, cultivated yellow chickens, and indigenous chickens; infection rates and tumorigenicity have attracted increasingly extensive attention in China. To clarify the correlation of the epidemiological phenomenon of ALV-J with the evolution of envelope protein gp85, 140 strains of ALV-J isolated from chickens with different genetic backgrounds from 1999 to 2013 were compared. The homology of the gp85 protein and genetic genealogical relationships between 140 strains of ALV-J and the prototype strain HPRS-103, as well as between the same ALV-J strains and 8 American isolates, were analyzed and compared. The results showed that there was no significant difference in the variation range of homology of the gp85 protein between the prototype HPRS-103 and ALV-J isolates from different genetic backgrounds and different years. However, genetic pedigree analysis showed that virus strains that isolated from the same type of chickens remained close to each other on the phylogenetic tree, which means that there was a correlation between the genetic background of infected chickens and virus strains. Further analysis of amino acid sequences also found similar results and revealed that unique amino acid sites were formed in chickens with different genetic backgrounds, which proved that ALV-J could adapt to the new host through amino acid variation. Genetic sequence phylogenetic tree analysis was more representative than sequence homology comparisons for assessing ALV-J correlations. These conclusions contributed to the control and prevention of ALV infection. ALV-J is still prevalent in Chinese indigenous chickens, more attentions should be given to fulfill the purification.
Collapse
Affiliation(s)
- Jianliang Li
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China, 271018.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, China, 271018.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, Shandong, China, 271018
| | - Fanfeng Meng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China, 271018.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, China, 271018.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, Shandong, China, 271018
| | - Weihua Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China, 266033
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China, 271018.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, China, 271018.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, Shandong, China, 271018
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China, 271018.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, China, 271018.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, Shandong, China, 271018
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China, 271018.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, China, 271018.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, Shandong, China, 271018
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China, 271018.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, China, 271018.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian, Shandong, China, 271018
| |
Collapse
|
18
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
19
|
Kautz TF, Guerbois M, Khanipov K, Patterson EI, Langsjoen RM, Yun R, Warmbrod KL, Fofanov Y, Weaver SC, Forrester NL. Low-fidelity Venezuelan equine encephalitis virus polymerase mutants to improve live-attenuated vaccine safety and efficacy. Virus Evol 2018; 4:vey004. [PMID: 29593882 PMCID: PMC5841381 DOI: 10.1093/ve/vey004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During RNA virus replication, there is the potential to incorporate mutations that affect virulence or pathogenesis. For live-attenuated vaccines, this has implications for stability, as replication may result in mutations that either restore the wild-type phenotype via reversion or compensate for the attenuating mutations by increasing virulence (pseudoreversion). Recent studies have demonstrated that altering the mutation rate of an RNA virus is an effective attenuation tool. To validate the safety of low-fidelity mutations to increase vaccine attenuation, several mutations in the RNA-dependent RNA-polymerase (RdRp) were tested in the live-attenuated Venezuelan equine encephalitis virus vaccine strain, TC-83. Next generation sequencing after passage in the presence of mutagens revealed a mutant containing three mutations in the RdRp, TC-83 3x, to have decreased replication fidelity, while a second mutant, TC-83 4x displayed no change in fidelity, but shared many phenotypic characteristics with TC-83 3x. Both mutants exhibited increased, albeit inconsistent attenuation in an infant mouse model, as well as increased immunogenicity and complete protection against lethal challenge of an adult murine model compared with the parent TC-83. During serial passaging in a highly permissive model, the mutants increased in virulence but remained less virulent than the parent TC-83. These results suggest that the incorporation of low-fidelity mutations into the RdRp of live-attenuated vaccines for RNA viruses can confer increased immunogenicity whilst showing some evidence of increased attenuation. However, while in theory such constructs may result in more effective vaccines, the instability of the vaccine phenotype decreases the likelihood of this being an effective vaccine strategy.
Collapse
Affiliation(s)
- Tiffany F Kautz
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mathilde Guerbois
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Edward I Patterson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Rose M Langsjoen
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Ruimei Yun
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelsey L Warmbrod
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Naomi L Forrester
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
20
|
Patterson EI, Khanipov K, Rojas MM, Kautz TF, Rockx-Brouwer D, Golovko G, Albayrak L, Fofanov Y, Forrester NL. Mosquito bottlenecks alter viral mutant swarm in a tissue and time-dependent manner with contraction and expansion of variant positions and diversity. Virus Evol 2018; 4:vey001. [PMID: 29479479 PMCID: PMC5814806 DOI: 10.1093/ve/vey001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viral diversity is theorized to play a significant role during virus infections, particularly for arthropod-borne viruses (arboviruses) that must infect both vertebrate and invertebrate hosts. To determine how viral diversity influences mosquito infection and dissemination Culex taeniopus mosquitoes were infected with the Venezuelan equine encephalitis virus endemic strain 68U201. Bodies and legs/wings of the mosquitoes were collected individually and subjected to multi-parallel sequencing. Virus sequence diversity was calculated for each tissue. Greater diversity was seen in mosquitoes with successful dissemination versus those with no dissemination. Diversity across time revealed that bottlenecks influence diversity following dissemination to the legs/wings, but levels of diversity are restored by Day 12 post-dissemination. Specific minority variants were repeatedly identified across the mosquito cohort, some in nearly every tissue and time point, suggesting that certain variants are important in mosquito infection and dissemination. This study demonstrates that the interaction between the mosquito and the virus results in changes in diversity and the mutational spectrum and may be essential for successful transition of the bottlenecks associated with arbovirus infection.
