1
|
Singh DD, Haque S, Kim Y, Han I, Yadav DK. Remodeling of tumour microenvironment: strategies to overcome therapeutic resistance and innovate immunoengineering in triple-negative breast cancer. Front Immunol 2024; 15:1455211. [PMID: 39720730 PMCID: PMC11666570 DOI: 10.3389/fimmu.2024.1455211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) stands as the most complex and daunting subtype of breast cancer affecting women globally. Regrettably, treatment options for TNBC remain limited due to its clinical complexity. However, immunotherapy has emerged as a promising avenue, showing success in developing effective therapies for advanced cases and improving patient outcomes. Improving TNBC treatments involves reducing side effects, minimizing systemic toxicity, and enhancing efficacy. Unlike traditional cancer immunotherapy, engineered nonmaterial's can precisely target TNBC, facilitating immune cell access, improving antigen presentation, and triggering lasting immune responses. Nanocarriers with enhanced sensitivity and specificity, specific cellular absorption, and low toxicity are gaining attention. Nanotechnology-driven immunoengineering strategies focus on targeted delivery systems using multifunctional molecules for precise tracking, diagnosis, and therapy in TNBC. This study delves into TNBC's tumour microenvironment (TME) remodeling, therapeutic resistance, and immunoengineering strategies using nanotechnology.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
2
|
Zhu J, Tao P, Chopra AK, Rao VB. Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform. Annu Rev Virol 2024; 11:395-420. [PMID: 38768614 PMCID: PMC11690488 DOI: 10.1146/annurev-virology-111821-111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The COVID-19 pandemic has transformed vaccinology. Rapid deployment of mRNA vaccines has saved countless lives. However, these platforms have inherent limitations including lack of durability of immune responses and mucosal immunity, high cost, and thermal instability. These and uncertainties about the nature of future pandemics underscore the need for exploring next-generation vaccine platforms. Here, we present a novel protein-based, bacteriophage T4 platform for rapid design of efficacious vaccines against bacterial and viral pathogens. Full-length antigens can be displayed at high density on a 120 × 86 nm phage capsid through nonessential capsid binding proteins Soc and Hoc. Such nanoparticles, without any adjuvant, induce robust humoral, cellular, and mucosal responses when administered intranasally and confer sterilizing immunity. Combined with structural stability and ease of manufacture, T4 phage provides an excellent needle-free, mucosal pandemic vaccine platform and allows equitable vaccine access to low- and middle-income communities across the globe.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, and Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| |
Collapse
|
3
|
Vishwakarma P, Puri S, Banerjee M, Chang CY, Chang CC, Chaudhuri TK. Deciphering the Thermal Stability of Bacteriophage MS2-Derived Virus-like Particle and Its Engineered Variant. ACS Biomater Sci Eng 2024; 10:4812-4822. [PMID: 38976823 DOI: 10.1021/acsbiomaterials.4c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
RNA bacteriophage MS2-derived virus-like particles (VLPs) have been widely used in biomedical research as model systems to study virus assembly, structure-function relationships, vaccine development, and drug delivery. Considering the diverse utility of these VLPs, a systemic engineering approach has been utilized to generate smaller particles with optimal serum stability and tissue penetrance. Additionally, it is crucial to demonstrate the overall stability of these mini MS2 VLPs, ensuring cargo protection until they reach their target cell/organ. However, no detailed analysis of the thermal stability and heat-induced disassembly of MS2 VLPs has yet been attempted. In this work, we investigated the thermal stability of both wild-type (WT) MS2 VLP and its "mini" variant containing S37P mutation (mini MS2 VLP). The mini MS2 VLP exhibits a higher capsid melting temperature (Tm) when compared to its WT MS2 VLP counterpart, possibly attributed to its smaller interdimer angle. Our study presents that the thermal unfolding of MS2 VLPs follows a sequential process involving particle destabilization, nucleic acid exposure/melting, and disassembly of VLP. This observation underscores the disruption of cooperative intersubunit interactions and protein-nucleic acid interactions, shedding light on the mechanism of heat-induced VLP disassembly.
Collapse
Affiliation(s)
- Pragati Vishwakarma
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sarita Puri
- Department of Bioscience, University of Milan, Milan 20133, Italy
| | - Manidipa Banerjee
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chia-Yu Chang
- Department of Biological Sciences and Technology, National Yang-Ming Chiao Tsung University, Hsinchu 30068, Taiwan
| | - Chia-Ching Chang
- Department of Biological Sciences and Technology, National Yang-Ming Chiao Tsung University, Hsinchu 30068, Taiwan
- Department of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang-Ming Chiao Tung University, Hsinchu 30068, Taiwan
- International College of Semiconductor Technology, National Yang-Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Tapan K Chaudhuri
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
4
|
Wang H, Yang Y, Xu Y, Chen Y, Zhang W, Liu T, Chen G, Wang K. Phage-based delivery systems: engineering, applications, and challenges in nanomedicines. J Nanobiotechnology 2024; 22:365. [PMID: 38918839 PMCID: PMC11197292 DOI: 10.1186/s12951-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Bacteriophages (phages) represent a unique category of viruses with a remarkable ability to selectively infect host bacteria, characterized by their assembly from proteins and nucleic acids. Leveraging their exceptional biological properties and modifiable characteristics, phages emerge as innovative, safe, and efficient delivery vectors. The potential drawbacks associated with conventional nanocarriers in the realms of drug and gene delivery include a lack of cell-specific targeting, cytotoxicity, and diminished in vivo transfection efficiency. In contrast, engineered phages, when employed as cargo delivery vectors, hold the promise to surmount these limitations and attain enhanced delivery efficacy. This review comprehensively outlines current strategies for the engineering of phages, delineates the principal types of phages utilized as nanocarriers in drug and gene delivery, and explores the application of phage-based delivery systems in disease therapy. Additionally, an incisive analysis is provided, critically examining the challenges confronted by phage-based delivery systems within the domain of nanotechnology. The primary objective of this article is to furnish a theoretical reference that contributes to the reasoned design and development of potent phage-based delivery systems.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Ying Yang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yan Xu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yi Chen
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Wenjie Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2145, Australia.
| | - Gang Chen
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
5
|
Travassos R, Martins SA, Fernandes A, Correia JDG, Melo R. Tailored Viral-like Particles as Drivers of Medical Breakthroughs. Int J Mol Sci 2024; 25:6699. [PMID: 38928403 PMCID: PMC11204272 DOI: 10.3390/ijms25126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.
Collapse
Affiliation(s)
- Rafael Travassos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Ana Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| |
Collapse
|
6
|
Li XT, Peng SY, Feng SM, Bao TY, Li SZ, Li SY. Recent Progress in Phage-Based Nanoplatforms for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307111. [PMID: 37806755 DOI: 10.1002/smll.202307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Nanodrug delivery systems have demonstrated a great potential for tumor therapy with the development of nanotechnology. Nonetheless, traditional drug delivery systems are faced with issues such as complex synthetic procedures, low reproducibility, nonspecific distribution, impenetrability of biological barrier, systemic toxicity, etc. In recent years, phage-based nanoplatforms have attracted increasing attention in tumor treatment for their regular structure, fantastic carrying property, high transduction efficiency and biosafety. Notably, therapeutic or targeting peptides can be expressed on the surface of the phages through phage display technology, enabling the phage vectors to possess multifunctions. As a result, the drug delivery efficiency on tumor will be vastly improved, thereby enhancing the therapeutic efficacy while reducing the side effects on normal tissues. Moreover, phages can overcome the hindrance of biofilm barrier to elicit antitumor effects, which exhibit great advantages compared with traditional synthetic drug delivery systems. Herein, this review not only summarizes the structure and biology of the phages, but also presents their potential as prominent nanoplatforms against tumor in different pathways to inspire the development of effective nanomedicine.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shu-Yi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shao-Mei Feng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ting-Yu Bao
- Department of Clinical Medicine, the Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng-Zhang Li
- Department of Clinical Medicine, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
7
|
Romeyer Dherbey J, Bertels F. The untapped potential of phage model systems as therapeutic agents. Virus Evol 2024; 10:veae007. [PMID: 38361821 PMCID: PMC10868562 DOI: 10.1093/ve/veae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
With the emergence of widespread antibiotic resistance, phages are an appealing alternative to antibiotics in the fight against multidrug-resistant bacteria. Over the past few years, many phages have been isolated from various environments to treat bacterial pathogens. While isolating novel phages for treatment has had some success for compassionate use, developing novel phages into a general therapeutic will require considerable time and financial resource investments. These investments may be less significant for well-established phage model systems. The knowledge acquired from decades of research on their structure, life cycle, and evolution ensures safe application and efficient handling. However, one major downside of the established phage model systems is their inability to infect pathogenic bacteria. This problem is not insurmountable; phage host range can be extended through genetic engineering or evolution experiments. In the future, breeding model phages to infect pathogens could provide a new avenue to develop phage therapeutic agents.
