1
|
Liang Z, Wu J, He DC, Li Y, Liang YQ, Hu JW, Zou MY, Ning JF, Liu WR. Degradation characteristics and effect mechanisms of estrogens during aerobic composting of chicken manure based on the orthogonal test. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122751. [PMID: 39378806 DOI: 10.1016/j.jenvman.2024.122751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Environmental estrogens are currently a significant research topic, and poultry manure serves as a crucial source. This study investigated the degradation characteristics and effect mechanisms of six estrogens (E1, 17α-E2, 17β-E2, E3, 17α-EE2, and DES) during the aerobic composting of chicken manure. An orthogonal test comprising four factors (aeration rate, calcium-magnesium-phosphorus fertilizer (Ca-Mg-P fertilizer), coconut shell biochar, initial moisture content) and three levels of aerobic composting was conducted over a 45-day period to monitor the changes in estrogens and basic parameters. The results indicated that the factors influencing the estrogen degradation rate ranked as: initial moisture content (MC) > Ca-Mg-P fertilizer > aeration rate > coconut shell biochar. These factors significantly influenced the abundance of estrogen-degrading genera. Optimal composting conditions for estrogen degradation were identified as the addition of 10% coconut shell biochar, maintaining an initial moisture content of 60%, and using an aeration rate of 0.08 L min-1∙kg-1DM (dry matter), with an average degradation rate of 86.88% for the six estrogens under these conditions. During the composting process under various treatments, five known estrogen-degrading genera were observed with high relative abundance (max 31.08%), and the predominant genera were Staphylococcus and Brachybacterium for 17α-E2, 17β-E2, E3, 17α-EE2, and DES, and Pusillimonas for E1. The composition of microbial community structure changed significantly, and the dominated environment factors effecting the composition and succession of these genera were carbon to nitrogen ratio (C/N) and MC. The research results can provide both a theoretical basis and practical reference for the effective degradation of estrogens during the composting of chicken manure.
Collapse
Affiliation(s)
- Ziwei Liang
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China; Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Junhao Wu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - De-Chun He
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Yan Li
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jia-Wu Hu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China
| | - Meng-Yao Zou
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Jian-Feng Ning
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wang-Rong Liu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou, 510655, China.
| |
Collapse
|
2
|
Niedrite E, Klavins L, Dobkevica L, Purmalis O, Ievinsh G, Klavins M. Sustainable control of invasive plants: Compost production, quality and effects on wheat germination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123149. [PMID: 39486297 DOI: 10.1016/j.jenvman.2024.123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Invasive plant species pose significant ecological threats worldwide, affecting the stability and biodiversity of local ecosystems. As a result of their control, a considerable amount of plant biomass is produced, which can be used to produce various value-added products. Five different composts were prepared from three invasive plant species found in Latvia - Reynoutria japonica, Solidago canadensis, Lupinus polyphyllus. The stages of composting have been investigated and recommendations for process optimization have been made based on the quality characterization of the final compost. The quality of the prepared invasive plant biomass composts has been evaluated based on the main plant nutrient concentration, humic substance concentration, and mineral contents. The allelopathic lupin alkaloid concentration throughout the composting process has been evaluated and shows a consistent reduction. Obtained compost quality complies with the EU regulations for fertilizing products and soil amendments thus it can be considered equivalent to industrially produced compost and vermicompost. Seed germination tests confirm that compost prepared from invasive plants is suitable for plant growth and comparable to commercial composts. Based on pilot-scale composting results, recommendations for invasive plant composting have been suggested.
Collapse
Affiliation(s)
- Evelina Niedrite
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia.
| | - Linards Klavins
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia.
| | - Linda Dobkevica
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia.
| | - Oskars Purmalis
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia.
| | - Gederts Ievinsh
- Faculty of Biology, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia.
| | - Maris Klavins
- Department of Environmental Science, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia.
| |
Collapse
|
3
|
Guidoni LLC, Corrêa ÉK, Moncks PCS, Nadaleti WC, Silva FMR, Lucia T. Innovation for recycling of organic matter through composter with automatic and sustainable temperature recording accessed via Bluetooth/mobile app. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1093. [PMID: 39436501 DOI: 10.1007/s10661-024-13285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Compost reactors, commonly used in experiments, industrial assays, and home residue treatment systems, have the potential to facilitate composting. Challenges persist in the realm of small-scale composting, encompassing facets such as temperature monitoring, homogenization of the compost mass, management of moisture with the control of leachate generation, and integration with a renewable energy source. This study assesses a pioneering composter prototype endowed with essential features to ensure a pragmatic and secure composting process. This includes the facilitation of remote access to temperature data via Bluetooth and a mobile application. Across successive trials, the scrutinized composter prototype consistently yielded reproducible outcomes, exhibiting a coefficient of variation below 25% for the majority of appraised parameters. In comparison to a conventional reactor, the decomposing residue mixture within the examined prototype manifested elevated temperatures (p < 0.05). Moreover, the tested prototype demonstrated C/N ratio lower than 20/1 within 45 days, a higher final nitrogen concentration, and enhanced germination of seeds that served as phytotoxicity bioindicators. Notably, the prototype needed 46.6% less space, offering improved leachate control, three times faster turning time, temperature monitoring, and reduced fly attraction.
Collapse
Affiliation(s)
- Lucas Lourenço Castiglioni Guidoni
- Post-Graduation Program in Biotechnology, CDTec, Federal University of Pelotas, Pelotas-RS, Brazil.
- NEPERS, Post-Graduation Program in Environmental Sciences, CENG, Federal University of Pelotas, Pelotas-RS, Brazil.
- Fibra, Faculty of Veterinary Medicine, Federal University of Pelotas, Pelotas-RS, Brazil.
| | - Érico Kunde Corrêa
- NEPERS, Post-Graduation Program in Environmental Sciences, CENG, Federal University of Pelotas, Pelotas-RS, Brazil
| | - Paulo César Sedrez Moncks
- Post-Graduation Program in Computer Science,CDTec, Federal University of Pelotas, Pelotas-RS, Brazil
| | - William Cezar Nadaleti
- NEPERS, Post-Graduation Program in Environmental Sciences, CENG, Federal University of Pelotas, Pelotas-RS, Brazil
| | | | - Thomaz Lucia
- Post-Graduation Program in Biotechnology, CDTec, Federal University of Pelotas, Pelotas-RS, Brazil
- Fibra, Faculty of Veterinary Medicine, Federal University of Pelotas, Pelotas-RS, Brazil
| |
Collapse
|
4
|
Ma L, Zhang L, Feng X. Optimization of Eisenia fetida stocking density for biotransformation during green waste vermicomposting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 187:188-197. [PMID: 39047308 DOI: 10.1016/j.wasman.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Appropriate stocking density plays an important role in ensuring the stability and improving the overall efficiency of the vermicomposting system. Although some studies have shown that earthworms can degrade lignocellulosic materials, relatively few studies have been conducted on the effect of earthworm stocking density on the degradation of a single green waste (GW) with high lignocellulosic content. Therefore, this study investigated the degradation effect of earthworms on GW at different stocking densities, and assessed the stability and maturity of the whole vermicomposting by comprehensively analysing the changes in physicochemical and biological properties of earthworms during vermicomposting, and by combining the growth of earthworms with a multi-dimensional assessment of the stability and maturity of the whole vermicomposting. In this study, six stocking densities (CK-T5) were set up, namely, no earthworms, 10, 20, 30, 40, and 50 worms/kg. The results showed that compared with the CK (without earthworms), when there were 30 earthworms per kg of GW (i.e. T3), the total nitrogen, total phosphorus, total potassium, organic matter decomposition, bacterial and fungal numbers, and germination index of earthworm compost products increased by 14 %, 29 %, 32 %, 35 %, 42 %, 94 %, and 125 %, respectively. T3 also enhanced the activities of cellulase and alkaline phosphatase. The results were further supported by principal component analysis. Finally, we conclude that when the stocking density of earthworms is appropriate (T3), it not only favours the growth of earthworms, but also positively affects the physicochemical properties of the vermicomposting process, which in turn significantly improves the biodegradation efficiency of GW.
Collapse
Affiliation(s)
- Li Ma
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| | - Xueqing Feng
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
5
|
Al-Sari' MI, Haritash AK. A multi-criteria approach to test and evaluate the efficiency of two composting systems under two different climates. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:540-555. [PMID: 38874908 DOI: 10.1080/10962247.2024.2365707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
The selection of the appropriate composting system, climate conditions, and duration of the composting process are important parameters for municipal solid waste composting. Therefore, this research aimed to design, test, and evaluate two different static composting systems under two different climate regions, Palestine and India, following a multi-criteria approach. A forced-aeration composting system was designed for use in Palestine, and a naturally aerated one was used in India. Three experiments were conducted, two of them in Palestine and one in India. The operational parameters were controlled and monitored during the composting process, while the physio-chemical and biological parameters were tested to evaluate the compost end quality. The results showed that both systems provide good efficiency toward formation of final compost (39-43 days in Palestine, and 31 days in India), and the average materials' volume reduction was almost 60%. The physio-chemical analysis showed that most of the parameters comply with the threshold limits specified by the Palestinian Standards Institution (PSI) and Indian Fertilizer Control Order (FCO) except for minor deviations. Both systems provided a high fertility index (4.3, 4.7, and 4.8), and a high clean index (4.6, 5.0, and 4.7). However, the results of the biological parameters showed that all the experiments met PSI, but none of them met FCO, suggesting that the outer edges of the composting system didn't heat enough to inactivate pathogenic microbes, therefore, developing the system by adding turning option could overcome this shortcoming. It was concluded that the forced aeration system is suitable for Palestine, while the natural aeration system is suitable for India.Implications: Municipal solid waste management is facing technical and financial challenges worldwide due to the increasing generation of solid waste following the population growth. The current improper management of this waste stream through landfilling is adding pressure on the environment as a result of methane emissions and landfill leachate. Therefore, composting of the organic fraction through selection of an appropriate composting system can solve many waste management problems and contribute to environmental sustainability. This research focuses on design, test and evaluate two composting systems in two regions with different climatic conditions, Palestine and India as both are facing waste management problems. The outcome of this research optimized the composting process which can be replicated and scaled up in other countries worldwide with similar climatic conditions.
Collapse
Affiliation(s)
| | - A K Haritash
- Department of Environmental Engineering, Delhi Technological University, Delhi, India
| |
Collapse
|
6
|
Sossa EL, Agbangba CE, Koura TW, Ayifimi OJ, Houssoukpèvi IA, Bouko NDB, Yalinkpon F, Amadji GL. Dynamics of co-composting of pineapple harvest and processing residues with poultry litter and compost quality. Sci Rep 2024; 14:17194. [PMID: 39060260 PMCID: PMC11282232 DOI: 10.1038/s41598-024-66335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
The production of pineapple generates significant quantities of harvest and processing residues, which are very little used. This study evaluates compost quality using pineapple residues and poultry litter. Five composting treatments were tested, varying following proportions of crown, pineapple processing wastes (PPW), pineapple harvest residue (PHR), and poultry litter (PL). Various parameters were analyzed, including pH, electrical conductivity, CO2 evolution rate, water content, organic carbon, nitrogen compounds, phosphorus, potassium, calcium, magnesium, copper, and zinc. Additionally, the perceptions of producers and processors regarding compost quality were gathered. Results indicated that microbial decomposition increased temperature, pH, CO2 release, and nitrogen content while reducing electrical conductivity and organic carbon. Composts demonstrated favorable characteristics for crop fertilization, with C4 (75% PHR + 25% PL) compost showing the best chemical properties. Producers and processors preferred the color, odor, and structure of C4 (75% PHR + 25% PL) and C5 (56.25% crown + 18.75% PPW + 25% PL) composts. Overall, composting pineapple residues with poultry litter yields composts suitable for plant fertilization, particularly C4 and C5 formulations, offering potential for sustainable waste valorization in agriculture.