Collapse
Affiliation(s)
- Edward I Patterson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Mark M Rojas
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Tiffany F Kautz
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Dedeke Rockx-Brouwer
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| | - Georgiy Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Levent Albayrak
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-0617, USA
| | - Naomi L Forrester
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0610, USA
| |
Collapse
|
21
|
Ellwanger JH, Kaminski VDL, Valverde-Villegas JM, Simon D, Lunge VR, Chies JAB. Immunogenetic studies of the hepatitis C virus infection in an era of pan-genotype antiviral therapies - Effective treatment is coming. INFECTION GENETICS AND EVOLUTION 2017; 66:376-391. [PMID: 28811194 DOI: 10.1016/j.meegid.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 02/08/2023]
Abstract
What are the factors that influence human hepatitis C virus (HCV) infection, hepatitis status establishment, and disease progression? Firstly, one has to consider the genetic background of the host and HCV genotypes. The immunogenetic host profile will reflect how each infected individual deals with infection. Secondly, there are environmental factors that drive susceptibility or resistance to certain viral strains. These will dictate (I) the susceptibility to infection; (II) whether or not an infected person will promote viral clearance; (III) the immune response and the response profile to therapy; and (IV) whether and how long it would take to the development of HCV-associated diseases, as well as their severity. Looking at this scenario, this review addresses clinical aspects of HCV infection, following by an update of molecular and cellular features of the immune response against the virus. The evasion mechanisms used by HCV are presented, considering the potential role of exosomes in infection. Genetic factors influencing HCV infection and pathogenesis are the main topics of the article. Shortly, HLAs, MBLs, TLRs, ILs, and IFNLs genes have relevant roles in the susceptibility to HCV infection. In addition, ILs, IFNLs, as well as TLRs genes are important modulators of HCV-associated diseases. The viral aspects that influence HCV infection are presented, followed by a discussion about evolutionary aspects of host and HCV interaction. HCV and HIV infections are close related. Thus, we also present a discussion about HIV/HCV co-infection, focusing on cellular and molecular aspects of this interaction. Pharmacogenetics and treatment of HCV infection are the last topics of this review. The understanding of how the host genetics interacts with viral and environmental factors is crucial for the development of new strategies to prevent HCV infection, even in an era of potential development of pan-genotypic antivirals.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jacqueline María Valverde-Villegas
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Daniel Simon
- Laboratório de Genética Molecular Humana, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | - Vagner Ricardo Lunge
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
22
|
Dong X, Meng F, Hu T, Ju S, Li Y, Sun P, Wang Y, Chen W, Zhang F, Su H, Li S, Cui H, Chen J, Xu S, Fang L, Luan H, Zhang Z, Chang S, Li J, Wang L, Zhao P, Shi W, Cui Z. Dynamic Co-evolution and Interaction of Avian Leukosis Virus Genetic Variants and Host Immune Responses. Front Microbiol 2017; 8:1168. [PMID: 28694798 PMCID: PMC5483431 DOI: 10.3389/fmicb.2017.01168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/08/2017] [Indexed: 01/02/2023] Open
Abstract
Subgroup J avian leukosis virus (ALV-J), a typical retrovirus, is characterized of existence of a cloud of diverse variants and considerable genetic diversity. Previous studies describing the evolutionary dynamics of ALV-J genetic variants mainly focused on the early infection period or few randomly selected clones. Here, we inoculated 30 specific-pathogen-free chickens with the same founder ALV-J stock of known genetic background. Six (three antibody positive and three antibody negative) chickens were selected among 15 chickens with viremia. Viruses were serially isolated in 36 weeks and then sequenced using MiSeq high-throughput sequencing platform. This produced the largest ALV-J dataset to date, composed of more than three million clean reads. Our results showed that host humoral immunity could greatly enhance the genetic diversity of ALV-J genetic variants. In particular, selection pressures promoted a dynamic proportional changes in ALV-J genetic variants frequency. Cross-neutralization experiment showed that along with the change of the dominant variant, the antibody titers specific to infectious clones corresponding to the most dominant variants in weeks 12 and 28 have also changed significantly in sera collected in weeks 16 and 32. In contrast, no shift of dominant variant was observed in antibody-negative chickens. Moreover, we identified a novel hypervariable region in the gp85 gene. Our study reveals the interaction between ALV-J and the host, which could facilitate the development of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Xuan Dong
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Fanfeng Meng
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Tao Hu
- Institute of Pathogen Biology, Taishan Medical CollegeTaian, China
| | - Sidi Ju
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Yang Li
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Peng Sun
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Wenqing Chen
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Fushou Zhang
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Hongqin Su
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Sifei Li
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - He Cui
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Junxia Chen
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Shuzhen Xu
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Lichun Fang
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Huaibiao Luan
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Zhenjie Zhang
- Institute of Pathogen Biology, Taishan Medical CollegeTaian, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Jianliang Li
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Lei Wang
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| | - Weifeng Shi
- Institute of Pathogen Biology, Taishan Medical CollegeTaian, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural UniversityTaian, China
| |
Collapse
|
23
|
Posada-Cespedes S, Seifert D, Beerenwinkel N. Recent advances in inferring viral diversity from high-throughput sequencing data. Virus Res 2016; 239:17-32. [PMID: 27693290 DOI: 10.1016/j.virusres.2016.09.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 02/05/2023]
Abstract
Rapidly evolving RNA viruses prevail within a host as a collection of closely related variants, referred to as viral quasispecies. Advances in high-throughput sequencing (HTS) technologies have facilitated the assessment of the genetic diversity of such virus populations at an unprecedented level of detail. However, analysis of HTS data from virus populations is challenging due to short, error-prone reads. In order to account for uncertainties originating from these limitations, several computational and statistical methods have been developed for studying the genetic heterogeneity of virus population. Here, we review methods for the analysis of HTS reads, including approaches to local diversity estimation and global haplotype reconstruction. Challenges posed by aligning reads, as well as the impact of reference biases on diversity estimates are also discussed. In addition, we address some of the experimental approaches designed to improve the biological signal-to-noise ratio. In the future, computational methods for the analysis of heterogeneous virus populations are likely to continue being complemented by technological developments.
Collapse
Affiliation(s)
- Susana Posada-Cespedes
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; SIB, Basel, Switzerland
| | - David Seifert
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; SIB, Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; SIB, Basel, Switzerland.
| |
Collapse
|
24
|
Abstract
By now, it is well established that the error rate of the RNA-dependent RNA polymerase (RdRp) that replicates RNA virus genomes is a primary driver of the mutation frequencies observed in RNA virus populations-the basis for the RNA quasispecies. Over the last 10 years, a considerable amount of work has uncovered the molecular determinants of replication fidelity in this enzyme. The isolation of high- and low-fidelity variants for several RNA viruses, in an expanding number of viral families, provides evidence that nature has optimized the fidelity to facilitate genetic diversity and adaptation, while maintaining genetic integrity and infectivity. This chapter will provide an overview of what fidelity variants tell us about RNA virus biology and how they may be used in antiviral approaches.
