1
|
Halder SK, Ahmad I, Shathi JF, Mim MM, Hassan MR, Jewel MJI, Dey P, Islam MS, Patel H, Morshed MR, Shakil MS, Hossen MS. A Comprehensive Study to Unleash the Putative Inhibitors of Serotype2 of Dengue Virus: Insights from an In Silico Structure-Based Drug Discovery. Mol Biotechnol 2024; 66:612-625. [PMID: 36307631 PMCID: PMC9616416 DOI: 10.1007/s12033-022-00582-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
Abstract
Dengue fever is a mosquito-borne disease that claims the lives of millions of people around the world. A number of factors like disease's non-specific symptoms, increased viral mutation, growing antiviral drug resistance due to reduced susceptibility, unavailability of an effective vaccine for dengue, weak immunity against the virus, and many more are involved. Dengue belongs to the Flaviviridae family of viruses. The two species of the vector transmitting dengue are Aedes aegypti and Aedes albopictus, with the former one being dominant. Serotypes 2 of dengue fever are spread to the human body and cause severe illness. Recently, dengue has imposed an aggressive effect synergistically with the COVID-19 pandemic. As a result, we concentrated our efforts on finding a potential therapeutic. For this, we chose natural compounds to fight dengue fever, which is currently regarded as successful among many drug therapies. Following this, we started the in silico experiment with 922 plant extracts as lead compounds to fight serotype 2. In this study, we used SwissADME for analyzing ligand drug-likeness, pkCSM for designing an ADMET profile, Autodock vina 4.2 and Swissdock tools for molecular docking, and finally Desmond for molecular dynamics simulation. Ultimately 45 were found effective against the 2'O methyltransferase protein of serotype 2. CHEMBL376820 was found as possible therapeutic candidates for inhibiting methyltransferase protein in this thorough analysis. Nevertheless, more in vitro and in vivo research are required to substantiate their potential therapeutic efficacy.
Collapse
Affiliation(s)
- Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Jannatul Fardous Shathi
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Maria Mulla Mim
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Md Rakibul Hassan
- Department of Biochemistry, Gono Bishwabidyalay, Savar, Dhaka 1344 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Md Johurul Islam Jewel
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Piyali Dey
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Md Sirajul Islam
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Md Reaz Morshed
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, 3814 Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, 1212 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Md Sakib Hossen
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| |
Collapse
|
2
|
Hegazy A, Soltane R, Alasiri A, Mostafa I, Metwaly AM, Eissa IH, Mahmoud SH, Allayeh AK, Shama NMA, Khalil AA, Barre RS, El-Shazly AM, Ali MA, Martinez-Sobrido L, Mostafa A. Anti-rheumatic colchicine phytochemical exhibits potent antiviral activities against avian and seasonal Influenza A viruses (IAVs) via targeting different stages of IAV replication cycle. BMC Complement Med Ther 2024; 24:49. [PMID: 38254071 PMCID: PMC10804494 DOI: 10.1186/s12906-023-04303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/10/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The continuous evolution of drug-resistant influenza viruses highlights the necessity for repurposing naturally-derived and safe phytochemicals with anti-influenza activity as novel broad-spectrum anti-influenza medications. METHODS In this study, nitrogenous alkaloids were tested for their viral inhibitory activity against influenza A/H1N1 and A/H5N1 viruses. The cytotoxicity of tested alkaloids on MDCK showed a high safety range (CC50 > 200 µg/ml), permitting the screening for their anti-influenza potential. RESULTS Herein, atropine sulphate, pilocarpine hydrochloride and colchicine displayed anti-H5N1 activities with IC50 values of 2.300, 0.210 and 0.111 µg/ml, respectively. Validation of the IC50 values was further depicted by testing the three highly effective alkaloids, based on their potent IC50 values against seasonal influenza A/H1N1 virus, showing comparable IC50 values of 0.204, 0.637 and 0.326 µg/ml, respectively. Further investigation suggests that colchicine could suppress viral infection by primarily interfering with IAV replication and inhibiting viral adsorption, while atropine sulphate and pilocarpine hydrochloride could directly affect the virus in a cell-free virucidal effect. Interestingly, the in silico molecular docking studies suggest the abilities of atropine, pilocarpine, and colchicine to bind correctly inside the active sites of the neuraminidases of both influenza A/H1N1 and A/H5N1 viruses. The three alkaloids exhibited good binding energies as well as excellent binding modes that were similar to the co-crystallized ligands. On the other hand, consistent with in vitro results, only colchicine could bind correctly against the M2-proton channel of influenza A viruses (IAVs). This might explicate the in vitro antiviral activity of colchicine at the replication stage of the virus replication cycle. CONCLUSION This study highlighted the anti-influenza efficacy of biologically active alkaloids including colchicine. Therefore, these alkaloids should be further characterized in vivo (preclinical and clinical studies) to be developed as anti-IAV agents.
Collapse
Affiliation(s)
- Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Giza District, Egypt
| | - Raya Soltane
- Department of Biology, Adham University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Ahlam Alasiri
- Department of Biology, Adham University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Abdou Kamal Allayeh
- Virology Lab 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed A Khalil
- Agriculture Research Center (ARC), Veterinary Sera and Vaccines Research Institute (VSVRI), Cairo, 11435, Egypt
| | - Ramya S Barre
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Assem Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida , Sharkia, 44813, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | | | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
3
|
Gautam S, Thakur A, Rajput A, Kumar M. Anti-Dengue: A Machine Learning-Assisted Prediction of Small Molecule Antivirals against Dengue Virus and Implications in Drug Repurposing. Viruses 2023; 16:45. [PMID: 38257744 PMCID: PMC10818795 DOI: 10.3390/v16010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Dengue outbreaks persist in global tropical regions, lacking approved antivirals, necessitating critical therapeutic development against the virus. In this context, we developed the "Anti-Dengue" algorithm that predicts dengue virus inhibitors using a quantitative structure-activity relationship (QSAR) and MLTs. Using the "DrugRepV" database, we extracted chemicals (small molecules) and repurposed drugs targeting the dengue virus with their corresponding IC50 values. Then, molecular descriptors and fingerprints were computed for these molecules using PaDEL software. Further, these molecules were split into training/testing and independent validation datasets. We developed regression-based predictive models employing 10-fold cross-validation using a variety of machine learning approaches, including SVM, ANN, kNN, and RF. The best predictive model yielded a PCC of 0.71 on the training/testing dataset and 0.81 on the independent validation dataset. The created model's reliability and robustness were assessed using William's plot, scatter plot, decoy set, and chemical clustering analyses. Predictive models were utilized to identify possible drug candidates that could be repurposed. We identified goserelin, gonadorelin, and nafarelin as potential repurposed drugs with high pIC50 values. "Anti-Dengue" may be beneficial in accelerating antiviral drug development against the dengue virus.
Collapse
Affiliation(s)
- Sakshi Gautam
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India; (S.G.); (A.T.); (A.R.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anamika Thakur
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India; (S.G.); (A.T.); (A.R.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akanksha Rajput
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India; (S.G.); (A.T.); (A.R.)
| | - Manoj Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India; (S.G.); (A.T.); (A.R.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Khan MB, Yang ZS, Lin CY, Hsu MC, Urbina AN, Assavalapsakul W, Wang WH, Chen YH, Wang SF. Dengue overview: An updated systemic review. J Infect Public Health 2023; 16:1625-1642. [PMID: 37595484 DOI: 10.1016/j.jiph.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
Dengue is caused by the dengue virus (DENVs) infection and clinical manifestations include dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS). Due to a lack of antiviral drugs and effective vaccines, several therapeutic and control strategies have been proposed. A systemic literature review was conducted according to PRISMA guidelines to select proper references to give an overview of DENV infection. Results indicate that understanding the virus characteristics and epidemiology are essential to gain the basic and clinical knowledge as well as dengue disseminated pattern and status. Different factors and mechanisms are thought to be involved in the presentation of DHF and DSS, including antibody-dependent enhancement, immune dysregulation, viral virulence, host genetic susceptibility, and preexisting dengue antibodies. This study suggests that dissecting pathogenesis and risk factors as well as developing different types of therapeutic and control strategies against DENV infection are urgently needed.