Collapse
Affiliation(s)
- Jordan Romeyer Dherbey
- Microbial Population Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, Plön, Schleswig-Holstein 24306, Germany
| | - Frederic Bertels
- Microbial Population Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, Plön, Schleswig-Holstein 24306, Germany
| |
Collapse
|
8
|
Gupta R, Arora K, Mehrotra Arora N, Kundu P. Significance of VLPs in Vlp-circRNA vaccines: a vaccine candidate or delivery vehicle? RNA Biol 2024; 21:17-28. [PMID: 39240021 PMCID: PMC11382717 DOI: 10.1080/15476286.2024.2399307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs with a closed loop lacking 5' and 3' ends. These circRNAs are translatable and, therefore, have a potential in developing vaccine. CircRNA vaccines have been shown to be more stable, safe, easy to manufacture and scale-up production when compared to mRNA vaccines. However, these vaccines also suffer from several drawbacks such as low circularization efficiency for longer RNA precursor and usage of lipid nano particles (LNPs) in their delivery. LNPs have been shown to require large amounts of RNA due to their indirect delivery from endosome to cytosol. Besides, individual components of LNPs provide reactogenicity. Usage of virus like particles (VLPs) can improve the increased production and targeted delivery of circRNA vaccines and show no reactogenicity. Moreover, VLPs has also been used to produce vaccines against several diseases such as hepatitis C virus (HCV) etc. In this article, we will discuss about the methods used to enhance synthesis or circularization efficiency of circRNA. Moreover, we will also discuss about the significance of VLPs as the delivery vehicle for circRNA and their possible usage as the dual vaccine.
Collapse
Affiliation(s)
- Reeshu Gupta
- Department of Research and Development, Premas Biotech Pvt Ltd., Industrial Model Township (IMT), Gurugram, India
- Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Kajal Arora
- Department of Research and Development, Premas Biotech Pvt Ltd., Industrial Model Township (IMT), Gurugram, India
| | - Nupur Mehrotra Arora
- Department of Research and Development, Premas Biotech Pvt Ltd., Industrial Model Township (IMT), Gurugram, India
| | - Prabuddha Kundu
- Department of Research and Development, Premas Biotech Pvt Ltd., Industrial Model Township (IMT), Gurugram, India
| |
Collapse
|
9
|
Tumban E. Bacteriophage Virus-Like Particles: Platforms for Vaccine Design. Methods Mol Biol 2024; 2738:411-423. [PMID: 37966612 DOI: 10.1007/978-1-0716-3549-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Virus-like particles (VLPs) derived from bacteriophages have many applications in biomedical sciences, especially in the development of candidate vaccines against viral and bacterial infections. Bacteriophage VLPs can be manufactured cheaply and in large quantities in bacteria compared to eukaryotic expression systems. In addition to this, bacteriophage VLPs are excellent platforms for vaccine design for the following reason: Humans do not have preexisting antibodies against bacteriophage VLPs. Thus, antigens displayed on bacteriophage VLP platforms are expected to be highly immunogenic. As such, VLPs derived from MS2, PP7, Qβ, AP205, P22 bacteriophages, etc. have been used to develop candidate vaccines against human infectious and noninfectious agents. This mini-review summarizes data from some of the candidate bacteriophage-based VLP peptide vaccines that have been developed. The review also highlights some strategies used to develop the candidate bacteriophage-based VLP peptide vaccines.
Collapse
Affiliation(s)
- Ebenezer Tumban
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA.
| |
Collapse
|
10
|
Thongchol J, Zhang J. Purification of Single-Stranded RNA Bacteriophages and Host Receptors for Structural Determination Using Cryo-Electron Microscopy. Methods Mol Biol 2024; 2793:185-204. [PMID: 38526732 DOI: 10.1007/978-1-0716-3798-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Single-stranded RNA bacteriophages (ssRNA phages) are small viruses with a compact genome (~3-4 kb) that infect gram-negative bacteria via retractile pili. These phages have been applied in various fields since their discovery approximately 60 years ago. To understand their biology, it is crucial to analyze the structure of mature virions. Cryo-electron microscopy (cryo-EM) has been employed to determine the structures of two ssRNA phages, MS2 and Qβ. This chapter presents a method for purifying these two phages and their receptor, the F-pilus, to allow examination using cryo-EM.
Collapse
Affiliation(s)
- Jirapat Thongchol
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
11
|
Dang M, Wu LJ, Zhang SR, Zhu JR, Hu YZ, Yang CX, Zhang XY. MS2 Virus-like Particles as a Versatile Peptide Presentation Platform: Insights into the Deterministic Abilities for Accommodating Heterologous Peptide Lengths. ACS Synth Biol 2023; 12:3704-3715. [PMID: 37946498 PMCID: PMC10729756 DOI: 10.1021/acssynbio.3c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Virus-like particles (VLPs) are nanostructures with the potential to present heterologous peptides at high density, thereby triggering heightened immunogenicity. RNA bacteriophage MS2 VLPs are a compelling delivery platform among them. However, a notable hurdle arises from the immune response toward MS2 coat protein, swiftly eliminating subsequent vaccinations via the same vector. Although larger inserts effectively mask carrier epitopes, current research predominantly focuses on displaying short conserved peptides (<30 aa). A systematic evaluation regarding the deterministic ability of MS2 VLPs as a platform for presenting heterologous peptides remains a gap. In light of this, we employed the "single-chain dimer" paradigm to scrutinize the tolerance of MS2 VLPs for peptide/protein insertions. The results unveiled functional MS2 VLP assembly solely for inserts smaller than 91 aa. Particularly noteworthy is the largest insertion achieved on the MS2 VLPs to date: the RNA helicase A (RHA) dsRNA-binding domains (dsRBD1). Attempts to introduce additional linkers or empty coat subunits fail to augment the expression level or assembly of the MS2 VLPs displaying dsRBD1, affirming 91 aa as the upper threshold for exogenous protein presentation. By illuminating the precise confines of MS2 VLPs in accommodating distinct peptide lengths, our study informs the selection of appropriate peptide and protein dimensions. This revelation not only underscores the scope of MS2 VLPs but also establishes a pivotal reference point, facilitating the strategic manipulation of MS2 VLPs to design next-generation epitope/antibody-based therapeutics.
Collapse
Affiliation(s)
- Mei Dang
- Qinba
State Key Laboratory of Biological Resources and Ecological Environment,
College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
- Department
of Biological Sciences, Faculty of Science, National University of Singapore, 10 Keng Ridge Crescent, 119260, Singapore
| | - Long J. Wu
- Qinba
State Key Laboratory of Biological Resources and Ecological Environment,
College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Si R. Zhang
- Xi’an
Middle School of Shaanxi Province, Fengcheng Wulu 69, Weiyang, Xi’an 710006, China
- Department
of Genetics, Stanford University, Palo Alto, California 94304, United States
- HSS,
Stanford University, Palo Alto, California 94305, United States
| | - Jian R. Zhu
- School of
Pharmacy, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yu Z. Hu
- Qinba
State Key Laboratory of Biological Resources and Ecological Environment,
College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Chen X. Yang
- Qinba
State Key Laboratory of Biological Resources and Ecological Environment,
College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Xiao Y. Zhang
- Qinba
State Key Laboratory of Biological Resources and Ecological Environment,
College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
- Centre
of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
- Department
of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
12
|
Bai C, Wang C, Lu Y. Novel Vectors and Administrations for mRNA Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303713. [PMID: 37475520 DOI: 10.1002/smll.202303713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Indexed: 07/22/2023]
Abstract
mRNA therapy has shown great potential in infectious disease vaccines, cancer immunotherapy, protein replacement therapy, gene editing, and other fields due to its central role in all life processes. However, mRNA is challenging to pass through the cell membrane due to its significant negative charges and degradation from RNase, so the key to mRNA therapy is efficient packaging and delivery of it with appropriate vectors. Presently researchers have developed various vectors such as viruses and liposomes, but these conventional vectors are now difficult to meet the growing requirement like safety, efficiency, and targeting, so many novel delivery vectors with unique advantages have emerged recently. This review mainly introduces two categories of novel vectors: biomacromolecules and inorganic nanoparticles, as well as two novel methods of control and administration based on these novel vectors: controlled-release administration and non-invasive administration. These novel delivery strategies have the advantages of high safety, biocompatibility, versatility, intelligence, and targeting. This paper analyzes the challenges faced by the field of mRNA delivery in depth, and discusses how to use the characteristics of novel vectors and administrations to solve these problems.