Collapse
Affiliation(s)
- Elvire Line Sossa
- Research Unit in Sustainable Management of Soil Fertility, Laboratory of Soil Sciences, Faculty of Agronomics Sciences, University of Abomey-Calavi, Calavi, 01, P.O. Box 526, Cotonou, Benin.
| | - Codjo Emile Agbangba
- Laboratory of Research in Applied Biology, Department of Environment Engineering, University of Abomey-Calavi, Calavi, 01, P.O. Box 2009, Cotonou, Benin
- Laboratory of Biomathematics and Forest Estimations, University of Abomey-Calavi, Calavi, 03, P.O. Box 2819, Cotonou, Benin
| | - Tatiana Windékpè Koura
- National Institute of Agricultural Research of Benin, 01, P.O. Box 884, Abomey-Calavi, Benin
| | - Oladéji Jamali Ayifimi
- Research Unit in Sustainable Management of Soil Fertility, Laboratory of Soil Sciences, Faculty of Agronomics Sciences, University of Abomey-Calavi, Calavi, 01, P.O. Box 526, Cotonou, Benin
| | - Issiakou Alladé Houssoukpèvi
- Research Unit in Sustainable Management of Soil Fertility, Laboratory of Soil Sciences, Faculty of Agronomics Sciences, University of Abomey-Calavi, Calavi, 01, P.O. Box 526, Cotonou, Benin
| | - Nadège Donsaré Bana Bouko
- Research Unit in Sustainable Management of Soil Fertility, Laboratory of Soil Sciences, Faculty of Agronomics Sciences, University of Abomey-Calavi, Calavi, 01, P.O. Box 526, Cotonou, Benin
| | - Florent Yalinkpon
- National Institute of Agricultural Research of Benin, 01, P.O. Box 884, Abomey-Calavi, Benin
| | - Guillaume Lucien Amadji
- Research Unit in Sustainable Management of Soil Fertility, Laboratory of Soil Sciences, Faculty of Agronomics Sciences, University of Abomey-Calavi, Calavi, 01, P.O. Box 526, Cotonou, Benin
| |
Collapse
|
7
|
Skrzypczak D, Trzaska K, Gil F, Izydorczyk G, Chojnacka K. Guidelines for efficient nitrogen preservation in sewage sludge-based fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174460. [PMID: 38971255 DOI: 10.1016/j.scitotenv.2024.174460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
This study explores sustainable methods to mitigate nitrogen (N) loss in agriculture amid rising food demands and limited arable land. It examines sewage sludge (SS) as an alternative to synthetic N fertilizers. SS is rich in nitrogen (4.21 ± 0.42 %) and phosphorus (3.60 ± 0.72 %), making it suitable for nutrient recovery and soil enhancement. Unfavorable sludge management methods result in the loss of 950,000 tons of nitrogen, meeting almost 10 % of the EU's nitrogen fertilization demand. This research evaluates SS treatment methods, including chemical conversion, thermal treatment, and biological composting, focusing on nitrogen conservation efficiency. Results show nitrogen loss during hydrolysis is minimized at pH 4 to 8 but increases significantly as ammonia (NH3) at pH 9 to 11, ranging from 4.2 % to 9 %. Neutralizing the hydrolysate is crucial; using solid KOH resulted in 13.5 % nitrogen loss, 11 times more than using slightly alkaline ash (1.22 %). Adding ash during drying reduced nitrogen emissions by 30 % compared to traditional drying at 105 °C. Improving the C/N ratio with food residues reduced nitrogen losses by 46.3 % during composting. These findings highlight the importance of pH control in chemical processes and temperature regulation in thermal treatments. Adding residues from other processes, such as biomass combustion waste, enhances SS processing conditions. Understanding nitrogen retention mechanisms is crucial for the environmental sustainability of SS usage. Efficient nitrogen retention strategies improve the fertilization value of SS and reduce its environmental footprint by lowering greenhouse gas emissions, particularly ammonia. Reducing nitrogen loss during SS treatment significantly lowers ammonia emissions, a major contributor to greenhouse gas emissions. These results help determine optimal methods for managing and processing SS to minimize emissions and increase agricultural usability.
Collapse
Affiliation(s)
- Dawid Skrzypczak
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland.
| | - Krzysztof Trzaska
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Filip Gil
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Lower Silesia 50-370, Poland
| |
Collapse
|
8
|
Zhou Z, Shi X, Bhople P, Jiang J, Chater CCC, Yang S, Perez-Moreno J, Yu F, Liu D. Enhancing C and N turnover, functional bacteria abundance, and the efficiency of biowaste conversion using Streptomyces-Bacillus inoculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120895. [PMID: 38626487 DOI: 10.1016/j.jenvman.2024.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Microbial inoculation plays a significant role in promoting the efficiency of biowaste conversion. This study investigates the function of Streptomyces-Bacillus Inoculants (SBI) on carbon (C) and nitrogen (N) conversion, and microbial dynamics, during cow manure (10% and 20% addition) and corn straw co-composting. Compared to inoculant-free controls, inoculant application accelerated the compost's thermophilic stage (8 vs 15 days), and significantly increased compost total N contents (+47%) and N-reductase activities (nitrate reductase: +60%; nitrite reductase: +219%). Both bacterial and fungal community succession were significantly affected by DOC, urease, and NH4+-N, while the fungal community was also significantly affected by cellulase. The contribution rate of Cupriavidus to the physicochemical factors of compost was as high as 83.40%, but by contrast there were no significantly different contributions (∼60%) among the top 20 fungal genera. Application of SBI induced significant correlations between bacteria, compost C/N ratio, and catalase enzymes, indicative of compost maturation. We recommend SBI as a promising bio-composting additive to accelerate C and N turnover and high-quality biowaste maturation. SBI boosts organic cycling by transforming biowastes into bio-fertilizers efficiently. This highlights the potential for SBI application to improve plant growth and soil quality in multiple contexts.
Collapse
Affiliation(s)
- Ziyan Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Parag Bhople
- Crops, Environment, And Land Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Y35TC98, Ireland
| | - Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK; Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Shimei Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jesus Perez-Moreno
- Colegio de Postgraduados, Campus Montecillo, Edafologia, Texcoco, 56230, Mexico
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
9
|
Xu J, Zhang Z, Wu Y, Liu B, Xia X, Chen Y. Effects of C/N ratio on N 2O emissions and nitrogen functional genes during vegetable waste composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32538-32552. [PMID: 38656720 DOI: 10.1007/s11356-024-33427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Nitrous oxide (N2O) generation during composting not only leads to losses of nitrogen (N) but also reduces the agronomic values and environmental benefits of composting. This study aimed to investigate the effect of the C/N ratio on N2O emissions and its underlying mechanisms at the genetic level during the composting of vegetable waste. The experiment was set up with three treatments, including low C/N treatment (LT, C/N = 18), middle C/N treatment (MT, C/N = 30), and high C/N treatment (HT, C/N = 50). The results showed that N2O emission was mainly concentrated in the cooling and maturation periods, and the cumulative N2O emissions decreased as the C/N ratio increased. Specifically, the cumulative N2O emission was 57,401 mg in LT, significantly higher than 2155 mg in MT and 1353 mg in HT. Lowering the C/N ratio led to increasing TN, NH4+-N, and NO3--N contents throughout the composting process. All detected nitrification-related gene abundances in LT continued to increase during composting, significantly surpassing those in MT during the cooling period. By contrast, in HT, there was a slight increase in the abundance of detected nitrification-related genes but a significant decrease in the abundance of narG, napA, and norB genes in the thermophilic and cooling periods. The structural equation model revealed that hao and nosZ genes were vital in N2O emissions. In conclusion, increasing the C/N ratio effectively contributed to N2O reduction during vegetable waste composting.
Collapse
Affiliation(s)
- Jingang Xu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Zhi Zhang
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yupeng Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo Liu
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Xiange Xia
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yunfeng Chen
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| |
Collapse
|
10
|
Ansari S, Aliasgharzad N, Sarikhani MR, Najafi N, Arzanlou M, Ölmez F. Nitrogen sources alter ligninase and cellulase activities of thermophilic fungi isolated from compost and vermicompost. Folia Microbiol (Praha) 2024; 69:323-332. [PMID: 37338677 DOI: 10.1007/s12223-023-01065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/18/2023] [Indexed: 06/21/2023]
Abstract
Fungi harboring lignocellulolytic activity accelerate the composting process of agricultural wastes; however, using thermophilic fungal isolates for this process has been paid little attention. Moreover, exogenous nitrogen sources may differently affect fungal lignocellulolytic activity. A total of 250 thermophilic fungi were isolated from local compost and vermicompost samples. First, the isolates were qualitative assayed for ligninase and cellulase activities using Congo red (CR) and carboxymethyl cellulose (CMC) as substrates, respectively. Then, twenty superior isolates harboring higher ligninase and cellulase activities were selected and quantitatively assayed for both enzymes in basic mineral (BM) liquid medium supplemented with the relevant substrates and nitrogen sources including (NH4)2SO4 (AS), NH4NO3 (AN), urea (U), AS + U (1:1), or AN + U (1:1) with final nitrogen concentration of 0.3 g/L. The highest ligninase activities of 99.94, 89.82, 95.42, 96.25, and 98.34% of CR decolorization were recorded in isolates VC85, VC94, VC85, C145, and VC85 in the presence of AS, U, AS + U, AN, and AN + U, respectively. Mean ligninase activity of 63.75% in superior isolates was achieved in the presence of AS and ranked the highest among other N compounds. The isolates C200 and C184 exhibited the highest cellulolytic activity in the presence of AS and AN + U by 8.8 and 6.5 U/ml, respectively. Mean cellulase activity of 3.90 U/mL was achieved in AN + U and ranked the highest among other N compounds. Molecular identification of twenty superior isolates confirmed that all of them are belonging to Aspergillus fumigatus group. Focusing on the highest ligninase activity of the isolate VC85 in the presence of AS, the combination can be recommended as a potential bio-accelerator for compost production.
Collapse
Affiliation(s)
- Saeideh Ansari
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nasser Aliasgharzad
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | | | - Nosratollah Najafi
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mahdi Arzanlou
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Fatih Ölmez
- Department of Plant Protection, Faculty of Agriculture, Sivas University of Science and Technology, Sivas, Turkey
| |
Collapse
|
11
|
Qv M, Bao J, Wang W, Dai D, Wu Q, Li S, Zhu L. Bentonite addition enhances the biodegradation of petroleum pollutants and bacterial community succession during the aerobic co-composting of waste heavy oil with agricultural wastes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132655. [PMID: 37827101 DOI: 10.1016/j.jhazmat.2023.132655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Soil contamination with petroleum significantly threatens the ecological equilibrium and human health. In this context, aerobic co-composting of waste heavy oil with agricultural wastes was performed in the present study to remediate petroleum pollutants through four treatments: CK (control), T1 (petroleum pollutant), T2 (petroleum pollutant with bentonite), and T3 (petroleum pollutant with humic acid-modified bentonite). Comprehensive analyses were conducted to determine the physicochemical parameters, enzymatic activities, removal of petroleum pollutants, microbial community structure, and water-extractable organic matter in different composting systems. Structural equation modeling was employed to identify the key factors influencing the removal of petroleum pollutants. According to the results, petroleum pollutant removal percentages of 44.94%, 79.09%, and 79.67% could be achieved with T1, T2, and T3, respectively. In addition, the activities of polyphenol oxidase (51.21 U/g) and catalase (367.91 U/g), which are the enzymes related to petroleum hydrocarbon degradation, were the highest in T3. Moreover, bentonite addition to the treatment increased the nitrate nitrogen storage in the compost from 10.95 mg/kg in T1 to 18.63 and 17.41 mg/kg in T2 and T3, respectively. Humic acid-modified bentonite could enhance the degree of compost humification, thereby leading to a higher-quality compost product. Collectively, these findings established bentonite addition as an efficient approach to enhance the compost remediation of petroleum pollutants.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Jianfeng Bao
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
12
|
Beesigamukama D, Tanga CM, Sevgan S, Ekesi S, Kelemu S. Waste to value: Global perspective on the impact of entomocomposting on environmental health, greenhouse gas mitigation and soil bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166067. [PMID: 37544444 PMCID: PMC10594063 DOI: 10.1016/j.scitotenv.2023.166067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The innovative use of insects to recycle low-value organic waste into value-added products such as food, feed and other products with a low ecological footprint has attracted rapid attention globally. The insect frass (a combination unconsumed substrate, faeces, and exuviae) contains substantial amounts of nutrients and beneficial microbes that could utilised as fertilizer. We analyse research trends and report on the production, nutrient quality, maturity and hygiene status of insect-composted organic fertilizer (ICOF) generated from different organic wastes, and their influence on soil fertility, pest and pathogen suppression, and crop productivity. Lastly, we discuss the impact of entomocomposting on greenhouse gas mitigation and provide critical analysis on the regulatory aspects of entomocomposting, and utilization and commercialisation ICOF products. This information should be critical to inform research and policy decisions aimed at developing and promoting appropriate standards and guidelines for quality production, sustainable utilization, and successful integration of entomocompost into existing fertilizer supply chains and cropping systems.