Collapse
Affiliation(s)
- Muhammad Bilal Khan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Cheng Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Aspiro Nayim Urbina
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Yen-Hsu Chen
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
5
|
Yi B, Chew BXZ, Chen H, Lee RCH, Fong YD, Chin WX, Mok CK, Chu JJH. Antiviral Activity of Catechin against Dengue Virus Infection. Viruses 2023; 15:1377. [PMID: 37376676 DOI: 10.3390/v15061377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Dengue virus (DENV) is the cause of dengue fever, infecting 390 million people worldwide per year. It is transmitted to humans through the bites of mosquitoes and could potentially develop severe symptoms. In spite of the rising social and economic impact inflicted by the disease on the global population, a conspicuous lack of efficacious therapeutics against DENV still persists. In this study, catechin, a natural polyphenol compound, was evaluated as a DENV infection inhibitor in vitro. Through time-course studies, catechin was shown to inhibit a post-entry stage of the DENV replication cycle. Further investigation revealed its role in affecting viral protein translation. Catechin inhibited the replication of all four DENV serotypes and chikungunya virus (CHIKV). Together, these results demonstrate the ability of catechin to inhibit DENV replication, hinting at its potential to be used as a starting scaffold for further development of antivirals against DENV infection.
Collapse
Affiliation(s)
- Bowen Yi
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Benjamin Xuan Zheng Chew
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Huixin Chen
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuhui Deborah Fong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wei Xin Chin
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chee Keng Mok
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
6
|
Delgado-Maldonado T, Moreno-Herrera A, Pujadas G, Vázquez-Jiménez LK, González-González A, Rivera G. Recent advances in the development of methyltransferase (MTase) inhibitors against (re)emerging arboviruses diseases dengue and Zika. Eur J Med Chem 2023; 252:115290. [PMID: 36958266 DOI: 10.1016/j.ejmech.2023.115290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Emerging and/or re-emerging viral diseases such as dengue and Zika are a worldwide concern. Therefore, new antiviral therapeutics are necessary. In this sense, a non-structural protein with methyltransferase (MTase) activity is an attractive drug target because it plays a crucial role in dengue and Zika virus replication. Different drug strategies such as virtual screening, molecular docking, and molecular dynamics have identified new inhibitors that bind on the MTase active site. Therefore, in this review, we analyze MTase inhibitors, including S-adenosyl-L-methionine (SAM), S-adenosyl-l-homocysteine (SAH) and guanosine-5'-triphosphate (GTP) analogs, nitrogen-containing heterocycles (pyrimidine, adenosine, and pyridine), urea derivatives, and natural products. Advances in the design of MTase inhibitors could lead to the optimization of a possible single or broad-spectrum antiviral drug against dengue and Zika virus.
Collapse
Affiliation(s)
- Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Gerard Pujadas
- Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007, Tarragona, Catalonia, Spain
| | - Lenci K Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico.
| |
Collapse
|
7
|
Madhry D, Malvankar S, Phadnis S, Srivastava RK, Bhattacharyya S, Verma B. Synergistic correlation between host angiogenin and dengue virus replication. RNA Biol 2023; 20:805-816. [PMID: 37796112 PMCID: PMC10557563 DOI: 10.1080/15476286.2023.2264003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
DENV infection poses a major health concern globally and the pathophysiology relies heavily on host-cellular machinery. Although virus replication relies heavily on the host, the mechanistic details of DENV-host interaction is not fully characterized yet. Here, we are focusing on characterizing the mechanistic basis of virus-induced stress on the host cell. Specifically, we aim to characterize the role of the stress modulator ribonuclease Angiogenin during DENV infection. Our results suggested that the levels of Angiogenin are up-regulated in DENV-infected cells and the levels increase proportionately with DENV replication. Our efforts to knockdown Angiogenin using siRNA were unsuccessful in DENV-infected cells but not in mock-infected control. To further investigate the modulation between DENV replication and Angiogenin, we treated Huh7 cells with Ivermectin prior to DENV infection. Our results suggest a significant reduction in DENV replication specifically at the later stages as a consequence of Ivermectin treatment. Interestingly, Angiogenin levels were also found to be decreased proportionately. Our results suggest that Angiogenin modulation during DENV infection is important for DENV replication and pathogenesis.
Collapse
Affiliation(s)
- Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Sushant Phadnis
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, India
| |
Collapse
|
8
|
Pósa SP, Dargó G, Nagy S, Kisszékelyi P, Garádi Z, Hámori L, Szakács G, Kupai J, Tóth S. Cytotoxicity of cinchona alkaloid organocatalysts against MES-SA and MES-SA/Dx5 multidrug-resistant uterine sarcoma cell lines. Bioorg Med Chem 2022; 67:116855. [PMID: 35640378 DOI: 10.1016/j.bmc.2022.116855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022]
Abstract
Since the first application of natural quinine as an anti-malarial drug, cinchona alkaloids and their derivatives have been exhaustively studied for their biological activity. In our work, we tested 13 cinchona alkaloid organocatalysts, synthesised from quinine. These derivatives were screened against MES-SA and Dx5 uterine sarcoma cell lines for in vitro anticancer activity and to investigate their potential to overcome P-glycoprotein (P-gp) mediated multidrug resistance (MDR). Decorating quinine with hydrogen-bond donor units, such as thiourea and (thio)squaramide, resulted in decreased half-maximal growth inhibition values on both cell lines (1.3-21 µM) compared to quinine and other cinchona alcohols (47-111 µM). Further cytotoxicity studies conducted in the presence of the P-gp inhibitor tariquidar indicated that several analogues, especially cinchona amines and squaramides, but not thiosquaramide, were expelled from MDR cells by P-gp. Similarly to the established P-gp inhibitor quinine, 6 cinchona analogues were shown to inhibit calcein-AM efflux. Interestingly, quinine and didehydroquinine exhibited a marginally increased toxicity against the multidrug resistant Dx5 cells. Collateral sensitivity of the MDR cell line was more pronounced when the cinchona thiosquaramide was complexed with Cu(II) acetate. Based on the results, cinchona derivatives are good anticancer candidates for further drug development.
Collapse
Affiliation(s)
- Szonja Polett Pósa
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary; Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gyula Dargó
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Sándor Nagy
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Péter Kisszékelyi
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Zsófia Garádi
- Department of Pharmacognosy Semmelweis University, Üllői út. 26, H-1085 Budapest, Hungary
| | - Lilla Hámori
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | - József Kupai
- Department of Organic Chemistry & Technology, Budapest University of Technology & Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary.
| | - Szilárd Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
9
|
Ren J, Zeng W, Jiang C, Li C, Zhang C, Cao H, Li W, He Q. Inhibition of Porcine Epidemic Diarrhea Virus by Cinchonine via Inducing Cellular Autophagy. Front Cell Infect Microbiol 2022; 12:856711. [PMID: 35774410 PMCID: PMC9237225 DOI: 10.3389/fcimb.2022.856711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) could cause lethal diarrhea and dehydration in suckling piglets, which can adversely affect the development of the global swine industry. The lack of effective therapeutical and prophylactic treatment especially for PEDV variant strains underlines the importance of effective antiviral strategies, such as identification of novel antiviral agents. In the present study, the antiviral activity of cinchonine against PEDV was investigated in Vero CCL81 and LLC-PK1 cells at a non-cytotoxic concentration determined by Cell Counting Kit-8 assay in vitro. We found that cinchonine exhibited a significant suppression effect against PEDV infection and its inhibitory action was primarily focused on the early stage of PEDV replication. Moreover, we also observed that cinchonine could significantly induce autophagy by detecting the conversion of LC3-I to LC3-II by using western blot analysis. Cinchonine treatment could inhibit PEDV replication in a dose-dependent manner in Vero CCL81 cells, while this phenomenon disappeared when autophagy was attenuated by pre-treatment with autophagy inhibitor 3MA. Consequently, this study indicated that cinchonine can inhibit PEDV replication via inducing cellular autophagy and thus from the basis for successful antiviral strategies which potentially suggest the possibility of exploiting cinchonine as a novel antiviral agent.
Collapse
Affiliation(s)
- Jingping Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Changsheng Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Chang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Chengjun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Hua Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Qigai He,
| |
Collapse
|
10
|
Quinine Esters with 1,2-Azole, Pyridine and Adamantane Fragments. Molecules 2022; 27:molecules27113476. [PMID: 35684414 PMCID: PMC9182173 DOI: 10.3390/molecules27113476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
An efficient method of producing quinine derivatives via reaction of acylation with 4,5-dichloroisothiazole-3-, 5-arylisoxazole-3-, adamantane- and hydrochlorides of pyridine-3- and pyridine-4-carbonyl chlorides was developed. All synthesized compounds were tested for antiviral, antimicrobial and analgesic activity. The most pronounced antibacterial activity was shown by the compounds 2e, 3b, 3c and 3e with isoxazole and pyridine fragments. It was found that most of the tested compounds showed significant analgesic activity reducing the pain response of animals to the irritating effect of acetic acid.