Collapse
Affiliation(s)
- Chenghai Bai
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chen Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
João J, Prazeres DMF. Manufacturing of non-viral protein nanocages for biotechnological and biomedical applications. Front Bioeng Biotechnol 2023; 11:1200729. [PMID: 37520292 PMCID: PMC10374429 DOI: 10.3389/fbioe.2023.1200729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Protein nanocages are highly ordered nanometer scale architectures, which are typically formed by homo- or hetero-self-assembly of multiple monomers into symmetric structures of different size and shape. The intrinsic characteristics of protein nanocages make them very attractive and promising as a biological nanomaterial. These include, among others, a high surface/volume ratio, multi-functionality, ease to modify or manipulate genetically or chemically, high stability, mono-dispersity, and biocompatibility. Since the beginning of the investigation into protein nanocages, several applications were conceived in a variety of areas such as drug delivery, vaccine development, bioimaging, biomineralization, nanomaterial synthesis and biocatalysis. The ability to generate large amounts of pure and well-folded protein assemblies is one of the keys to transform nanocages into clinically valuable products and move biomedical applications forward. This calls for the development of more efficient biomanufacturing processes and for the setting up of analytical techniques adequate for the quality control and characterization of the biological function and structure of nanocages. This review concisely covers and overviews the progress made since the emergence of protein nanocages as a new, next-generation class of biologics. A brief outline of non-viral protein nanocages is followed by a presentation of their main applications in the areas of bioengineering, biotechnology, and biomedicine. Afterwards, we focus on a description of the current processes used in the manufacturing of protein nanocages with particular emphasis on the most relevant aspects of production and purification. The state-of-the-art on current characterization techniques is then described and future alternative or complementary approaches in development are also discussed. Finally, a critical analysis of the limitations and drawbacks of the current manufacturing strategies is presented, alongside with the identification of the major challenges and bottlenecks.
Collapse
Affiliation(s)
- Jorge João
- iBB–Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Duarte Miguel F. Prazeres
- iBB–Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Loganathan K, Viswanathan B. Genome editing for phage design and uses for therapeutic applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:203-224. [PMID: 37770172 DOI: 10.1016/bs.pmbts.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The over usage of antibiotics leads to antibiotic abuse which in turn eventually raises resistance mechanisms among wide range of pathogens. Due to lack of experimental data of efficacy of phages as potential antimicrobial and therapeutic agent and also more specific and cumbersome isolation process against specific pathogens makes it not so feasible technology to be looked as an alternative therapy. But, recent developments in genome editing techniques enables programmed nuclease enzymes that has effectively improvised our methodology to make accurate changes in the genomes of prokaryote as well as eukaryote cells. It is already strengthening our ability to improvise genetic engineering to disease identification by facilitating the creation of more precise models to identify the root cause. The present chapter discusses on improvisation of phage therapy using recent genome editing tools and also shares data on the methods of usage of phages and their derivatives like proteins and enzymes such as lysins and depolymerases, as a potential therapeutic or prophylaxis agent. Methods involved in recombinant based techniques were also discussed in this chapter. Combination of traditional approach with modern tools has led to a potential development of phage-based therapeutics in near future.
Collapse
|
15
|
Palma M. Aspects of Phage-Based Vaccines for Protein and Epitope Immunization. Vaccines (Basel) 2023; 11:vaccines11020436. [PMID: 36851313 PMCID: PMC9967953 DOI: 10.3390/vaccines11020436] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Because vaccine development is a difficult process, this study reviews aspects of phages as vaccine delivery vehicles through a literature search. The results demonstrated that because phages have adjuvant properties and are safe for humans and animals, they are an excellent vaccine tool for protein and epitope immunization. The phage genome can easily be manipulated to display antigens or create DNA vaccines. Additionally, they are easy to produce on a large scale, which lowers their manufacturing costs. They are stable under various conditions, which can facilitate their transport and storage. However, no medicine regulatory agency has yet authorized phage-based vaccines despite the considerable preclinical data confirming their benefits. The skeptical perspective of phages should be overcome because humans encounter bacteriophages in their environment all the time without suffering adverse effects. The lack of clinical trials, endotoxin contamination, phage composition, and long-term negative effects are some obstacles preventing the development of phage vaccines. However, their prospects should be promising because phages are safe in clinical trials; they have been authorized as a food additive to avoid food contamination and approved for emergency use in phage therapy against difficult-to-treat antibiotic-resistant bacteria. Therefore, this encourages the use of phages in vaccines.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain;
- Creative Biolabs Inc., Shirley, NY 11967, USA
| |
Collapse
|
16
|
Wijesundara YH, Herbert FC, Kumari S, Howlett T, Koirala S, Trashi O, Trashi I, Al-Kharji NM, Gassensmith JJ. Rip it, stitch it, click it: A Chemist's guide to VLP manipulation. Virology 2022; 577:105-123. [PMID: 36343470 DOI: 10.1016/j.virol.2022.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Viruses are some of nature's most ubiquitous self-assembled molecular containers. Evolutionary pressures have created some incredibly robust, thermally, and enzymatically resistant carriers to transport delicate genetic information safely. Virus-like particles (VLPs) are human-engineered non-infectious systems that inherit the parent virus' ability to self-assemble under controlled conditions while being non-infectious. VLPs and plant-based viral nanoparticles are becoming increasingly popular in medicine as their self-assembly properties are exploitable for applications ranging from diagnostic tools to targeted drug delivery. Understanding the basic structure and principles underlying the assembly of higher-order structures has allowed researchers to disassemble (rip it), reassemble (stitch it), and functionalize (click it) these systems on demand. This review focuses on the current toolbox of strategies developed to manipulate these systems by ripping, stitching, and clicking to create new technologies in the biomedical space.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Thomas Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Shailendra Koirala
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Noora M Al-Kharji
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA; Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Rd. Richardson, TX, 75080, USA.
| |
Collapse
|
17
|
Vodolazkaya N, Nikolskaya M, Laguta A, Farafonov V, Balklava Z, Stich M, Mchedlov-Petrossyan N, Nerukh D. Estimation of Nanoparticle's Surface Electrostatic Potential in Solution Using Acid-Base Molecular Probes. III. Experimental Hydrophobicity/Hydrophilicity and Charge Distribution of MS2 Virus Surface. J Phys Chem B 2022; 126:8166-8176. [PMID: 36198175 DOI: 10.1021/acs.jpcb.2c04491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MS2 bacteriophage is often used as a model for evaluating pathogenic viruses' behavior in aqueous solution. However, the questions of the virus surface's hydrophilic/hydrophobic balance, the charge distribution, and the binding mechanism are open. Using the dynamic light scattering method and laser Doppler electrophoresis, the hydrodynamic diameter and the ζ-potential of the virus particles were measured at their concentration of 5 × 1011 particles per mL and ionic strength 0.03 M. The values were found to be 30 nm and -29 or -34 mV (by Smoluchowski or Ohshima approximations), respectively. The MS2 bacteriophage surface was also investigated using a series of acid-base indicator dyes of various charge type, size, and structure. Their spectral and acid-base properties (pKa) are very sensitive to the microenvironment in aqueous solution, including containing nanoparticles. The electrostatic potential of the surface Ψ was estimated using the common formula: Ψ = 59 × (pKai - pKa) in mV at 25 °C. The Ψ values were -50 and +10 mV, respectively, which indicate the "mosaic" way of the charge distribution on the surface. These data are in good agreement with the obtained ζ-potential values and provide even more information about the virus surface. It was found that the surface of the MS2 virus is hydrophilic in solution in contrast to the commonly accepted hypothesis of the hydrophobicity of virus particles. No hydrophobic interactions between various molecular probes and the capsid were observed.
