1
|
Takano C, Nakashima K, Kawasaki S, Aoyagi H. Utilisation of acid-tolerant bacteria for base metal recovery under strongly acidic conditions. Extremophiles 2024; 28:45. [PMID: 39316163 DOI: 10.1007/s00792-024-01362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Hydrometallurgical bioprocesses for base metal recovery in environmentally friendly electronic device waste (e-waste) recycling are typically studied under neutral pH conditions to avoid competition between metals and hydrogen ions. However, metal leachate is generally strongly acidic, thus necessitating a neutralisation process in the application of these bioprocesses to e-waste recycling. To solve this pH disparity, we focused on acid-tolerant bacteria for metal recovery under strongly acidic conditions. Four acid-tolerant bacterial strains were isolated from neutral pH environments to recover base metals from simulated waste metal leachate (pH 1.5, containing 100 or 1000 mg L-1 of Co, Cu, Li, Mn, and Ni) without neutralisation. The laboratory setting for sequential metal recovery was established using these strains and a reported metal-adsorbing bacterium, Micrococcus luteus JCM1464. The metal species were successfully recovered from 100 mg L-1 metal mixtures at the following rates: Co (8.95%), Cu (21.23%), Li (5.49%), Mn (13.18%), and Ni (9.91%). From 1000 mg L-1 metal mixtures, Co (7.23%), Cu (6.82%), Li (5.85%), Mn (7.64%), and Ni (7.52%) were recovered. These results indicated the amenability of acid-tolerant bacteria to environmentally friendly base metal recycling, contributing to the development of novel industrial application of the beneficial but unutilised bioresource comprising acid-tolerant bacteria.
Collapse
Affiliation(s)
- Chikara Takano
- Division of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Kazunori Nakashima
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoru Kawasaki
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Hideki Aoyagi
- Division of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
2
|
das Neves Vasconcellos Brandão IY, de Souza Silva PHB, Castori TV, de Souza YT, de Souza RG, Batista AF, Petroni SLG, Nazareth Zanutto TC, de Campos CBL, Maass D. Rhodococcus erythropolis ATCC 4277 behavior against different metals and its potential use in waste biomining. Bioprocess Biosyst Eng 2024; 47:1533-1545. [PMID: 38888622 DOI: 10.1007/s00449-024-03048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Rhodococcus erythropolis bacterium is known for its remarkable resistance characteristics that can be useful in several biotechnological processes, such as bioremediation. However, there is scarce knowledge concerning the behavior of this strain against different metals. This study sought to investigate the behavior of R. erythropolis ATCC 4277 against the residue of chalcopyrite and e-waste to verify both resistive capacities to the metals present in these residues and their potential use for biomining processes. These tests were carried out in a stirred tank bioreactor for 48 h, at 24ºC, pH 7.0, using a total volume of 2.0 L containing 2.5% (v/v) of a bacterial pre-culture. The pulp density of chalcopyrite was 5% (w/w), and agitation and oxygen flow rates were set to 250 rpm and 1.5 LO2 min-1, respectively. On the other hand, we utilized a waste of computer printed circuit board (WPCB) with a pulp density of 10% (w/w), agitation at 400 rpm, and an oxygen flow rate of 3.0 LO2 min-1. Metal concentration analyses post-fermentation showed that R. erythropolis ATCC 4277 was able to leach about 38% of the Cu present in the chalcopyrite residue (in ~ 24 h), and 49.5% of Fe, 42.3% of Ni, 27.4% of Al, and 15% Cu present in WPCB (in ~ 24 h). In addition, the strain survived well in the environment containing such metals, demonstrating the potential of using this bacterium for waste biomining processes as well as in other processes with these metals.
Collapse
Affiliation(s)
| | | | - Tayna Vale Castori
- Departamento de Ciência E Tecnologia, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - Yasmim Tavares de Souza
- Departamento de Ciência E Tecnologia, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - Ricardo Gabbay de Souza
- Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Aline Fontana Batista
- Instituto de Aeronáutica e Espaço (IAE), Departamento de Ciência e Tecnologia Aeroespacial (DCTA), São José dos Campos, SP, 12228-904, Brazil
| | - Sergio Luis Graciano Petroni
- Instituto de Aeronáutica e Espaço (IAE), Departamento de Ciência e Tecnologia Aeroespacial (DCTA), São José dos Campos, SP, 12228-904, Brazil
| | - Talita Corrêa Nazareth Zanutto
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Claudia Barbosa Ladeira de Campos
- Departamento de Ciência E Tecnologia, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - Danielle Maass
- Departamento de Ciência E Tecnologia, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil.
| |
Collapse
|
3
|
Dinh T, Kovács H, Dobó Z. The formation of gold in woody biomass combustion ashes. Heliyon 2024; 10:e32425. [PMID: 38961906 PMCID: PMC11219344 DOI: 10.1016/j.heliyon.2024.e32425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
This paper investigates the enrichment of gold through combustion and ash-leaching techniques utilizing woody biomass as a fuel source. It delves into the formation of gold in ashes derived from the fixed grate combustion of pelletized woody biomass containing noble metals, conducted at a pilot-scale boiler. The biomass sample was gathered from a brownfield land at an abandoned mining area, avoiding induced phytoextraction. The fuel contained <0.05 mg/kg gold, while the bottom ash, after heat exchanger ash, deposited ash, and fly ash contained 1.52 mg/kg, 1.99 mg/kg, 2.64 mg/kg, and 3.52 mg/kg of gold, respectively. Although the amount of fly ash is lower compared to bottom ash, the concentration of gold is the highest in fly ash, which follows the after heat exchanger ash and bottom ash. The concentration of gold was enriched by a three-stage procedure of water leaching, acid leaching (10 % HCl), and alkaline leaching (5 % NaOH), after which 12.1 mg/kg and 12.6 mg/kg gold was found in the residues obtained from leached bottom ash and deposited ash, respectively. SEM was utilized to depict the morphology of gold, which appears in bottom ash as individual neat particles with a purity higher than 98 %. Pure gold particles in the size of 1-2 μm are presented in the after heat exchanger ash; meanwhile, gold in fly ash is primarily associated with potassium, sodium, sulfur, and oxygen. The findings in this study pave the way for reclaiming gold from bio-ores as well as assist in better understanding the formation of this precious metal in these secondary resources.
Collapse
Affiliation(s)
- Truong Dinh
- Institute of Energy, Ceramics and Polymer Technology, University of Miskolc, 3515, Miskolc, Hungary
| | - Helga Kovács
- Institute of Energy, Ceramics and Polymer Technology, University of Miskolc, 3515, Miskolc, Hungary
| | - Zsolt Dobó
- Institute of Energy, Ceramics and Polymer Technology, University of Miskolc, 3515, Miskolc, Hungary
| |
Collapse
|
4
|
Vuppaladadiyam SSV, Thomas BS, Kundu C, Vuppaladadiyam AK, Duan H, Bhattacharya S. Can e-waste recycling provide a solution to the scarcity of rare earth metals? An overview of e-waste recycling methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171453. [PMID: 38453089 DOI: 10.1016/j.scitotenv.2024.171453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Recycling e-waste is seen as a sustainable alternative to compensate for the limited natural rare earth elements (REEs) resources and the difficulty of accessing these resources. Recycling facilitates the recovery of valuable products and minimizes emissions during their transportation. Numerous studies have been reported on e-waste recycling using various techniques, including thermo-, hydro- and biometallurgical approaches. However, each approach still has technical, economic, social, or environmental limitations. This review highlights the potential of recycling e-waste, including outlining the current unutilized potential of REE recycling from different e-waste components. An in-depth analysis of e-waste generation on a global scale and Australian scenario, along with various hazardous impacts on ecosystem and human health, is reported. In addition, a comprehensive summary of various metal recovery processes and their merits and demerits is also presented. Lifecycle analysis for recovering REEs from e-waste indicate a positive environmental impact when compared to REEs produced from virgin sources. In addition, recovering REEs form secondary sources eliminated ca. 1.5 times radioactive waste, as seen in production from primary sources scenario. The review outcome demonstrates the increasing potential of REE recycling to overcome critical challenges, including issues over supply security and localized dependency.