Collapse
Affiliation(s)
- Dennis Beesigamukama
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
| | - Subramanian Sevgan
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - Segenet Kelemu
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
13
|
Lalthlansanga C, Pottipati S, Sreeram Meesala N, Mohanty B, Kalamdhad AS. Evaluating the potential of biodegradation of swine manure through rotary drum composting utilizing different bulking agents. BIORESOURCE TECHNOLOGY 2023; 388:129751. [PMID: 37714491 DOI: 10.1016/j.biortech.2023.129751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The rapid expansion of the pig industry and the concurrent increase in pig units have posed a significant waste management challenge, particularly in the form of piggery waste. In this study, the potential of three different bulking agents (sawdust, dry leaves, and rice straw) for the biodegradation of piggery waste was evaluated through rotary drum composting (RDC). Following the composting time of 20 days, evaluations of macro and micronutrient concentrations and the C/N ratio revealed stable, matured compost that could be used in farming. However, the saw dust amended RDC (RDC1) outperformed among the studied trails; the total nitrogen content of 1.54%, total phosphorus of 7.68 g kg-1, and total potassium of 23.45 g kg-1 demonstrated the bioproduct produced through RDC1 resulted in superior-quality end product achieved in only 20 days in comparison with other bulking agents studied. Further, the outcomes of the study can serve the swine livestock sector through effective bioconversion of the waste.
Collapse
Affiliation(s)
- C Lalthlansanga
- National Institute of Technology, Mizoram, Aizawl 796012, Mizoram, India; State Institute of Rural Development & Panchayati Raj, Aizawl 796001, Mizoram, India.
| | - Suryateja Pottipati
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nava Sreeram Meesala
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
14
|
Li L, Liu Y, Kong Y, Zhang J, Shen Y, Li G, Wang G, Yuan J. Relating bacterial dynamics and functions to greenhouse gas and odor emissions during facultative heap composting of four kinds of livestock manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118589. [PMID: 37451027 DOI: 10.1016/j.jenvman.2023.118589] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Although facultative heap composting is widely used in small and medium-sized livestock farms in China, there are few studies on greenhouse gas (GHG) and odor emissions from this composting system. This study focused on GHG and odor emissions from facultative heap composting of four types of livestock manure and revealed the relationship between the gaseous emissions and microbial communities. Results showed that pig, sheep, and cow manure reached high compost maturity (germination index (GI) > 70%), whereas chicken manure had higher phytotoxicity (GI = 0.02%) with higher electrical conductivity and a lower carbon/nitrogen ratio. The four manure types significantly differed in the total GHG emission, with the following pattern: pig manure (308 g CO2-eq·kg-1) > cow manure (146 g CO2-eq·kg-1) > chicken manure (136 g CO2-eq·kg-1) > sheep manure (95 g CO2-eq·kg-1). Bacterium with Fermentative, Methanotrophy and Nitrite respiratory functions (e.g. Pseudomonas and Lactobacillus) are enriched within the pile so that more than 90% of the GHGs are produced in the early (days 0-15) and late (days 36-49) composting periods. CO2 contributed more than 90% in the first 35 d, N2O contributed 40-75% in the late composting period, and CH4 contributed less than 8.0%. NH3 and H2S emissions from chicken and pig manure were 4.8 times those from sheep and cow manure. Overall, the gas emissions from facultative heap composting significantly differed among the four manure types due to the significant differences in their physicochemical properties and microbial communities.
Collapse
Affiliation(s)
- Liqiong Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yujun Shen
- Key Laboratory of Te-chnology and Model for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
15
|
Dume B, Hanc A, Svehla P, Michal P, Chane AD, Nigussie A. Composting and vermicomposting of sewage sludge at various C/N ratios: Technological feasibility and end-product quality. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115255. [PMID: 37478570 DOI: 10.1016/j.ecoenv.2023.115255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Even though sewage sludge (SS) contains a high level of pollutants, it is rich in essential plant nutrients and has the potential to enhance soil fertility. However, the SS must be further treated through pre-composting plus vermicomposting to make it safe for use on food crops. More research and data are needed to determine how different carbon-to-nitrogen ratios (C/N) affect the feasibility and quality of composting vs vermicomposting of SS. Therefore, in this study we comprehensively evaluated the feasibility and end-product quality of compost and vermicompost produced from SS under different C/N ratios. SS was mixed with pelletized wheat straw (PWS) at various proportions to produce C/N ratios of 6:1, 18:1, 28:1, and 38:1, then pre-composted for 14 days followed by vermicomposting using the earthworm Eisenia andrei for 120 days. Agrochemical properties were measured at 0, 30, 60, 90, and 120 days. Results revealed significantly higher levels of agrochemicals in vermicompost compared to compost, including total potassium (37-88%) and magnesium (4.3-12%), nitrate nitrogen (71-98%), available potassium (53-88%), available phosphorus (79%), available magnesium (54-453%), available boron (48-303%), and available copper (2.5-82%). However, lower levels of ammonium nitrogen by (59-85%), available iron (2.3-51.3%), available manganese (29.7-52.2%), available zinc (10.5-29.8%), total carbon (0.75-4.5%), and total nitrogen (1.6-22.2%) were measured. Comparison of the various C/N ratios, showed that vermicompost with an 18:1 C/N ratio outperformed compost and demonstrated the highest earthworm population (165 pieces/kg). Thus, vermicomposting SS at an 18:1 C/N ratio is strongly recommended as a sustainable technology for producing high-quality vermicompost from SS.
Collapse
Affiliation(s)
- Bayu Dume
- Czech University of Life Sciences, Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Kamycka 129, Prague 16500, Czech Republic.
| | - Ales Hanc
- Czech University of Life Sciences, Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Kamycka 129, Prague 16500, Czech Republic
| | - Pavel Svehla
- Czech University of Life Sciences, Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Kamycka 129, Prague 16500, Czech Republic
| | - Pavel Michal
- Czech University of Life Sciences, Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Kamycka 129, Prague 16500, Czech Republic
| | - Abraham Demelash Chane
- Czech University of Life Sciences, Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Kamycka 129, Prague 16500, Czech Republic
| | - Abebe Nigussie
- Jimma University, College of Agriculture, 307, Jimma, Ethiopia
| |
Collapse
|
16
|
López JE, Zapata D, Saldarriaga JF. Evaluation of different composting systems on an industrial scale as a contribution to the circular economy and its impact on human health. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:679-694. [PMID: 37463235 DOI: 10.1080/10962247.2023.2235299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Due to the production of volatile organic compounds (VOCs), large-scale composting can cause air pollution and occupational health issues. Due to this, it is necessary to determine if the amount generated poses a health risk to plant workers, which can be a starting point for those in charge of composting plant facilities. As a result, the goal of this work is to conduct a thorough analysis of both the physicochemical features and the VOC generation of three large-scale systems. For ten weeks, the three different composting plants were monitored weekly, and VOC identification and quantification were performed using GC-MS gas chromatography. It has been observed that the biggest risk related with VOC formation occurs between the fourth and fifth weeks, when microbial activity is at its peak. Similarly, it has been demonstrated that xylenes and toluene are the ones that are produced in the greatest quantity. Finally, after ten weeks of processing, it was discovered that the material obtained complies with the regulations for the sale of an amendment.Implications: The evaluation and monitoring of the composting processes at an industrial scale is very important, due to the implications they bring. VOCs are produced by the operation of composting facilities with substantial amounts of solid waste, such as the companies in this study. These may pose a health risk to those working in the plants; thus, it is critical to understand where the VOCs occur in the process in order to maintain workers' occupational health measures. This form of evaluation is rare or nonexistent in Colombia, which is why conducting this type of study is critical, as it will provide crucial input into determining when the highest levels of VOC generation occur. These are the ones that may pose a risk at some point, but with proper occupational safety planning, said risk may be avoided. This work has evaluated three composting systems, with different types of waste and mixtures. According to reports, while composting systems continue to produce VOCs and their generation is unavoidable, the potential risk exists only within the plant. These findings can pave the way for the implementation of public policies that will improve the design and operation of composting plants. There is no specific legislation in Colombia for the design and execution of this sort of technology, which allows the use of organic waste.
Collapse
Affiliation(s)
- Julián E López
- Faculty of Architecture and Engineering, Environment, Habitat and Sustainability Research Group - Environmental Management, Institución Universitaria Colegio Mayor de Antioquia, Medellín, Colombia
| | - Daniela Zapata
- Faculty of Engineering, Universidad de Medellín, Medellín, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de Los Andes, Bogotá, Colombia
- Department of Chemical Engineering, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
17
|
Liu Y, Zhang Y, Wang M, Wang L, Zheng W, Zeng Q, Wang K. Comparison of the basic processes of aerobic, anaerobic, and aerobic-anaerobic coupling composting of Chinese medicinal herbal residues. BIORESOURCE TECHNOLOGY 2023; 379:128996. [PMID: 37011845 DOI: 10.1016/j.biortech.2023.128996] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Chinese medicinal herbal residues (CMHRs) are waste generated after extracting Chinese medicinal materials, and they can be used as a renewable bioresource. This study aimed to evaluate the potential of aerobic composting (AC), anaerobic digestion (AD), and aerobic-anaerobic coupling composting (AACC) for the treatment of CMHRs. CMHRs were mixed with sheep manure and biochar, and composted separately under AC, AD, and AACC conditions for 42 days. Physicochemical indices, enzyme activities, and bacterial communities were monitored during composting. Results showed that AACC- and AC-treated CMHRs were well-rotted, with the latter exhibiting the lowest C/N ratio and maximal germination index (GI) values. Higher phosphatase and peroxidase activities were detected during the AACC and AC treatments. Better humification was observed under AACC based on the higher catalase activities and lower E4/E6. AC treatment was effective in reducing compost toxicity. This study provides new insights into biomass resource utilisation.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Minghuan Wang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510130, China
| | - Lisheng Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Wanting Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Qiannuo Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Kui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
18
|
He X, Cong R, Gao W, Duan X, Gao Y, Li H, Li Z, Diao H, Luo J. Optimization of composting methods for efficient use of cassava waste, using microbial degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51288-51302. [PMID: 36809615 DOI: 10.1007/s11356-023-25818-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/05/2023] [Indexed: 04/16/2023]
Abstract
With the recent revolution in the green economy, agricultural solid waste resource utilization has become an important project. A small-scale laboratory orthogonal experiment was set up to investigate the effects of C/N ratio, initial moisture content and fill ratio (vcassava residue: vgravel) on the maturity of cassava residue compost by adding Bacillus subtilis and Azotobacter chroococcum. The highest temperature in the thermophilic phase of the low C/N ratio treatment is significantly lower than the medium and high C/N ratios. The C/N ratio and moisture content have a significant impact on the results of cassava residue composting, while the filling ratio only has a significant impact on the pH value and phosphorus content. Based on comprehensive analysis, the recommended process parameters for pure cassava residue composting are a C/N ratio of 25, an initial moisture content of 60%, and a filling ratio of 5. Under these conditions, the high-temperature conditions can be reached and maintained quickly, the organic matter has been degraded by 36.1%, the pH value has dropped to 7.36, the E4/E6 ratio is 1.61, the conductivity value has dropped to 2.52 mS/cm, and the final germination index increased to 88%. The thermogravimetry, scanning electron microscope, and energy spectrum analysis also showed that the cassava residue was effectively biodegraded. Cassava residue composting with this process parameter has great reference significance for the actual production and application of agriculture.