Collapse
Affiliation(s)
- Esteban Domingo
- Campus de Cantoblanco, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Peter Schuster
- The Santa Fe Institute, Santa Fe, NM, USA and Institut f. Theoretische Chemie, Universität Wien, Vienna, Austria
| |
Collapse
|
25
|
Meng F, Dong X, Hu T, Liu Y, Zhao Y, Lv Y, Chang S, Zhao P, Cui Z. Analysis of Quasispecies of Avain Leukosis Virus Subgroup J Using Sanger and High-throughput Sequencing. Virol J 2016; 13:112. [PMID: 27350157 PMCID: PMC4924251 DOI: 10.1186/s12985-016-0559-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/09/2016] [Indexed: 01/14/2023] Open
Abstract
Background Avian leukosis viruses subgroup J (ALV-J) exists as a complex mixture of different, but closely related genomes named quasispecies subjected to continuous change according to the Principles of Darwinian evolution. Method The present study seeks to compare conventional Sanger sequencing with deep sequencing using MiSeq platform to study quasispecies dynamics of ALV-J. Results The accuracy and reproducibility of MiSeq sequencing was determined better than Sanger sequencing by running each experiment in duplicate. According to the mutational rate of single position and the ability to distinguish dominant quasispecies with two sequencing methods, conventional Sanger sequencing technique displayed high randomness due to few sequencing samples, while deep sequencing could reflect the composition of the quasispecies more accurately. In the mean time, the research of quasispecies via Sanger sequencing was simulated and analyzed with the aid of re-sampling strategy with replacement for 1000 times repeat from high-throughput sequencing data, which indicated that the higher antibody titer, the higher sequence entropy, the harder analyzing with the conventional Sanger sequencing, resulted in lower ratios of dominant variants. Conclusions In sum, deep sequencing is better suited for detecting rare variants comprehensively. The simulation of Sanger sequencing that we propose here will also help to standardize quasispecies researching under different selection pressure based on next-generation sequencing data.
Collapse
Affiliation(s)
- Fanfeng Meng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Xuan Dong
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Tao Hu
- Institute of Pathogen Biology, Taishan Medical College, Taian, 271000, China
| | - Yingnan Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Yingjie Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Yanyan Lv
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
26
|
Zhang GG, Chen XY, Qian P, Chen HC, Li XM. Immunogenicity of a recombinant Sendai virus expressing the capsid precursor polypeptide of foot-and-mouth disease virus. Res Vet Sci 2016; 104:181-7. [DOI: 10.1016/j.rvsc.2015.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
|
27
|
Echeverría N, Moratorio G, Cristina J, Moreno P. Hepatitis C virus genetic variability and evolution. World J Hepatol 2015; 7:831-845. [PMID: 25937861 PMCID: PMC4411526 DOI: 10.4254/wjh.v7.i6.831] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/22/2014] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) has infected over 170 million people worldwide and creates a huge disease burden due to chronic, progressive liver disease. HCV is a single-stranded, positive sense, RNA virus, member of the Flaviviridae family. The high error rate of RNA-dependent RNA polymerase and the pressure exerted by the host immune system, has driven the evolution of HCV into 7 different genotypes and more than 67 subtypes. HCV evolves by means of different mechanisms of genetic variation. On the one hand, its high mutation rates generate the production of a large number of different but closely related viral variants during infection, usually referred to as a quasispecies. The great quasispecies variability of HCV has also therapeutic implications since the continuous generation and selection of resistant or fitter variants within the quasispecies spectrum might allow viruses to escape control by antiviral drugs. On the other hand HCV exploits recombination to ensure its survival. This enormous viral diversity together with some host factors has made it difficult to control viral dispersal. Current treatment options involve pegylated interferon-α and ribavirin as dual therapy or in combination with a direct-acting antiviral drug, depending on the country. Despite all the efforts put into antiviral therapy studies, eradication of the virus or the development of a preventive vaccine has been unsuccessful so far. This review focuses on current available data reported to date on the genetic mechanisms driving the molecular evolution of HCV populations and its relation with the antiviral therapies designed to control HCV infection.
Collapse
|
28
|
Arboviral bottlenecks and challenges to maintaining diversity and fitness during mosquito transmission. Viruses 2014; 6:3991-4004. [PMID: 25341663 PMCID: PMC4213574 DOI: 10.3390/v6103991] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022] Open
Abstract
The term arbovirus denotes viruses that are transmitted by arthropods, such as ticks, mosquitoes, and other biting arthropods. The infection of these vectors produces a certain set of evolutionary pressures on the virus; involving migration from the midgut, where the blood meal containing the virus is processed, to the salivary glands, in order to transmit the virus to the next host. During this process the virus is subject to numerous bottlenecks, stochastic events that significantly reduce the number of viral particles that are able to infect the next stage. This article reviews the latest research on the bottlenecks that occur in arboviruses and the way in which these affect the evolution and fitness of these viruses. In particular we focus on the latest research on three important arboviruses, West Nile virus, Venezuelan equine encephalitis virus and Chikungunya viruses and compare the differing effects of the mosquito bottlenecks on these viruses as well as other evolutionary pressures that affect their evolution and transmission.
Collapse
|
29
|
Russo CT, Alkmim W, Munerato P, Zukurov J, Maricato JT, Sucupira MC, Diaz RS, Janini LM. High rates of human immunodeficiency virus type 1 mutational profiles by single-genome amplification after 48-hour propagation in peripheral blood mononuclear cells at different levels of cell activation. Intervirology 2014; 57:277-88. [PMID: 24994530 DOI: 10.1159/000362415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/19/2014] [Indexed: 11/19/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) genetic diversity is one of the most important features of HIV-1 infections and the result of error accumulation during reverse transcription and of high viral turnover. HIV-1 reverse transcription is influenced by factors such as the level of nucleotides and/or the cellular activation state. HIV-1 diversity was investigated after 48 h of viral propagation in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors in three different cell culture conditions: (1) resting PBMCs, (2) simultaneous infection and PBMC activation, and (3) PBMC activation 72 h before infection. Cellular DNA was extracted and proviruses of each culture condition were amplified. Single-genome PCR clones were obtained and the protease and reverse transcriptase of the pol gene were sequenced. An elevated number of nucleotide substitutions in all three culture conditions were observed. In condition 1, the mutational rate observed ranged from 1.0 × 10(-3) to 2.1 × 10(-2), the genetic diversity was 0.6%, and hypermutation was observed in 7.1% of sequenced clones. In condition 2, the mutational rate ranged from 1.0 × 10(-3) to 1.0 × 10(-2), the genetic diversity was 0.8%, and hypermutation affected 6.7% of clones. In condition 3, the mutational rate ranged from 2.8 × 10(-3) to 1.1 × 10(-2), the genetic diversity was 1%, and 5.9% of clones were hypermutated. Substitutions occurred more frequently in some specific nucleotide stretches, and a common pattern for substitutions in all the different conditions was identified. There was a significant accumulation of mutations during the initial periods of in vitro HIV-1 propagation irrespective of culture conditions. The rapid accumulation of virus diversity might represent a viral strategy when colonizing new hosts. Complementary studies are necessary to allow for a better understanding of the initial periods of infection, which represent a crucial event related to disease progression.