Collapse
Affiliation(s)
| | - Bennet Sam Thomas
- Department of Chemical and Biological Engineering, Monash University, Australia
| | - Chandan Kundu
- Department of Chemical and Biological Engineering, Monash University, Australia
| | | | - Huabo Duan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Sankar Bhattacharya
- Department of Chemical and Biological Engineering, Monash University, Australia.
| |
Collapse
|
5
|
Li J, Sun C, Wang P, Kou J. Selective gold extraction from electronic waste using high-temperature-synthesized reagents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6929-6943. [PMID: 38157179 DOI: 10.1007/s11356-023-31259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
For over two hundred years, cyanide has served as the primary reagent for gold extraction. However, due to its high toxicity, the use of cyanide poses significant risks. Traditional low-toxicity leaching reagents have limitations that restrict their widespread industrial application, leading to the necessity for the development of new, efficient, and low-toxic gold leaching reagents to support sustainable gold production. In this study, a novel, efficient, and low-toxicity gold extraction reagent was synthesized at high temperatures by combining urea, sodium carbonate, and a specific iron salt. The research delved into the leaching ability of the reagent under different synthesis conditions and examined the generation of free cyanide content as a by-product. Findings indicated that reagents synthesized with either potassium ferrocyanide or potassium ferricyanide displayed comparable leaching capabilities. Reagents synthesized at 800 °C exhibited lower levels of free cyanide ions and reduced toxicity. Additionally, this reagent demonstrated exceptional selectivity for gold, while in minimal dissolution of copper, iron, nickel, lead, and iron from computer central processing unit (CPU) pins. Under optimal conditions, the efficiency of gold extraction from CPU pins reached 94.65%. Hence, this reagent holds significant potential for the low-toxicity extraction of gold from electronic waste or auriferous concentrates.
Collapse
Affiliation(s)
- Jinlin Li
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chunbao Sun
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Key Laboratory of the Ministry of Education of China for High-Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peilong Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Key Laboratory of the Ministry of Education of China for High-Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jue Kou
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Key Laboratory of the Ministry of Education of China for High-Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
6
|
Dong Y, Mingtana N, Zan J, Lin H. Recovery of precious metals from waste printed circuit boards though bioleaching route: A review of the recent progress and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119354. [PMID: 37864939 DOI: 10.1016/j.jenvman.2023.119354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
The rapid proliferation of electronic waste (e-waste), including waste printed circuit boards (WPCBs), has exerted immense pressure on the environment. The recovery of precious metals from WPCBs not only serves as an effective means of alleviating this environmental burden but also generates economic value. This review focuses on bioleaching, an environmentally friendly method for extracting precious metals from WPCBs. Under various conditions, this method has achieved leaching rates of 30%-73% for Au and 33.8%-90% for Ag. However, there is a relative scarcity of studies on the bioleaching of precious metals from WPCBs. In this paper, we provide an overview of the current status of bioleaching for precious metals from WPCBs and describe the underlying mechanisms. We also briefly outline the influence of various process factors on leaching efficiency. While this review underscores the considerable potential of bioleaching in WPCBs applications, certain limitations hinder the engineering-scale application of the technology. Consequently, this paper describes the current enhanced processes for enhancing leaching efficiency. Overall, this review can serve as a valuable reference for future research endeavors, ultimately promoting the widespread utilization of bioleaching for the recovery of precious metals from WPCBs.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Nuo Mingtana
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jinyu Zan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
7
|
Kara IT, Simmons N, Wagland ST, Coulon F. Unlocking the hidden value of industrial by-products: Optimisation of bioleaching to extract metals from basic oxygen steelmaking dust and goethite. CHEMOSPHERE 2023; 343:140244. [PMID: 37758076 DOI: 10.1016/j.chemosphere.2023.140244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
In this study, the potential of bioleaching to extract valuable metals from industrial by-products, specifically basic oxygen steelmaking dust (BOS-D) and goethite was investigated. These materials are typically discarded due to their high zinc content and lack of efficient regeneration processes. By using Acidithiobacillus ferrooxidans, successful bioleaching of various metals, including heavy metals, critical metals, and rare earth elements was achieved. The Taguchi orthogonal array design was used to optimise the bioleaching process, considering four variables at three different levels. After 14 days, the highest metal extraction for the BOS-D (11.2 mg Zn/g, 3.2 mg Mn/g, 1.6 mg Al/g, 0.0013 mg Y/g, and 0.0026 mg Ce/g) was achieved at 1% solid concentration, 1% energy source concentration, 1% inoculum concentration, and pH 1.5. For goethite, the optimal conditions were 1% solid concentration, 4% energy source concentration, 10% inoculum concentration, and pH 2 resulting in a extraction of 26.6 mg Zn/g, 2.1 mg/g Mn, 1.8 mg Al/g, 0.01 mg Co/g, 0.0022 mg Y/g. These findings are significant, as they demonstrate the potential to extract valuable metals from previously discarded industrial by-products. The extraction of such metals can have substantial economic and environmental implications, while simultaneously reducing waste in the metallurgical industry. Furthermore, the preservation of initial concentration of iron in both BOS-D and goethite residues represents a significant step towards implementing more sustainable industrial practices.
Collapse
Affiliation(s)
- Ipek Tezyapar Kara
- Cranfield University, School of Water, Energy and Environment, Cranfield, MK43 0AL, UK
| | - Nuannat Simmons
- Cranfield University, School of Water, Energy and Environment, Cranfield, MK43 0AL, UK
| | - Stuart T Wagland
- Cranfield University, School of Water, Energy and Environment, Cranfield, MK43 0AL, UK
| | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield, MK43 0AL, UK.
| |
Collapse
|
8
|
Beiki V, Mousavi SM, Naseri T. Ecofriendly recovery of copper from spent telecommunication printed circuit boards using an indigenous cyanogenic bacterium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118399. [PMID: 37336013 DOI: 10.1016/j.jenvman.2023.118399] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
In recent years, electronic waste (e-waste) production has increased due to the population's growth and high consumption. As a result of the high concentration of heavy elements in these wastes, their disposal has posed many environmental problems. On the other hand, due to the non-renewability of mineral resources and the presence of valuable elements such as Cu and Au in electronic waste, these wastes are considered secondary minerals for recovering valuable elements. Among electronic waste, recovery of metals from spent telecommunication printed circuit boards (STPCBs) is significant, which has not been addressed despite their high production worldwide. This study isolated an indigenous cyanogenic bacterium from alfalfa field soil. The 16S rRNA gene sequencing results showed that the best strain has 99.8% phylogenetic affinity with Pseudomonas atacamenisis M7DI(T) with the accession number SSBS01000008 with 1459 nucleotides. The effect of the culture medium, initial pH, glycine concentration, and methionine on the cyanide production of the best strain was investigated. The results showed that the best strain could produce 12.3 ppm cyanide in NB medium with an initial pH of 7 and a concentration of glycine and methionine of 7.5 g/L and 7.5 g/L, respectively. The one-step bioleaching method was performed, which led to the recovery of 98.2% of Cu from STPCBs powder after 5 days. Finally, XRD, FTIR, and FE-SEM analyses were performed to investigate the structure of the STPCBs powder before and after the bioleaching process, confirming the high Cu recovery.
Collapse
Affiliation(s)
- Vahid Beiki
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| | - Tannaz Naseri
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Beiki V, Naseri T, Mousavi SM. An efficient approach for enhancement of gold and silver bioleaching from spent telecommunication printed circuit boards using cyanogenic bacteria: Prevention of biofilm formation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:590-598. [PMID: 37826899 DOI: 10.1016/j.wasman.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Environmentally friendly bioleaching of gold and silver from electronic waste using cyanogenic bacteria has emerged as a promising approach. In the process of cyanide bioleaching, cyanide ions produced by cyanogenic bacteria form complexes (such as AuCN and AgCN) with metals in the waste structure and lead to their dissolution. The recovery rate of these valuable elements during bioleaching is influenced by extracellular polymeric substances (EPS). For the first time, this study presents an investigation into the role of EPS from Pseudomonas atacamensis in the bioleaching of gold and silver from spent telecommunication printed circuit boards (STPCBs). The experimental results demonstrate that, after 6 days of bioleaching, gold and silver recoveries reached 22% and 36.2%, respectively. Complementary analyses employing FE-SEM and attachment tests shed light on the interactions between EPS, bacterial attachment to particle surfaces, and biofilm development stages during gold and silver bioleaching. Notably, the most significant bacterial attachment occurred on the fourth day of bioleaching. Zeta potential tests conducted on bacteria and EPS provided insights into the potential absorption of soluble cations such as Au+ and Ag+ by EPS. Furthermore, 250 mg/L polyvinylpyrrolidone (PVP) effectively removed EPS from the particle surfaces, improving gold and silver recovery rates, reaching 26% and 43.2%, respectively. These findings highlight the importance of understanding the role of EPS in bioleaching processes and offer insights into enhancing gold and silver recovery from electronic waste.
Collapse
Affiliation(s)
- Vahid Beiki
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Tannaz Naseri
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Cenci MP, Eidelwein EM, Veit HM. Composition and recycling of smartphones: A mini-review on gaps and opportunities. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1512-1528. [PMID: 37052313 DOI: 10.1177/0734242x231164324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
After more than a decade since smartphones became consolidated in the market, many recycling solutions have been proposed to deal with them. To continue developing useful solutions and enable adjustment of routes, this mini-review aims to analyse the current research scenario, presenting relevant gaps, trends and opportunities. From a structured searching and screening procedure, a vast source of data was arranged and is available to extract useful information (43 studies on composition and 93 studies on recycling). The study provides discussions about the history of smartphone development, constituent materials and recycling methods for different components, comparisons between feature phones and smartphones and others. Among some conclusions, the authors highlight the lack of studies on pre-extractive methods, green chemistry, recovery of critical and precious metals, determination of priority materials for recovery and solutions for entire devices. In the end, a list containing six research gaps for composition studies and seven research gaps for recycling studies is provided and may be seen as opportunities for future research.