Collapse
Affiliation(s)
- Xiangning He
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Riyao Cong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Wei Gao
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels From Biomass Wastes, Nanning, 530004, China.
| | - Xueying Duan
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yi Gao
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Hong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zepu Li
- Agriculture College, Guangxi University, Nanning, 530004, Guangxi, China
- Northwest A&F Univ, Coll Forestry, Yangling, 712100, Shaanxi, China
| | - Hailin Diao
- Forestry College, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jianju Luo
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
19
|
Nguyen MK, Lin C, Hoang HG, Bui XT, Ngo HH, Le VG, Tran HT. Investigation of biochar amendments on odor reduction and their characteristics during food waste co-composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161128. [PMID: 36587674 DOI: 10.1016/j.scitotenv.2022.161128] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The odor emission such as ammonia (NH3) and hydrogen sulfide (H2S) during the composting process is a severe problem that adversely affects the environment and human health. Therefore, this study aimed to (1) evaluate the variation of physicochemical characteristics during the co-composting of food waste, and sawdust mixed biochar; (2) assess the efficiency of biochar-composting combined amendment materials for reducing odor emissions and their maturity. The raw materials including food waste (FW), straw dust (SD), and biochar (BC) were prepared and homogeneously mixed with the weight ranging from 120.0 kg to 135.8 kg with five treatments, BC0 (Control), BC1 (5 % biochar), BC2 (5 % distilled water washed biochar), BC3 (10 % biochar), BC4 (20 % biochar). Adding biochar could change physicochemical properties such as temperature, moisture, and pH during composting. The results indicated applying biochar-composting covering to minimalized NH3 and H2S aided by higher porous structure and surface functional groups. Among trials, biochar 20 % obtained the lowest NH3 (2 ppm) and H2S (3 ppm) emission on day 16 and stopping their emission on day 17. The NH3/NH4+ adsorption on large specific surface areas and highly porous micro-structure of biochar lead to reduced nitrogen losses, while nitrification (NH4+ ➔ NO2- ➔ NO3-) may also contribute to nitrogen retention. The H2S concentration decreased with increasing the biochar proportion, suggesting that biochar could reduce the H2S emission. Correlation analysis illustrated that temperature, moisture, and oxygen are the most critical factors affecting H2S and NH3 emissions (p <0.05). The physicochemical properties and seed germination index indicated that the compost was mature without phytotoxicity. These novelty findings illustrated that the biochar amendment is an effective solution to reduce odor emission and enhances the maturity of compost mixture, which is promising to approach in real-scale conditions and could apply in agricultural fields.
Collapse
Affiliation(s)
- Minh Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hong Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 810000, Viet Nam
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, 15 Broadway, Ultimo, NWS 2007, Australia
| | - Van Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi 111000, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
20
|
Ruan M, Zhang Y, Wu X, Sun Y, Huang Z, Li H, Hu Z, Wu Z, Zhang X, Qin X, Huang J. Effects of initial particle sizes of Triarrhena lutarioriparia on processing performance, material properties, and heavy metal speciation in sewage sludge composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19980-19993. [PMID: 36242665 DOI: 10.1007/s11356-022-23501-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to investigate the effect of initial particle size (IPS) on the environmental parameters and heavy metal speciation during sludge composting. Three piles were conducted: fine material (FM, screen underflow), coarse material (CM, oversize product), and mixed material (MM, mix FM and CM in 1:1). Results showed that the temperature trends of the three piles in different layers were highly repeatable during the thermophilic period. With the decrease of IPS, the heating rate and the highest temperature of the pile increased, the thermophilic period was prolonged, and the highest temperature area in the pile shifted to a lower layer. It also promoted the organic matter degradation, compost maturation, and nitrogen fixation effect. Composting had a good effect on the passivation of heavy metals, especially Cd, Cu, and Pb. The passivation effect on Cd and Cu was FM > CM > MM, and on Pb was CM > FM > MM. Fourier transform infrared spectroscopy, excitation-emission matrix, and thermogravimetric thermal analysis indicated that FM had the highest content of aromatic structure and humic-like substance on D40. The redundancy analysis revealed that MM was beneficial to improve the internal uniformity during composting.
Collapse
Affiliation(s)
- Min Ruan
- School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410076, People's Republic of China
| | - Yanru Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, People's Republic of China
| | - Xikai Wu
- School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410076, People's Republic of China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, People's Republic of China
| | - Yutong Sun
- School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410076, People's Republic of China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, People's Republic of China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, People's Republic of China
| | - Zhangmao Hu
- School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha, 410076, People's Republic of China
| | - Zijian Wu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, People's Republic of China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, People's Republic of China
| | - Xiaoli Qin
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, People's Republic of China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, People's Republic of China.
| |
Collapse
|
21
|
Li G, Chen W, Xu S, Xiong S, Zhao J, Liu D, Ding G, Li J, Wei Y. Role of fungal communities and their interaction with bacterial communities on carbon and nitrogen component transformation in composting with different phosphate additives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44112-44120. [PMID: 36689116 DOI: 10.1007/s11356-023-25430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
The aim of the study was to compare the succession of fungal community and their interaction with bacterial community during pig manure composting with different phosphate additives and further to identify microbial roles on the transformation of carbon and nitrogen (C&N) components and compost maturity. The results showed that the composition of fungal community was significantly affected by pH in composting and acidic phosphate might postpone the C&N degradation process. Network analysis showed that phosphate additives, especially acidic additives, could increase the interaction of microbial community but acidic phosphate decreased the core fungi:bacteria ratio. Redundancy analysis indicated that the interactions between bacterial and fungal communities played more roles than individual contribution of bacteria or fungi for C&N conversion of composting. Structural equation modeling suggested that bacterial community was positively directly correlated to C&N loss and the participation of fungal community significantly benefited the maturity of composting. pH exhibited a great intermediated role for driving C&N conversion, maturity, and safety of composts by regulating bacterial and fungal community in composting with phosphate addition, which suggested a fast-composting way based on pH regulation by additives.
Collapse
Affiliation(s)
- Gang Li
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Wenjie Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Shangao Xiong
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing, 100043, China
| | - Jinyue Zhao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Dinglin Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.,Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.,Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China. .,Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| |
Collapse
|
22
|
Tang R, Liu Y, Ma R, Zhang L, Li Y, Li G, Lin J, Li Q, Yuan J. Effect of moisture content, aeration rate, and C/N on maturity and gaseous emissions during kitchen waste rapid composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116662. [PMID: 36347216 DOI: 10.1016/j.jenvman.2022.116662] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
To determine factors affecting compost maturity and gaseous emissions during the rapid composting of kitchen waste, an orthogonal test was conducted with three factors: moisture content (MC) (55%, 60%, 65%), aeration rate (AR) (0.3,0.6 and 0.9 L·kg-1DM·min-1) and C/N ratio (21, 24, 27). The results showed that the importance of factors affecting compost maturity was: C/N > AR > MC, optimal conditions were: C/N of 24, AR of 0.3 L·kg-1DM·min-1and MC of 65%. For gaseous emissions, the sequence of essential factors affecting NH3 emissions was: C/N > MC > AR, and the optimal parameters for NH3 reduction were: C/N of 27, MC of 65%, and AR of L·kg-1DM·min-1. The important factors affecting N2O and H2S emissions are both: MC > C/N > AR, while their best parameters were different. The optimal parameters for N2O emission reduction were MC of 60%, AR of 0.3 L·kg-1DM·min-1 and C/N of 24, while these for H2S were MC of 55%, AR of 0.3 L·kg-1DM·min-1 and C/N of 21. The C/N mainly affected the compost maturity and AR further affected the maturity and pollutant gas emissions by influencing the temperature and O2 content. Considering comprehensively the maturity and gaseous reduction, the optimal control parameters were: MC of 60%-65%, AR of L·kg-1DM·min-1, and C/N of 24-27.
Collapse
Affiliation(s)
- Ruolan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Jiacong Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| |
Collapse
|
23
|
Bellitürk K, Fang L, Görres JH. Effect of post-production vermicompost and thermophilic compost blending on nutrient availability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:146-152. [PMID: 36371848 DOI: 10.1016/j.wasman.2022.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Composting is a common waste management strategy for recycling nutrients from organic household or agricultural wastes. However, thermophilic (e.g. windrow) composting and vermicomposting (using earthworms) produce different nutrient and enzyme profiles. Vermicompost is purported to have greater fertility benefits, but is also more expensive than thermophilic compost. The objective of this study was to examine a novel approach to designing organic fertility amendments by blending mature vermicompost and thermophilic compost. To examine the effect of blending, vermicompost was admixed to thermophilic compost at 20, 50 and 70 % by mass, with and without the addition of coir (cocopeat). Electric conductivity, water-extractable, immediately available N, P and K were measured. Vermicompost and coir synergistically affected the availability of these nutrients. Synergistic effects were between 15 and 40 % for total inorganic N in blends with coir. Without coir, synergism occurred only at vermicompost additions ≥50 %. Synergism for available P and K was present in all blends and ranged from 10% to 35%. Electrical conductivity measurements suggest that blending affected compost within three days of starting the incubation. The activity of five of seven measured enzymes were linearly and positively related to the fraction of vermicompost in the blend. Blending mature composts with differing properties may be another tool, in addition to adjusting feedstock and process parameters, to affect positively the fertility properties of composts.
Collapse
Affiliation(s)
- Korkmaz Bellitürk
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Lynn Fang
- Department of Plant and Soil Science, 258, Jeffords Building, The University of Vermont, Burlington, VT, USA
| | - Josef H Görres
- Department of Plant and Soil Science, 258, Jeffords Building, The University of Vermont, Burlington, VT, USA.
| |
Collapse
|
24
|
He Y, Liu D, He X, Wang Y, Liu J, Shi X, Chater CCC, Yu F. Characteristics of bacterial and fungal communities and their impact during cow manure and agroforestry biowaste co-composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116377. [PMID: 36352711 DOI: 10.1016/j.jenvman.2022.116377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Microbial communities and environmental conditions are both of great importance for efficient utilization of agroforestry resources. Nevertheless, knowledge about the role of soluble nutrients and enzymatic properties, and their inner links with microbial communities remain limited. This is especially the case for the co-composting of agricultural and forestry biowaste. Here, we investigate the succession of key microbes during co-composting (sawdust + cow manure, SA; straw + cow manure, ST), employing amplicon sequencing, enzyme assays, and physicochemical analyses. N-fixing bacteria (Pseudomonas) and C-degrading fungi (Acaulium) have been identified as dominant taxa during such co-composting. Although eight antibiotic resistance genes were found to persist during composting, pathogenic microbes declined with composting time. NO3--N content was screened as a determinant structuring the bacterial and fungal communities, with importance also shown for C-degrading enzymes such as cellulose, laccase, and peroxidase activity. These results identify the key microbial taxa and their main interactive environmental factors, which are potentially valuable for the development of a mixed microbial inoculant to accelerate the maturation of agroforestry biowastes composting.