Collapse
Affiliation(s)
- Cristiano Teodoro Russo
- Discipline of Immunology, Medicine Course, Pontifical Catholic University of Paraná, Londrina Paraná, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Gregori J, Salicrú M, Domingo E, Sanchez A, Esteban JI, Rodríguez-Frías F, Quer J. Inference with viral quasispecies diversity indices: clonal and NGS approaches. Bioinformatics 2014; 30:1104-1111. [PMID: 24389655 DOI: 10.1093/bioinformatics/btt768] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/25/2013] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Given the inherent dynamics of a viral quasispecies, we are often interested in the comparison of diversity indices of sequential samples of a patient, or in the comparison of diversity indices of virus in groups of patients in a treated versus control design. It is then important to make sure that the diversity measures from each sample may be compared with no bias and within a consistent statistical framework. In the present report, we review some indices often used as measures for viral quasispecies complexity and provide means for statistical inference, applying procedures taken from the ecology field. In particular, we examine the Shannon entropy and the mutation frequency, and we discuss the appropriateness of different normalization methods of the Shannon entropy found in the literature. By taking amplicons ultra-deep pyrosequencing (UDPS) raw data as a surrogate of a real hepatitis C virus viral population, we study through in-silico sampling the statistical properties of these indices under two methods of viral quasispecies sampling, classical cloning followed by Sanger sequencing (CCSS) and next-generation sequencing (NGS) such as UDPS. We propose solutions specific to each of the two sampling methods-CCSS and NGS-to guarantee statistically conforming conclusions as free of bias as possible. CONTACT josep.gregori@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Josep Gregori
- Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain
| | - Miquel Salicrú
- Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain
| | - Esteban Domingo
- Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain
| | - Alex Sanchez
- Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain
| | - Juan I Esteban
- Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain
| | - Josep Quer
- Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain Liver Unit, Internal Medicine Lab Malalties Hepàtiques, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035 Barcelona, Spain, Roche Diagnostics SL, 08174, Sant Cugat del Vallès, Spain, Statistics Department, Biology Faculty, Barcelona University, 08028, Barcelona, Spain, CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, 28049, Madrid, Spain, Bioinformatics and Statistics Unit, Vall d'Hebron Institut Recerca (VHIR-HUVH), 08035, Barcelona, Spain, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain and Biochemistry Unit. Virology Unit/Microbiology Department, HUVH, 08035 Barcelona, Spain
| |
Collapse
|
31
|
Chang Y, Dou Y, Bao H, Luo X, Liu X, Mu K, Liu Z, Liu X, Cai X. Multiple microRNAs targeted to internal ribosome entry site against foot-and-mouth disease virus infection in vitro and in vivo. Virol J 2014; 11:1. [PMID: 24393133 PMCID: PMC3903555 DOI: 10.1186/1743-422x-11-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022] Open
Abstract
Background Foot-and-mouth disease virus (FMDV) causes a severe vesicular disease in domestic and wild cloven-hoofed animals. Because of the limited early protection induced by current vaccines, emergency antiviral strategies to control the rapid spread of FMD outbreaks are needed. Here we constructed multiple microRNAs (miRNAs) targeting the internal ribosome entry site (IRES) element of FMDV and investigated the effect of IRES-specific miRNAs on FMDV replication in baby hamster kidney (BHK-21) cells and suckling mice. Results Four IRES-specific miRNAs significantly reduced enhanced green fluorescent protein (EGFP) expression from IRES-EGFP reporter plasmids, which were used with each miRNA expression plasmid in co-transfection of BHK-21 cells. Furthermore, treatment of BHK-21 cells with Bi-miRNA (a mixture of two miRNA expression plasmids) and Dual-miRNA (a co-cistronic expression plasmid containing two miRNA hairpin structures) induced more efficient and greater inhibition of EGFP expression than did plasmids carrying single miRNA sequences. Stably transformed BHK-21 cells and goat fibroblasts with an integrating IRES-specific Dual-miRNA were generated, and real-time quantitative RT-PCR showed that the Dual-miRNA was able to effectively inhibit the replication of FMDV (except for the Mya98 strain) in the stably transformed BHK-21 cells. The Dual-miRNA plasmid significantly delayed the deaths of suckling mice challenged with 50× and 100× the 50% lethal dose (LD50) of FMDV vaccine strains of three serotypes (O, A and Asia 1), and induced partial/complete protection against the prevalent PanAsia-1 and Mya98 strains of FMDV serotype O. Conclusion These data demonstrate that IRES-specific miRNAs can significantly inhibit FMDV infection in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, P, R of China.
| |
Collapse
|
32
|
Abstract
The purpose of this introductory chapter is to provide the reader with a brief overview of the factors that drive disease emergence in order to set the scene for the more detailed chapters that follow. The chapter is divided into three parts. The first deals with the activities of humans that drive disease emergence. This ranges from historical factors such as animal domestication to the impact of new technologies such as air travel and agricultural intensification in response to population growth. The second section deals with virus properties that enable them to adapt to new hosts, particularly jumping between species. The final section deals with the activities of animals themselves that contribute to disease emergence.
Collapse
|
33
|
Hall JPJ, Harrison E, Brockhurst MA. Viral host-adaptation: insights from evolution experiments with phages. Curr Opin Virol 2013; 3:572-7. [PMID: 23890845 DOI: 10.1016/j.coviro.2013.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 11/26/2022]
Abstract
Phages, viral parasites of bacteria, share fundamental features of pathogenic animal and plant viruses and represent a highly tractable empirical model system to understand viral evolution and in particular viral host-adaptation. Phage adaptation to a particular host genotype often results in improved fitness by way of parallel evolution whereby independent lineages hit upon identical adaptive solutions. By contrast, phage adaptation to an evolving host population leads to the evolution of increasing host-range over time and correlated phenotypic and genetic divergence between populations. Phage host-range expansion frequently occurs by a process of stepwise evolution of multiple mutations, and host-shifts are often constrained by mutational availability, pleiotropic costs or ecological conditions.
Collapse
Affiliation(s)
- James P J Hall
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | | | | |
Collapse
|
34
|
Ramírez C, Gregori J, Buti M, Tabernero D, Camós S, Casillas R, Quer J, Esteban R, Homs M, Rodriguez-Frías F. A comparative study of ultra-deep pyrosequencing and cloning to quantitatively analyze the viral quasispecies using hepatitis B virus infection as a model. Antiviral Res 2013; 98:273-83. [PMID: 23523552 DOI: 10.1016/j.antiviral.2013.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 02/07/2023]
Abstract
In this study, the reliability and reproducibility of viral quasispecies quantification by three ultra-deep pyrosequencing (UDPS) methods (FLX+, FLX, and Junior) were investigated and results compared with the conventional cloning technique. Hepatitis B virus (HBV) infection was selected as the model. The preCore/Core region, the least overlapped HBV region, was analyzed in samples from a chronic hepatitis B patient by cloning and by UDPS. After computation filtering of the UDPS results, samples A1 and A2 (FLX+) and sample B (FLX) yielded the same 20 polymorphic positions. Junior yielded 18 polymorphic positions that coincided with the FLX results. In contrast, 50 polymorphic positions were detected by cloning. Quasispecies complexity plotted on graphs showed superimposed patterns and the quantitative parameters were similar between FLX+, FLX, Junior, and the cloning sequences. Twenty-two haplotypes were detected by Junior, and 37, 40, and 39 were detected by FLX A1, A2, and B, respectively. These differences may be attributable to methodological differences between FLX and Junior. By cloning, 47 haplotypes were detected. Eight clones with insertions and deletions that induced de novo stop codons were not observed by UDPS because the UDPS filter discarded them. Our results indicate that UDPS is an optimal alternative to molecular cloning for quantitative study of the viral quasispecies. Nonetheless, specific mutations, such as insertions and deletions, were only detected by cloning. A filter should be designed to analyze cloning sequences, and UDPS filters should be improved to include the specific mutations.