Collapse
Affiliation(s)
- Natalya Vodolazkaya
- Physical Chemistry Department, V. N. Karazin Kharkiv National University, Svoboda Square 4, Kharkiv, 61022, Ukraine
| | - Marina Nikolskaya
- Physical Chemistry Department, V. N. Karazin Kharkiv National University, Svoboda Square 4, Kharkiv, 61022, Ukraine
| | - Anna Laguta
- Physical Chemistry Department, V. N. Karazin Kharkiv National University, Svoboda Square 4, Kharkiv, 61022, Ukraine
| | - Vladimir Farafonov
- Physical Chemistry Department, V. N. Karazin Kharkiv National University, Svoboda Square 4, Kharkiv, 61022, Ukraine
| | | | - Michael Stich
- Departamento de Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica, Universidad Rey Juan Carlos, 28933 Móstoles (Madrid), Spain
| | - Nikolay Mchedlov-Petrossyan
- Physical Chemistry Department, V. N. Karazin Kharkiv National University, Svoboda Square 4, Kharkiv, 61022, Ukraine
| | | |
Collapse
|
18
|
Hajebi S, Yousefiasl S, Rahimmanesh I, Dahim A, Ahmadi S, Kadumudi FB, Rahgozar N, Amani S, Kumar A, Kamrani E, Rabiee M, Borzacchiello A, Wang X, Rabiee N, Dolatshahi‐Pirouz A, Makvandi P. Genetically Engineered Viral Vectors and Organic-Based Non-Viral Nanocarriers for Drug Delivery Applications. Adv Healthc Mater 2022; 11:e2201583. [PMID: 35916145 PMCID: PMC11481035 DOI: 10.1002/adhm.202201583] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/28/2023]
Abstract
Conventional drug delivery systems are challenged by concerns related to systemic toxicity, repetitive doses, drug concentrations fluctuation, and adverse effects. Various drug delivery systems are developed to overcome these limitations. Nanomaterials are employed in a variety of biomedical applications such as therapeutics delivery, cancer therapy, and tissue engineering. Physiochemical nanoparticle assembly techniques involve the application of solvents and potentially harmful chemicals, commonly at high temperatures. Genetically engineered organisms have the potential to be used as promising candidates for greener, efficient, and more adaptable platforms for the synthesis and assembly of nanomaterials. Genetically engineered carriers are precisely designed and constructed in shape and size, enabling precise control over drug attachment sites. The high accuracy of these novel advanced materials, biocompatibility, and stimuli-responsiveness, elucidate their emerging application in controlled drug delivery. The current article represents the research progress in developing various genetically engineered carriers. Organic-based nanoparticles including cellulose, collagen, silk-like polymers, elastin-like protein, silk-elastin-like protein, and inorganic-based nanoparticles are discussed in detail. Afterward, viral-based carriers are classified, and their potential for targeted therapeutics delivery is highlighted. Finally, the challenges and prospects of these delivery systems are concluded.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer EngineeringSahand University of TechnologyTabriz51335‐1996Iran
- Institute of Polymeric MaterialsSahand University of TechnologyTabriz51335‐1996Iran
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadan6517838736Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterIsfahan Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahan8174673461Iran
| | - Alireza Dahim
- Department of AnesthesiaJundishapur University of Medical SciencesAhvaz61357‐15794Iran
| | - Sepideh Ahmadi
- Department of BiologyFaculty of SciencesUniversity of ZabolSistan and BaluchestanZabol98613‐35856Iran
| | - Firoz Babu Kadumudi
- Department of Health TechnologyTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Nikta Rahgozar
- Department of ChemistryAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Sanaz Amani
- Department of Chemical EngineeringSahand University of TechnologyTabriz51335‐1996Iran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityHimachal Pradesh174 103India
| | - Ehsan Kamrani
- Harvard‐MIT Health Science and TechnologyCambridgeMA02139USA
- Wellman Center for PhotomedicineHarvard Medical SchoolBostonMA02139USA
| | - Mohammad Rabiee
- Biomaterials GroupDepartment of Biomedical EngineeringAmirkabir University of TechnologyTehran15875‐4413Iran
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and BiomaterialsNational Research CouncilIPCB‐CNRNaples80125Italy
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghai200032China
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNSW2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐ro, Nam‐guPohangGyeongbuk37673South Korea
| | | | - Pooyan Makvandi
- Centre for Materials InterfacesIstituto Italiano di TecnologiaPontederaPisa56025Italy
- The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People’s HospitalQuzhouZhejiang324000China
- School of ChemistryDamghan UniversityDamghan36716‐41167Iran
| |
Collapse
|
19
|
Wei J, Hui AM. The paradigm shift in treatment from Covid-19 to oncology with mRNA vaccines. Cancer Treat Rev 2022; 107:102405. [PMID: 35576777 PMCID: PMC9068246 DOI: 10.1016/j.ctrv.2022.102405] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/08/2023]
Abstract
mRNA vaccines have gained popularity over the last decade as a versatile tool for developing novel therapeutics. The recent success of coronavirus disease (COVID-19) mRNA vaccine has unlocked the potential of mRNA technology as a powerful therapeutic platform. In this review, we apprise the literature on the various types of cancer vaccines, the novel platforms available for delivery of the vaccines, the recent progress in the RNA-based therapies and the evolving role of mRNA vaccines for various cancer indications, along with a future strategy to treat the patients. Literature reveals that despite multifaceted challenges in the development of mRNA vaccines, the promising and durable efficacy of the RNA in pre-clinical and clinical studies deserves consideration. The introduction of mRNA-transfected DC vaccine is an approach that has gained interest for cancer vaccine development due to its ability to circumvent the necessity of DC isolation, ex vivo cultivation and re-infusion. The selection of appropriate antigen of interest remains one of the major challenges for cancer vaccine development. The rapid development and large-scale production of mRNA platform has enabled for the development of both personalized vaccines (mRNA 4157, mRNA 4650 and RO7198457) and tetravalent vaccines (BNT111 and mRNA-5671). In addition, mRNA vaccines combined with checkpoint modulators and other novel medications that reverse immunosuppression show promise, however further research is needed to discover which combinations are most successful and the best dosing schedule for each component. Each delivery route (intradermal, subcutaneous, intra tumoral, intranodal, intranasal, intravenous) has its own set of challenges to overcome, and these challenges will decide the best delivery method. In other words, while developing a vaccine design, the underlying motivation should be a reasonable combination of delivery route and format. Exploring various administration routes and delivery route systems has boosted the development of mRNA vaccines.
Collapse
Affiliation(s)
- Jiao Wei
- Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., 1289 Yishan Road, Shanghai 200233, China; Fosun Pharma USA Inc, 91 Hartwell Avenue, Suite 305, Lexington, MA 02421, USA
| | - Ai-Min Hui
- Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd., 1289 Yishan Road, Shanghai 200233, China; Fosun Pharma USA Inc, 91 Hartwell Avenue, Suite 305, Lexington, MA 02421, USA.
| |
Collapse
|
20
|
Khan A, Ostaku J, Aras E, Safak Seker UO. Combating Infectious Diseases with Synthetic Biology. ACS Synth Biol 2022; 11:528-537. [PMID: 35077138 PMCID: PMC8895449 DOI: 10.1021/acssynbio.1c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Over
the past decades, there have been numerous outbreaks, including
parasitic, fungal, bacterial, and viral infections, worldwide. The
rate at which infectious diseases are emerging is disproportionate
to the rate of development for new strategies that could combat them.
Therefore, there is an increasing demand to develop novel, specific,
sensitive, and effective methods for infectious disease diagnosis
and treatment. Designed synthetic systems and devices are becoming
powerful tools to treat human diseases. The advancement in synthetic
biology offers efficient, accurate, and cost-effective platforms for
detecting and preventing infectious diseases. Herein we focus on the
latest state of living theranostics and its implications.