Collapse
|
11
|
Abookleesh FL, Al-Anzi BS, Ullah A. Potential Antiviral Action of Alkaloids. Molecules 2022; 27:903. [PMID: 35164173 PMCID: PMC8839337 DOI: 10.3390/molecules27030903] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
Viral infections and outbreaks have become a major concern and are one of the main causes of morbidity and mortality worldwide. The development of successful antiviral therapeutics and vaccines remains a daunting challenge. The discovery of novel antiviral agents is a public health emergency, and extraordinary efforts are underway globally to identify safe and effective treatments for different viral diseases. Alkaloids are natural phytochemicals known for their biological activities, many of which have been intensively studied for their broad-spectrum of antiviral activities against different DNA and RNA viruses. The purpose of this review was to summarize the evidence supporting the efficacy of the antiviral activity of plant alkaloids at half-maximum effective concentration (EC50) or half-maximum inhibitory concentration (IC50) below 10 μM and describe the molecular sites most often targeted by natural alkaloids acting against different virus families. This review highlights that considering the devastating effects of virus pandemics on humans, plants, and animals, the development of high efficiency and low-toxicity antiviral drugs targeting these viruses need to be developed. Furthermore, it summarizes the current research status of alkaloids as the source of antiviral drug development, their structural characteristics, and antiviral targets. Overall, the influence of alkaloids at the molecular level suggests a high degree of specificity which means they could serve as potent and safe antiviral agents waiting for evaluation and exploitation.
Collapse
Affiliation(s)
- Frage L. Abookleesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Bader S. Al-Anzi
- Department of Environment Technologies and Management, Kuwait University, P.O. Box 5969, Kuwait City 13060, Kuwait;
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
12
|
Sarkar C, Quispe C, Islam MT, Jamaddar S, Akram M, Munior N, Martorell M, Kumar M, Sharifi-Rad J, Cruz-Martins N. Plant-derived alkaloids acting on dengue virus and their vectors: from chemistry to pharmacology. Future Microbiol 2021; 17:143-155. [PMID: 34913374 DOI: 10.2217/fmb-2021-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dengue is a mosquito-borne viral infection, with its prevention and control depending on effective vector control measures. At present, dengue virus (DENV) is an epidemic in more than 100 countries of Southeast Asia, Africa, Eastern Mediterranean, the Americas and the Western Pacific. Several alkaloids isolated from natural herbs can serve as a reservoir for antiDENV drug development. Traditionally, plant extracts rich in alkaloids are used for the treatment of fever and have also revealed antimicrobial activity against various pathogenic bacteria, fungi and virus. The present narrative review collates the literature-based scenario of alkaloids and derivatives acting on DENV. The mechanism of action of such alkaloids with antiDENV and vector activity is also discussed.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj (Dhaka), 8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, 1110939, Chile
| | - Muhammad T Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj (Dhaka), 8100, Bangladesh
| | - Sarmin Jamaddar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj, 8100, Bangladesh
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Naveed Munior
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Miquel Martorell
- Department of Nutrition & Dietetics, Faculty of Pharmacy, & Centre for Healthy Living, University of Concepción, Concepción, 4070386, Chile
| | - Manoj Kumar
- Chemical & Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | | | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, Porto, 4200-319, Portugal.,Institute for Research & Innovation in Health (i3S), University of Porto, Porto, 4200-135, Portugal.,Institute of Research & Advanced Training in Health Sciences & Technologies (CESPU), Rua Central de Gandra, 1317, Gandra PRD, 4585-116, Portugal
| |
Collapse
|
13
|
Latarissa IR, Barliana MI, Meiliana A, Lestari K. Potential of Quinine Sulfate for COVID-19 Treatment and Its Safety Profile: Review. Clin Pharmacol 2021; 13:225-234. [PMID: 34908881 PMCID: PMC8665662 DOI: 10.2147/cpaa.s331660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is currently the largest and most serious health crisis in the world. There is no definitive treatment for COVID-19. Vaccine administration has begun in various countries, but no vaccine is 100% effective. Some people are not protected after vaccination, and there are some groups of people who cannot be vaccinated therefore, research on COVID-19 treatment still needs to be done. Of the several drugs under study, chloroquine (CQ) and hydroxychloroquine (HCQ) are quite controversial, although they have good activity against SARS-CoV-2, both drugs have serious side effects. Indonesia with its wealth of natural ingredients has one potential compound, quinine sulfate (QS), which has the same structure and activity as CQ and HCQ and a better safety profile. The aim of this article was to review the potential of QS against the SARS-Cov-2 virus and outline its safety profile. We conclude that QS has the potential to be developed as a COVID-19 treatment with a better safety profile than that of CQ and HCQ.
Collapse
Affiliation(s)
- Irma Rahayu Latarissa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Anna Meiliana
- Prodia Clinical Laboratory, Central Jakarta, Indonesia
| | - Keri Lestari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
14
|
Chen YJ, Ma KY, Du SS, Zhang ZJ, Wu TL, Sun Y, Liu YQ, Yin XD, Zhou R, Yan YF, Wang RX, He YH, Chu QR, Tang C. Antifungal Exploration of Quinoline Derivatives against Phytopathogenic Fungi Inspired by Quinine Alkaloids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12156-12170. [PMID: 34623798 DOI: 10.1021/acs.jafc.1c05677] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enlightened from our previous work of structural simplification of quinine and innovative application of natural products against phytopathogenic fungi, lead structure 2,8-bis(trifluoromethyl)-4-quinolinol (3) was selected to be a candidate and its diversified design, synthesis, and antifungal evaluation were carried out. All of the synthesized compounds Aa1-Db1 were evaluated for their antifungal activity against four agriculturally important fungi, Botrytis cinerea, Fusarium graminearum, Rhizoctonia solani, and Sclerotinia sclerotiorum. Results showed that compounds Ac3, Ac4, Ac7, Ac9, Ac12, Bb1, Bb10, Bb11, Bb13, Cb1. and Cb3 exhibited a good antifungal effect, especially Ac12 had the most potent activity with EC50 values of 0.52 and 0.50 μg/mL against S. sclerotiorum and B. cinerea, respectively, which were more potent than those of the lead compound 3 (1.72 and 1.89 μg/mL) and commercial fungicides azoxystrobin (both >30 μg/mL) and 8-hydroxyquinoline (2.12 and 5.28 μg/mL). Moreover, compound Ac12 displayed excellent in vivo antifungal activity, which was comparable in activity to the commercial fungicide boscalid. The preliminary mechanism revealed that compound Ac12 might cause an abnormal morphology of cell membranes, an increase in membrane permeability, and release of cellular contents. These results indicated that compound Ac12 displayed superior in vitro and in vivo fungicidal activities and could be a potential fungicidal candidate against plant fungal diseases.
Collapse
Affiliation(s)
- Yong-Jia Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun-Yuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Sha-Sha Du
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Tian-Lin Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yu Sun
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rui Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ren-Xuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qing-Ru Chu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Chen Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
15
|
Madugula SS, Nagamani S, Jamir E, Priyadarsinee L, Sastry GN. Drug repositioning for anti-tuberculosis drugs: an in silico polypharmacology approach. Mol Divers 2021; 26:1675-1695. [PMID: 34468898 DOI: 10.1007/s11030-021-10296-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023]
Abstract
Development of potential antitubercular molecules is a challenging task due to the rapidly emerging drug-resistant strains of Mycobacterium tuberculosis (M.tb). Structure-based approaches hold greater benefit in identifying compounds/drugs with desired polypharmacological profiles. These methods can be employed based on the knowledge of protein binding sites to identify the complementary ligands. In this study, polypharmacology guided computational drug repurposing approach was applied to identify potential antitubercular drugs. 20 important druggable protein targets in M.tb were considered from the target library of Molecular Property Diagnostic Suite-Tuberculosis (MPDSTB- http://mpds.neist.res.in:8084 ) for virtual screening. FDA approved drugs were collected, preprocessed and docked in the active sites of the 20 M.tb targets. The top 300 drug molecules from each target (20 × 300) were filtered-in and subsequently screened for possible antitubercular and antimycobacterial activity using PASS tool. Using this approach, 34 drugs with predicted antitubercular and anti-mycobacterial activity were identified along with good binding affinity against multiple M.tb targets. Interestingly, 21 out of the 34 identified drugs are antibiotics while 4 drug molecules (nitrofural, stavudine, quinine and quinidine) are non-antibiotics showing promising predicted antitubercular activity. Most of these molecules have the similar privileged antimycobacterial drugs scaffold. Further drug likeness properties were calculated to get deeper insights to M.tb lead molecules. Interestingly, it was also observed that the drugs identified from the study are under different stages of drug discovery (i.e., in vitro, clinical trials) for the effective treatment of various diseases including cancer, degenerative diseases, dengue virus infection, tuberculosis, etc. Krasavin et al., 2017 synthesized nitrofuran analogues with appreciable MICs (22-23 µM) against M.tb H37Rv. These experiments further add to the credibility of the drugs identified in this study (TB).