Collapse
Affiliation(s)
- Clara Ramírez
- Biochemistry Department, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mahabadi M, Norouzi M, Alavian SM, Samimirad K, Azad TM, Saberfar E, Mahmoodi M, Ramezani F, Karimzadeh H, Malekzadeh R, Montazeri G, Nejatizadeh A, Ziaee M, Abedi F, Ataei B, Yaran M, Sayad B, Hossein Somi M, Sarizadeh G, Sanei-Moghaddam I, Mansour-Ghanaei F, Rafatpanah H, Pourhosseingholi MA, Keyvani H, Kalantari E, Saberifiroozi M, Ali Judaki M, Ghamari S, Daram M, Fazeli Z, Goodarzi Z, Khedive A, Moradi A, Jazayeri SM. Drug-related mutational patterns in hepatitis B virus (HBV) reverse transcriptase proteins from Iranian treatment-naïve chronic HBV patients. HEPATITIS MONTHLY 2013; 13:e6712. [PMID: 23596461 PMCID: PMC3626233 DOI: 10.5812/hepatmon.6712] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/09/2012] [Accepted: 11/12/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Immunomodulators and Nucleotide analogues have been used globally for the dealing of chronic hepatitis B virus (HBV) infection. However, the development of drug resistance is a major limitation to their long-term effectiveness. OBJECTIVES The aim of this study was to characterize the hepatitis B virus reverse transcriptase (RT) protein variations among Iranian chronic HBV carriers who did not receive any antiviral treatments. MATERIALS AND METHODS Hepatitis B virus partial RT genes from 325 chronic in active carrier patients were amplified and directly sequenced. Nucleotide/amino acid substitutions were identified compared to the sequences obtained from the database. RESULTS All strains belonging to genotype D.365 amino-acid substitutions were found. Mutations related to lamivudine, adefovir, telbivudine, and entecavir occurred in (YMDD) 4% (n = 13), (SVQ) 17.23% (n = 56), (M204I/V + L180M) 2.45% (n = 8) and (M204I) 2.76% (n = 9) of patients, respectively. CONCLUSIONS RT mutants do occur naturally and could be found in HBV carriers who have never received antiviral therapy. However, mutations related to drug resistance in Iranian treatment-naïve chronic HBV patients were found to be higher than other studies published formerly. Chronic HBV patients should be monitored closely prior the commencement of therapy to achieve the best regimen option.
Collapse
Affiliation(s)
- Mostafa Mahabadi
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Mehdi Norouzi
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | | | - Katayoon Samimirad
- Hepatitis C Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Talat Mokhtari Azad
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Esmaeil Saberfar
- The research and development department of Bayerpaul vaccine and pharmaceutical company, Tehran, IR Iran
| | - Mahmood Mahmoodi
- Department of Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Fatemeh Ramezani
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Hadi Karimzadeh
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Reza Malekzadeh
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Ghodrat Montazeri
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Azim Nejatizadeh
- Research Center for Molecular Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, IR Iran
| | - Masood Ziaee
- Hepatitis Research Center, Department of Internal Medicine, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, IR Iran
| | - Farshid Abedi
- Department of Infectious Disease, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Behrooz Ataei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Majid Yaran
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Babak Sayad
- Kermanshah Liver Diseases and Hepatitis Research Center, Kermanshah, IR Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | | | | | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | | | - Hossain Keyvani
- Department of Virology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | | | - Mehdi Saberifiroozi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mohammad Ali Judaki
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Shiva Ghamari
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Maryam Daram
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Zeinab Fazeli
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Zahra Goodarzi
- The research and development department of Bayerpaul vaccine and pharmaceutical company, Tehran, IR Iran
| | - Abolfazl Khedive
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Abdolvahab Moradi
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, IR Iran
| | - Seyed Mohamad Jazayeri
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Seyed Mohamad Jazayeri, Hepatitis B Lab, Department of Virology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 14155-6446, Tehran, IR Iran. Tel.: +98-2188962343, Fax: +98-2188992660, E-mail:
| |
Collapse
|
36
|
Present Day Biology seen in the Looking Glass of Physics of Complexity. UNDERSTANDING COMPLEX SYSTEMS 2013. [DOI: 10.1007/978-3-642-34070-3_44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Abstract
The concept of eliminating HIV-1 infectivity by elevating the viral mutation rate was first proposed over a decade ago, even though the general concept had been conceived earlier for RNA viruses. Lethal mutagenesis was originally viewed as a novel chemotherapeutic approach for treating HIV-1 infection in which use of a viral mutagen would over multiple rounds of replication lead to the lethal accumulation of mutations, rendering the virus population noninfectious - known as the slow mutation accumulation model. There have been limitations in obtaining good efficacy data with drug leads, leaving some doubt on clinical translation. More recent studies of the apolipoprotein B mRNA editing complex 3 (APOBEC3) proteins as well as new progress in the use of nucleoside analogs for inducing lethal mutagenesis have helped to refocus attention on rapid induction of HIV-1 lethal mutagenesis in a single or limited number of replication cycles leading to a rapid mutation accumulation model.