Collapse
Affiliation(s)
- Yan He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Xinhua He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, 95616, USA; School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Yanliang Wang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jianwei Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Guizhou Kangqunyuan Biotechnology Co., LTD, Liupanshui, 553600, Guizhou, China
| | | | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
25
|
Dume B, Hanc A, Svehla P, Michal P, Solcova O, Chane AD, Nigussie A. Nutrient recovery and changes in enzyme activity during vermicomposting of hydrolysed chicken feather residue. ENVIRONMENTAL TECHNOLOGY 2022:1-15. [PMID: 36368925 DOI: 10.1080/09593330.2022.2147451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Chicken feathers are hazardous to the environment because of their poor digestibility and potential as a source of environmental contaminants. However, this waste contains valuable plant nutrients that can be recovered and used to improve soil fertility and agricultural productivity. The objectives of this study were to evaluate how effective vermicomposting is at recovering nutrients and changes in enzymatic activity during vermicomposting of hydrolysed chicken feather residues (HCFR). The study included four treatments with three replications at different HCFR and pelletized wheat straw (PWS) mixing proportions: (T1) 25% HCFR+75% PWS with earthworms, (T2) 25% HCFR+75% PWS without earthworms, (T3) 50% HCFR+50% PWS with earthworms, and (T4) 50% HCFR+50% PWS (w/w) without earthworms. Eisenia andrei was used in the experiment for 120 days. Earthworm treatments recovered more available plant nutrients than non-earthworm treatments by 14% N - NO 3 - (T1); 50% K (T3); 47% Mg (T3); 75% P (T3); 55% B (T3); 34% Cu (T3); 40% Fe (T1); 46% Mn (T3); 11% Zn (T1). However, N - NH 4 + was significantly reduced by -80% (T1). Acid phosphatase, arylsulphatase, alanine aminopeptidase, and leucine aminopeptidase were more active in the treatments with earthworms and positively correlated with P and C: N ratio. Alanine aminopeptidase (3752 µmol AMCA.g-1.h-1) and leucine aminopeptidase (4252 µmol AMCL.g-1.h-1) had higher activities in T3 on day 60 of vermicomposting. As a result, the earthworm treatment recovers more plant nutrients than the non-earthworm treatments, and it can be recommended as a better vermicomposting approach for nutrient recovery from HCFR.
Collapse
Affiliation(s)
- Bayu Dume
- Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Prague, Czech Republic
| | - Ales Hanc
- Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Prague, Czech Republic
| | - Pavel Svehla
- Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Prague, Czech Republic
| | - Pavel Michal
- Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Prague, Czech Republic
| | - Olga Solcova
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Prague 6, Czech Republic
| | - Abraham Demelash Chane
- Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Prague, Czech Republic
| | - Abebe Nigussie
- Jimma University, College of Agriculture, Jimma, Ethiopia
| |
Collapse
|
26
|
Yılmaz EC, Aydın Temel F, Cagcag Yolcu O, Turan NG. Modeling and optimization of process parameters in co-composting of tea waste and food waste: Radial basis function neural networks and genetic algorithm. BIORESOURCE TECHNOLOGY 2022; 363:127910. [PMID: 36087650 DOI: 10.1016/j.biortech.2022.127910] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
In this study, the effects of co-composting of food waste (FW) and tea waste (TW) on the losses of total nitrogen (TN), total organic carbon (TOC), and moisture content (MC) were investigated. TW and FW were composted separately and compared with the co-composting of FW and TW at different ratios. While the MC losses were close to each other in all processes, the lowest TN and TOC losses were found in the composting process containing 25% TW as 26.80% and 40.11%, respectively. Moreover, Radial Basis Function Neural Networks (RBFNNs) were used to predict the losses of TN, TOC, and MC. The outputs of RBFNN were compared with Response Surface Methodology (RSM), Support Vector Regression (SVR), and Feed Forward Neural Network (FF-NN). In addition, the optimal parameter values were determined by Genetic algorithm (GA). As a result, it will be possible to simulate and improve different co-composting processes with obtained data.
Collapse
Affiliation(s)
- Elif Ceren Yılmaz
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55200, Turkey
| | - Fulya Aydın Temel
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, Giresun 28200, Turkey.
| | - Ozge Cagcag Yolcu
- Department of Statistics, Faculty of Sciences and Arts, Marmara University, İstanbul 34722, Turkey
| | - Nurdan Gamze Turan
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55200, Turkey
| |
Collapse
|
27
|
Li J, Liu X, Li L, Zhu C, Luo L, Qi Y, Tian L, Chen Z, Qi J, Geng B. Performance exploration and microbial dynamics of urine diverting composting toilets in rural China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115964. [PMID: 36007385 DOI: 10.1016/j.jenvman.2022.115964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The ongoing "toilet revolution" in China provides new opportunities to improve the rural living environment and sanitation, and the introduction of new sanitation facilities such as urine diverting composting toilets (UDCTs) is conducive to the effective treatment and resource utilization of feces. This study revealed the degradation performance and microbial community dynamics of UDCTs and clarified the influence mechanism of fecal volume in aerobic composting treatment. The results showed that UDCTs could effectively decompose human feces, with an organic matter degradation rate of 25%⁓30%. The temperature, water content, NH4+-N and nutrient accumulation were higher in the high fecal volume treatment than in the low fecal volume treatment. Bacterial community composition and structure in UDCTs varied with composting stage and fecal volume. The diversity and richness of bacterial community in compost were changed with different fecal volumes, but the dominant groups were similar. Redundancy analysis (RDA) showed that nitrogen and organic carbon were the main drivers of bacterial community changes during composting. Highly nutritious and non-phytotoxic compost products were suitable for agronomic uses. Based on these results, UDCTs can be an effective way to solve the problem of fecal pollution in rural areas, and fecal dosage is a potential influencing factor in the operation and maintenance of composting systems.
Collapse
Affiliation(s)
- Jiabin Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xue Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Luyao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Liangguo Luo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yuanyi Qi
- Zhangye Lanbiao Biotechnology Co., Ltd, Zhangye, Gansu, 734000, PR China
| | - Lan Tian
- Zhangye Lanbiao Biotechnology Co., Ltd, Zhangye, Gansu, 734000, PR China
| | - Zhuobo Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jin Qi
- Zhangye Lanbiao Biotechnology Co., Ltd, Zhangye, Gansu, 734000, PR China
| | - Bing Geng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
28
|
Yin S, Zhang W, Tong T, Yu C, Chang X, Chen K, Xing Y, Yang Y. Feedstock-dependent abundance of functional genes related to nitrogen transformation controlled nitrogen loss in composting. BIORESOURCE TECHNOLOGY 2022; 361:127678. [PMID: 35872270 DOI: 10.1016/j.biortech.2022.127678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The objective of this work was to explore how selection of feedstock affects nitrogen cycle genes during composting, which eventually determines the nitrogen loss. Four composting mixes (CM: chicken manure; SM: sheep manure; MM1/3: mixed manure with CM: SM = 1:3 w/w, MM3/1: CM: SM = 3:1 w/w) were investigated. Results showed that adding 25 % and 75 % SM to CM reduced 26.5 % and 57.9 % nitrogen loss, respectively. CM contained more ammonification genes and nrfA gene, while SM had more denitrification genes. Nitrogen fixation genes in CM were slightly higher than that in SM at the initial stage, but they sharply dropped off as the composting entered the high temperature stage. MM1/3 showed significantly reduced ammonification genes than CM, and increased nitrogen fixation and NH4+ assimilation genes. Therefore, adding SM to CM could change the abundance of genes and enzymes related to nitrogen cycle to reduce nitrogen loss.
Collapse
Affiliation(s)
- Siqian Yin
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Wenming Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Tianjian Tong
- Department of Agriculture and Biosystem Engineering, Iowa State University, Ames 50010, USA
| | - Chenxu Yu
- Department of Agriculture and Biosystem Engineering, Iowa State University, Ames 50010, USA
| | - Xinyi Chang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Kaishan Chen
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yanhong Xing
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yingxiang Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
29
|
Manga M, Evans BE, Ngasala TM, Camargo-Valero MA. Recycling of Faecal Sludge: Nitrogen, Carbon and Organic Matter Transformation during Co-Composting of Faecal Sludge with Different Bulking Agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10592. [PMID: 36078309 PMCID: PMC9518209 DOI: 10.3390/ijerph191710592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effect of locally available bulking agents on the faecal sludge (FS) composting process and quality of the final FS compost. Dewatered FS was mixed with sawdust, coffee husk and brewery waste, and composted on a pilot scale. The evolution of physical and chemical characteristics of the composting materials was monitored weekly. Results indicate that bulking agents have a statistically significant effect (p < 0.0001) on the evolution of composting temperatures, pH, electrical conductivity, nitrogen forms, organic matter mineralisation, total organic carbon, maturity indices, quality of the final compost and composting periods during FS composting. Our results suggest reliable maturity indices for mature and stable FS compost. From the resource recovery perspective, this study suggests sawdust as a suitable bulking agent for co-composting with FS-as it significantly reduced the organic matter losses and nitrogen losses (to 2.2%), and improved the plant growth index, thus improving the agronomic values of the final compost as a soil conditioner. FS co-composting can be considered a sustainable and decentralised treatment option for FS and other organic wastes in the rural and peri-urban communities, especially, where there is a strong practice of reusing organic waste in agriculture.
Collapse
Affiliation(s)
- Musa Manga
- The Water Institute at UNC, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 357 Rosenau Hall, 135 Dauer Drive, Chapel Hill, NC 27599, USA
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
- Department of Construction Economics and Management, College of Engineering, Design, Art and Technology (CEDAT), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Barbara E. Evans
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Tula M. Ngasala
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48823, USA
| | - Miller A. Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
- Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales 170003, Colombia
| |
Collapse
|
30
|
Zhan J, Han Y, Xu S, Wang X, Guo X. Succession and change of potential pathogens in the co-composting of rural sewage sludge and food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 149:248-258. [PMID: 35760013 DOI: 10.1016/j.wasman.2022.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Composting is an effective way to prevent and control the spread of pathogenic microorganisms which could put potential risk to humans and environment, from rural solid waste, especially sewage sludge and food waste. In the study, we aim to analyze the changes of pathogenic bacteria during the co-composting of rural sewage sludge and food waste. The results showed that only 27 pathogenic bacteria were detected after composting, compared to 50 pathogenic bacteria in the raw mixed pile. About 74% of pathogen concentrations dropped below 1000 copies/g after composting. Lactobacillus, Bacillus, Paenibacillus and Comamonas were the core pathogenic bacteria in the compost, of which concentrations were all significantly lower than that in the raw mixed pile at the end of composting. The concentration of Lactobacillus decreased to 3.03 × 103 copies/g compared to 0 d with 1.25 × 109 copies/g by the end of the composting, while that of Bacillus, Paenibacillus and Comamonas decreased to 2.77 × 104 copies/g, 2.13 × 104 copies/g and 3.38 × 102 copies/g, respectively, with 1.26 × 107 copies/g, 4.71 × 106 copies/g, 1.69 × 108 copies/g on 0 d. Redundancy analysis (RDA) indicated that physicochemical factors and substances could affect the changes of pathogenic bacteria during composting, while temperature was the key influencing factor. In addition, certain potential pathogenic bacteria, such as Bacteroides-Bifidobacterium, show statistically strong and significant co-occurrence during composting, which may increase the risk of multiple infections and also influence their distribution. These findings provide a theoretical reference for biosafety prevention and control in the treatment and disposal of rural solid waste.
Collapse
Affiliation(s)
- Jun Zhan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
31
|
Beesigamukama D, Subramanian S, Tanga CM. Nutrient quality and maturity status of frass fertilizer from nine edible insects. Sci Rep 2022; 12:7182. [PMID: 35505193 PMCID: PMC9064968 DOI: 10.1038/s41598-022-11336-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/15/2022] [Indexed: 11/22/2022] Open
Abstract
Globally, there is growing interest to recycle organic waste using insect larvae into high-quality frass fertilizer through circular economy approach. This paper presents the first comparative report on the nutrient concentrations, fertilizing indices, nutrient supply potentials and compost maturity of nine edible insect frass fertilizers. Our results revealed that frass fertilizers from all the insect species had adequate concentrations and contents of macronutrients [nitrogen (N), phosphorus (P), potassium (K)], secondary nutrients (calcium, magnesium, and sulphur) and micro-nutrients (manganese, copper, iron, zinc, boron, and sodium). The fertilizing indices of the frass fertilizers were above 3. However, black soldier fly (BSF) frass fertilizer had significantly higher N (20-130%) and K (17-193%) concentrations compared to others. The P concentration of Gryllus bimaculatus frass fertilizer was 3-800% higher compared to those of frass fertilizers from other insect species. The potential N and K supply capacities of BSF frass fertilizer was 19-78% and 16-190% higher, respectively. The P supply capacity of cricket frass fertilizer was 17-802% higher compared to others. The highest seed gemination rate (> 90%) and germination index (267%) were observed in seeds treated with BSF frass fertilizer. Frass fertilizer obtained from the other eight insect species showed medium to high phytotoxicity. These findings demonstrate that insect frass fertilizers are promising alternatives to existing commercial fertilizers (i.e., mineral, and organic) for improved soil health and crop yield.