Collapse
Affiliation(s)
- Marcelo Pilotto Cenci
- LACOR, Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Estela Moschetta Eidelwein
- LACOR, Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Hugo Marcelo Veit
- LACOR, Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
11
|
Dixit R, Kumar S, Pandey G. Biological approaches for E-waste management: A green-go to boost circular economy. CHEMOSPHERE 2023:139177. [PMID: 37307925 DOI: 10.1016/j.chemosphere.2023.139177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
E-waste is a pressing situation on human due to its complex composition. Although E-waste on one hand has some toxic components but at the same time, it would be a promising business sector. Recycling of E-waste to mine-out valuable metals and other components has opened a chance of business and hence a way towards transformation of linear economy to circular one. Chemical, physical and traditional technologies are holding the position in E-waste recycling sector but sustainability with respect to cost and environmental issues is a major concern associated with these technologies. In order to overcome these gaps, lucrative, environment friendly and sustainable technologies need to be implied. Biological approaches could be a green and clean approach to handle E-waste through sustainable and cost-effective means by considering socio-economic and environmental aspects. This review elaborates biological approaches for E-waste management and advancements in expanse. The novelty covers the environmental and socio-economic impacts of E-waste, solution and further scope of biological approaches, further research and development need in this contour to come up with sustainable recycling process.
Collapse
Affiliation(s)
- Rashmi Dixit
- CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagp, 440 020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, India; CSIR- TMD, 3rd Floor, 14, NISCAIR Building, Satsang Vihar Marg, Block A, Qutab Institutional Area, New Delhi, Delhi, 110 016, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagp, 440 020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Govind Pandey
- Madan Mohan Malaviya University of Technology, Gorakhpur, 273 010, India
| |
Collapse
|
12
|
Pourhossein F, Mousavi SM. Improvement of gold bioleaching extraction from waste telecommunication printed circuit boards using biogenic thiosulfate by Acidithiobacillus thiooxidans. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131073. [PMID: 36867908 DOI: 10.1016/j.jhazmat.2023.131073] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Cyanide usage in gold processing techniques has become increasingly challenging due to its toxicity and environmental impact. It is possible to develop environmentally friendly technology using thiosulfate because of its nontoxic characteristics. Thiosulfate production requires high temperatures, resulting in high greenhouse gas emissions and energy consumption. The biogenesized thiosulfate is an unstable intermediate product of Acidithiobacillus thiooxidans sulfur oxidation pathway to sulfate. A novel eco-friendly method was presented in this study to treat spent printed circuit boards (STPCBs) using biogenesized thiosulfate (Bio-Thio) obtained from Acidithiobacillus thiooxidans cultured medium. To obtain a preferable concentration of thiosulfate among other metabolites by limiting thiosulfate oxidation, optimal concentrations of inhibitor (NaN3: 3.25 mg/L) and pH adjustments (pH= 6-7) were found to be effective. Selection of the optimal conditions has led to the highest bio-production of thiosulfate (500 mg/L). The impact of STPCBs content, ammonia, ethylenediaminetetraacetic acid (EDTA), and leaching time on Cu bio-dissolution and gold bio-extraction were investigated using enriched-thiosulfate spent medium. The suitable conditions were a pulp density of 5 g/L, an ammonia concentration of 1 M, and a leaching time of 36 h, which led to the highest selective extraction of gold (65 ± 0.78%).
Collapse
Affiliation(s)
- Fatemeh Pourhossein
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Seif R, Salem FZ, Allam NK. E-waste recycled materials as efficient catalysts for renewable energy technologies and better environmental sustainability. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2023:1-36. [PMID: 36691418 PMCID: PMC9848041 DOI: 10.1007/s10668-023-02925-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Waste from electrical and electronic equipment exponentially increased due to the innovation and the ever-increasing demand for electronic products in our life. The quantities of electronic waste (e-waste) produced are expected to reach 44.4 million metric tons over the next five years. Consequently, the global market for electronics recycling is expected to reach $65.8 billion by 2026. However, electronic waste management in developing countries is not appropriately handled, as only 17.4% has been collected and recycled. The inadequate electronic waste treatment causes significant environmental and health issues and a systematic depletion of natural resources in secondary material recycling and extracting valuable materials. Electronic waste contains numerous valuable materials that can be recovered and reused to create renewable energy technologies to overcome the shortage of raw materials and the adverse effects of using non-renewable energy resources. Several approaches were devoted to mitigate the impact of climate change. The cooperate social responsibilities supported integrating informal collection and recycling agencies into a well-structured management program. Moreover, the emission reductions resulting from recycling and proper management systems significantly impact climate change solutions. This emission reduction will create a channel in carbon market mechanisms by trading the CO2 emission reductions. This review provides an up-to-date overview and discussion of the different categories of electronic waste, the recycling methods, and the use of high recycled value-added (HAV) materials from various e-waste components in green renewable energy technologies.
Collapse
Affiliation(s)
- Rania Seif
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835 Egypt
| | - Fatma Zakaria Salem
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835 Egypt
| | - Nageh K. Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835 Egypt
| |
Collapse
|
14
|
Li X, Ma B, Wang C, Liu W, Zhang B, Chen Y. Action and segregation mechanism of Fe-rich phase in as-cast brass with different Fe contents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Liu K, Wang M, Tsang DCW, Liu L, Tan Q, Li J. Facile path for copper recovery from waste printed circuit boards via mechanochemical approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129638. [PMID: 35933860 DOI: 10.1016/j.jhazmat.2022.129638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Recycling copper (Cu0) from waste printed circuit boards (PCBs) is a prevalent challenge. Here, we propose a new pathway and reveal mechanisms for recovering Cu0 from waste PCBs via a mechanochemical approach. The successful application of mechanical force avoids using inorganic acid in the Cu0 recovery process. Our work demonstrates that ferric chloride (FeCl3) was superior to ferric sulfate and ferric nitrate as a solid-phase reagent for Cu0 recovery due to chloride complexation. Under the induction of mechanical force, the Cu0 in the waste PCBs was oxidized by Fe3+ and complexed by Cl¯ to form a meta-stable cuprous chloride, which was susceptible to leaching in an acidic liquid-phase system constructed by hydrolysis of ferric salt. Further mechanism analysis reveals that in the mechanochemical solid-phase reaction, Cu0, metallic impurities, metal oxides, and carbon materials from waste PCBs could also reduce Fe3+ to Fe2+. The optimum conditions for Cu0 recovery from waste PCB powder with FeCl3 as a solid-phase reagent were: rotational speed of 500 rpm, Cu0:Fe3+ molar ratio of 1:20, and reaction time of 120 min, achieving the highest recovery of 99.6 wt%. This study presents a facile path for Cu0 recovery from waste PCBs for resource circulation.
Collapse
Affiliation(s)
- Kang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mengmeng Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Environmental Technology and Management, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lili Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanyin Tan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinhui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Kumari R, Samadder SR. A critical review of the pre-processing and metals recovery methods from e-wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115887. [PMID: 35933880 DOI: 10.1016/j.jenvman.2022.115887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
E-wastes being potential sources of numerous valuable metals are promoted to undergo recycling and recovery under the umbrella of urban mining and circular economy. Thus, the present study provides a critical review of the technological details of different metal recycling processes, pre-treatment methods, and the advancements made in these techniques. Critical evaluation of different metal recovery techniques has also been presented based on the available life cycle assessment (LCA), techno-economic, and industrial-scale studies. The study revealed that the integrated metal recovery techniques serve better in terms of recovery efficiency and environmental performance than any single recovery technique. Also, scaling up of biometallurgical, electrochemical, and super critical fluid extraction methods needs to be promoted due to their better environmental performances.
Collapse
Affiliation(s)
- Rima Kumari
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| | - Sukha Ranjan Samadder
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
17
|
Copper recovery through biohydrometallurgy route: chemical and physical characterization of magnetic (m), non-magnetic (nm) and mix samples from obsolete smartphones. Bioprocess Biosyst Eng 2022:10.1007/s00449-022-02775-z. [PMID: 36097089 DOI: 10.1007/s00449-022-02775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/10/2022] [Indexed: 11/02/2022]
Abstract
The more modern electronics are, the smaller and complex printed circuit boards are. Thus, these materials are continually changed (physicochemically), increasing the copper concentrations in smartphones. In this sense, it is challenging to set standardized recycling processes to improve metal recovery. In addition, biohydrometallurgy is a clean and cheap process to obtain critical metals from low-grade sources and waste electronic equipment. Therefore, the aim of this work was to characterize, physicochemically, 21 PCBs from smartphones manufactured from 2010 to 2015, and then to recover the copper by Acidithiobacillus ferrooxidans (biohydrometallurgy). The PCBs were comminuted and separated into Magnetic (M), Nonmagnetic (NM) and without magnetic separation (MIX) samples. It was identified 217.8; 560.3 and 401.3 mg Cu/g of PCBs for M, NM and MIX samples, respectively. Regarding biohydrometallurgy, the culture media iron-supplemented (NM + Fe and MIX + Fe) increased the copper content by 2.6 and 7.2%, respectively, and the magnetic separation step was insignificant.