Collapse
Affiliation(s)
- Sita Sirisha Madugula
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Selvaraman Nagamani
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - Esther Jamir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - Lipsa Priyadarsinee
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India
| | - G Narahari Sastry
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. .,Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, 785 006, India.
| |
Collapse
|
16
|
Dos Santos Nascimento IJ, de Aquino TM, da Silva-Júnior EF. Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections. Curr Med Chem 2021; 28:2887-2942. [PMID: 32787752 DOI: 10.2174/0929867327666200812215852] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Viral diseases are responsible for several deaths around the world. Over the past few years, the world has seen several outbreaks caused by viral diseases that, for a long time, seemed to possess no risk. These are diseases that have been forgotten for a long time and, until nowadays, there are no approved drugs or vaccines, leading the pharmaceutical industry and several research groups to run out of time in the search for new pharmacological treatments or prevention methods. In this context, drug repurposing proves to be a fast and economically viable technique, considering the fact that it uses drugs that have a well-established safety profile. Thus, in this review, we present the main advances in drug repurposing and their benefit for searching new treatments against emerging viral diseases. METHODS We conducted a search in the bibliographic databases (Science Direct, Bentham Science, PubMed, Springer, ACS Publisher, Wiley, and NIH's COVID-19 Portfolio) using the keywords "drug repurposing", "emerging viral infections" and each of the diseases reported here (CoV; ZIKV; DENV; CHIKV; EBOV and MARV) as an inclusion/exclusion criterion. A subjective analysis was performed regarding the quality of the works for inclusion in this manuscript. Thus, the selected works were those that presented drugs repositioned against the emerging viral diseases presented here by means of computational, high-throughput screening or phenotype-based strategies, with no time limit and of relevant scientific value. RESULTS 291 papers were selected, 24 of which were CHIKV; 52 for ZIKV; 43 for DENV; 35 for EBOV; 10 for MARV; and 56 for CoV and the rest (72 papers) related to the drugs repurposing and emerging viral diseases. Among CoV-related articles, most were published in 2020 (31 papers), updating the current topic. Besides, between the years 2003 - 2005, 10 articles were created, and from 2011 - 2015, there were 7 articles, portraying the outbreaks that occurred at that time. For ZIKV, similar to CoV, most publications were during the period of outbreaks between the years 2016 - 2017 (23 articles). Similarly, most CHIKV (13 papers) and DENV (14 papers) publications occur at the same time interval. For EBOV (13 papers) and MARV (4 papers), they were between the years 2015 - 2016. Through this review, several drugs were highlighted that can be evolved in vivo and clinical trials as possible used against these pathogens showed that remdesivir represent potential treatments against CoV. Furthermore, ribavirin may also be a potential treatment against CHIKV; sofosbuvir against ZIKV; celgosivir against DENV, and favipiravir against EBOV and MARV, representing new hopes against these pathogens. CONCLUSION The conclusions of this review manuscript show the potential of the drug repurposing strategy in the discovery of new pharmaceutical products, as from this approach, drugs could be used against emerging viral diseases. Thus, this strategy deserves more attention among research groups and is a promising approach to the discovery of new drugs against emerging viral diseases and also other diseases.
Collapse
|
17
|
Pallaval VB, Kanithi M, Meenakshisundaram S, Jagadeesh A, Alavala M, Pillaiyar T, Manickam M, Chidipi B. Chloroquine Analogs: An Overview of Natural and Synthetic Quinolines as Broad Spectrum Antiviral Agents. Curr Pharm Des 2021; 27:1185-1193. [PMID: 33308117 DOI: 10.2174/1381612826666201211121721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
SARS-CoV-2, a positive single-stranded RNA enveloped coronavirus, currently poses a global health threat. Drugs with quinoline scaffolds have been studied to repurpose their useful broad-spectrum properties into treating various diseases, including viruses. Preliminary studies on the quinoline medications, chloroquine and hydroxychloroquine, against SARS-CoV-2, have shown to be a potential area of interest for drug development due to their ability to prevent viral entry, act as anti-inflammatory modulators, and inhibit key enzymes allowing reduced viral infectivity. In addition to Chloroquine and Hydroxychloroquine, we discussed analogs of the drugs to understand the quinoline scaffold's potential antiviral mechanisms. The heterocyclic scaffold of quinoline can be modified in many ways, primarily through the modification of its substituents. We studied these different synthetic derivatives to understand properties that could enhance its antiviral specificity thoroughly. Chloroquine and its analogs can act on various stages of the viral life cycle, pre and post entry. In this study, we reviewed chloroquine and its synthetic and natural analogs for their antiviral properties in a variety of viruses. Furthermore, we reviewed the compound's potential abilities to attenuate symptoms associated with viral infections. Natural compounds that share scaffolding to chloroquine can act as antivirals or attenuate symptoms through the stimulation of the host immune system or reduction of oxidative stress. Furthermore, we discuss perspectives of the drug's repurposing due to its ability to inhibit the beta-hematin formation and to be a Zinc Ionophore.
Collapse
Affiliation(s)
- Veera B Pallaval
- Department of Biotechnology, Krishna University, Machilipatnam-521003, Andhra Pradesh, India
| | - Manasa Kanithi
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | | | - Achanta Jagadeesh
- Department of Pharmacy, Seoul National University, 101 Daehak-ro, Jongro-gu, Seoul 110-744, South Korea
| | - Mattareddy Alavala
- School of Life and Health Sciences, Adikavi Nannaya University, Rajahmundry, Andhra Pradesh 533296, India
| | - Thanigaimalai Pillaiyar
- Pharma Center Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Manoj Manickam
- Department of Chemistry, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India
| | - Bojjibabu Chidipi
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
| |
Collapse
|
18
|
Große M, Ruetalo N, Layer M, Hu D, Businger R, Rheber S, Setz C, Rauch P, Auth J, Fröba M, Brysch E, Schindler M, Schubert U. Quinine Inhibits Infection of Human Cell Lines with SARS-CoV-2. Viruses 2021; 13:647. [PMID: 33918670 PMCID: PMC8069458 DOI: 10.3390/v13040647] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
While vaccination campaigns are ongoing worldwide, there is still a tremendous medical need for efficient antivirals against SARS-CoV-2 infection. Among several drug candidates, chloroquine (CQN) and hydroxychloroquine (H-CQN) were tested intensively, and any contentious therapeutic effect of both has been discussed controversially in the light of severe side effects and missing efficacy. Originally, H-CQN descended from the natural substance quinine, a medicinal product used since the Middle Ages, which actually is regulatory approved for various indications. We hypothesized that quinine also exerts anti-SARS-CoV-2 activity. In Vero cells, quinine inhibited SARS-CoV-2 infection more effectively than CQN, and H-CQN and was less toxic. In human Caco-2 colon epithelial cells as well as the lung cell line A549 stably expressing ACE2 and TMPRSS2, quinine also showed antiviral activity. In consistence with Vero cells, quinine was less toxic in A549 as compared to CQN and H-CQN. Finally, we confirmed our findings in Calu-3 lung cells, expressing ACE2 and TMPRSS2 endogenously. In Calu-3, infections with high titers of SARS-CoV-2 were completely blocked by quinine, CQN, and H-CQN in concentrations above 50 µM. The estimated IC50s were ~25 µM in Calu-3, while overall, the inhibitors exhibit IC50 values between ~3.7 to ~50 µM, dependent on the cell line and multiplicity of infection (MOI). Conclusively, our data indicate that quinine could have the potential of a treatment option for SARS-CoV-2, as the toxicological and pharmacological profile seems more favorable when compared to its progeny drugs H-CQN or CQN.