Collapse
Affiliation(s)
- Dennis Beesigamukama
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Crop Production and Management, Busitema University, P.O. Box 236, Tororo, Uganda.
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
32
|
Zainudin MHM, Singam JT, Sazili AQ, Shirai Y, Hassan MA. Indigenous cellulolytic aerobic and facultative anaerobic bacterial community enhanced the composting of rice straw and chicken manure with biochar addition. Sci Rep 2022; 12:5930. [PMID: 35396465 PMCID: PMC8993872 DOI: 10.1038/s41598-022-09789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Microbial degradation of organic matters is crucial during the composting process. In this study, the enhancement of the composting of rice straw and chicken manure with biochar was evaluated by investigating the indigenous cellulolytic bacterial community structure during the composting process. Compared with control treatment, composting with biochar recorded higher temperature (74 °C), longer thermophilic phase (> 50 °C for 18 days) and reduced carbon (19%) with considerable micro- and macronutrients content. The bacterial community succession showed that composting with biochar was dominated by the cellulolytic Thermobifida and Nocardiopsis genera, which play an important role in lignocellulose degradation. Twenty-three cellulolytic bacterial strains were successfully isolated at different phases of the composting with biochar. The 16S rRNA gene sequencing similarity showed that they were related to Bacilluslicheniformis, Bacillussubtilis,Bacillusaerius, and Bacillushaynesii, which were known as cellulolytic bacteria and generally involved in lignocellulose degradation. Of these isolated bacteria, Bacilluslicheniformis, a facultative anaerobe, was the major bacterial strain isolated and demonstrated higher cellulase activities. The increase in temperature and reduction of carbon during the composting with biochar in this study can thus be attributed to the existence of these cellulolytic bacteria identified.
Collapse
Affiliation(s)
- Mohd Huzairi Mohd Zainudin
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| | - Jamuna Thurai Singam
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Awis Qurni Sazili
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.,Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Yoshihito Shirai
- Department of Biological Function and Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Fukuoka, 808-0196, Japan
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.,Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
33
|
Wang J, Pan J, Ma X, Li S, Chen X, Liu T, Wang Q, Wang JJ, Wei D, Zhang Z, Li R. Solid digestate biochar amendment on pig manure composting: Nitrogen cycle and balance. BIORESOURCE TECHNOLOGY 2022; 349:126848. [PMID: 35158036 DOI: 10.1016/j.biortech.2022.126848] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Effect of solid digestate biochar (DB) on nitrogen cycle and balance was evaluated during composting by adding DB into mixtures of pig manure and Lycium chinensis branch filings. Results indicated that DB addition improved composting microenvironment and increased the total N content of the final product. Furthermore, N balance calculation indicated that the NH3 and N2O emissions accounted for 72.14%-81.39% and 0.49%-2.37% of the total N loss without DB addition, respectively. After using DB, the N reductions in the form of NH3 and N2O reduced from 10.78% to < 5.73% and from 0.34% to < 0.041% of total N, respectively. Addition of DB affected N fixation with 92.32%-93.67% of total N fixed in the compost than that of the T1 treatment (85.63%). DB amendment enhanced the aerobic bacterial communities and hindered anaerobic bacterial growth, thus benefiting the NH3 and N2O emission mitigation and N conservation.
Collapse
Affiliation(s)
- Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Junting Pan
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Songling Li
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai 810016, China
| | - Xing Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jim J Wang
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA 70803, USA
| | - Dan Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
34
|
Martins GA, Corrêa LB, Guidoni LLC, Lucia T, Gerber MD, Silva FMR, Corrêa EK. Toxicity and physicochemical parameters of composts including distinct residues from agribusiness and slaughterhouse sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 138:75-82. [PMID: 34871883 DOI: 10.1016/j.wasman.2021.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Composting is useful for treatment of residues from agribusiness, but the potential toxicity of the final compost should be evaluated before its agricultural destination. The objective of this study was to evaluate the physicochemical characteristics and the toxicity of agribusiness residues using onion seeds as bioindicators. All tested treatments were composed by sludge from a swine slaughterhouse and sawdust. Besides the control, which included no additional materials, the other treatments included aviary bedding, rice husk and residue from tobacco industries as structuring materials. After 120 days of composting, for all treatments, the temperature inside the composting piles approached the environmental temperature, the physicochemical parameters indicated that the composts were stabilized and, except for the treatment including tobacco residues, that could be used for agriculture without impairing plant germination. Although the treatments including tobacco residues and rice husk showed evidence of cytotoxicity and genotoxicity at the beginning of the composting period, that was not observed for the treatment including aviary bedding. Such potential toxicity was not observed at the end of composting for any of the tested treatments.
Collapse
Affiliation(s)
- G A Martins
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - L B Corrêa
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - L L C Guidoni
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil; ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - T Lucia
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - M D Gerber
- Instituto Federal de Educação, Ciência e Tecnologia Sul-Rio-Grandense, Pelotas, RS, Brazil
| | - F M R Silva
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - E K Corrêa
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
35
|
Zhou S, Kong F, Lu L, Wang P, Jiang Z. Biochar - An effective additive for improving quality and reducing ecological risk of compost: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151439. [PMID: 34742793 DOI: 10.1016/j.scitotenv.2021.151439] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Biochar is considered as a promising additive with multi-benefits to compost production. However, how the biochar properties and composting conditions affect the composting process and quality and ecological risk of compost is still unclear. In the present study, we conducted a global meta-analysis based on 876 observations from 84 studies. Overall, regardless of biochar properties and composting conditions, biochar addition could significantly increase the pH (5.90%), germination index (26.6%), contents of nitrate nitrogen (56.6%), total nitrogen (9.50%), and total potassium (10.1%), and degree of polymerization (29.4%) while decrease the electrical conductivity (-5.70%), contents of ammonium nitrogen (-33.7%), bioavailable zinc (-22.9%), and bioavailable copper (-38.6%), and emissions of ammonia (-44.2%), nitrous oxide (-68.4%), and methane (-61.7%). Other compost indicators, including the carbon to nitrogen ratio and total phosphorus content, were found to be insignificantly affected by biochar addition. The responses of tested compost indicators affected by the biochar properties and composting conditions were further explored, based on which the addition of straw biochars at a rate of 10-15% was recommended due to its greater potential to improve quality of compost and reduce its ecological risk. Combining the results of linear regression analysis and structural equation model, the increase in compost pH caused by biochar addition was identified as the key mechanism for the increased nutrient content and decreased heavy metal bioavailability. These results could guide us to choose suitable kinds of biochar or develop engineered biochars with specific functionality to realize an optimal compost production mode.
Collapse
Affiliation(s)
- Shunxi Zhou
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Wang
- Business School, Qingdao University, Qingdao 266071, China.
| | - Zhixiang Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
36
|
Effects of C/N Ratio on Lignocellulose Degradation and Enzyme Activities in Aerobic Composting. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lignocellulosic materials have a complex physicochemical composition and structure that reduces their decomposition rate and hinders the formation of humic substances during composting. Therefore, a composting experiment was conducted to evaluate the effects of different C/N ratios on lignocellulose (cellulose, hemicellulose and lignin) degradation and the activities of corresponding enzymes during aerobic composting. The study had five C/N ratios, namely, T1 (C/N ratio of 15), T2 (C/N ratio of 20), T3 (C/N ratio of 25), T4 (C/N ratio of 30) and T5 (C/N ratio of 35). The results showed that treatments T3 and T4 had the highest rate of degradation of cellulose and hemicellulose, while treatment T3 had the highest rate of degradation of lignin. Among the five treatments, treatment T3 enhanced the degradation of the lignocellulose constituents, indicating a degradation rate of 6.86–35.17%, 15.63–44.08% and 31.69–165.60% for cellulose, hemicellulose and lignin, respectively. The degradation of cellulose and lignin occurred mainly at the thermophilic and late mesophilic phases of composting, while hemicellulose degradation occurred at the maturation phase. Treatment T3 was the best C/N ratio to stimulate the activities of manganese peroxidase, lignin peroxidase, polyphenol oxidase and peroxidase, which in turn promoted lignocellulose degradation.
Collapse
|
37
|
Gaseous Emissions from the Composting Process: Controlling Parameters and Strategies of Mitigation. Processes (Basel) 2021. [DOI: 10.3390/pr9101844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Organic waste generation, collection, and management have become a crucial problem in modern and developing societies. Among the technologies proposed in a circular economy and sustainability framework, composting has reached a strong relevance in terms of clean technology that permits reintroducing organic matter to the systems. However, composting has also negative environmental impacts, some of them of social concern. This is the case of composting atmospheric emissions, especially in the case of greenhouse gases (GHG) and certain families of volatile organic compounds (VOC). They should be taken into account in any environmental assessment of composting as organic waste management technology. This review presents the relationship between composting operation and composting gaseous emissions, in addition to typical emission values for the main organic wastes that are being composted. Some novel mitigation technologies to reduce gaseous emissions from composting are also presented (use of biochar), although it is evident that a unique solution does not exist, given the variability of exhaust gases from composting.
Collapse
|
38
|
Moisture-Induced Pattern of Gases and Physicochemical Indices in Corn Straw and Cow Manure Composting. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the altering effect of moisture on the emission pattern of gases and the evolutionary dynamics of physicochemical indices in corn straw and cow manure composting. Exploring this effect was reasonable to unravel the use of moisture as a cheap alternative to control gaseous emissions and improve the final properties of compost. The nutrient dynamics of the compost showed 21.6% losses in total organic carbon content, with a 33.3% increase in total nitrogen content at the end of composting. All the gases (CH4, CO2, N2O and NH3) yielded a common emission pattern despite the differences in moisture content. Except for CH4, the peak and stable emission periods of all the gases were observed on the 5th day (thermophilic phase) and after the 27th day (late mesophilic phase) of composting, respectively. Emission reductions of 89%, 91%, 95% and 100% were recorded for CH4, CO2, N2O and NH3, respectively, during the late mesophilic phase of composting. From the study, the 65% moisture content was efficient in reducing the loss rate of the gasses and nutrient contents of the compost. This study would enable farmers to channel organic residues generated into compost while minimizing pollution and nutrient losses associated with the composting process.
Collapse
|
39
|
Carbon and Nitrogen Dynamics, and CO 2 Efflux in the Calcareous Sandy Loam Soil Treated with Chemically Modified Organic Amendments. Molecules 2021; 26:molecules26164707. [PMID: 34443295 PMCID: PMC8398802 DOI: 10.3390/molecules26164707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
In Saudi Arabia, more than 335,000 tons of cow manure is produced every year from dairy farming. However, the produced cow manure is usually added to the agricultural soils as raw or composted manure; significant nitrogen losses occur during the storage, handling, and application of the raw manure. The recovery of ammonia from cow manure through thermochemical treatments is a promising technique to obtain concentrated nitrogen fertilizer and reducing nitrogen losses from raw manure. However, the byproduct effluents from the recovery process are characterized by different chemical properties from the original raw manure; thus, its impact as soil amendments on the soil carbon and nitrogen dynamics is unknown. Therefore, a 90-day incubation experiment was conducted to study the impact of these effluents on CO2 efflux, organic C, microbial biomass C, available NH4+, and NO3− when added to agricultural soil. In addition to the two types of effluents (produced at pH 9 and pH 12), raw cow manure (CM), composted cow manure (CMC), cow manure biochar (CMB), and control were used for comparison. The application of CM resulted in a considerable increase in soil available nitrogen and CO2 efflux, compared to other treatments. Cow manure biochar showed the lowest CO2 efflux. Cumulative CO2 effluxes of cow manure effluents were lower than CM; this is possibly due to the relatively high C:N ratio of manure effluent. The content of P, Fe, Cu, Zn, and Mn decreased as incubation time increased. Soil microbial biomass C for soil treated with cow manure effluents (pH 12 and 7) was significantly higher than the rest of the soil amendments and control.