Collapse
|
18
|
Vakilchap F, Mousavi SM. Structural study and metal speciation assessments of waste PCBs and environmental implications: Outlooks for choosing efficient recycling routes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:181-194. [PMID: 35963037 DOI: 10.1016/j.wasman.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Environmental protection from risks and disposal management of discarded mobile phone printed circuit boards (MPhPCBs) is a global issue. Although recycling is proposed as a solution, it is challenging to choose a sustainable method due to the insufficient recognition from extreme structural heterogeneity of these wastes based on their types. To this end, a thorough study on the structural characterization of PCBs using different analyses and metal speciation by sequential extraction procedure were performed. Understanding these information is an essential step in order to choose efficient methods to maximize selective recycling of metals and minimize environmental implications. PCBs were found to be potent metallic reservoirs after all metal content of PCBs were precisely measured. The structural analysis results of the sample included identification of different phases, functional groups, 45.1 % of the crystalline and 54.9 % of amorphous, the mesoporous nature (pore diameter mean ∼ 7.24 nm), hydrophobic property (contact angle ∼93.4°), the positive ζ-potential of particles at pH < (isoelectric point ∼5.4) and vice versa, and the particle size that were not oversized. The metal speciation outcome indicated over 80 % of the total content of elements such as Si, Sn, Ag, Au, Sr, Al, Cr, Nd, Ca, Ba, and P was in a solid crystal structure/residual fraction, which were hard recycled. The assessment of contamination levels of waste indicated the considerable contamination for the environment at global contamination factor ∼27.7, the moderate ecological risk at potential ecological risk assessment ∼82.9, and threats to public health. In addition, the metals of Pr, Mn, and Zn pose high risks because of their risk assessment code values of 42.7 %, 36.7 %, and 33.1 %, respectively. Leaching tests proved Waste Extraction Test was an aggressive method. ANC4 proposed high level of H+ consumption are required for metal leaching in future works.
Collapse
Affiliation(s)
- Farzane Vakilchap
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
19
|
Caicedo JC, Villamizar S, Orlandoni G. The use of synthetic agonists of quorum sensing N- acyl homoserine lactone pathway improves the bioleaching ability in Acidithiobacillus and Pseudomonas bacteria. PeerJ 2022; 10:e13801. [PMID: 35966926 PMCID: PMC9373976 DOI: 10.7717/peerj.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
Metal solubilization from discarded electrical material and electronic devices (e-waste) using the bioleaching capabilities of bacterial cells is highly effective. However, gaps in understanding about the microbiological processes involved in the bioleaching reaction leads to less efficient metal solubilization in large-scale e-waste processing. In this study, bacterial species belonging to the genera Acidithiobacillus and Pseudomonas were used to leach copper and gold from discarded printed circuit boards (PCB). Through modulation of the cell-to-cell communication system in these bacteria, phenotypic traits directly involved in the bioleaching reaction were regulated in order to improve the metal solubilization. Addition of the long chain synthetic autoinducer molecule N-acyl homoserine lactone (AHL) of the quorum sensing pathway to the bioleaching reaction resulted in a significant enhancement of metal extraction from PCB. Factors such as: cell attachment to PCB, biofilm formation and hydrogen cyanide (HCN) production were regulated by the quorum sensing system and could be directly related to the improvement of metal bioleaching. Bioleaching reactions using bacterial quorum sensing modulation could represent a valuable tool in overcoming limitations at the industrial level imposed by microbiological traits that lead to inefficient metal bioleaching from e-waste.
Collapse
Affiliation(s)
| | - Sonia Villamizar
- School of Agricultural and Veterinarian Sciences, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | | |
Collapse
|
20
|
Noruzi F, Nasirpour N, Vakilchap F, Mousavi SM. Complete bioleaching of Co and Ni from spent batteries by a novel silver ion catalyzed process. Appl Microbiol Biotechnol 2022; 106:5301-5316. [PMID: 35838790 DOI: 10.1007/s00253-022-12056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
In the present work, bioleaching of two valuable metals of cobalt (Co) and nickel (Ni) from spent lithium-ion batteries (LIBs) of laptop by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans through a novel adaptation procedure was investigated. Different bioleaching methods including A. ferrooxidans and A. thiooxidans spent medium, A. ferrooxidans one-step and two-step bioleaching were carried out. The effect of silver ion on the bioleaching of Co and Ni in these methods was evaluated. Moreover, a novel strain adaptation approach to the toxic solid content of the battery powder was chosen, which resulted in a very short adaptation time and bioleaching (2 days). Even though silver ion did not have a significant effect on the spent medium method, it had an increasing effect of 26% and 7%, for Co and Ni recovery, respectively, on two-step bioleaching with silver ion-adapted A. ferrooxidans, in gradual addition of the battery powder. The highest extraction results in the spent medium method were 45.2% and 71.5% for Co and Ni, respectively, and a very high extraction yield of 99.95% for these metals was achieved in a short time of only 3 days by two-step bioleaching with gradual addition of the solid content and in the presence of Ag+. KEY POINTS: • Mixed spent medium of acidophilic bacteria resulted in higher Ni and Co extraction. • Adaptation to Ag+ has enhanced the strain capability for Co and Ni extraction. • With Ag+ presence, Co and Ni extraction reached 99.95% in two-step bioleaching.
Collapse
Affiliation(s)
- Forough Noruzi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Jalal Ale Ahmad, P.O. Box: 14115-111, Tehran, Iran
| | - Niloofar Nasirpour
- Chemical Engineering Department, University of Mohaghegh Ardabili, P.O. Box: 56199-11367, Ardabil, Iran
| | - Farzane Vakilchap
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Jalal Ale Ahmad, P.O. Box: 14115-111, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Jalal Ale Ahmad, P.O. Box: 14115-111, Tehran, Iran. .,Modares Environmental Research Institute, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| |
Collapse
|
21
|
Advancements in the field of electronic waste Recycling: Critical assessment of chemical route for generation of energy and valuable products coupled with metal recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Salinas-Rodríguez E, Hernández-Ávila J, Cerecedo-Sáenz E, Arenas-Flores A, Veloz-Rodríguez MA, Toro N, Gutiérrez-Amador MDP, Acevedo-Sandoval OA. Leaching of Copper Contained in Waste Printed Circuit Boards, Using the Thiosulfate-Oxygen System: A Kinetic Approach. MATERIALS 2022; 15:ma15072354. [PMID: 35407686 PMCID: PMC8999890 DOI: 10.3390/ma15072354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
The present work is related to the treatment of crushed waste of printed circuit boards (WPCBs) from electrical and electronic devices (WEEE), carrying out the recovery of copper in solution. In the first stage, the studied material was characterized by AAS, SEM-EDS, and XRD. The results revealed significantly high amounts of copper (744.42 mg/g), compared with the rest of the metals present in the sample, mainly iron and zinc. In the second stage of the work, alkali dynamic leaching experiments were carried out in the S2O3−2− O2 medium, evaluating important kinetic variables in order to verify the controlling step of the system and adjust the data to a kinetic model. According to the results obtained from the various experimental tests executed, it was found that in the studied system of S2O3−2− O2, the leaching of copper was preferably adjusted to the model of spherical particles with a shrinking core finding a mixed chemical−diffusive control, with values of Ea = 25.78 kJ/mol and n = 0.22 (for the leaching reagent), indicating that the reaction was controlled by the oxygen transport to the solid−liquid interface and also by the chemical reaction in the surface of particles, obtaining up to 99.82% copper in solution.
Collapse
Affiliation(s)
- Eleazar Salinas-Rodríguez
- Academic Area of Earth Science and Materials, Institute of Basis Sciences and Engineering, Autonomous University of the State of Hidalgo, Highway Pachuca-Tulancingo km. 4.5, Mineral de la Reforma 42184, Hidalgo, Mexico; (J.H.-Á.); (E.C.-S.); (A.A.-F.); (M.A.V.-R.)