Collapse
Affiliation(s)
- Anooshay Khan
- UNAM − National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey
| | - Julian Ostaku
- UNAM − National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey
| | - Ebru Aras
- UNAM − National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey
| | - Urartu Ozgur Safak Seker
- UNAM − National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
21
|
Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev 2021; 46:6407522. [PMID: 34673942 DOI: 10.1093/femsre/fuab052] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Phage display technology, which is based on the presentation of peptide sequences on the surface of bacteriophage virions, was developed over 30 years ago. Improvements in phage display systems have allowed us to employ this method in numerous fields of biotechnology, as diverse as immunological and biomedical applications, the formation of novel materials and many others. The importance of phage display platforms was recognized by awarding the Nobel Prize in 2018 "for the phage display of peptides and antibodies". In contrast to many review articles concerning specific applications of phage display systems published in recent years, we present an overview of this technology, including a comparison of various display systems, their advantages and disadvantages, and examples of applications in various fields of science, medicine, and the broad sense of biotechnology. Other peptide display technologies, which employ bacterial, yeast and mammalian cells, as well as eukaryotic viruses and cell-free systems, are also discussed. These powerful methods are still being developed and improved; thus, novel sophisticated tools based on phage display and other peptide display systems are constantly emerging, and new opportunities to solve various scientific, medical and technological problems can be expected to become available in the near future.
Collapse
Affiliation(s)
- Weronika Jaroszewicz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
22
|
Optimizing the synthesis and purification of MS2 virus like particles. Sci Rep 2021; 11:19851. [PMID: 34615923 PMCID: PMC8494748 DOI: 10.1038/s41598-021-98706-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Introducing bacteriophage MS2 virus-like particles (VLPs) as gene and drug delivery tools increases the demand for optimizing their production and purification procedure. PEG precipitation method is used efficiently to purify VLPs, while the effects of pH and different electrolytes on the stability, size, and homogeneity of purified MS2 VLPs, and the encapsulated RNA sequences remained to be elucidated. In this regard, a vector, capable of producing VLP with an shRNA packed inside was prepared. The resulting VLPs in different buffers/solutions were assessed for their size, polydispersity index, and ability to protect the enclosed shRNA. We report that among Tris, HEPES, and PBS, with or without NaNO3, and also NaNO3 alone in different pH and ionic concentrations, the 100 mM NaNO3-Tris buffer with pH:8 can be used as a new and optimal MS2 VLP production buffer, capable of inhibiting the VLPs aggregation. These VLPs show a size range of 27-30 nm and suitable homogeneity with minimum 12-month stability at 4 °C. Moreover, the resulting MS2 VLPs were highly efficient and stable for at least 48 h in conditions similar to in vivo. These features of MS2 VLPs produced in the newly introduced buffer make them an appropriate candidate for therapeutic agents' delivery.
Collapse
|
23
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
24
|
Lin S, Liu C, Han X, Zhong H, Cheng C. Viral Nanoparticle System: An Effective Platform for Photodynamic Therapy. Int J Mol Sci 2021; 22:ijms22041728. [PMID: 33572365 PMCID: PMC7916136 DOI: 10.3390/ijms22041728] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapy due to its efficiency and accuracy. The photosensitizer is delivered to the target lesion and locally activated. Viral nanoparticles (VNPs) have been explored as delivery vehicles for PDT in recent years because of their favorable properties, including simple manufacture and good safety profile. They have great potential as drug delivery carriers in medicine. Here, we review the development of PDT photosensitizers and discuss applications of VNP-mediated photodynamic therapies and the performance of VNPs in the treatment of tumor cells and antimicrobial therapy. Furthermore, future perspectives are discussed for further developing novel viral nanocarriers or improving existing viral vectors.
Collapse
Affiliation(s)
| | - Chun Liu
- Correspondence: (C.L.); (X.H.); (C.C.); Tel.: +86-591-8372-5260 (C.C.)
| | - Xiao Han
- Correspondence: (C.L.); (X.H.); (C.C.); Tel.: +86-591-8372-5260 (C.C.)
| | | | - Cui Cheng
- Correspondence: (C.L.); (X.H.); (C.C.); Tel.: +86-591-8372-5260 (C.C.)
| |
Collapse
|
25
|
Immunogenicity and Protective Activity of Pigeon Circovirus Recombinant Capsid Protein Virus-Like Particles (PiCV rCap-VLPs) in Pigeons ( Columba livia) Experimentally Infected with PiCV. Vaccines (Basel) 2021; 9:vaccines9020098. [PMID: 33525416 PMCID: PMC7912323 DOI: 10.3390/vaccines9020098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
Pigeon circovirus (PiCV) is the most recurrent virus diagnosed in pigeons and is among the major causative agents of young pigeon disease syndrome (YPDS). Due to the lack of an established laboratory protocol for PiCV cultivation, development of prophylaxis is hampered. Alternatively, virus-like particles (VLPs), which closely resemble native viruses but lack the viral genetic material, can be generated using a wide range of expression systems and are shown to have strong immunogenicity. Therefore, the use of VLPs provides a promising prospect for vaccine development. In this study, transfected human embryonic kidney (HEK-293) cells, a mammalian expression system, were used to express the PiCV capsid protein (Cap), which is a major component of PiCV and believed to contain antibody epitopes, to obtain self-assembled VLPs. The VLPs were observed to have a spherical morphology with diameters ranging from 12 to 26 nm. Subcutaneous immunization of pigeons with 100 µg PiCV rCap-VLPs supplemented with water-in-oil-in-water (W/O/W) adjuvant induced specific antibodies against PiCV. Observations of the cytokine expression and T-cell proliferation levels in spleen samples showed significantly higher T-cell proliferation and IFN- γ expression in pigeons immunized with VLPs compared to the controls (p < 0.05). Experimentally infected pigeons that were vaccinated with VLPs also showed no detectable viral titer. The results of the current study demonstrated the potential use of PiCV rCap-VLPs as an effective vaccine candidate against PiCV.
Collapse
|
26
|
Comparison of Seven Commercial Severe Acute Respiratory Syndrome Coronavirus 2 Nucleic Acid Detection Reagents with Pseudovirus as Quality Control Material. J Mol Diagn 2020; 23:300-309. [PMID: 33383210 PMCID: PMC7769707 DOI: 10.1016/j.jmoldx.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 threatens the whole world, which catalyzes a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid test (NAT) kits. To monitor test quality and evaluate NAT kits, quality control materials that best simulate real clinical samples are needed. In this study, the performance of SARS-CoV-2 cell culture supernatant, PCDH-based pseudovirus, and MS2-based pseudovirus as quality control materials was compared. PCDH-based pseudovirus was found to be more similar in characteristics to SARS-CoV-2 particle, and more suitable for evaluating SARS-CoV-2 NAT kits than MS2-based pseudovirus. Proper detection using sensitive and precise NAT kits is essential to guarantee diagnosis. Thus, limit of detection, precision, anti-inference ability, and cross-reactivity of NAT kits from PerkinElmer, Beijing Wantai Biological Pharmacy Enterprise Co, Ltd, Shanghai Kehua Bio-Engineering Co, Ltd, Sansure Biotech Inc., Da An Gene Co, Ltd, Shanghai BioGerm Medical Biotechnology Co, Ltd, and Applied Biological Technologies Co, Ltd, were compared using PCDH-based pseudovirus. For the seven kits evaluated, N gene was more sensitive than ORF1ab gene in most kits, whereas E gene was most sensitive among the three genes in Shanghai Kehua Bio-Engineering Co, Ltd, and Applied Biological Technologies Co, Ltd. PerkinElmer got the lowest limit of detection for N gene at 11.61 copies/mL, and the value was 34.66 copies/mL for ORF1ab gene. All of the kits showed good precision, with CV values less than 5%, as well as acceptable anti-interference ability of 2 mg/L human genomic DNA. No cross-reactivity was observed with other respiratory viruses.