Collapse
Affiliation(s)
- Maximilian Große
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.G.); (C.S.); (P.R.); (J.A.); (M.F.)
| | - Natalia Ruetalo
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (N.R.); (M.L.); (D.H.); (R.B.)
| | - Mirjam Layer
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (N.R.); (M.L.); (D.H.); (R.B.)
| | - Dan Hu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (N.R.); (M.L.); (D.H.); (R.B.)
| | - Ramona Businger
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (N.R.); (M.L.); (D.H.); (R.B.)
| | - Sascha Rheber
- ImmunoLogik GmbH, 13507 Berlin, Germany; (S.R.); (E.B.)
| | - Christian Setz
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.G.); (C.S.); (P.R.); (J.A.); (M.F.)
| | - Pia Rauch
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.G.); (C.S.); (P.R.); (J.A.); (M.F.)
| | - Janina Auth
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.G.); (C.S.); (P.R.); (J.A.); (M.F.)
| | - Maria Fröba
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.G.); (C.S.); (P.R.); (J.A.); (M.F.)
| | | | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (N.R.); (M.L.); (D.H.); (R.B.)
| | - Ulrich Schubert
- Institute of Virology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.G.); (C.S.); (P.R.); (J.A.); (M.F.)
| |
Collapse
|
19
|
Bazotte RB, Hirabara SM, Serdan TAD, Gritte RB, Souza-Siqueira T, Gorjao R, Masi LN, Antunes MM, Cruzat V, Pithon-Curi TC, Curi R. 4-Aminoquinoline compounds from the Spanish flu to COVID-19. Biomed Pharmacother 2021; 135:111138. [PMID: 33360781 PMCID: PMC7973050 DOI: 10.1016/j.biopha.2020.111138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022] Open
Abstract
In 1918, quinine was used as one of the unscientifically based treatments against the H1N1 virus during the Spanish flu pandemic. Originally, quinine was extracted from the bark of Chinchona trees by South American natives of the Amazon forest, and it has been used to treat fever since the seventeenth century. The recent COVID-19 pandemic caused by Sars-Cov-2 infection has forced researchers to search for ways to prevent and treat this disease. Based on the antiviral potential of two 4-aminoquinoline compounds derived from quinine, known as chloroquine (CQ) and hydroxychloroquine (HCQ), clinical investigations for treating COVID-19 are being conducted worldwide. However, there are some discrepancies among the clinical trial outcomes.Thus, even after one hundred years of quinine use during the Spanish flu pandemic, the antiviral properties promoted by 4-aminoquinoline compounds remain unclear. The underlying molecular mechanisms by which CQ and HCQ inhibit viral replication open up the possibility of developing novel analogs of these drugs to combat COVID-19 and other viruses.
Collapse
Affiliation(s)
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| | | | - Raquel Bragante Gritte
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| | - Talita Souza-Siqueira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| | - Renata Gorjao
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| | | | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Melbourne, Australia.
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Tallei TE, Tumilaar SG, Niode NJ, Fatimawali, Kepel BJ, Idroes R, Effendi Y, Sakib SA, Emran TB. Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (M pro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. SCIENTIFICA 2020; 2020:6307457. [PMID: 33425427 PMCID: PMC7773461 DOI: 10.1155/2020/6307457] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/17/2020] [Accepted: 12/08/2020] [Indexed: 05/20/2023]
Abstract
Since the outbreak of the COVID-19 (coronavirus disease 19) pandemic, researchers have been trying to investigate several active compounds found in plants that have the potential to inhibit the proliferation of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). The present study aimed to evaluate bioactive compounds found in plants using a molecular docking approach to inhibit the main protease (Mpro) and spike (S) glycoprotein of SARS-CoV-2. The evaluation was performed on the docking scores calculated using AutoDock Vina (AV) as a docking engine. A rule of five (Ro5) was calculated to determine whether a compound meets the criteria as an active drug orally in humans. The determination of the docking score was performed by selecting the best conformation of the protein-ligand complex that had the highest affinity (most negative Gibbs' free energy of binding/ΔG). As a comparison, nelfinavir (an antiretroviral drug), chloroquine, and hydroxychloroquine sulfate (antimalarial drugs recommended by the FDA as emergency drugs) were used. The results showed that hesperidin, nabiximols, pectolinarin, epigallocatechin gallate, and rhoifolin had better poses than nelfinavir, chloroquine, and hydroxychloroquine sulfate as spike glycoprotein inhibitors. Hesperidin, rhoifolin, pectolinarin, and nabiximols had about the same pose as nelfinavir but were better than chloroquine and hydroxychloroquine sulfate as Mpro inhibitors. This finding implied that several natural compounds of plants evaluated in this study showed better binding free energy compared to nelfinavir, chloroquine, and hydroxychloroquine sulfate, which so far are recommended in the treatment of COVID-19. From quantum chemical DFT calculations, the ascending order of chemical reactivity of selected compounds was pectolinarin > hesperidin > rhoifolin > morin > epigallocatechin gallate. All isolated compounds' C=O regions are preferable for an electrophilic attack, and O-H regions are suitable for a nucleophilic attack. Furthermore, Homo-Lumo and global descriptor values indicated a satisfactory remarkable profile for the selected compounds. As judged by the RO5 and previous study by others, the compounds kaempferol, herbacetin, eugenol, and 6-shogaol have good oral bioavailability, so they are also seen as promising candidates for the development of drugs to treat infections caused by SARS-CoV-2. The present study identified plant-based compounds that can be further investigated in vitro and in vivo as lead compounds against SARS-CoV-2.
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Sefren Geiner Tumilaar
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, University of Sam Ratulangi, Manado 95115, Indonesia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Billy Johnson Kepel
- Department of Chemistry, Faculty of Medicine, Sam Ratulangi University, Manado 95115, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh 23111, Indonesia
| | - Yunus Effendi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Al Azhar University, South Jakarta 12110, Indonesia
| | - Shahenur Alam Sakib
- Department of Theoretical and Computational Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
21
|
Nugraha RV, Ridwansyah H, Ghozali M, Khairani AF, Atik N. Traditional Herbal Medicine Candidates as Complementary Treatments for COVID-19: A Review of Their Mechanisms, Pros and Cons. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2560645. [PMID: 33101440 PMCID: PMC7569437 DOI: 10.1155/2020/2560645] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/11/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a new infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that belongs to the coronavirus family. The first case was reported in December 2019, and the disease has become a pandemic. Impaired immune regulation is one of the factors that play a role in its pathogenesis and results in poor outcomes of COVID-19 patients. There have been many studies with drug candidates used as antivirals or immunomodulators. However, the results of these investigations showed that the drug candidates were not significantly effective against the disease. Meanwhile, people believe that consuming herbal immunomodulators can prevent or even cure COVID-19. Unfortunately, specific preclinical and clinical trials to evaluate the effects of herbal immunoregulators have not been conducted. Certain natural compounds might be effective for the treatment of COVID-19 based on general concepts from previous experiments. This review discusses some herbal agents extracted from various plants, including Echinacea, Cinchona, Curcuma longa, and Curcuma xanthorrhiza, which are considered for the treatment of COVID-19. In addition, we discuss the pros and cons of utilising herbal medicine during the COVID-19 pandemic, draw some conclusions, and make recommendations at the end of the session.
Collapse
Affiliation(s)
- Rhea Veda Nugraha
- Graduate School of Biomedical Sciences Master Program, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Hastono Ridwansyah
- Graduate School of Biomedical Sciences Master Program, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Mohammad Ghozali
- Department of Biomedical Sciences, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Astrid Feinisa Khairani
- Department of Biomedical Sciences, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Nur Atik
- Department of Biomedical Sciences, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
- Immunology Study Group, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
22
|
Cortez-Maya S, Moreno-Herrera A, Palos I, Rivera G. Old Antiprotozoal Drugs: Are They Still Viable Options for Parasitic Infections or New Options for Other Diseases? Curr Med Chem 2020; 27:5403-5428. [DOI: 10.2174/0929867326666190628163633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
Abstract
Parasitic diseases, caused by helminths (ascariasis, hookworm, trichinosis, and schistosomiasis)
and protozoa (chagas, leishmaniasis, and amebiasis), are considered a serious public
health problem in developing countries. Additionally, there is a limited arsenal of anti-parasitic
drugs in the current pipeline and growing drug resistance. Therefore, there is a clear need for the
discovery and development of new compounds that can compete and replace these drugs that have
been controlling parasitic infections over the last decades. However, this approach is highly resource-
intensive, expensive and time-consuming. Accordingly, a drug repositioning strategy of the
existing drugs or drug-like molecules with known pharmacokinetics and safety profiles is alternatively
being used as a fast approach towards the identification of new treatments. The artemisinins,
mefloquine, tribendimidine, oxantel pamoate and doxycycline for the treatment of helminths, and
posaconazole and hydroxymethylnitrofurazone for the treatment of protozoa are promising candidates.
Therefore, traditional antiprotozoal drugs, which were developed in some cases decades ago,
are a valid solution. Herein, we review the current status of traditional anti-helminthic and antiprotozoal
drugs in terms of drug targets, mode of action, doses, adverse effects, and parasite resistance
to define their suitability for repurposing strategies. Current antiparasitic drugs are not only
still viable for the treatment of helminth and protozoan infections but are also important candidates
for new pharmacological treatments.