- Correspondence: (E.S.-R.); (O.A.A.-S.); Tel.: +52-771-207-4171 (E.S.-R.); +52-771-151-7643 (O.A.A.-S.)
| | - Juan Hernández-Ávila
- Academic Area of Earth Science and Materials, Institute of Basis Sciences and Engineering, Autonomous University of the State of Hidalgo, Highway Pachuca-Tulancingo km. 4.5, Mineral de la Reforma 42184, Hidalgo, Mexico; (J.H.-Á.); (E.C.-S.); (A.A.-F.); (M.A.V.-R.)
| | - Eduardo Cerecedo-Sáenz
- Academic Area of Earth Science and Materials, Institute of Basis Sciences and Engineering, Autonomous University of the State of Hidalgo, Highway Pachuca-Tulancingo km. 4.5, Mineral de la Reforma 42184, Hidalgo, Mexico; (J.H.-Á.); (E.C.-S.); (A.A.-F.); (M.A.V.-R.)
| | - Alberto Arenas-Flores
- Academic Area of Earth Science and Materials, Institute of Basis Sciences and Engineering, Autonomous University of the State of Hidalgo, Highway Pachuca-Tulancingo km. 4.5, Mineral de la Reforma 42184, Hidalgo, Mexico; (J.H.-Á.); (E.C.-S.); (A.A.-F.); (M.A.V.-R.)
| | - Maria A. Veloz-Rodríguez
- Academic Area of Earth Science and Materials, Institute of Basis Sciences and Engineering, Autonomous University of the State of Hidalgo, Highway Pachuca-Tulancingo km. 4.5, Mineral de la Reforma 42184, Hidalgo, Mexico; (J.H.-Á.); (E.C.-S.); (A.A.-F.); (M.A.V.-R.)
| | - Norman Toro
- Faculty of Engineering and Architecture, Universidad Antonio Prat, Iquique 1100000, Chile;
| | - Maria del P. Gutiérrez-Amador
- Apan High School, Autonomous University of the State of Hidalgo, Highway Apan-Calpulalpan km. 8, Apan 43920, Hidalgo, Mexico;
| | - Otilio A. Acevedo-Sandoval
- Academic Area of Chemistry, Institute of Basis Sciences and Engineering, Autonomous University of the State of Hidalgo, Highway Pachuca-Tulancingo km. 4.5, Mineral de la Reforma 42184, Hidalgo, Mexico
- Correspondence: (E.S.-R.); (O.A.A.-S.); Tel.: +52-771-207-4171 (E.S.-R.); +52-771-151-7643 (O.A.A.-S.)
| |
Collapse
|
23
|
Han P, Teo WZ, Yew WS. Biologically engineered microbes for bioremediation of electronic waste: Wayposts, challenges and future directions. ENGINEERING BIOLOGY 2022; 6:23-34. [PMID: 36968558 PMCID: PMC9995160 DOI: 10.1049/enb2.12020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022] Open
Abstract
In the face of a burgeoning stream of e-waste globally, e-waste recycling becomes increasingly imperative, not only to mitigate the environmental and health risks it poses but also as an urban mining strategy for resource recovery of precious metals, rare Earth elements, and even plastics. As part of the continual efforts to develop greener alternatives to conventional approaches of e-waste recycling, biologically assisted degradation of e-waste offers a promising recourse by capitalising on certain microorganisms' innate ability to interact with metals or degrade plastics. By harnessing emerging genetic tools in synthetic biology, the evolution of novel or enhanced capabilities needed to advance bioremediation and resource recovery could be potentially accelerated by improving enzyme catalytic abilities, modifying substrate specificities, and increasing toxicity tolerance. Yet, the management of e-waste presents formidable challenges due to its massive volume, high component complexity, and associated toxicity. Several limitations will need to be addressed before nascent laboratory-scale achievements in bioremediation can be translated to viable industrial applications. Nonetheless, vested groups, involving both start-up and established companies, have taken visionary steps towards deploying microbes for commercial implementation in e-waste recycling.
Collapse
Affiliation(s)
- Ping Han
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wei Zhe Teo
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
24
|
Bioleaching of Heavy Metals from Printed Circuit Boards with an Acidophilic Iron-Oxidizing Microbial Consortium in Stirred Tank Reactors. Bioengineering (Basel) 2022; 9:bioengineering9020079. [PMID: 35200431 PMCID: PMC8869702 DOI: 10.3390/bioengineering9020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, bioleaching was carried out for the recovery of metals (copper, zinc, tin, lead, gold and silver) from printed circuit boards residues (PCBs), one of the most important wastes from electrical and electronic equipment, using an acidophilic iron-oxidizing bacterial consortium enriched with minerals from a gold mine in the Arequipa region, Peru. High-throughput sequencing and analysis of the 16S rRNA biomarker revealed that this consortium was predominantly composed of Tissierella, Acidiphilium and Leptospirillum bacteria, from which the latter is known to grow by chemolithotrophy through iron oxidation. After the enrichment process, the acidophilic iron-oxidizing consortium was first tested for its tolerance to different PCBs concentrations, showing best growth up to 10 g/L of PCBs and a tolerance index of 0.383. Based on these results, the bioleaching efficiency of the consortium was investigated for 10 g/L of PCBs in stirred tank reactors coupled to an aeration system, for 18 days. High bioleaching efficiencies were achieved for copper and zinc (69% and 91%, respectively), indicating that these two metals can be easily extracted in this leaching system. Lower extraction efficiencies were achieved for tin (16%) and gold (28%), while for lead and silver only a residual recovery (<0.25%) was detected. These results indicate that the enriched bacterial consortium originating from the Arequipa region, Peru, has a high capacity to recover different metals of economic importance.
Collapse
|
25
|
Sampath MK, Nigam VK. Microbial-based eco-friendly processes for the recovery of metals from E-waste. BIOPROSPECTING OF MICROBIAL DIVERSITY 2022:393-405. [DOI: 10.1016/b978-0-323-90958-7.00015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
26
|
Yaashikaa PR, Priyanka B, Senthil Kumar P, Karishma S, Jeevanantham S, Indraganti S. A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach. CHEMOSPHERE 2022; 287:132230. [PMID: 34826922 DOI: 10.1016/j.chemosphere.2021.132230] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 05/15/2023]
Abstract
This review is intent on the environmental pollution generated from printed circuit boards and the methods employed to retrieve valuable and hazardous metals present in the e-wastes. Printed circuit boards are the key components in the electronic devices and considered as huge e-pollutants in polluting our surroundings and the environment as a whole. Composing of toxic heavy metals, it causes serious health effects to the plants, animals and humans in the environment. A number of chemical, biological and physical approaches were carried out to recover the precious metals and to remove the hazardous metals from the environment. Chemical leaching is one of the conventional PCBs recycling methods which was carried out by using different organic solvents and chemicals. Need of high cost for execution, generation of secondary wastes in the conventional methods, forces to discover the advanced recycling methods such as hydrometallurgical, bio-metallurgical and bioleaching processes to retrieve the valuable metals generate through e-wastes. Among them, bioleaching process gain extra priority due to its higher efficiency of metal recovery from printed circuit boards. There are different classes of microorganisms have been utilized for precious metal recovery from the PCBs through bioleaching process such as chemolithoautotrophy, heterotrophy and different fungal species including Aspergillus sp. and Penicillium sp. The current status and scope for further studies in printed circuit boards recycling are discussed in this review.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - B Priyanka
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - Sravya Indraganti
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| |
Collapse
|
27
|
Lin L, Tsou CH, Dou B, Yan S, Zeng Y, Gong M. Electrochemical corrosion behavior and mechanism of iron-oxidizing bacteria Thiobacillus ferrooxidans from acid mine drainage on Q235 carbon steel. NEW J CHEM 2022. [DOI: 10.1039/d2nj04013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bread or steel! Is it true that some microbes can eat steel as bread? Dear friends, come and have a look!
Collapse
Affiliation(s)
- Li Lin
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
- Sichuan Provincial Key Lab of Process Equipment and Control, Zigong, 643000, China
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, China
| | - Chi-Hui Tsou
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Baojie Dou
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Shisen Yan
- Sichuan Provincial Key Lab of Process Equipment and Control, Zigong, 643000, China
| | - Ying Zeng
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, China
| | - Min Gong
- School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| |
Collapse
|
28
|
Dinh T, Dobo Z, Kovacs H. Phytomining of noble metals - A review. CHEMOSPHERE 2022; 286:131805. [PMID: 34391113 DOI: 10.1016/j.chemosphere.2021.131805] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Phytomining of noble metals (NMs) offers a promising possibility of metal extraction at sites where traditional mining activities or recovering NMs from low-grade minerals are not competitive. In addition to conventional mining, producing NMs from secondary resources strengthening the circular economy has been paid worldwide attention. The review presented in this paper links three scientific areas as the essential elements to form the phytomining chain of NMs. The accumulation of NMs in plants is the first step, referred as the phytoextraction process. This is followed by heightening the concentration of NMs via the enrichment stage. Eventually, although less well understood, extraction methods of NMs from biomass solid remains as well as from diverse secondary sources particularly incineration ashes are discussed that assist to visualize the potential pathways in phytomining.