Collapse
Affiliation(s)
- Michael J Dapp
- Institute for Molecular Virology, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
38
|
Forrester NL, Guerbois M, Seymour RL, Spratt H, Weaver SC. Vector-borne transmission imposes a severe bottleneck on an RNA virus population. PLoS Pathog 2012; 8:e1002897. [PMID: 23028310 PMCID: PMC3441635 DOI: 10.1371/journal.ppat.1002897] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/25/2012] [Indexed: 11/28/2022] Open
Abstract
RNA viruses typically occur in genetically diverse populations due to their error-prone genome replication. Genetic diversity is thought to be important in allowing RNA viruses to explore sequence space, facilitating adaptation to changing environments and hosts. Some arboviruses that infect both a mosquito vector and a mammalian host are known to experience population bottlenecks in their vectors, which may constrain their genetic diversity and could potentially lead to extinction events via Muller's ratchet. To examine this potential challenge of bottlenecks for arbovirus perpetuation, we studied Venezuelan equine encephalitis virus (VEEV) enzootic subtype IE and its natural vector Culex (Melanoconion) taeniopus, as an example of a virus-vector interaction with a long evolutionary history. Using a mixture of marked VEEV clones to infect C. taeniopus and real-time RT-PCR to track these clones during mosquito infection and dissemination, we observed severe bottleneck events that resulted in a significant drop in the number of clones present. At higher initial doses, the midgut was readily infected and there was a severe bottleneck at the midgut escape. Following a lower initial dose, the major bottleneck occurred at initial midgut infection. A second, less severe bottleneck was identified at the salivary gland infection stage following intrathoracic inoculation. Our results suggest that VEEV consistently encounters bottlenecks during infection, dissemination and transmission by its natural enzootic vector. The potential impacts of these bottlenecks on viral fitness and transmission, and the viral mechanisms that prevent genetic drift leading to extinction, deserve further study. The ability of arboviruses to perpetuate in nature given that they must infect two disparate hosts (the mosquito vector and the vertebrate host) remains a mystery. We studied how viral genetic diversity is impacted by the dual host transmission cycle. Our studies of an enzootic cycle using Venezuelan equine encephalitis virus (VEEV) and its natural mosquito, Culex taeniopus, revealed the stages of infection that result in a viral population bottleneck. Using a set of marked VEEV clones and repeated sampling at various time points following C. taeniopus infection, we determined the number of clones in various mosquito tissues culminating in transmission. Bottlenecks were identified but the stage of occurrence was dependent on the dose that initiated infection. Understanding the points at which mosquito-borne viruses are constrained will shed light on the ways in which virus diversity varies, leading to selection of mutants that may result in host range changes or alterations in virulence.
Collapse
Affiliation(s)
- Naomi L. Forrester
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mathilde Guerbois
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Robert L. Seymour
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi Spratt
- Sealy Center for Preventative Medicine and Preventative Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Sánchez-Jiménez C, Olivares I, de Ávila Lucas AI, Toledano V, Gutiérrez-Rivas M, Lorenzo-Redondo R, Grande-Pérez A, Domingo E, López-Galíndez C. Mutagen-mediated enhancement of HIV-1 replication in persistently infected cells. Virology 2012; 424:147-53. [PMID: 22265575 DOI: 10.1016/j.virol.2011.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/28/2011] [Accepted: 12/22/2011] [Indexed: 12/23/2022]
Abstract
Lethal mutagenesis, a new antiviral strategy to extinguish virus through elevated mutation rates, was explored in H61-D cells an HIV-1 persistently infected lymphoid cell line. Three mutagenic agents: 5-hydroxy-2(')-deoxycytidine (5-OHdC), 5-fluorouracil (5-FU) and 2,2(')-difluoro-2(')-deoxycytidine (gemcitabine) were used. After 54 passages, treatments with 5-FU and gemcitabine reduced virus infectivity, p24 and RT activity. Treatment with the pyrimidine analog 5-OHdC resulted in increases of p24 production, RT activity and infectivity. Rise in viral replication by 5-OHdC during HIV-1 persistence is in contrast with its inhibitory effect in acute infections. Viral replication enhancement by 5-OHdC was associated with an increase in intracellular HIV-1 RNA mutations. Mechanisms of HIV-1 replication enhancement by 5-OHdC are unknown but some potential factors are discussed. Increase of HIV-1 replication by 5-OHdC cautions against the use, without previous analyses, of mutagenic nucleoside analogs for AIDS treatment.
Collapse
Affiliation(s)
- Carmen Sánchez-Jiménez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tempo and mode of inhibitor-mutagen antiviral therapies: a multidisciplinary approach. Proc Natl Acad Sci U S A 2011; 108:16008-13. [PMID: 21911373 DOI: 10.1073/pnas.1110489108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The continuous emergence of drug-resistant viruses is a major obstacle for the successful treatment of viral infections, thus representing a persistent spur to the search for new therapeutic strategies. Among them, multidrug treatments are currently at the forefront of pharmaceutical, clinical, and computational investigation. Still, there are many unknowns in the way that different drugs interact among themselves and with the pathogen that they aim to control. Inspired by experimental studies with picornavirus, here, we discuss the performance of sequential vs. combination therapies involving two dissimilar drugs: the mutagen ribavirin and an inhibitor of viral replication, guanidine. Because a systematic analysis of viral response to drug doses demands a precious amount of time and resources, we present and analyze an in silico model describing the dynamics of the viral population under the action of the two drugs. The model predicts the response of the viral population to any dose combination, the optimal therapy to be used in each case, and the way to minimize the probability of appearance of resistant mutants. In agreement with the theoretical predictions, in vitro experiments with foot-and-mouth disease virus confirm that the suitability of simultaneous or sequential administration depends on the drug doses. In addition, intrinsic replicative characteristics of the virus (e.g., replication through RNA only or a DNA intermediate) play a key role to determine the appropriateness of a sequential or combination therapy. Knowledge of several model parameters can be derived by means of few, simple experiments, such that the model and its predictions can be extended to other viral systems.
Collapse
|
41
|
Forrester NL, Guerbois M, Adams AP, Liang X, Weaver SC. Analysis of intrahost variation in Venezuelan equine encephalitis virus reveals repeated deletions in the 6-kilodalton protein gene. J Virol 2011; 85:8709-17. [PMID: 21715498 PMCID: PMC3165814 DOI: 10.1128/jvi.00165-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/14/2011] [Indexed: 11/20/2022] Open
Abstract
RNA viruses exist as a spectrum of mutants that is generated and maintained during replication within the host. Consensus sequencing overlooks minority genotypes present in the viral sample that may impact the population's phenotype. In-depth sequencing of an original field isolate of subtype IE Venezuelan equine encephalitis virus (VEEV) demonstrated the presence of multiple deletions within the 6,000-molecular-weight (6K) protein gene. Using in vitro and in vivo experiments, similar deletions were generated in an additional VEEV strain originating from an infectious cDNA clone. Time course experiments demonstrated that the deletions are produced during acute infection although not until 24 h postinfection. Molecular clones containing some of these deletions were generated, and although the larger deletions appear to be noninfectious, viruses with the smaller deletions were viable and formed small plaques. Serial passages provided no evidence that these deletion mutants function as defective interfering particles. Furthermore, since wild-type infections generally occur at a low multiplicity of infection, it is unlikely that these deletions are propagated in natural transmission cycles. However, they could affect pathogenesis at later stages of infection. Because they are ubiquitously generated both in vivo and in vitro, further investigation is warranted to understand the generation of these deletions and their significance for disease.