Collapse
Affiliation(s)
- Sandra Cortez-Maya
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Circuito Exterior, Coyoacan, 04510 Ciudad de Mexico, Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| | - Isidro Palos
- Unidad AcadEmica Multidisciplinaria Reynosa-Rodhe, Universidad AutOnoma de Tamaulipas, 88710 Reynosa, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| |
Collapse
|
23
|
Mishra VN, Kumari N, Pathak A, Chaturvedi RK, Gupta AK, Chaurasia RN. Possible Role for Bacteriophages in the Treatment of SARS-CoV-2 Infection. Int J Microbiol 2020; 2020:8844963. [PMID: 32963540 PMCID: PMC7502124 DOI: 10.1155/2020/8844963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022] Open
Abstract
An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan City, China, in December 2019. Since then, the outbreak has grown into a global pandemic, and neither a vaccine nor a treatment for the disease, termed coronavirus disease 2019 (COVID-19), is currently available. The slow translational progress in the field of research suggests that a large number of studies are urgently required. In this context, this review explores the impact of bacteriophages on SARS-CoV-2, especially concerning phage therapy (PT). Bacteriophages are viruses that infect and kill bacterial cells. Several studies have confirmed that in addition to their antibacterial abilities, bacteriophages also show antiviral and antifungal properties. It has also been shown that PT is effective for building immunity against viral pathogens by reducing the activation of NF kappa B; additionally, phages produce the antiviral protein phagicin. The Ganges river in India, which originates from the Himalayan range, is known to harbor a large number of bacteriophages, which are released into the river gradually by the melting permafrost. Water from this river has traditionally been considered a therapeutic agent for several diseases. In this review, we hypothesize that the Ganges river may play a therapeutic role in the treatment of COVID-19.
Collapse
Affiliation(s)
- Vijaya Nath Mishra
- Department of Neurology, Banaras Hindu University, Varanasi 221005, India
| | - Nidhi Kumari
- Department of Neurology, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Pathak
- Department of Neurology, Banaras Hindu University, Varanasi 221005, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assesment Group, Vishvigyan Bhawan, 31 MG Marg, Lucknow, UP 226001, India
| | | | | |
Collapse
|
24
|
Gupta MN, Roy I. Drugs, host proteins and viral proteins: how their promiscuities shape antiviral design. Biol Rev Camb Philos Soc 2020; 96:205-222. [PMID: 32918378 DOI: 10.1111/brv.12652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The reciprocal nature of drug specificity and target specificity implies that the same is true for their respective promiscuities. Protein promiscuity has two broadly different types of footprint in drug design. The first is relaxed specificity of binding sites for substrates, inhibitors, effectors or cofactors. The second involves protein-protein interactions of regulatory processes such as signal transduction and transcription, and here protein intrinsic disorder plays an important role. Both viruses and host cells exploit intrinsic disorder for their survival, as do the design and discovery programs for antivirals. Drug action, strictly speaking, always relies upon promiscuous activity, with drug promiscuity enlarging its scope. Drug repurposing searches for additional promiscuity on the part of both the drug and the target in the host. Understanding the subtle nuances of these promiscuities is critical in the design of novel and more effective antivirals.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India
| |
Collapse
|
25
|
Cao R, Hu H, Li Y, Wang X, Xu M, Liu J, Zhang H, Yan Y, Zhao L, Li W, Zhang T, Xiao D, Guo X, Li Y, Yang J, Hu Z, Wang M, Zhong W. Anti-SARS-CoV-2 Potential of Artemisinins In Vitro. ACS Infect Dis 2020; 6:2524-2531. [PMID: 32786284 PMCID: PMC7437450 DOI: 10.1021/acsinfecdis.0c00522] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 12/12/2022]
Abstract
The discovery of novel drug candidates with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) potential is critical for the control of the global COVID-19 pandemic. Artemisinin, an old antimalarial drug derived from Chinese herbs, has saved millions of lives. Artemisinins are a cluster of artemisinin-related drugs developed for the treatment of malaria and have been reported to have multiple pharmacological activities, including anticancer, antiviral, and immune modulation. Considering the reported broad-spectrum antiviral potential of artemisinins, researchers are interested in whether they could be used to combat COVID-19. We systematically evaluated the anti-SARS-CoV-2 activities of nine artemisinin-related compounds in vitro and carried out a time-of-drug-addition assay to explore their antiviral mode of action. Finally, a pharmacokinetic prediction model was established to predict the therapeutic potential of selected compounds against COVID-19. Arteannuin B showed the highest anti-SARS-CoV-2 potential with an EC50 of 10.28 ± 1.12 μM. Artesunate and dihydroartemisinin showed similar EC50 values of 12.98 ± 5.30 μM and 13.31 ± 1.24 μM, respectively, which could be clinically achieved in plasma after intravenous administration. Interestingly, although an EC50 of 23.17 ± 3.22 μM was not prominent among the tested compounds, lumefantrine showed therapeutic promise due to high plasma and lung drug concentrations after multiple dosing. Further mode of action analysis revealed that arteannuin B and lumefantrine acted at the post-entry step of SARS-CoV-2 infection. This research highlights the anti-SARS-CoV-2 potential of artemisinins and provides leading candidates for anti-SARS-CoV-2 drug research and development.
Collapse
Affiliation(s)
- Ruiyuan Cao
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Hengrui Hu
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
- University of the Chinese
Academy of Sciences, Beijing 100049, P.
R. China
| | - Yufeng Li
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
- University of the Chinese
Academy of Sciences, Beijing 100049, P.
R. China
| | - Xi Wang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
| | - Mingyue Xu
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
- University of the Chinese
Academy of Sciences, Beijing 100049, P.
R. China
| | - Jia Liu
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
| | - Huanyu Zhang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
- University of the Chinese
Academy of Sciences, Beijing 100049, P.
R. China
| | - Yunzheng Yan
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Lei Zhao
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Wei Li
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Tianhong Zhang
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
- Guoke Excellence
(Beijing) Medicine Technology Research Co., Ltd.,
Beijing 100176, P. R. China
| | - Dian Xiao
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Xiaojia Guo
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Yuexiang Li
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Jingjing Yang
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| | - Zhihong Hu
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
| | - Manli Wang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Wuhan
430071, P. R. China
| | - Wu Zhong
- National Engineering Research Center
for the Emergency Drug, Beijing Institute of Pharmacology
and Toxicology, Beijing 100850,
China
| |
Collapse
|
26
|
Mayburd A. A public-private partnership for the express development of antiviral leads: a perspective view. Expert Opin Drug Discov 2020; 16:23-38. [PMID: 32877233 DOI: 10.1080/17460441.2020.1811676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The COVID-19 pandemic raises the question of strategic readiness for emergent pathogens. The current case illustrates that the cost of inaction can be higher in the future. The perspective article proposes a dedicated, government-sponsored agency developing anti-viral leads against all potentially dangerous pathogen species. AREAS COVERED The author explores the methods of computational drug screening and in-silico synthesis and proposes a specialized government-sponsored agency focusing on leads and functioning in collaboration with a network of labs, pharma, biotech firms, and academia, in order to test each lead against multiple viral species. The agency will employ artificial intelligence and machine learning tools to cut the costs further. The algorithms are expected to receive continuous feedback from the network of partners conducting the tests. EXPERT OPINION The author proposes a bionic principle, emulating antibody response by producing a combinatorial diversity of high q uality generic antiviral leads, suitable for multiple potentially emerging species. The availability of multiple pre-tested agents and an even greater number of combinations would reduce the impact of the next outbreak. The methodologies developed in this effort are likely to find utility in the design of chronic disease therapeutics.