Collapse
Affiliation(s)
- Truong Dinh
- Institute of Energy and Quality, University of Miskolc, Address: 3515, Mikolc, Egyetemváros, Hungary.
| | - Zsolt Dobo
- Institute of Energy and Quality, University of Miskolc, Address: 3515, Mikolc, Egyetemváros, Hungary.
| | - Helga Kovacs
- Institute of Energy and Quality, University of Miskolc, Address: 3515, Mikolc, Egyetemváros, Hungary.
| |
Collapse
|
29
|
Sronsri C, Sittipol W, Panitantum N, U-Yen K. Optimization of elemental recovery from electronic wastes using a mild oxidizer. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:420-427. [PMID: 34619623 DOI: 10.1016/j.wasman.2021.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
In this work, metals were recovered from electronic wastes under optimized conditions. The columnar extraction was used to increase the contact between the leachate solution and solid-state wastes. Industrial metals were recovered by an electrochemical process using a regenerated mild oxidizer under optimized operating parameters to enrich the metal concentrations and reduce waste generation. The maximum recovery rate (1.135 mg·min-1) was recorded under the optimized conditions (160 A·m-2 current density, 7 mL·min-1 leachate flow rate, and 0.8 mol·L-1 ferric concentration). The selective columnar extraction process was employed to extract gold, wherein the highest extraction efficiency (69.39%) was obtained under optimized conditions of 0.7 mol·L-1 thiourea, 0.6 mol·L-1 hydrochloric acid, 0.8 mol·L-1 ferric chloride, 120 min circulation time, and 6 mL·min-1 leachate flow rate. The adsorption process was used for the recovery of gold, which was investigated under the kinetic as well as equilibrium adsorption processes. The adsorption curves conformed to the Langmuir model and followed the first-order kinetics. The adsorption rate decreased with the increasing values of pH, temperature, adsorbent size, while the rate increased with the stirring speed and adsorbent quantity. Finally, acidic extraction under anaerobic and optimal conditions was performed to extract and selectively recover rare-earth elements. The rare-earth elements were initially precipitated in their sulfate forms and subsequently transformed into corresponding hydroxides and oxides. The total recovery efficiencies for cerium and neodymium were found to be 91.7% and 86.7%, respectively.
Collapse
Affiliation(s)
- Chuchai Sronsri
- Future Innovation & Research in Science and Technology, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Wanpasuk Sittipol
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Napong Panitantum
- Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kongpop U-Yen
- Future Innovation & Research in Science and Technology, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
30
|
Krishnamoorthy S, Ramakrishnan G, Dhandapani B. Recovery of valuable metals from waste printed circuit boards using organic acids synthesised by Aspergillus niveus. IET Nanobiotechnol 2021; 15:212-220. [PMID: 34694696 PMCID: PMC8675819 DOI: 10.1049/nbt2.12001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 11/20/2022] Open
Abstract
Organic acids such as citric acid, itaconic acid and oxalic acid synthesised by Aspergillus niveus were used for the bioleaching of metals from waste printed circuit boards. Bioleaching of valuable metals was performed in one‐step, two‐steps and spent medium approaches using A. niveus. In the absence of waste printed circuit boards (WPCBs), the dry cell weight of A. niveus was higher when compared with the presence of WPCBs. Variations in the dry cell weight were observed for the presence of different particle sizes. The increase in itaconic acid and oxalic acid synthesis was found at a reduced particle size (60–80 mesh) and reached the maximum titre of itaconic acid (22.35 ± 0.87 mM) and oxalic acid (12.75 ± 0.54 mM) in 12 days during the two‐step bioleaching. The maximum recovery of 75.66% Zn, 73.58% Ni and 80.25% Cu from WPCBs was achieved in 15 days in two‐step leaching with particle sizes of the mesh being 60–80.
Collapse
Affiliation(s)
- Santhosh Krishnamoorthy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Gnanasekaran Ramakrishnan
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| | - Balaji Dhandapani
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| |
Collapse
|
31
|
Jadhao PR, Pandey A, Pant KK, Nigam KDP. Efficient recovery of Cu and Ni from WPCB via alkali leaching approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113154. [PMID: 34216905 DOI: 10.1016/j.jenvman.2021.113154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/22/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The large generation of electronic waste (e-waste) is posing a serious threat to society. It is important to develop sustainable technology for the effective management of e-waste and the recovery of valuable metals from it. The present study employed hydrometallurgical approach for Cu and Ni extraction from waste printed circuit boards (WPCB) of mobile phones. This study demonstrates the application of ammonia-ammonium sulfate leaching for the maximum recovery of Cu and Ni. Investigations revealed that the most favourable reaction parameters for efficient metal extraction are - ammonia concentration - 90 g/L, ammonium sulfate concentration - 180 g/L, H2O2 concentration - 0.4 M, time - 4 h, liquid to solid ratio - 20 mL/g, temperature - 80 °C and agitation speed - 700 rpm. Under these conditions, 100% Cu and 90% Ni were extracted. Furthermore, the kinetic study was performed using the shrinking core model which revealed that the internal diffusion is the rate-controlling step for Cu and Ni extraction. The activation energies for Cu and Ni extraction were found out to be 4.5 and 5.7 kJ/mol, respectively. Finally, Cu was recovered with 98.38% purity using electrowinning at a constant DC voltage of 2.0 V at Al cathode. The present study provides a solution for concurrent extraction of Cu and Ni from the raw WPCB of mobile phones and selective recovery of Cu from metal leached solution. The process has the potential to recover the resources from WPCB while minimising the pollution caused by mismanagement of WPCB.
Collapse
Affiliation(s)
- Prashant Ram Jadhao
- Chemical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ashish Pandey
- Chemical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - K K Pant
- Chemical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - K D P Nigam
- Chemical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
32
|
Enhanced recovery of copper from reclaimed copper smelting fly ash via leaching and electrowinning processes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Green recovery of Cu-Ni-Fe from a mixture of spent PCBs using adapted A. ferrooxidans in a bubble column bioreactor. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Anaya-Garzon J, Hubau A, Joulian C, Guezennec AG. Bioleaching of E-Waste: Influence of Printed Circuit Boards on the Activity of Acidophilic Iron-Oxidizing Bacteria. Front Microbiol 2021; 12:669738. [PMID: 34489879 PMCID: PMC8416503 DOI: 10.3389/fmicb.2021.669738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Bioleaching is a promising strategy to recover valuable metals from spent printed circuit boards (PCBs). The performance of the process is catalyzed by microorganisms, which the toxic effect of PCBs can inhibit. This study aimed to investigate the capacity of an acidophilic iron-oxidizing culture, mainly composed of Leptospirillum ferriphilum, to oxidize iron in PCB-enriched environments. The culture pre-adapted to 1% (w/v) PCB content successfully thrived in leachates with the equivalent of 6% of PCBs, containing 8.5 g L–1 Cu, 8 g L–1 Fe, 1 g L–1 Zn, 92 mg L–1 Ni, 12.6 mg L–1 Pb, and 4.4 mg L–1 Co, among other metals. However, the inhibiting effect of PCBs limited the microbial activity by delaying the onset of the exponential iron oxidation. Successive subcultures boosted the activity of the culture by reducing this delay by up to 2.6 times under batch conditions. Subcultures also favored the rapid establishment of high microbial activity in continuous mode.
Collapse
Affiliation(s)
- Juan Anaya-Garzon
- Bureau de Recherches Géologiques et Minières, Orléans, France.,Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - Agathe Hubau
- Bureau de Recherches Géologiques et Minières, Orléans, France
| | | | | |
Collapse
|
35
|
E-Waste Recycling and Resource Recovery: A Review on Technologies, Barriers and Enablers with a Focus on Oceania. METALS 2021. [DOI: 10.3390/met11081313] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electronic e-waste (e-waste) is a growing problem worldwide. In 2019, total global production reached 53.6 million tons, and is estimated to increase to 74.7 million tons by 2030. This rapid increase is largely fuelled by higher consumption rates of electrical and electronic goods, shorter life cycles and fewer repair options. E-waste is classed as a hazardous substance, and if not collected and recycled properly, can have adverse environmental impacts. The recoverable material in e-waste represents significant economic value, with the total value of e-waste generated in 2019 estimated to be US $57 billion. Despite the inherent value of this waste, only 17.4% of e-waste was recycled globally in 2019, which highlights the need to establish proper recycling processes at a regional level. This review provides an overview of global e-waste production and current technologies for recycling e-waste and recovery of valuable material such as glass, plastic and metals. The paper also discusses the barriers and enablers influencing e-waste recycling with a specific focus on Oceania.
Collapse
|
36
|
Rene ER, Sethurajan M, Kumar Ponnusamy V, Kumar G, Bao Dung TN, Brindhadevi K, Pugazhendhi A. Electronic waste generation, recycling and resource recovery: Technological perspectives and trends. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125664. [PMID: 33838506 DOI: 10.1016/j.jhazmat.2021.125664] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The growing population and increased disposal of end-of-life (EoL) electrical and electronic products have caused serious concerns to the environment and human health. Electronic waste (e-waste) is a growing problem because the quantity and the rate at which it is generated has increased exponentially in the last 5 years. The rapid changes or upgradation in technologies, IT requirements for working or learning from home during COVID-19, manufacturers releasing new electronic gadgets and devices that serves the consumers comfort and a declension in services has contributed to an increase in the e-waste or waste of electrical and electronic equipment (WEEE) generation rates. The current status of e-waste generation, handling procedures and regulatory directives in USA, EU, China, India, Vietnam and Gulf Cooperation Council (GCC) countries are presented in this review. The recent developments in e-waste recycling methods/recovery of base and precious metals, the advantages and limitations of hydrometallurgy, pyrometallurgy, biohydrometallurgy and pyrolysis are discussed. Considering the impediments in the present technologies, the extraction of valuable resources, i.e. precious metals, from e-waste using suitable biocatalysts shows promising applications. This review also stresses on the research needs to assess the economic effects of involving different unit operations/process industries for resource recovery, reuse and recycling.