Collapse
|
27
|
Wang Z, Chen Y, Yang J, Han Y, Shi J, Zhan S, Peng R, Li R, Zhang R, Li J, Zhang R. External Quality Assessment for Molecular Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Clinical Laboratories. J Mol Diagn 2020; 23:19-28. [PMID: 33122140 PMCID: PMC7587075 DOI: 10.1016/j.jmoldx.2020.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a huge threat to public health. Viral nucleic acid testing is the diagnostic gold standard and can play an important role in the prevention and control of this infection. In this study, bacteriophage MS2 virus-like particles encapsulating specific RNA sequences of SARS-CoV-2 and other coronaviruses were prepared by genetic engineering. The assessment panel, consisting of four positive samples with concentrations of 2.8, 3.5, 4.2, and 4.9 log10 copies/mL and five negative samples with other human coronaviruses, was prepared and distributed to evaluate the accuracy of routine viral RNA detection. Results of 931 panels from 844 laboratories were collected. The overall percentage agreement, positive percentage agreement (PPA), and negative percentage agreement, defined as the percentage of agreement between the correct results and total results submitted for all, positive, and negative samples were 96.8% (8109/8379), 93.9% (3497/3724), and 99.1% (4612/4655), respectively. For samples with concentrations of 4.9 and 4.2 log10 copies/mL, the PPAs were >95%. However, for 3.5 and 2.8 log10 copies/mL, the PPAs were 94.6% (881/931) and 84.9% (790/931), respectively. For all negative samples, the negative percentage agreement values were >95%. Thus, most laboratories can reliably detect SARS-CoV-2. However, further improvement and optimization are required to ensure the accuracy of detection in panel members with lower concentrations of viral RNA.
Collapse
Affiliation(s)
- Zhe Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuqing Chen
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Yang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxi Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jiping Shi
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China
| | - Shaohua Zhan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rongxue Peng
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Runling Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China.
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China; Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
28
|
Affiliation(s)
- Xianxun Sun
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of Sciences Wuhan 430071 China
- College of Life ScienceJiang Han University Wuhan 430056 China
| | - Zongqiang Cui
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of Sciences Wuhan 430071 China
| |
Collapse
|
29
|
|
30
|
Hess KL, Jewell CM. Phage display as a tool for vaccine and immunotherapy development. Bioeng Transl Med 2020; 5:e10142. [PMID: 31989033 PMCID: PMC6971447 DOI: 10.1002/btm2.10142] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages, or phages, are viruses that specifically infect bacteria and coopt the cellular machinery to create more phage proteins, eventually resulting in the release of new phage particles. Phages are heavily utilized in bioengineering for applications ranging from tissue engineering scaffolds to immune signal delivery. Of specific interest to vaccines and immunotherapies, phages have demonstrated an ability to activate both the innate and adaptive immune systems. The genome of these viral particles can be harnessed for DNA vaccination, or the surface proteins can be exploited for antigen display. More specifically, genes that encode an antigen of interest can be spliced into the phage genome, allowing antigenic proteins or peptides to be displayed by fusion to phage capsid proteins. Phages therefore present antigens to immune cells in a highly ordered and repetitive manner. This review discusses the use of phage with adjuvanting activity as antigen delivery vehicles for vaccination against infectious disease and cancer.
Collapse
Affiliation(s)
- Krystina L. Hess
- U.S. Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| | - Christopher M. Jewell
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMaryland
- Robert E. Fischell Institute for Biomedical DevicesCollege ParkMaryland
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMaryland
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMaryland
- U.S. Department of Veterans AffairsBaltimoreMaryland
| |
Collapse
|
31
|
Zhang JW, Fu Y, Wu QS, Bao LH, Peng RX, Zhang R, Li JM. Standardization of BCR-ABL1 quantification on the international scale in China using locally developed secondary reference panels. Exp Hematol 2019; 81:42-49.e3. [PMID: 31863797 DOI: 10.1016/j.exphem.2019.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/31/2023]
Abstract
For patients with chronic myeloid leukemia, reverse transcription quantitative polymerase chain reaction is widely used in laboratories to quantify BCR-ABL1 fusion gene transcripts for disease management. Many efforts have been made to standardize the BCR-ABL1 testing assay, including the primary and secondary reference reagents, but the secondary standards have not been developed and used in the standardization program in China. With the use of armored RNA technology, armored RNA of BCR-ABL1 and control genes was manufactured to prepare the secondary reference material anchored to the World Health Organization primary reference calibrators for standardization of BCR-ABL1 testing assays. The secondary reference was sent to 30 laboratories in China for validation. Data from an external quality assessment after the standardization process were collected and analyzed as well. The assigned %BCR-ABL1/ABL1IS values of the four levels of the secondary material panels were 0.0118, 0.1345, 1.3808, and 19.4266, respectively. In validation trials, 70.0% (21/30) of laboratories obtained valid conversion factors for the BCR-ABL1 assay. All valid conversion factors from 11 international scale laboratories were equivalent to their respective previous values. External quality assessment data indicated that the accuracy and precision between laboratories were improved. Moreover, the quantity of the panels is abundant to be used as quality control samples for monitoring the shift of data. In this study, we established a secondary genetic reference panel for BCR-ABL1 quantification. This study will play a role in facilitating the worldwide dissemination of the international scale, especially in promoting the standardization of molecular monitoring in China.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Yu Fu
- Department of Nuclear Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qi-Sheng Wu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Li-Hua Bao
- Department of Nuclear Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Rong-Xue Peng
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| | - Jin-Ming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| |
Collapse
|
32
|
Li D, Zhang J, Li J. Role of miRNA sponges in hepatocellular carcinoma. Clin Chim Acta 2019; 500:10-19. [PMID: 31604064 DOI: 10.1016/j.cca.2019.09.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. HCC patients are commonly diagnosed at an advanced stage, for which highly effective therapies are limited. Hence, there is a growing need to discover promising biomarkers for HCC diagnosis, and in this context, microRNAs (miRNAs) hold great promise. MiRNAs function as gene expression regulators by directly binding messenger RNAs (mRNAs) and subsequently causing suppression of mRNA translation or degradation of target mRNAs. Two major types of noncoding RNAs act as competing endogenous sponges: circular RNAs and long non-coding RNAs.They can competitively bind to miRNA through miRNA response elements (MREs), thereby reducing the number of miRNAs binding mRNAs and regulating the expression of downstream target genes of miRNAs at the posttranscriptional level. The relationship between single miRNA sponge and HCC has been explored. However, comprehensive reviews on the sponge's function in HCC are lacking. In this review, we describe the methods to find endogenous sponges and construct exogenous sponges, and briefly compare endogenous and exogenous sponges. We also summarize the current progress on the functional role of miRNA sponges in HCC pathogenesis and present their potential value as diagnostic biomarkers and therapeutic targets. In-depth investigations on the function and mechanism of miRNA sponges in HCC will enrich our knowledge of HCC pathogenesis and contribute to the development of effective diagnostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Dandan Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jiawei Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| |
Collapse
|
33
|
Sokullu E, Soleymani Abyaneh H, Gauthier MA. Plant/Bacterial Virus-Based Drug Discovery, Drug Delivery, and Therapeutics. Pharmaceutics 2019; 11:E211. [PMID: 31058814 PMCID: PMC6572107 DOI: 10.3390/pharmaceutics11050211] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Viruses have recently emerged as promising nanomaterials for biotechnological applications. One of the most important applications of viruses is phage display, which has already been employed to identify a broad range of potential therapeutic peptides and antibodies, as well as other biotechnologically relevant polypeptides (including protease inhibitors, minimizing proteins, and cell/organ targeting peptides). Additionally, their high stability, easily modifiable surface, and enormous diversity in shape and size, distinguish viruses from synthetic nanocarriers used for drug delivery. Indeed, several plant and bacterial viruses (e.g., phages) have been investigated and applied as drug carriers. The ability to remove the genetic material within the capsids of some plant viruses and phages produces empty viral-like particles that are replication-deficient and can be loaded with therapeutic agents. This review summarizes the current applications of plant viruses and phages in drug discovery and as drug delivery systems and includes a discussion of the present status of virus-based materials in clinical research, alongside the observed challenges and opportunities.