Collapse
Affiliation(s)
- Anatoly Mayburd
- School of Systems Biology, George Mason University , Manassas, USA
| |
Collapse
|
27
|
Lokhande KB, Doiphode S, Vyas R, Swamy KV. Molecular docking and simulation studies on SARS-CoV-2 M pro reveals Mitoxantrone, Leucovorin, Birinapant, and Dynasore as potent drugs against COVID-19. J Biomol Struct Dyn 2020; 39:7294-7305. [PMID: 32815481 PMCID: PMC7484567 DOI: 10.1080/07391102.2020.1805019] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The outbreak of novel coronavirus (COVID-19), which began from Wuhan City, Hubei, China, and declared as a Public Health Emergency of International Concern by World Health Organization (WHO) on 30th January 2020. The present study describes how the available drug candidates can be used as a potential SARS-CoV-2 Mpro inhibitor by molecular docking and molecular dynamic simulation studies. Drug repurposing strategy is applied by using the library of antiviral and FDA approved drugs retrieved from the Selleckchem Inc. (Houston, TX, http://www.selleckchem.com) and DrugBank database respectively. Computational methods like molecular docking and molecular dynamics simulation were used. The molecular docking calculations were performed using LeadIT FlexX software. The molecular dynamics simulations of 100 ns were performed to study conformational stability for all complex systems. Mitoxantrone and Leucovorin from FDA approved drug library and Birinapant and Dynasore from anti-viral drug libraries interact with SARS-CoV-2 Mpro at higher efficiency as a result of the improved steric and hydrophobic environment in the binding cavity to make stable complex. Also, the molecular dynamics simulations of 100 ns revealed the mean RMSD value of 2.25 Å for all the complex systems. This shows that lead compounds bound tightly within the Mpro cavity and thus having conformational stability. Glutamic acid (Glu166) of Mpro is a key residue to hold and form a stable complex of reported lead compounds by forming hydrogen bonds and salt bridge. Our findings suggest that Mitoxantrone, Leucovorin, Birinapant, and Dynasore represents potential inhibitors of SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Patil Vidyapeeth, Pune, India
| | - Sayali Doiphode
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Patil Vidyapeeth, Pune, India
| | - Renu Vyas
- Bioinformatics Research Group, MIT School of Bioengineering Science and Research, MIT- ADT University, Pune, India
| | - K Venkateswara Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Patil Vidyapeeth, Pune, India.,Bioinformatics Research Group, MIT School of Bioengineering Science and Research, MIT- ADT University, Pune, India
| |
Collapse
|
28
|
Goh VSL, Mok CK, Chu JJH. Antiviral Natural Products for Arbovirus Infections. Molecules 2020; 25:molecules25122796. [PMID: 32560438 PMCID: PMC7356825 DOI: 10.3390/molecules25122796] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Over the course of the last 50 years, the emergence of several arboviruses have resulted in countless outbreaks globally. With a high proportion of infections occurring in tropical and subtropical regions where arthropods tend to be abundant, Asia in particular is a region that is heavily affected by arboviral diseases caused by dengue, Japanese encephalitis, West Nile, Zika, and chikungunya viruses. Major gaps in protection against the most significant emerging arboviruses remains as there are currently no antivirals available, and vaccines are only available for some. A potential source of antiviral compounds could be discovered in natural products—such as vegetables, fruits, flowers, herbal plants, marine organisms and microorganisms—from which various compounds have been documented to exhibit antiviral activities and are expected to have good tolerability and minimal side effects. Polyphenols and plant extracts have been extensively studied for their antiviral properties against arboviruses and have demonstrated promising results. With an abundance of natural products to screen for new antiviral compounds, it is highly optimistic that natural products will continue to play an important role in contributing to antiviral drug development and in reducing the global infection burden of arboviruses.
Collapse
Affiliation(s)
- Vanessa Shi Li Goh
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chee-Keng Mok
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (C.-K.M.); (J.J.H.C.)
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Correspondence: (C.-K.M.); (J.J.H.C.)
| |
Collapse
|
29
|
Chan YH, Teo TH, Torres-Ruesta A, Hartimath SV, Chee RSL, Khanapur S, Yong FF, Ramasamy B, Cheng P, Rajarethinam R, Robins EG, Goggi JL, Lum FM, Carissimo G, Rénia L, Ng LFP. Longitudinal [18F]FB-IL-2 PET Imaging to Assess the Immunopathogenicity of O'nyong-nyong Virus Infection. Front Immunol 2020; 11:894. [PMID: 32477364 PMCID: PMC7235449 DOI: 10.3389/fimmu.2020.00894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
Abstract
O'nyong-nyong virus (ONNV) is an arthritogenic alphavirus that caused two large epidemics in 1959 and 1996, affecting millions of people in Africa. More recently, sero-surveillance of healthy blood donors conducted in 2019 revealed high rates of unreported ONNV infection in Uganda. Due to similar clinical symptoms with other endemic mosquito-borne pathogens in the region, including chikungunya virus, dengue virus and malaria, ONNV infections are often un- or misdiagnosed. Elucidating the immunopathogenic factors of this re-emerging arbovirus is critical with the expanding geographic distribution of competent vectors. This study reports the establishment of an immune competent C57BL6/J mouse model to mechanistically characterize ONNV infection and assess potential treatment efficacy. This mouse model successfully recapitulated arthralgia and viremia profiles seen in ONNV patients. Furthermore, longitudinal in-vivo PET imaging with [18F]FB-IL-2 (CD25+CD4+ binding probe) and histopathological assessment in this model demonstrated the pathogenic role of CD4+ T cells in driving joint pathology. Concordantly, in vivo CD4+ T cell depletion, or suppression with fingolimod, an FDA-approved immunomodulating drug, abrogated CD4+ T cell-mediated disease. This study demonstrates the importance of this immune competent ONNV model for future studies on factors influencing disease pathogenesis, which could shape the discovery of novel therapeutic strategies for arthritogenic alphaviruses.
Collapse
Affiliation(s)
- Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore
| | - Anthony Torres-Ruesta
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siddesh V Hartimath
- Singapore Bioimaging Consortium, ASTAR, Helios, Biopolis, Singapore, Singapore
| | - Rhonda Sin-Ling Chee
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore
| | | | - Fui Fong Yong
- Singapore Bioimaging Consortium, ASTAR, Helios, Biopolis, Singapore, Singapore
| | | | - Peter Cheng
- Singapore Bioimaging Consortium, ASTAR, Helios, Biopolis, Singapore, Singapore
| | - Ravisankar Rajarethinam
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, ASTAR, Proteos, Biopolis, Singapore, Singapore
| | - Edward G Robins
- Singapore Bioimaging Consortium, ASTAR, Helios, Biopolis, Singapore, Singapore.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julian L Goggi
- Singapore Bioimaging Consortium, ASTAR, Helios, Biopolis, Singapore, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore
| | - Guillaume Carissimo
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
30
|
Schein CH. Repurposing approved drugs on the pathway to novel therapies. Med Res Rev 2020; 40:586-605. [PMID: 31432544 PMCID: PMC7018532 DOI: 10.1002/med.21627] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
The time and cost of developing new drugs have led many groups to limit their search for therapeutics to compounds that have previously been approved for human use. Many "repurposed" drugs, such as derivatives of thalidomide, antibiotics, and antivirals have had clinical success in treatment areas well beyond their original approved use. These include applications in treating antibiotic-resistant organisms, viruses, cancers and to prevent burn scarring. The major theoretical justification for reusing approved drugs is that they have known modes of action and controllable side effects. Coadministering antibiotics with inhibitors of bacterial toxins or enzymes that mediate multidrug resistance can greatly enhance their activity. Drugs that control host cell pathways, including inflammation, tumor necrosis factor, interferons, and autophagy, can reduce the "cytokine storm" response to injury, control infection, and aid in cancer therapy. An active compound, even if previously approved for human use, will be a poor clinical candidate if it lacks specificity for the new target, has poor solubility or can cause serious side effects. Synergistic combinations can reduce the dosages of the individual components to lower reactivity. Preclinical analysis should take into account that severely ill patients with comorbidities will be more sensitive to side effects than healthy trial subjects. Once an active, approved drug has been identified, collaboration with medicinal chemists can aid in finding derivatives with better physicochemical properties, specificity, and efficacy, to provide novel therapies for cancers, emerging and rare diseases.
Collapse
Affiliation(s)
- Catherine H Schein
- Department of Biochemistry and Molecular Biology, Institute for Human Infection and Immunity (IHII), University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
31
|
D’Alessandro S, Scaccabarozzi D, Signorini L, Perego F, Ilboudo DP, Ferrante P, Delbue S. The Use of Antimalarial Drugs against Viral Infection. Microorganisms 2020; 8:microorganisms8010085. [PMID: 31936284 PMCID: PMC7022795 DOI: 10.3390/microorganisms8010085] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
In recent decades, drugs used to treat malaria infection have been shown to be beneficial for many other diseases, including viral infections. In particular, they have received special attention due to the lack of effective antiviral drugs against new emerging viruses (i.e., HIV, dengue virus, chikungunya virus, Ebola virus, etc.) or against classic infections due to drug-resistant viral strains (i.e., human cytomegalovirus). Here, we reviewed the in vitro/in vivo and clinical studies conducted to evaluate the antiviral activities of four classes of antimalarial drugs: Artemisinin derivatives, aryl-aminoalcohols, aminoquinolines, and antimicrobial drugs.
Collapse
Affiliation(s)
- Sarah D’Alessandro
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
| | - Diletta Scaccabarozzi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milan, Italy;
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
| | - Denise P. Ilboudo
- Département des Sciences de la Vie, University of Fada N’Gourma (UFDG), Fada N’Gourma BP 54, Burkina Faso;
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, 20133 Milan, Italy; (S.D.); (L.S.); (F.P.); (P.F.)