Collapse
Affiliation(s)
- N. L. Forrester
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609
| | - M. Guerbois
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609
| | - A. P. Adams
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609
| | - X. Liang
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609
| | - S. C. Weaver
- Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609
| |
Collapse
|
42
|
Lin HX, Feng Y, Tu X, Zhao X, Hsieh CH, Griffin L, Junop M, Zhang C. Characterization of the spike protein of human coronavirus NL63 in receptor binding and pseudotype virus entry. Virus Res 2011; 160:283-93. [PMID: 21798295 PMCID: PMC7114368 DOI: 10.1016/j.virusres.2011.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 12/22/2022]
Abstract
The spike (S) protein of human coronavirus NL63 (HCoV-NL63) mediates both cell attachment by binding to its receptor hACE2 and membrane fusion during virus entry. We have previously identified the receptor-binding domain (RBD) and residues important for RBD–hACE2 association. Here, we further characterized the S protein by investigating the roles of the cytoplasmic tail and 19 residues located in the RBD in protein accumulation, receptor binding, and pseudotype virus entry. For these purposes, we first identified an entry-efficient S gene template from a pool of gene variants and used it as a backbone to generate a series of cytoplasmic tail deletion and single residue substitution mutants. Our results showed that: (i) deletion of 18 aa from the C-terminus enhanced the S protein accumulation and virus entry, which might be due to the deletion of intracellular retention signals; (ii) further deletion to residue 29 also enhanced the amount of S protein on the cell surface and in virion, but reduced virus entry by 25%, suggesting that residues 19–29 contributes to membrane fusion; (iii) a 29 aa-deletion mutant had a defect in anchoring on the plasma membrane, which led to a dramatic decrease of S protein in virion and virus entry; (iv) a total of 15 residues (Y498, V499, V531, G534, G537, D538, S540, G575, S576, E582, W585, Y590, T591, V593 and G594) within RBD were important for receptor binding and virus entry. They probably form three receptor binding motifs, and the third motif is conserved between NL63 and SARS-CoV.
Collapse
Affiliation(s)
- Han-Xin Lin
- Department of Pathology and Molecular Medicine, McMaster University, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Muellner P, Zadoks RN, Perez AM, Spencer SEF, Schukken YH, French NP. The integration of molecular tools into veterinary and spatial epidemiology. Spat Spatiotemporal Epidemiol 2011; 2:159-71. [PMID: 22748175 DOI: 10.1016/j.sste.2011.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
At the interface of molecular biology and epidemiology, the emerging discipline of molecular epidemiology offers unique opportunities to advance the study of diseases through the investigation of infectious agents at the molecular level. Molecular tools can increase our understanding of the factors that shape the spatial and temporal distribution of pathogens and disease. Both spatial and molecular aspects have always been important to the field of infectious disease epidemiology, but recently news tools have been developed which increase our ability to consider both elements within a common framework. This enables the epidemiologist to make inferences about disease patterns in space and time. This paper introduces some basic concepts of molecular epidemiology in a veterinary context and illustrates the application of molecular tools at a range of spatio-temporal scales. Case studies - a multi-state outbreak of Serratia mastitis, a national control program for campylobacteriosis, and evolution of foot-and-mouth-disease viruses - are used to demonstrate the importance of considering molecular aspects in modern epidemiological studies. The discipline of molecular epidemiology is in its infancy and our contribution aims to promote awareness, understanding and uptake of molecular epidemiology in veterinary science.
Collapse
Affiliation(s)
- Petra Muellner
- Epi-interactive, 8a Darlington Road, Miramar, Wellington 6022, New Zealand.
| | | | | | | | | | | |
Collapse
|
44
|
Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol 2011; 8:270-9. [PMID: 21593585 PMCID: PMC3127101 DOI: 10.4161/rna.8.2.15013] [Citation(s) in RCA: 368] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 12/18/2022] Open
Abstract
In order to survive and propagate, RNA viruses must achieve a balance between the capacity for adaptation to new environmental conditions or host cells with the need to maintain an intact and replication competent genome. Several virus families in the order Nidovirales, such as the coronaviruses (CoVs) must achieve these objectives with the largest and most complex replicating RNA genomes known, up to 32 kb of positive-sense RNA. The CoVs encode sixteen nonstructural proteins (nsp 1-16) with known or predicted RNA synthesis and modification activities, and it has been proposed that they are also responsible for the evolution of large genomes. The CoVs, including murine hepatitis virus (MHV) and SARS-CoV, encode a 3'-to-5' exoribonuclease activity (ExoN) in nsp14. Genetic inactivation of ExoN activity in engineered SARS-CoV and MHV genomes by alanine substitution at conserved DE-D-D active site residues results in viable mutants that demonstrate 15- to 20-fold increases in mutation rates, up to 18 times greater than those tolerated for fidelity mutants of other RNA viruses. Thus nsp14-ExoN is essential for replication fidelity, and likely serves either as a direct mediator or regulator of a more complex RNA proofreading machine, a process previously unprecedented in RNA virus biology. Elucidation of the mechanisms of nsp14-mediated proofreading will have major implications for our understanding of the evolution of RNA viruses, and also will provide a robust model to investigate the balance between fidelity, diversity and pathogenesis. The discovery of a protein distinct from a viral RdRp that regulates replication fidelity also raises the possibility that RNA genome replication fidelity may be adaptable to differing replication environments and selective pressures, rather than being a fixed determinant.
Collapse
Affiliation(s)
- Mark R Denison
- Department of Pediatrics and Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
45
|
Mechanisms of GII.4 norovirus evolution. Trends Microbiol 2011; 19:233-40. [PMID: 21310617 DOI: 10.1016/j.tim.2011.01.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 12/14/2022]
Abstract
Since the late 1990s norovirus (NoV) strains belonging to a single genotype (GII.4) have caused at least four global epidemics. To date, the higher epidemiological fitness of the GII.4 strains has been attributed to a faster rate of evolution within the virus capsid, resulting in the ability to escape herd immunity. Four key factors have been proposed to influence the rate of evolution in NoV. These include host receptor recognition, sequence space, duration of herd immunity, and replication kinetics. In this review we discuss recent advancements in our understanding of these four mechanisms in relation to GII.4 evolution.