Collapse
|
40
|
Changes in Chemical Properties of Banana Pseudostem, Mushroom Media Waste, and Chicken Manure through the Co-Composting Process. SUSTAINABILITY 2021. [DOI: 10.3390/su13158458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Co-composting is an effective approach to biowaste management. The co-composting potential of banana pseudostem (BPS) and mushroom media waste (MMW) with chicken manure (CM) has not been explored, let alone their suitable ratios of co-composting being determined. Meanwhile, the imbalance ratios of the feedstocks used in the process severely restrict the physicochemical properties and quality of the finished product. For this reason, six different ratios of BPS, MMW, and CM, viz. 1:1:1, 1:2:1, 1:3:1, 2:1:1, 2:2:1, and 2:3:1, respectively (T1–T6), were composted together in aerobic conditions to identify the suitable ratio by evaluating the changes in the physicochemical properties in the composting process. According to the ratio of treatments, the feedstocks were mixed on fresh weight basis. The turning process of co-composting piles was repeated at seven-day intervals to maintain the uniform aeration throughout the composting period. The piles having BPS, MMW, and CM at ratios of 1:2:1, 1:3:1, and 2:3:1, respectively, demonstrated a longer thermophilic phase, indicating more complete decomposition and earlier maturity compared to piles with higher amount of BPS. Of the ratios, BPS:MMW:CM at 1:2:1 ratio (T2) resulted in the highest total nitrogen (1.53%), lowest C:N ratio (12.4), organic matter loss (54.5%), and increased CEC (41.3 cmol/kg). The highest germination index (129%) was also recorded in the T2 compost, indicating that it was toxic-free and safe for seed germination. The nutrient-rich compost with high alkaline pH (≥10) can effectively ameliorate soils of an acidic nature, for example, the acidity of Ultisols and Oxisols.
Collapse
|
41
|
Waste Willow-Bark from Salicylate Extraction Successfully Reused as an Amendment for Sewage Sludge Composting. SUSTAINABILITY 2021. [DOI: 10.3390/su13126771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to the fact that compost is a valuable fertilizer that serves principally as a source of macronutrients, composting is one of the preferred methods of management of organic waste, including municipal sewage sludge. However, due to its high moisture content and low C/N ratio, sewage sludge cannot be composted alone. This study investigated the usefulness of waste willow-bark (WWB) (after salicylate extraction) as an amendment for municipal sewage-sludge composting in a two-stage system: an aerated bioreactor and a periodically turned windrow. Both organic matter (OM) removal and humification progress were monitored. It was found that the prepared feedstock (70% sewage sludge, 25% WWB, and 5% wood chips, w/w) enabled proper temperature profiles to be obtained, with a maximum temperature of 72.3 °C. The rate constant of OM degradation in the bioreactor was 0.25 d−1, almost 4-fold higher than that in the windrows. During composting, the concentrations of humic substances (HS), humic acids (HA), and the fulvic fraction (FF) changed. HS, HA, and FF formation proceeded according to 1. order kinetics, and their respective rates were 1.33 mg C/(g OM d), 1.03 mg C/(g OM d), and 0.76 mg C/(g OM d). However, in mature compost, FF predominated (ca. 70%) in HS. These results indicate that waste willow-bark, a product of salicylate extraction, can be successfully reused as an amendment during municipal sewage sludge composting. Both waste willow-bark reuse and sewage sludge composting are compatible with a circular economy.
Collapse
|
42
|
Zhang B, Fan B, Hassan I, Peng Y, Ma R, Guan CY, Chen S, Cui S, Li G. Effects of bamboo biochar on nitrogen conservation during co-composting of layer manure and spent mushroom substrate. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-9. [PMID: 34044755 DOI: 10.1080/09593330.2021.1936201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Layer manure (LM) and spent mushroom substrate (SMS) are two kinds of nitrogen (N) rich solid wastes generate in the poultry breeding and agriculture production. Composting is an effective way to recycle the LM and SMS. However, a large amount of N in the LM and SMS was lost via volatilisation during composting, with negative environmental and economic consequences. This study investigated the effect of incorporating biochar at the ratio of 5%, 10%, and 15% (w/w) during co-composting of LM and SMS on ammonia (NH3) and nitrogen oxide (N2O) volatilisation and N retention. After the 35-day composting, the results showed that the pile temperature and seed germination index in biochar treatments were significantly improved in comparison with control treatment. The nitrogen in all treatments was lost in the form of N2O (0.05∼0.1%) and NH3 (13.1∼20.2%). Likewise, the total nitrogen loss was 28.9%, 20.3%, and 24.9%, respectively, of which N2O-N accounts for 0.05∼0.10%. Compared with control treatment, the total amount of NH3 volatilisation in biochar treatments of 5%BC, 10%BC and 15%BC was decreased by 21.2%, 33.1%, and 26.1%, respectively. The total amount of N2O emission was decreased by 39.0%, 13.2%, and 1.6%, respectively. Adding 10% and 15% biochar can significantly reduce NH3 volatilisation while adding 5% biochar treatment didn't significantly reduce NH3 emissions but showed the best performance in reducing N2O emission. The addition of 10% biochar in co-composting of LM and SMS is the recommended dosage that exhibited the best performance in improving composting quality and reducing nitrogen loss.
Collapse
Affiliation(s)
- Bangxi Zhang
- Institute of Agricultural Resources and Environment, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, People's Republic of China
| | - Beibei Fan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Iram Hassan
- Institute of Soil Science, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Yutao Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Ruonan Ma
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National llan University, Yilan, Taiwan
| | - Shili Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Shihao Cui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Guoxue Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
43
|
Zhai W, Guo T, Yang S, Gustave W, Hashmi MZ, Tang X, Ma LQ, Xu J. Increase in arsenic methylation and volatilization during manure composting with biochar amendment in an aeration bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125123. [PMID: 33858097 DOI: 10.1016/j.jhazmat.2021.125123] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Biochar is widely used as an amendment to optimize the composting process. In this study, we firstly investigated the effects of biochar amendment on methylation and volatilization of arsenic (As), and the microbial communities during manure composting. Biochar amendment was found to increase the concentrations of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) during mesophilic (days 0-10) and early thermophilic (days 11-15) phases, and promote As volatilization during the maturing phase (days 60-80) of composting. In addition, the abundances of As(V) reductase (arsC) and As(III) S-adenosyl-L-methionine methyltransferase (arsM) genes were higher in the biochar treatment than that in the control. Moreover, biochar amendment influenced the microbial communities by promoting As methylation and volatilization via Ensifer and Sphingobium carrying arsC genes, and Rhodopseudomonas and Pseudomonas carrying arsM genes. This study emphasized the considerable role of biochar on methylation and volatilization of As during manure composting and provided an overall characterization of the community compositions of arsC and arsM genes during manure composting. It will broaden our insights in As biogeochemical cycle during manure composting with biochar amendment, which will facilitate the regulation of As during manure composting and its application in agricultural soil.
Collapse
Affiliation(s)
- Weiwei Zhai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Ting Guo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Su Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of The Bahamas, New Providence, Nassau, The Bahamas
| | | | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
44
|
Yang W, Fan X, Li S, Ma Z, Cheng Y, Kou J. Can white clover facilitate apple orchard residue composting? ENVIRONMENTAL TECHNOLOGY 2021; 42:2428-2437. [PMID: 31825742 DOI: 10.1080/09593330.2019.1703822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Aiming to assess the efficiency of white clove (WC) as an alternative nitrogen source for composting and to facilitate the utilization of orchard waste, WC as compared with chicken manure (CM) was aerobically composted with apple tree leaves (ATL) in initial C/N ratios of 25(R25), 30(R30) and 35(R35). The results show that WC facilitated the rapid and harmless treatment of ATL with the compost temperature above 55°C for more than 3 days. After composting, for all final products, organic matter content was 69.9%-72.9%, electrical conductivity (EC) 1.48-2.31 ms cm-1, germination index (GI) more than 80% and C/N ratios less than 20. Among all treatments, the product from R30 was most nutrient-rich. Compared with CM, WC facilitated the harmless treatment of ATL and required less time for high quality compost production. It is concluded that WC is an excellent replacement for animal manure as a nitrogen source in field composting of orchard waste in areas with limited transportation. WC and ATL can produce high quality organic fertilizer and initial C/N ratio of 30 is recommended.
Collapse
Affiliation(s)
- Wenquan Yang
- College of Life Sciences, Northwest A & F University, Yangling, People's Republic of China
| | - Xiaolong Fan
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Shangwei Li
- Gulang Grassland Station, Agriculture and Animal Husbandry Bureau of Gulang County, Gulang, People's Republic of China
| | - Zhenzhu Ma
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Yuyang Cheng
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| | - Jiancun Kou
- College of Grassland Agriculture, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
45
|
Hernández-Gómez A, Calderón A, Medina C, Sanchez-Torres V, Oviedo-Ocaña ER. Implementation of strategies to optimize the co-composting of green waste and food waste in developing countries. A case study: Colombia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24321-24327. [PMID: 32072422 DOI: 10.1007/s11356-020-08103-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Green waste (GW) management is a key issue due to its high production rate and its variety of physical properties and chemical composition. Composting is a promising alternative for GW treatment and valorization. However, the presence of recalcitrant components such as lignin and cellulose increase the processing time. Strategies such as addition of co-substrates and operative modifications have improved the processing time and compost quality. Therefore, in this study, three strategies have been implemented (i) addition of unprocessed food (UF) and processed foods (PF) as co-substrates for GW to improve the nutrients composition of the substrates at the beginning of the process, (ii) addition of phosphate rock (PR) to improve product quality, and (iii) the use of two-stage composting (TSC) to accelerate the degradation. For this purpose, three treatments with the same mixture (48% GW + 21% UF + 18% PF + 13% sawdust (SW)) were conducted: (i) TA (TSC + 15% PR), (ii) TB (traditional composting +15% PR), and (iii) TC (traditional composting). TSC did not show significant differences compared with TC regarding the process and compost quality, while the addition of PR increased the phosphorus content of the product. However, TC produced the compost with the highest quality according to the Colombian legislation for soil amendment.
Collapse
Affiliation(s)
- Angélica Hernández-Gómez
- Escuela de Ingeniería Civil, Universidad Industrial de Santander, Bucaramanga, Santander, 680002, Colombia
| | - Arley Calderón
- Escuela de Ingeniería Civil, Universidad Industrial de Santander, Bucaramanga, Santander, 680002, Colombia
| | - Camilo Medina
- Escuela de Ingeniería Civil, Universidad Industrial de Santander, Bucaramanga, Santander, 680002, Colombia
| | - Viviana Sanchez-Torres
- Escuela de Ingeniería Química, Universidad Industrial de Santander, Bucaramanga, Santander, 680002, Colombia
| | - Edgar Ricardo Oviedo-Ocaña
- Escuela de Ingeniería Civil, Universidad Industrial de Santander, Bucaramanga, Santander, 680002, Colombia.
| |
Collapse
|
46
|
Guidoni LLC, Martins GA, Guevara MF, Brandalise JN, Lucia T, Gerber MD, Corrêa LB, Corrêa ÉK. Full-Scale Composting of Different Mixtures with Meal from Dead Pigs: Process Monitoring, Compost Quality and Toxicity. WASTE AND BIOMASS VALORIZATION 2021; 12:5923-5935. [PMID: 33777261 PMCID: PMC7981597 DOI: 10.1007/s12649-021-01422-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/08/2021] [Indexed: 05/28/2023]
Abstract
ABSTRACT Abundant by-products of large swine industries, such as slaughterhouse sludge and carcasses, require adequate treatment to prevent negative effects of their direct disposal in the open environment. This study is aimed to evaluate the efficiency of composting using meal from dead pigs through physicochemical analyses and phytotoxic assays. Five treatments were tested, all including 50% sawdust: T1, with 50% slaughterhouse sludge (control); T2, with 20% slaughterhouse sludge and 30% meal from dead pigs; T3, with 10% slaughterhouse sludge and 40% meal from dead pigs; T4, with 20% organic stabilizing compost and 30% meal from dead pigs and T5, with 30% organic stabilizing compost and 20% meal from dead pigs. The phytotoxicity assays used lettuce, cucumber, celia, soybean, rice and wheat as bioindicators. Inclusion of meal from dead pigs was related to reduction in pH, C/N ratio, humidity and temperatures inside the pile, although thermophilic peaks lasted longer than 50 days and the final composts showed high content of nitrogen and phosphorous. The germination of bioindicators was reduced in all tested treatments, compared to the control. The composts from treatments that included meal from dead pigs presented acceptable nutrient content, which may indicate their use as organic fertilizers. However, after 4 months, all bioindicators in contact with such composts presented impaired germination. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12649-021-01422-0.