Collapse
Affiliation(s)
- Esen Sokullu
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| | - Hoda Soleymani Abyaneh
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| |
Collapse
|
34
|
Chen Y, Batra H, Dong J, Chen C, Rao VB, Tao P. Genetic Engineering of Bacteriophages Against Infectious Diseases. Front Microbiol 2019; 10:954. [PMID: 31130936 PMCID: PMC6509161 DOI: 10.3389/fmicb.2019.00954] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages (phages) are the most abundant and widely distributed organisms on Earth, constituting a virtually unlimited resource to explore the development of biomedical therapies. The therapeutic use of phages to treat bacterial infections (“phage therapy”) was conceived by Felix d’Herelle nearly a century ago. However, its power has been realized only recently, largely due to the emergence of multi-antibiotic resistant bacterial pathogens. Progress in technologies, such as high-throughput sequencing, genome editing, and synthetic biology, further opened doors to explore this vast treasure trove. Here, we review some of the emerging themes on the use of phages against infectious diseases. In addition to phage therapy, phages have also been developed as vaccine platforms to deliver antigens as part of virus-like nanoparticles that can stimulate immune responses and prevent pathogen infections. Phage engineering promises to generate phage variants with unique properties for prophylactic and therapeutic applications. These approaches have created momentum to accelerate basic as well as translational phage research and potential development of therapeutics in the near future.
Collapse
Affiliation(s)
- Yibao Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Junhua Dong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Cen Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Pan Tao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Department of Biology, The Catholic University of America, Washington, DC, United States
| |
Collapse
|
35
|
Tao P, Zhu J, Mahalingam M, Batra H, Rao VB. Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Adv Drug Deliv Rev 2019; 145:57-72. [PMID: 29981801 DOI: 10.1016/j.addr.2018.06.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/15/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022]
Abstract
Subunit vaccines containing one or more target antigens from pathogenic organisms represent safer alternatives to whole pathogen vaccines. However, the antigens by themselves are not sufficiently immunogenic and require additives known as adjuvants to enhance immunogenicity and protective efficacy. Assembly of the antigens into virus-like nanoparticles (VLPs) is a better approach as it allows presentation of the epitopes in a more native context. The repetitive, symmetrical, and high density display of antigens on the VLPs mimic pathogen-associated molecular patterns seen on bacteria and viruses. The antigens, thus, might be better presented to stimulate host's innate as well as adaptive immune systems thereby eliciting both humoral and cellular immune responses. Bacteriophages such as phage T4 provide excellent platforms to generate the nanoparticle vaccines. The T4 capsid containing two non-essential outer proteins Soc and Hoc allow high density array of antigen epitopes in the form of peptides, domains, full-length proteins, or even multi-subunit complexes. Co-delivery of DNAs, targeting molecules, and/or molecular adjuvants provides additional advantages. Recent studies demonstrate that the phage T4 VLPs are highly immunogenic, do not need an adjuvant, and provide complete protection against bacterial and viral pathogens. Thus, phage T4 could potentially be developed as a "universal" VLP platform to design future multivalent vaccines against complex and emerging pathogens.
Collapse
Affiliation(s)
- Pan Tao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jingen Zhu
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
36
|
Zhitnyuk Y, Gee P, Lung MS, Sasakawa N, Xu H, Saito H, Hotta A. Efficient mRNA delivery system utilizing chimeric VSVG-L7Ae virus-like particles. Biochem Biophys Res Commun 2018; 505:1097-1102. [DOI: 10.1016/j.bbrc.2018.09.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
37
|
Fu Y, Zhang R, Wu Q, Zhang J, Bao L, Li J. External quality assessment of p210 BCR-ABL1 transcript quantification by RT-qPCR: Findings and recommendations. Int J Lab Hematol 2018; 41:46-54. [PMID: 30203581 DOI: 10.1111/ijlh.12919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/03/2018] [Accepted: 07/17/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION External quality assessment (EQA) is an essential tool for quality assurance of analytical testing processes of p210 BCR-ABL1 transcripts by RT-qPCR. As an EQA provider, the National Center for Clinical Laboratories organized an EQA scheme of p210 BCR-ABL1 testing in China for the first time to identify existing problems and ensure the reliability of p210 BCR-ABL1 testing. METHODS Using armored RNA technology, we first constructed pACYC-MS2-p210 and CG recombinant plasmids and expressed p210 and CG armored RNAs, with packaging segments of p210 BCR-ABL1 fusion gene (FG) and four common control gene (CG) transcripts. Using these armored RNAs, we prepared lyophilized p210 quality control (QC) sample panels and evaluated detection performance of participating laboratories in China. RESULTS Of the 66 participating laboratories, great variation was found with coefficient of variation (CV%) of raw p210 BCR-ABL1 results basically ranging from 60.0% to 100.0%. In 24 International Scale (IS) laboratories, the CV% of results decreased from 82.4% to 61.6%, and the percentage of laboratories within 2-, 3-, and 5-fold of the median values increased from 78.2%, 87.0%, and 92.1% to 80.1%, 89.4%, and 97.2%, respectively, after conversion with a laboratory-specific conversion factor (CF); however, poorly converted results were also observed in laboratories resulting from changed components of RT-qPCR procedures. False-negative and false-positive results were also found in the EQA. CONCLUSIONS Various problems were found for p210 BCR-ABL1 detection in the EQA. By solving the existing problems, the performance of p210 BCR-ABL1 detection can be improved, ensuring robust laboratory diagnostic capacities in China.
Collapse
Affiliation(s)
- Yu Fu
- National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Qisheng Wu
- National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jiawei Zhang
- National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lihua Bao
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinming Li
- National Center for Clinical Laboratories, National Center of Gerontology, Beijing Hospital, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| |
Collapse
|
38
|
Diaz D, Care A, Sunna A. Bioengineering Strategies for Protein-Based Nanoparticles. Genes (Basel) 2018; 9:E370. [PMID: 30041491 PMCID: PMC6071185 DOI: 10.3390/genes9070370] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, the practical application of protein-based nanoparticles (PNPs) has expanded rapidly into areas like drug delivery, vaccine development, and biocatalysis. PNPs possess unique features that make them attractive as potential platforms for a variety of nanobiotechnological applications. They self-assemble from multiple protein subunits into hollow monodisperse structures; they are highly stable, biocompatible, and biodegradable; and their external components and encapsulation properties can be readily manipulated by chemical or genetic strategies. Moreover, their complex and perfect symmetry have motivated researchers to mimic their properties in order to create de novo protein assemblies. This review focuses on recent advances in the bioengineering and bioconjugation of PNPs and the implementation of synthetic biology concepts to exploit and enhance PNP's intrinsic properties and to impart them with novel functionalities.
Collapse
Affiliation(s)
- Dennis Diaz
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
39
|
Fu Y, Zhang R, Wu Q, Zhang J, Bao L, Li J. Development and evaluation of armored RNA-based standards for quantification of BCR-ABL1 p210/p190 fusion gene transcripts. J Clin Lab Anal 2018; 32:e22612. [PMID: 29959790 DOI: 10.1002/jcla.22612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Standards play an important role in detection of the BCR-ABL1 fusion gene (FG) transcript. However, the standards widely used in laboratories are mainly based on plasmids or cDNA, which cannot accurately reflect the process of RNA extraction and cDNA synthesis. Therefore, we aimed to develop armored RNA-based standards for p210 and p190 BCR-ABL1FG transcripts' quantification. METHODS Using overlapping polymerase chain reaction (PCR) technology, we first linked a segment of the p210 or p190 BCR-ABL1FG transcript with four control genes (CGs; ABL1, BCR, GUSB, and B2M) to form p210FG-CG and p190FG-CG. Subsequently, using armored RNA technology, we prepared p210FG-CG- and p190FG-CG-armored RNAs and the p210FG-CG and p190FG-CG standards, the values of which were assigned by digital PCR (dPCR). RESULTS The p210FG-CG and p190FG-CG standards were stable and homogeneous, and were significantly linear with r2 > 0.98. A field trial including 52 laboratories across China showed that the coefficient of variation (CV%) of BCR-ABL1 values among samples was in the range of 58.6%-129.6% for p210 samples and 73.2%-194.0% for p190 samples when using local standards. By contrast, when using the p210FG-CG and p190FG-CG standards, the CV% of BCR-ABL1 values was decreased to 35.6%-124.9% and 36.6%-170.6% for p210 and p190 samples, respectively. In addition, 33.3% (3/9) of the p210 and p190 samples had CV% values <50.0%, whereas 44.4% (4/9) and 77.8% (7/9) of the samples had lower CV% values when using the p210FG-CG and p190FG-CG standards. CONCLUSION The overall variability of detection of BCR-ABL1 transcripts decreased significantly when using the p210FG-CG or p190FG-CG standards, especially the p190FG-CG standard.