Collapse
|
46
|
Maree FF, Blignaut B, Aschenbrenner L, Burrage T, Rieder E. Analysis of SAT1 type foot-and-mouth disease virus capsid proteins: Influence of receptor usage on the properties of virus particles. Virus Res 2011; 155:462-72. [DOI: 10.1016/j.virusres.2010.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
|
47
|
Perales C, Agudo R, Manrubia SC, Domingo E. Influence of mutagenesis and viral load on the sustained low-level replication of an RNA virus. J Mol Biol 2011; 407:60-78. [PMID: 21256131 DOI: 10.1016/j.jmb.2011.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/10/2023]
Abstract
Lethal mutagenesis is an antiviral strategy that aims to extinguish viruses as a consequence of enhanced mutation rates during virus replication. The molecular mechanisms that underlie virus extinction by mutagenic nucleoside analogues are not well understood. When mutagenic agents and antiviral inhibitors are administered sequentially or in combination, interconnected and often conflicting selective constraints can influence the fate of the virus either towards survival through selection of mutagen-escape or inhibitor-escape mutants or towards extinction. Here we report a study involving the mutagenesis of foot-and-mouth disease virus (FMDV) by the nucleoside analogue ribavirin (R) and the effect of R-mediated mutagenesis on the selection of FMDV mutants resistant to the inhibitor of RNA replication, guanidine hydrochloride (GU). The results show that under comparable (and low) viral load, an inhibitory activity by GU could not substitute for an equivalent inhibitory activity by R in driving FMDV to extinction. Both the prior history of R mutagenesis and the viral population size influenced the selection of GU-escape mutants. A sufficiently low viral load allowed continued viral replication without selection of inhibitor-escape mutants, irrespective of the history of mutagenesis. These observations imply that reductions of viral load as a result of a mutagenic treatment may provide an opportunity either for immune-mediated clearing of a virus or for an alternative antiviral intervention, even if extinction is not initially achieved.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
48
|
Mullins JI, Heath L, Hughes JP, Kicha J, Styrchak S, Wong KG, Rao U, Hansen A, Harris KS, Laurent JP, Li D, Simpson JH, Essigmann JM, Loeb LA, Parkins J. Mutation of HIV-1 genomes in a clinical population treated with the mutagenic nucleoside KP1461. PLoS One 2011; 6:e15135. [PMID: 21264288 PMCID: PMC3021505 DOI: 10.1371/journal.pone.0015135] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/23/2010] [Indexed: 12/12/2022] Open
Abstract
The deoxycytidine analog KP1212, and its prodrug KP1461, are prototypes of a new class of antiretroviral drugs designed to increase viral mutation rates, with the goal of eventually causing the collapse of the viral population. Here we present an extensive analysis of viral sequences from HIV-1 infected volunteers from the first “mechanism validation” phase II clinical trial of a mutagenic base analog in which individuals previously treated with antiviral drugs received 1600 mg of KP1461 twice per day for 124 days. Plasma viral loads were not reduced, and overall levels of viral mutation were not increased during this short-term study, however, the mutation spectrum of HIV was altered. A large number (N = 105 per sample) of sequences were analyzed, each derived from individual HIV-1 RNA templates, after 0, 56 and 124 days of therapy from 10 treated and 10 untreated control individuals (>7.1 million base pairs of unique viral templates were sequenced). We found that private mutations, those not found in more than one viral sequence and likely to have occurred in the most recent rounds of replication, increased in treated individuals relative to controls after 56 (p = 0.038) and 124 (p = 0.002) days of drug treatment. The spectrum of mutations observed in the treated group showed an excess of A to G and G to A mutations (p = 0.01), and to a lesser extent T to C and C to T mutations (p = 0.09), as predicted by the mechanism of action of the drug. These results validate the proposed mechanism of action in humans and should spur development of this novel antiretroviral approach.
Collapse
Affiliation(s)
- James I Mullins
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ciota AT, Kramer LD. Insights into arbovirus evolution and adaptation from experimental studies. Viruses 2010; 2:2594-617. [PMID: 21994633 PMCID: PMC3185588 DOI: 10.3390/v2122594] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 12/22/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are maintained in nature by cycling between vertebrate hosts and haematophagous invertebrate vectors. These viruses are responsible for causing a significant public health burden throughout the world, with over 100 species having the capacity to cause human disease. Arbovirus outbreaks in previously naïve environments demonstrate the potential of these pathogens for expansion and emergence, possibly exacerbated more recently by changing climates. These recent outbreaks, together with the continued devastation caused by endemic viruses, such as Dengue virus which persists in many areas, demonstrate the need to better understand the selective pressures that shape arbovirus evolution. Specifically, a comprehensive understanding of host-virus interactions and how they shape both host-specific and virus-specific evolutionary pressures is needed to fully evaluate the factors that govern the potential for host shifts and geographic expansions. One approach to advance our understanding of the factors influencing arbovirus evolution in nature is the use of experimental studies in the laboratory. Here, we review the contributions that laboratory passage and experimental infection studies have made to the field of arbovirus adaptation and evolution, and how these studies contribute to the overall field of arbovirus evolution. In particular, this review focuses on the areas of evolutionary constraints and mutant swarm dynamics; how experimental results compare to theoretical predictions; the importance of arbovirus ecology in shaping viral swarms; and how current knowledge should guide future questions relevant to understanding arbovirus evolution.
Collapse
Affiliation(s)
- Alexander T. Ciota
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; E-Mail:
- University at Albany, State University of New York, Albany, NY 12222, USA
| | - Laura D. Kramer
- The Arbovirus Laboratories, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; E-Mail:
- University at Albany, State University of New York, Albany, NY 12222, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-518-485-6632; Fax: 1-518-485-6669
| |
Collapse
|
50
|
Figlerowicz M, Jackowiak P, Formanowicz P, Kędziora P, Alejska M, Malinowska N, Błażewicz J, Figlerowicz M. Hepatitis C virus quasispecies in chronically infected children subjected to interferon-ribavirin therapy. Arch Virol 2010; 155:1977-87. [PMID: 20842394 PMCID: PMC2982956 DOI: 10.1007/s00705-010-0789-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 08/27/2010] [Indexed: 01/30/2023]
Abstract
Accumulating evidence suggests that certain features of hepatitis C virus (HCV), especially its high genetic variability, might be responsible for the low efficiency of anti-HCV treatment. Here, we present a bioinformatic analysis of HCV-1a populations isolated from 23 children with chronic hepatitis C (CHC) subjected to interferon-ribavirin therapy. The structures of the viral quasispecies were established based on a 132-amino-acid sequence derived from E1/E2 protein, including hypervariable region 1 (HVR1). Two types of HCV populations were identified. The first type, found in non-responders, contained a small number of closely related variants. The second type, characteristic for sustained responders, was composed of a large number of distantly associated equal-rank variants. Comparison of 445 HVR1 sequences showed that a significant number of variants present in non-responding patients are closely related, suggesting that certain, still unidentified properties of the pathogen may be key factors determining the result of CHC treatment.
Collapse
Affiliation(s)
- Magdalena Figlerowicz
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Piotr Formanowicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Institute of Computing Science, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland
| | - Paweł Kędziora
- Institute of Computing Science, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland
| | - Magdalena Alejska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Nelli Malinowska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jacek Błażewicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Institute of Computing Science, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|