Collapse
Affiliation(s)
- Lucas L. C. Guidoni
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Gabriel A. Martins
- Ciência e Tecnologia de Alimentos, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Miguel F. Guevara
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - João N. Brandalise
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Thomaz Lucia
- ReproPel, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Michel D. Gerber
- Instituto Federal de Educação, Ciência e Tecnologia Sul-Rio-Grandense, Pelotas, RS Brazil
| | - Luciara B. Corrêa
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS Brazil
| | - Érico K. Corrêa
- NEPERS, Centro de Engenharias, Universidade Federal de Pelotas, Pelotas, RS Brazil
| |
Collapse
|
47
|
Nsiah-Gyambibi R, Essandoh HMK, Asiedu NY, Fei-Baffoe B. Valorization of fecal sludge stabilization via vermicomposting in microcosm enriched substrates using organic soils for vermicompost production. Heliyon 2021; 7:e06422. [PMID: 33732939 PMCID: PMC7941161 DOI: 10.1016/j.heliyon.2021.e06422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/02/2022] Open
Abstract
High generation of fecal sludge without proper treatment is a major sanitation problem. A key step in curbing this problem is producing value-added resources such as vermicompost from fecal sludge through substrate enrichment. Substrate enrichment is a vermicomposting technique that involves augmenting vermibed substrates with organic rich materials to provide additional nutrients, as well as underlying layers needed for microcosm development to produce desirable vermicompost. The aim of this study was to investigate effects of substrate enrichment with organic soils (black soil, red laterite soil and sandy soil) combined with coconut coir as bulking material, on the fecal sludge vermicomposting process and quality of the end-product. The purpose of the study was to promote the development of highly nutritive vermicompost from fecal sludge using substrate enrichment as a low-cost innovative vermicomposting technique. The enriched substrates were prepared with 160g of coconut coir, 120g of fecal matter (65–70% dry matter) and 80g of organic soil. The treatments were labelled T1, T2 and T3 representing systems containing black soil, red laterite soil and sandy soil respectively. The control treatment (T4) contained no soil. Triplicate treatments were setup and about 20 3-week old clitellated earthworms of the species Eisenia. fetida with live weights ranging from 255 to 275mg, released into each system for vermicomposting over a period of 12 weeks. Physicochemical parameters such as pH, Organic Carbon (Corg), Total Nitrogen (Ntot), Available Phosphorus (Pavail), Exchangeable Calcium (Caexch), Iron (Fe), Lead (Pb) and Aluminium (Al) were determined for both the fecal sludge and the vermicompost. The vermicompost in the setup with black soil (T1) showed the highest Corg mineralization and Ntot, Pavail and Caexch enhancement followed by T2, T3 and T4. Treatment T1 also resulted in the lowest concentration of Fe, Pb and Al in the vermicompost. Concentrations of these heavy metals were found to be higher in the other treatments in increasing order of T2, T3 and T4. Less than 16% earthworm mortality was recorded in all treatments except T4, in which the mortality was about 38% (38.33 ± 13.74). The enriched substrates were therefore found to provide a more suitable microclimate for earthworm development and produced vermicompost with high nutrient content. However, a more comprehensive study on metal accumulation in the earthworm tissues as a potential metal contaminant is needed to establish a strong hypothesis in the safe use of earthworms for this vermicomposting technique.
Collapse
Affiliation(s)
- Rapheal Nsiah-Gyambibi
- Regional Water and Environmental Sanitation Centre, Kumasi. Department of Civil Engineering, College of Engineering Kwame Nkrumah University of Science and Technology, UPO, Kumasi, Ghana
| | - Helen Michelle Korkor Essandoh
- Regional Water and Environmental Sanitation Centre, Kumasi. Department of Civil Engineering, College of Engineering Kwame Nkrumah University of Science and Technology, UPO, Kumasi, Ghana
| | - Nana Yaw Asiedu
- Department of Chemical Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana
| | - Bernard Fei-Baffoe
- Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana
| |
Collapse
|
48
|
Golbaz S, Zamanzadeh MZ, Pasalari H, Farzadkia M. Assessment of co-composting of sewage sludge, woodchips, and sawdust: feedstock quality and design and compilation of computational model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12414-12427. [PMID: 33078354 DOI: 10.1007/s11356-020-11237-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Composting process of sewage sludge requires a preprocessing step in order to prepare the appropriate mixture of dewatered sludge (Xs) with amendment (Xa), bulking agent (Xb), and/or recycled materials (Xr). This research aimed to develop a novel mathematical model for finding an optimal mixture ratio of dewatered sludge with the aforementioned influencing elements on co-composting process. Seven feasible scenarios were presented and the best one was selected in viewpoint of technical and economic perspectives. The optimum mixture was prepared and its quality was evaluated in the terms of physical, chemical, and microbial characteristics. The optimum mixture was loaded in an aerated static pile composting reactor in order to evaluate the quality of the final compost product. If the test results were not in compliance with the USEPA standards, the model was iteratively modified to fulfill the desired objective. The model was validated using the experimental results. The mixture of Xs:Xa:Xb:Xr with a weight ratio 7.4:1.0:1.4:2.3 allowed optimal moisture content (59.8 ± 0.5%), organic matter (80.0 ± 2.6%), dry matter (40.2 ± 0.6%), C/N ratio (28.0 ± 1.6), and free air space (> 30%) across the composting pile. The final product of compost met the heavy metal and microbial requirements for land application. It can be concluded this mathematical model is a promising method for selecting the optimal amount and type of materials for preparing the initial mixture of co-composting process.
Collapse
Affiliation(s)
- Somayeh Golbaz
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Zaman Zamanzadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Serna-García R, Ruiz-Barriga P, Noriega-Hevia G, Serralta J, Pachés M, Bouzas A. Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111890. [PMID: 33385906 DOI: 10.1016/j.jenvman.2020.111890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/27/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
A pilot-scale microalgae (Chlorella spp.) and primary sludge anaerobic co-digestion (ACoD) plant was run for one year in an anaerobic membrane bioreactor (AnMBR) at 35 °C, 70 d solids retention time and 30 d hydraulic retention time, showing high stability in terms of pH and VFA concentration. The plant achieved a high degree of microalgae and primary sludge substrate degradation, resulting in a methane yield of 370 mLCH4·gVSinf-1. Nutrient-rich effluent streams (685 mgN·L-1 and 145 mgP·L-1 in digestate and 395 mgNH4-N·L-1 and 37 mgPO4-P·L-1 in permeate) were obtained, allowing posterior nutrient recovery. Ammonium was recovered from the permeate as ammonia sulphate through a hydrophobic polypropylene hollow fibre membrane contactor, achieving 99% nitrogen recovery efficiency. However, phosphorus recovery through processes such as struvite precipitation was not applied since only 26% of the phosphate was available in the effluent. Composting process of the digestate coming from the ACoD pilot plant was assessed on laboratory-scale Dewar reactors, as was the conventional sludge compost from an industrial WWTP digestion process, obtaining similar values from both. Sanitised (free of Escherichia coli and Salmonella spp.) and stable compost (respirometric index at 37 °C below 0.5 mgO 2 g organic matter-1·h-1) was obtained from both sludges.
Collapse
Affiliation(s)
- R Serna-García
- CALAGUA - Unitat Mixta UV-UPV, Department D'Enginyeria Química, Universitat de València, Avinguda de La Universitat S/n, Burjassot, Valencia, 46100, Spain.
| | - P Ruiz-Barriga
- CALAGUA - Unitat Mixta UV-UPV, Department D'Enginyeria Química, Universitat de València, Avinguda de La Universitat S/n, Burjassot, Valencia, 46100, Spain
| | - G Noriega-Hevia
- CALAGUA - Unitat Mixta UV-UPV, Institut Universitari D'Investigació D'Enginyeria de L'Aigua I Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera S/n, 46022, Valencia, Spain
| | - J Serralta
- CALAGUA - Unitat Mixta UV-UPV, Institut Universitari D'Investigació D'Enginyeria de L'Aigua I Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera S/n, 46022, Valencia, Spain
| | - M Pachés
- CALAGUA - Unitat Mixta UV-UPV, Institut Universitari D'Investigació D'Enginyeria de L'Aigua I Medi Ambient - IIAMA, Universitat Politècnica de Valencia, Camí de Vera S/n, 46022, Valencia, Spain
| | - A Bouzas
- CALAGUA - Unitat Mixta UV-UPV, Department D'Enginyeria Química, Universitat de València, Avinguda de La Universitat S/n, Burjassot, Valencia, 46100, Spain
| |
Collapse
|
50
|
Hill D, Morra MJ, Stalder T, Jechalke S, Top E, Pollard AT, Popova I. Dairy manure as a potential source of crop nutrients and environmental contaminants. J Environ Sci (China) 2021; 100:117-130. [PMID: 33279025 DOI: 10.1016/j.jes.2020.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/12/2023]
Abstract
Although animal manure is applied to agricultural fields for its nutrient value, it may also contain potential contaminants. To determine the variability in such contaminants as well as in valuable nutrients, nine uncomposted manure samples from Idaho dairies collected during 2.5 years were analyzed for macro- and micro-nutrients, hormones, phytoestrogens, antibiotics, veterinary drugs, antibiotic resistance genes, and genetic elements involved in the spread of antibiotic resistance. Total N ranged from 6.8 to 30.7 (C:N of 10 to 21), P from 2.4 to 9.0, and K from 10.2 to 47.7 g/kg manure. Zn (103 - 348 mg/kg) was more abundant than Cu (56 - 127 mg/kg) in all samples. Phytoestrogens were the most prevalent contaminants detected, with concentrations fluctuating over time, reflecting animal diets. This is the first study to document the presence of flunixin, a non-steroidal anti-inflammatory drug, in solid stacked manure from regular dairy operations. Monensin was the most frequently detected antibiotic. Progesterones and sulfonamides were regularly detected. We also investigated the relative abundance of several types of plasmids involved in the spread of antibiotic resistance in clinical settings. Plasmids belonging to the IncI, IncP, and IncQ1 incompatibility groups were found in almost all manure samples. IncQ1 plasmids, class 1 integrons, and sulfonamide resistance genes were the most widespread and abundant genetic element surveyed, emphasizing their potential role in the spread of antibiotic resistance. The benefits associated with amending agricultural soils with dairy manure must be carefully weighed against the potential negative consequences of any manure contaminants.
Collapse
Affiliation(s)
- Danika Hill
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | - Matthew J Morra
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | | | - Sven Jechalke
- Justus Liebig University Giessen, Institute for Phytopathology, 35392 Gießen, Germany
| | - Eva Top
- Department of Biology, University of Idaho, ID 83844-3051, USA
| | - Anne T Pollard
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA
| | - Inna Popova
- Department of Soil & Water Systems, University of Idaho, ID 83844-2340, USA.
| |
Collapse
|