Collapse
Affiliation(s)
- Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft 2601DA, The Netherlands
| | - Manivannan Sethurajan
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft 2601DA, The Netherlands
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, and Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Thi Ngoc Bao Dung
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
37
|
Abstract
Platinum and other metals are very scarce materials widely used in the energy and transportation sector among other sectors. Obtaining Platinum is becoming more difficult due to its scarcity on earth and because of the high amount of energy and water used for its extraction. In this regard, the recycling of platinum is necessary for sustainable technologies and for reaching a circular economy towards this expensive and rare metal. Conventional methods for platinum recycling make use of enormous amounts of energy for its recovery, which makes them not very attractive for industry implementation. Furthermore, these processes generate very toxic liquid streams and gas wastes that must be further treated, which do not meet the green environmental point of view of platinum recycling. Consequently, new advanced technologies are arising aiming to reach very high platinum recovery rates while being environmentally friendly and making a huge reduction of energy use compared with the conventional methods. In this review, conventional platinum recovery methods are summarized showing their limitations. Furthermore, new and promising approaches for platinum recovery are reviewed to shed light on about new and greener ways for a platinum circular economy.
Collapse
|
38
|
Bioleaching of metals from waste printed circuit boards using bacterial isolates native to abandoned gold mine. Biometals 2021; 34:1043-1058. [PMID: 34213670 DOI: 10.1007/s10534-021-00326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
In the present study, native bacterial strains isolated from abandoned gold mine and Chromobacterium violaceum (MTCC-2656) were applied for bioleaching of metals from waste printed circuit boards (WPCBs). Toxicity assessment and dose-response analysis of WPCBs showed EC50 values of 128.9, 98.7, and 90.8 g/L for Bacillus sp. SAG3, Bacillus megaterium SAG1 and Lysinibacillus sphaericus SAG2, respectively, whereas, for C. violaceum EC50 was 83.70 g/L. This indicates the viable operation range and technological feasibility of metals bioleaching from WPCBs using mine isolates. The influencing factors such as pH, pulp density, temperature, and precursor molecule (glycine) were optimized by one-factor at a time method (OFAT). The maximum metal recovery occurred at an initial pH of 9.0, a pulp density of 10 g/L, a temperature of 30 °C and a glycine concentration of 5 g/L, except for L. sphaericus which showed optimum activity at initial pH of 8.0. Under optimal conditions the metals recovery of Cu and Au from WPCBs were recorded as 87.5 ± 8% and 73.6 ± 3% for C. violaceum and 72.7 ± 5% and 66.6 ± 6% for B. megaterium, respectively. Kinetic modeling results showed that the data was best described by first order reaction kinetics, where the rate of metal solubilization from WPCBs depended upon microbial lixiviant production. This is the first report on bioleaching of metals from e-waste using bacterial isolates from the gold mine of Solan, HP. Our study demonstrated the potential of bioleaching for resource recovery from WPCBs dust, aimed to be disposed at landfills, and its effectiveness in extraction of elements those are at high supply risk and demand.
Collapse
|
39
|
Abstract
The need to drive towards sustainable metal resource recovery from end-of-cycle products cannot be overstated. This review attempts to investigate progress in the development of recycling strategies for the recovery of strategic metals, such as precious metals and base metals, from catalytic converters, e-waste, and batteries. Several methods for the recovery of metal resources have been explored for these waste streams, such as pyrometallurgy, hydrometallurgy, and biohydrometallurgy. The results are discussed, and the efficiency of the processes and the chemistry involved are detailed. The conversion of metal waste to high-value nanomaterials is also presented. Process flow diagrams are also presented, where possible, to represent simplified process steps. Despite concerns about environmental effects from processing the metal waste streams, the gains for driving towards a circular economy of these waste streams are enormous. Therefore, the development of greener processes is recommended. In addition, countries need to manage their metal waste streams appropriately and ensure that this becomes part of the formal economic activity and, therefore, becomes regulated.
Collapse
|
40
|
Abstract
Resource Recovery from Waste Electronics has emerged as one of the most imperative processes due to its pressing challenges all over the world. The Printed Circuit Board (PCB) is one of the typical E-waste components that comprise large varieties of metals and nonmetals. Urban Mining of these metals has received major attention all over the world. The existing treatment procedures used extensively for the resource extraction are hydrometallurgy and pyro-metallurgy and crude recycling practices in the informal sector. However, these methods are prone to cause secondary pollutants with certain drawbacks. Also, the existing informal recycling procedures resulted in insignificant occupational health hazards and severe environmental threats. The application of biotechnology is extensively exploited for metal extraction and emerged as one of the sustainable and eco-friendly tools. However, a limited field-scale study is prevailing in the realm of resource recovery from E-waste using bioleaching method. Hence, the application of bioleaching requires more attention and technical know-how in developing countries to curtail crude practices. The application of bioleaching in E-waste, including its available methods, kinetics mechanism associated opportunities, and barriers, have been discussed in this paper. A glance of E-waste management in India and the menace of 95% crude E-waste recycling are also elaborated. The incentives toward profit, socio-economic, and environmentally sustainable approaches have been delineated based on critical analysis of the available literature.
Collapse
Affiliation(s)
- Shashi Arya
- Technology Development Centre (TDC), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI) , Nagpur, India.,Technology Development Centre (TDC), Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad, India
| | - Sunil Kumar
- Technology Development Centre (TDC), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI) , Nagpur, India
| |
Collapse
|
41
|
Tipre DR, Khatri BR, Thacker SC, Dave SR. The brighter side of e-waste-a rich secondary source of metal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10503-10518. [PMID: 33438127 DOI: 10.1007/s11356-020-12022-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
This article details the electronic waste (e-waste) generation, their composition, health, and environment hazards, and legal rules for disposal as well as their significance as a potential secondary source of metals and other components. Moreover, valuable metal extraction technologies from the e-waste are reviewed in general and waste cell phones in particular. E-waste is nowadays preferentially used for recovery of metals mainly from printed circuit boards (PCBs). Different techniques, namely pyrometallurgy, hydrometallurgy, and biohydrometallurgy used for metal extraction from e-waste are swotted. The economic and environmental valuation features of these technologies are also included. Compared to other methods, biohydrometallurgy is the method of choice, as in it natural components like air and water are used, has low operating and maintenance cost, and operate at ambient temperature and pressure. Microbial aspects of metal extraction from e-waste are summarized.
Collapse
Affiliation(s)
- Devayani R Tipre
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380 009, India.
| | - Bhumika R Khatri
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380 009, India
| | - Shital C Thacker
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380 009, India
| | - Shailesh R Dave
- Xavier Research Foundation, Loyola Centre for Research and Development, St. Xavier College Campus, Ahmedabad, Gujarat, 380009, India
| |
Collapse
|
42
|
Ilyas S, Srivastava RR, Kim H, Das S, Singh VK. Circular bioeconomy and environmental benignness through microbial recycling of e-waste: A case study on copper and gold restoration. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:175-185. [PMID: 33360816 DOI: 10.1016/j.wasman.2020.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
This study has attempted to ascertain the linkages between circular bio-economy (CirBioeco) and recycling of electronic (e-)waste by applying microbial activities instead of the smelter and chemical technologies. To build the research hypothesis, the advances on biotechnology-driven recycling processes for metals extraction from e-waste has been analyzed briefly. Thereafter, based on the potential of microbial techniques and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on CirBioeco indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO2 emissions and 24 million m3 water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste under the umbrella concept of CirBioeco.
Collapse
Affiliation(s)
- Sadia Ilyas
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Rajiv R Srivastava
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Department of Environment and Energy, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| | - Subhankar Das
- Institute of Socio-economics, Duy Tan University, Da Nang 550000, Viet Nam
| | - Vinay K Singh
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| |
Collapse
|
43
|
Microbial Processing of Waste Shredded PCBs for Copper Extraction Cum Separation—Comparing the Efficacy of Bacterial and Fungal Leaching Kinetics and Yields. METALS 2021. [DOI: 10.3390/met11020317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recycling of electronic scrap is an important subject not only from an environmental aspect but also for recovering metal resources such as copper. In this work, the microbial extraction of copper and other metals (Cu, Ni, Co, Fe and Al) present in the depopulated and shredded printed circuit board (PCB) is elaborated. Bacterial strains of A. ferrooxidans, A. thiooxidans and a fungal strain, A. niger are used for copper extraction along with other metals from shredded PCBs. An optimum metal recovery of 93% Cu was obtained at 308 K, pH 2 using 8% pulp density in 10 days by a mixed culture of A. ferrooxidans and A. thiooxidans. Whereas using A. niger, a metal recovery of 66% Cu was reported using similar experimental conditions. The results show the higher potential ability of bacteria as compared to fungus to bioleach copper. Additionally, the kinetics and mechanism of copper bioleaching from this e-waste by the chemolithotrophs and heterotrophs were evaluated. The leach liquor obtained from the optimized leaching process was subjected to separation and purification of copper as >99% pure copper sulfate using Acorga M5640 by solvent extraction.