- Correspondence: ; Tel.: +39-02-50315070
| |
Collapse
|
32
|
Tallei TE, Tumilaar SG, Niode NJ, Kepel BJ, Idroes R, Effendi Y, Sakib SA, Emran TB. Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (M pro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. SCIENTIFICA 2020; 2020:6307457. [PMID: 33425427 DOI: 10.20944/preprints202004.0102.v2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/17/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
Since the outbreak of the COVID-19 (coronavirus disease 19) pandemic, researchers have been trying to investigate several active compounds found in plants that have the potential to inhibit the proliferation of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). The present study aimed to evaluate bioactive compounds found in plants using a molecular docking approach to inhibit the main protease (Mpro) and spike (S) glycoprotein of SARS-CoV-2. The evaluation was performed on the docking scores calculated using AutoDock Vina (AV) as a docking engine. A rule of five (Ro5) was calculated to determine whether a compound meets the criteria as an active drug orally in humans. The determination of the docking score was performed by selecting the best conformation of the protein-ligand complex that had the highest affinity (most negative Gibbs' free energy of binding/ΔG). As a comparison, nelfinavir (an antiretroviral drug), chloroquine, and hydroxychloroquine sulfate (antimalarial drugs recommended by the FDA as emergency drugs) were used. The results showed that hesperidin, nabiximols, pectolinarin, epigallocatechin gallate, and rhoifolin had better poses than nelfinavir, chloroquine, and hydroxychloroquine sulfate as spike glycoprotein inhibitors. Hesperidin, rhoifolin, pectolinarin, and nabiximols had about the same pose as nelfinavir but were better than chloroquine and hydroxychloroquine sulfate as Mpro inhibitors. This finding implied that several natural compounds of plants evaluated in this study showed better binding free energy compared to nelfinavir, chloroquine, and hydroxychloroquine sulfate, which so far are recommended in the treatment of COVID-19. From quantum chemical DFT calculations, the ascending order of chemical reactivity of selected compounds was pectolinarin > hesperidin > rhoifolin > morin > epigallocatechin gallate. All isolated compounds' C=O regions are preferable for an electrophilic attack, and O-H regions are suitable for a nucleophilic attack. Furthermore, Homo-Lumo and global descriptor values indicated a satisfactory remarkable profile for the selected compounds. As judged by the RO5 and previous study by others, the compounds kaempferol, herbacetin, eugenol, and 6-shogaol have good oral bioavailability, so they are also seen as promising candidates for the development of drugs to treat infections caused by SARS-CoV-2. The present study identified plant-based compounds that can be further investigated in vitro and in vivo as lead compounds against SARS-CoV-2.
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Sefren Geiner Tumilaar
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, University of Sam Ratulangi, Manado 95115, Indonesia
| | - Billy Johnson Kepel
- Department of Chemistry, Faculty of Medicine, Sam Ratulangi University, Manado 95115, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh 23111, Indonesia
| | - Yunus Effendi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Al Azhar University, South Jakarta 12110, Indonesia
| | - Shahenur Alam Sakib
- Department of Theoretical and Computational Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
33
|
Suppression of µ1 subunit of the adaptor protein complex 2 reduces dengue virus release. Virus Genes 2019; 56:27-36. [PMID: 31720911 DOI: 10.1007/s11262-019-01710-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/28/2019] [Indexed: 01/16/2023]
Abstract
Dengue virus (DENV) requires clathrin-mediated endocytosis for its entry into the cells where the adaptor protein complex (AP) is vital for the clathrin-coated vesicle formation. The role of AP-2 was previously examined in the early stages of DENV infection; however, the role of AP-2 in the late stage of DENV infection was not determined. The µ1 subunit of AP-2 (AP2M1) is one of the most important cytoplasmic carrier domains in clathrin-mediated endocytosis and the phosphorylation of this subunit by the kinase enzyme, AP-2 associated protein kinase 1 (AAK1), stimulates clathrin and supports the cell surface receptor incorporation. In the present study, we primarily aimed to investigate the role of AP2M1 by gene silencing approach as well as using naked DENV RNA transfection into AP2M1 knockdown cells. Secondarily, an inhibitor of AAK1, sunitinib was used to investigate whether AAK1 could influence the virus production in DENV-infected Huh7 cells. The knockdown of AP2M1 in the DENV-infected Huh7 cells displayed a reduction in the viral titer at 24 h post-infection. Furthermore, experiments were conducted to bypass the DENV internalization using a naked DENV RNA transfection into the AP2M1 knockdown cells. Higher intracellular DENV RNA, DENV E protein, and intracellular virion were observed, whereas the extracellular virion production was comparably less than that of control. Treatment with sunitinib in DENV-infected Huh7 cells was able to reduce extracellular virion production and was consistent with all four serotypes of DENV. Therefore, our findings demonstrate the role of AP2M1 in the exocytosis step of DENV replication leading to infectious DENV production and the efficacy of sunitinib in suppressing virus production during the infection with different serotypes of DENV.
Collapse
|
34
|
Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA. Recent update on anti-dengue drug discovery. Eur J Med Chem 2019; 176:431-455. [PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023]
Abstract
Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
Collapse
Affiliation(s)
- Satish N Dighe
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia.
| | - O'mezie Ekwudu
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Peter L Katavic
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Trudi A Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
35
|
Ianevski A, Andersen PI, Merits A, Bjørås M, Kainov D. Expanding the activity spectrum of antiviral agents. Drug Discov Today 2019; 24:1224-1228. [PMID: 30980905 DOI: 10.1016/j.drudis.2019.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/30/2022]
Abstract
Broad-spectrum antivirals (BSAs) are agents that inhibit replication of several human viruses. Here, we review 108 approved, investigational, and experimental BSAs, for which safety profiles in humans are available. The most effective and tolerable BSAs could reinforce the arsenal of available antiviral therapeutics pending the results of further pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway
| | - Petter I Andersen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu 50090, Estonia
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway; Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo 0027, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway; Institute of Technology, University of Tartu, Tartu 50090, Estonia.
| |
Collapse
|
36
|
Freeman MC, Coyne CB, Green M, Williams JV, Silva LA. Emerging arboviruses and implications for pediatric transplantation: A review. Pediatr Transplant 2019; 23:e13303. [PMID: 30338634 DOI: 10.1111/petr.13303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 11/28/2022]
Abstract
Recent years have brought a rise in newly emergent viral infections, primarily in the form of previously known arthropod-transmitted viruses that have increased significantly in both incidence and geographical range. Of particular note are DENV, CHIKV, and ZIKV, which are transmitted mostly by Aedes species of mosquitoes that exhibit a wide and increasing global distribution. Being important pathogens for the general population, these viruses have the potential to be devastating in the international transplant community, with graft rejection and death as possible outcomes of infection. In this review, we discuss the current state of knowledge for these viruses as well as repercussions of infection in the solid organ and HSCT population, with a focus, when possible, on pediatric patients.
Collapse
Affiliation(s)
- Megan Culler Freeman
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carolyn B Coyne
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Green
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - John V Williams
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laurie A Silva
- Division of Pediatric Infectious Disease, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Górski A, Bollyky PL, Przybylski M, Borysowski J, Międzybrodzki R, Jończyk-Matysiak E, Weber-Dąbrowska B. Perspectives of Phage Therapy in Non-bacterial Infections. Front Microbiol 2019; 9:3306. [PMID: 30687285 PMCID: PMC6333649 DOI: 10.3389/fmicb.2018.03306] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
While the true value of phage therapy (PT) in human bacterial infections still awaits formal confirmation by clinical trials, new data have been accumulating indicating that in the future PT may be applied in the treatment of non-bacterial infections. Thus, "phage guests" may interact with eukaryotic cells and such interactions with cells of the immune system may protect human health (Guglielmi, 2017) and cause clinically useful immunomodulatory and anti-inflammatory effects when administered for therapeutic purposes (Górski et al., 2017; Van Belleghem et al., 2017). Recently, a vision of how these effects could translate into advances in novel means of therapy in a variety of human pathologies secondary to immune disturbances and allergy was presented (Górski et al., 2018a). In this article we present what is currently known about anti-microbial effects of phage which are not directly related to their antibacterial action and how these findings could be applied in the future in treatment of viral and fungal infections.
Collapse
Affiliation(s)
- Andrzej Górski
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University Medical School, Stanford, CA, United States.,Immunology Program, Stanford University, Stanford, CA, United States
| | - Maciej Przybylski
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Ryszard Międzybrodzki
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|