Collapse
Affiliation(s)
- Yu Fu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Qisheng Wu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jiawei Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Lihua Bao
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| |
Collapse
|
40
|
Wang S, Al-Soodani AT, Thomas GC, Buck-Koehntop BA, Woycechowsky KJ. A Protein-Capsid-Based System for Cell Delivery of Selenocysteine. Bioconjug Chem 2018; 29:2332-2342. [DOI: 10.1021/acs.bioconjchem.8b00302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shuxin Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Aneesa T. Al-Soodani
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Geoffrey C. Thomas
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Bethany A. Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Kenneth J. Woycechowsky
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
41
|
Wang G, Liu Y, Feng H, Chen Y, Yang S, Wei Q, Wang J, Liu D, Zhang G. Immunogenicity evaluation of MS2 phage-mediated chimeric nanoparticle displaying an immunodominant B cell epitope of foot-and-mouth disease virus. PeerJ 2018; 6:e4823. [PMID: 29844975 PMCID: PMC5970553 DOI: 10.7717/peerj.4823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 12/02/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals that has caused tremendous economic losses worldwide. In this study, we designed a chimeric nanoparticles (CNPs) vaccine that displays the predominant epitope of the serotype O foot-and-mouth disease virus (FMDV) VP1 131-160 on the surface of MS2 phage. The recombinant protein was expressed in Escherichia Coli and can self-assemble into CNPs with diameter at 25–30 nm in vitro. A tandem repeat peptide epitopes (TRE) was prepared as control. Mice were immunized with CNPs, TRE and commercialized synthetic peptide vaccines (PepVac), respectively. The ELISA results showed that CNPs stimulated a little higher specific antibody levels to PepVac, but was significantly higher than the TRE groups. Moreover, the results from specific IFN-γ responses and lymphocyte proliferation test indicated that CNP immunized mice exhibited significantly enhanced cellular immune response compared to TRE. These results suggested that the CNPs constructed in current study could be a potential alternative vaccine in future FMDV control.
Collapse
Affiliation(s)
- Guoqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Suzhen Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Juan Wang
- Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China
| | - Dongmin Liu
- Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| |
Collapse
|
42
|
Abstract
Within the materials science community, proteins with cage-like architectures are being developed as versatile nanoscale platforms for use in protein nanotechnology. Much effort has been focused on the functionalization of protein cages with biological and non-biological moieties to bring about new properties of not only individual protein cages, but collective bulk-scale assemblies of protein cages. In this review, we report on the current understanding of protein cage assembly, both of the cages themselves from individual subunits, and the assembly of the individual protein cages into higher order structures. We start by discussing the key properties of natural protein cages (for example: size, shape and structure) followed by a review of some of the mechanisms of protein cage assembly and the factors that influence it. We then explore the current approaches for functionalizing protein cages, on the interior or exterior surfaces of the capsids. Lastly, we explore the emerging area of higher order assemblies created from individual protein cages and their potential for new and exciting collective properties.
Collapse
Affiliation(s)
- William M Aumiller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
43
|
Almeida-Marrero V, van de Winckel E, Anaya-Plaza E, Torres T, de la Escosura A. Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chem Soc Rev 2018; 47:7369-7400. [DOI: 10.1039/c7cs00554g] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present article reviews the most important developing strategies in light-induced nanomedicine, based on the combination of porphyrinoid photosensitizers with a wide variety of biomolecules and biomolecular assemblies.
Collapse
Affiliation(s)
| | | | - Eduardo Anaya-Plaza
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
| | - Tomás Torres
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
- Institute for Advanced Research in Chemistry (IAdChem)
| | - Andrés de la Escosura
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
- Institute for Advanced Research in Chemistry (IAdChem)
| |
Collapse
|
44
|
One-plasmid double-expression His-tag system for rapid production and easy purification of MS2 phage-like particles. Sci Rep 2017; 7:17501. [PMID: 29235545 PMCID: PMC5727534 DOI: 10.1038/s41598-017-17951-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
MS2 phage-like particles (MS2 PLP) are artificially constructed pseudo-viral particles derived from bacteriophage MS2. They are able to carry a specific single stranded RNA (ssRNA) sequence of choice inside their capsid, thus protecting it against the effects of ubiquitous nucleases. Such particles are able to mimic ssRNA viruses and, thus, may serve as the process control for molecular detection and quantification of such agents in several kinds of matrices, vaccines and vaccine candidates, drug delivery systems, and systems for the display of immunologically active peptides or nanomachines. Currently, there are several different in vivo plasmid-driven packaging systems for production of MS2 PLP. In order to combine all the advantages of the available systems and to upgrade and simplify the production and purification of MS2 PLP, a one-plasmid double-expression His-tag system was designed. The described system utilizes a unique fusion insertional mutation enabling purification of particles using His-tag affinity. Using this new production system, highly pure MS2 PLP can be quickly produced and purified by a fast performance liquid chromatography (FPLC) approach. The system can be easily adapted to produce other MS2 PLP with different properties.
Collapse
|
45
|
Charlton Hume HK, Lua LHL. Platform technologies for modern vaccine manufacturing. Vaccine 2017; 35:4480-4485. [PMID: 28347504 PMCID: PMC7115529 DOI: 10.1016/j.vaccine.2017.02.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 10/29/2022]
Abstract
Improved understanding of antigenic components and their interaction with the immune system, as supported by computational tools, permits a sophisticated approach to modern vaccine design. Vaccine platforms provide an effective tool by which strategically designed peptide and protein antigens are modularized to enhance their immunogenicity. These modular vaccine platforms can overcome issues faced by traditional vaccine manufacturing and have the potential to generate safe vaccines, rapidly and at a low cost. This review introduces two promising platforms based on virus-like particle and liposome, and discusses the methodologies and challenges.
Collapse
Affiliation(s)
- Hayley K Charlton Hume
- The University of Queensland, Protein Expression Facility, St Lucia, QLD 4072, Australia
| | - Linda H L Lua
- The University of Queensland, Protein Expression Facility, St Lucia, QLD 4072, Australia.
| |
Collapse
|
46
|
Pumpens P, Renhofa R, Dishlers A, Kozlovska T, Ose V, Pushko P, Tars K, Grens E, Bachmann MF. The True Story and Advantages of RNA Phage Capsids as Nanotools. Intervirology 2016; 59:74-110. [DOI: 10.1159/000449503] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
|
47
|
Xiao X, Hung ME, Leonard JN, Hall CK. Adding energy minimization strategy to peptide-design algorithm enables better search for RNA-binding peptides: Redesigned λ N peptide binds boxB RNA. J Comput Chem 2016; 37:2423-35. [PMID: 27487990 PMCID: PMC5314887 DOI: 10.1002/jcc.24466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/20/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022]
Abstract
Our previously developed peptide-design algorithm was improved by adding an energy minimization strategy which allows the amino acid sidechains to move in a broad configuration space during sequence evolution. In this work, the new algorithm was used to generate a library of 21-mer peptides which could substitute for λ N peptide in binding to boxB RNA. Six potential peptides were obtained from the algorithm, all of which exhibited good binding capability with boxB RNA. Atomistic molecular dynamics simulations were then conducted to examine the ability of the λ N peptide and three best evolved peptides, viz. Pept01, Pept26, and Pept28, to bind to boxB RNA. Simulation results demonstrated that our evolved peptides are better at binding to boxB RNA than the λ N peptide. Sequence searches using the old (without energy minimization strategy) and new (with energy minimization strategy) algorithms confirm that the new algorithm is more effective at finding good RNA-binding peptides than the old algorithm. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xingqing Xiao
- Chemical and Biomolecular Engineering Department, North Carolina State University, Raleigh, North Carolina, 27695-7905
| | - Michelle E Hung
- Chemical and Biological Engineering Department, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, 60208
| | - Joshua N Leonard
- Chemical and Biological Engineering Department, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, 60208
| | - Carol K Hall
- Chemical and Biomolecular Engineering Department, North Carolina State University, Raleigh, North Carolina, 27695-7905.
| |
Collapse
|