Collapse
|
44
|
Choi JW, Bediako JK, Kang JH, Lim CR, Dangi YR, Kim HJ, Cho CW, Yun YS. In-situ microwave-assisted leaching and selective separation of Au(III) from waste printed circuit boards in biphasic aqua regia-ionic liquid systems. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Choi JW, Song MH, Bediako JK, Yun YS. Sequential recovery of gold and copper from bioleached wastewater using ion exchange resins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115167. [PMID: 32688197 DOI: 10.1016/j.envpol.2020.115167] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/08/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Numerous studies have sought to address the extraction of metals from printed circuit boards by employing bioleaching process. However, separation and recovery of the bioleached metals have always been a bottleneck. Herein, we demonstrate effective recovery of bioleached Au and Cu via selective separation using ion exchange resins. pH-edge experiments revealed high affinity of Amberjet™ 4200 resin towards Au (adsorption capacity > 98%) over the entire pH range from pH 2-10, whereas Amberlite IRC-86 resin recorded very high Cu adsorption at around pH 5. Therefore, a two-step sequential process was designed for the effective separation and recovery of Au and Cu. In the 1st step, Au was completely recovered by using the Amberjet™ 4200 at the natural pH of 7.5. Subsequently, the Au-free solution was adjusted to pH 5 and Cu was recovered by using Amberlite IRC-86 (2nd step). Consequently, 98.7% Au and 78.9% Cu were successfully recovered. Therefore, this study provides a technical guideline for the selective recovery of Au and Cu from bioleached wastewater, which promotes effective waste minimization and efficient resource recovery.
Collapse
Affiliation(s)
- Jong-Won Choi
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University (formerly Chonbuk National University), Jeonbuk, Republic of Korea
| | - Myung-Hee Song
- School of Chemical Engineering, Jeonbuk National University (formerly Chonbuk National University), Jeonbuk, Republic of Korea
| | - John Kwame Bediako
- Hongik University Research Institute of Science and Technology (HiRIST), Seoul, Republic of Korea
| | - Yeoung-Sang Yun
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University (formerly Chonbuk National University), Jeonbuk, Republic of Korea; School of Chemical Engineering, Jeonbuk National University (formerly Chonbuk National University), Jeonbuk, Republic of Korea.
| |
Collapse
|
46
|
Application of Firefly Luciferase (Luc) as a Reporter Gene for the Chemoautotrophic and Acidophilic Acidithiobacillus spp. Curr Microbiol 2020; 77:3724-3730. [PMID: 32945904 DOI: 10.1007/s00284-020-02195-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Acidithiobacillus spp. are the most active bacteria in bioleaching and bioremediation, because of their remarkable extreme environmental adaptabilities and unique metabolic characteristics. The researches on regulatory mechanisms of energy metabolism and stress resistance are critical for the understanding and application of Acidithiobacillus spp. However, the lack of an ideal reporter gene has become an obstacle for studying genes expression and regulatory mechanism in these chemoautotrophic bacteria. In this study, we reported the firefly luciferase as a reporter gene for Acidithiobacillus caldus (A. caldus) and created a firefly luciferase (Luc) reporter system. The Luc system was applied for the quantitative analysis of the transcription strength of the promoters of tetH gene and the feoA gene in A. caldus. Moreover, the regulating effect of ferric uptake regulator (Fur) on the feoP gene in A. caldus was determined using the Luc system. The Luc reporter system is not only used in the study of regulatory mechanism of A. caldus, but also applied in the researches of other Acidithiobacillus species. Therefore, this study provides a new useful tool for the studies on the molecular biological mechanism and synthetic biological modification of these chemoautotrophic bacteria, which would promote the industrial application of Acidithiobacillus spp.
Collapse
|
47
|
Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: Current trends and perspectives. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Microorganisms and Plants in the Recovery of Metals from the Printed Circuit Boards of Computers and Cell Phones: A Mini Review. METALS 2020. [DOI: 10.3390/met10091120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Most electrical and electronic equipment contain a printed circuit board (PCB), which is the board on which microelectronic components are mounted. The PCBs of obsolete and discarded electrical and electronic equipment are a material of great value due to their high metal content that is of commercial importance (i.e., Au, Ag, Pd, Pt, Ir, Ti, Ge, Si, Al, Cu, Ni, Zn, Fe, Sn, As, and Pb). Hydrometallurgical and pyrometallurgical methods have been used to extract metals from PCBs; however, these methods have energy and environmental disadvantages, which is why in recent years sustainable alternatives have been sought. Among these alternatives are the biological methods that contemplate the use of microorganisms and plants to recover metals from PCBs. In this review, only studies specifying the use of bacteria, fungi, and plants in the recovery of metals from the PCBs of computers and cell phones were considered, since the metallic composition of these plates varies according to the electronic equipment. In addition, the challenges and recommendations for these biotechnological processes to be improved and implemented at the industrial level in the coming years are discussed.
Collapse
|
49
|
Biotechnology for Metal Recovery from End-of-Life Printed Circuit Boards with Aspergillus niger. SUSTAINABILITY 2020. [DOI: 10.3390/su12166482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The growing production and use of electric and electronic components has led to higher rates of metal consumption and waste generation. To solve this double criticality, the old linear management method (in which a product becomes waste to dispose), has evolved towards a circular approach. Printed circuit boards (PCBs) are the brains of many electronic devices. At the end of their life, this equipment represents a valuable scrap for the content of base metals such as Cu and Zn (25 and 2 wt %, respectively) and precious metals such as Au, Ag, and Pd (250, 1000, and 110 ppm, respectively). Recently, biotechnological approaches have gained increasing prominence in PCB exploitation since they can be more cost-efficient and environmentally friendly than the chemical techniques. In this context, the present paper describes a sustainable process which uses the fungal strain Aspergillus niger for Cu and Zn extraction from PCBs. The best conditions identified were PCB addition after 14 days, Fe3+ as oxidant agent, and a pulp density of 2.5% (w/v). Extraction efficiencies of 60% and 40% for Cu and Zn, respectively, were achieved after 21 days of fermentation. The ecodesign of the process was further enhanced by using milk whey as substrate for the fungal growth and the consequent citric acid production, which was selected as a bioleaching agent.
Collapse
|
50
|
Aminian-Dehkordi J, Mousavi SM, Marashi SA, Jafari A, Mijakovic I. A Systems-Based Approach for Cyanide Overproduction by Bacillus megaterium for Gold Bioleaching Enhancement. Front Bioeng Biotechnol 2020; 8:528. [PMID: 32582661 PMCID: PMC7283520 DOI: 10.3389/fbioe.2020.00528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
With the constant accumulation of electronic waste, extracting precious metals contained therein is becoming a major challenge for sustainable development. Bacillus megaterium is currently one of the microbes used for the production of cyanide, which is the main leaching agent for gold recovery. The present study aimed to propose a strategy for metabolic engineering of B. megaterium to overproduce cyanide, and thus ameliorate the bioleaching process. For this, we employed constraint-based modeling, running in silico simulations on iJA1121, the genome-scale metabolic model of B. megaterium DSM319. Flux balance analysis (FBA) was initially used to identify amino acids to be added to the culture medium. Considering cyanide as the desired product, we used growth-coupled methods, constrained minimal cut sets (cMCSs) and OptKnock to identify gene inactivation targets. To identify gene overexpression targets, flux scanning based on enforced objective flux (FSEOF) was performed. Further analysis was carried out on the identified targets to determine compounds with beneficial regulatory effects. We have proposed a chemical-defined medium for accelerating cyanide production on the basis of microplate assays to evaluate the components with the greatest improving effects. Accordingly, the cultivation of B. megaterium DSM319 in a chemically-defined medium with 5.56 mM glucose as the carbon source, and supplemented with 413 μM cysteine, led to the production of considerably increased amounts of cyanide. Bioleaching experiments were successfully performed in this medium to recover gold and copper from telecommunication printed circuit boards. The results of inductively coupled plasma (ICP) analysis confirmed that gold recovery peaked out at around 55% after 4 days, whereas copper recovery continued to increase for several more days, peaking out at around 85%. To further validate the bioleaching results, FESEM, XRD, FTIR, and EDAX mapping analyses were performed. We concluded that the proposed strategy represents a viable route for improving the performance of the bioleaching processes.
Collapse
Affiliation(s)
- Javad Aminian-Dehkordi
- Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Arezou Jafari
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|