1
|
Jiang T, Wu W, Ma M, Hu Y, Li R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175664. [PMID: 39173760 DOI: 10.1016/j.scitotenv.2024.175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Emerging contaminants are pervasive in aquatic environments globally, encompassing pharmaceuticals, personal care products, steroid hormones, phenols, biocides, disinfectants and various other compounds. Concentrations of these contaminants are detected ranging from ng/L to μg/L. Even at trace levels, these contaminants can pose significant risks to ecosystems and human health. This article systematically summarises and categorizes data on the concentrations of 54 common emerging contaminants found in the influent and effluent of wastewater treatment plants across various geographical regions: North America, Europe, Oceania, Africa, and Asia. It reviews the occurrence and distribution of these contaminants, providing spatial and causal analyses based on data from these regions. Notably, the maximum concentrations of the pollutants observed vary significantly across different regions. The data from Africa, in particular, show more frequent detection of pharmaceutical maxima in wastewater treatment plants.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Meng Ma
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Ruoxi Li
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| |
Collapse
|
2
|
Zhou J, He X, Zhang Z, Wu G, Liu P, Wang D, Shi P, Zhang XX. Chemical-toxicological insights and process comparison for estrogenic activity mitigation in municipal wastewater treatment plants. WATER RESEARCH 2024; 253:121304. [PMID: 38364463 DOI: 10.1016/j.watres.2024.121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Efforts in water ecosystem conservation require an understanding of causative factors and removal efficacies associated with mixture toxicity during wastewater treatment. This study conducts a comprehensive investigation into the interplay between wastewater estrogenic activity and 30 estrogen-like endocrine disrupting chemicals (EEDCs) across 12 municipal wastewater treatment plants (WWTPs) spanning four seasons in China. Results reveal substantial estrogenic activity in all WWTPs and potential endocrine-disrupting risks in over 37.5 % of final effluent samples, with heightened effects during colder seasons. While phthalates are the predominant EEDCs (concentrations ranging from 86.39 %) for both estrogenic activity and major EEDCs (phthalates and estrogens), with the secondary and tertiary treatment segments contributing 88.59 ± 8.12 % and 11.41 ± 8.12 %, respectively. Among various secondary treatment processes, the anaerobic/anoxic/oxic-membrane bioreactor (A/A/O-MBR) excels in removing both estrogenic activity and EEDCs. In tertiary treatment, removal efficiencies increase with the inclusion of components involving physical, chemical, and biological removal principles. Furthermore, correlation and multiple liner regression analysis establish a significant (p < 0.05) positive association between solid retention time (SRT) and removal efficiencies of estrogenic activity and EEDCs within WWTPs. This study provides valuable insights from the perspective of prioritizing key pollutants, the necessity of integrating more efficient secondary and tertiary treatment processes, along with adjustments to operational parameters like SRT, to mitigate estrogenic activity in municipal WWTPs. This contribution aids in managing endocrine-disrupting risks in wastewater as part of ecological conservation efforts.
Collapse
Affiliation(s)
- Jiawei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Zepeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Tue NM, Matsukami H, Tuyen LH, Suzuki G, Viet PH, Sudaryanto A, Subramanian A, Tanabe S, Kunisue T. Estrogenic, androgenic, and glucocorticoid activities and major causative compounds in river waters from three Asian countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20765-20774. [PMID: 36255587 DOI: 10.1007/s11356-022-23674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Estrogen, androgen, and glucocorticoid receptors (ER, AR, and GR) agonist activities in river water samples from Chennai and Bangalore (India), Jakarta (Indonesia), and Hanoi (Vietnam) were evaluated using a panel of chemical-activated luciferase gene expression (CALUX) assays and were detected mainly in the dissolved phase. The ER agonist activity levels were 0.011-55 ng estradiol (E2)-equivalent/l, higher than the proposed effect-based trigger (EBT) value of 0.5 ng/l in most of the samples. The AR agonist activity levels were < 2.1-110 ng dihydrotestosterone (DHT)-equivalent/l, and all levels above the limit of quantification exceeded the EBT value of 3.4 ng/l. GR agonist activities were detected in only Bangalore and Hanoi samples at dexamethasone (Dex)-equivalent levels of < 16-150 ng/l and exceeded the EBT value of 100 ng/l in only two Bangalore samples. Major compounds contributing to the ER, AR, and GR agonist activities were identified for water samples from Bangalore and Hanoi, which had substantially higher activities in all assays, by using a combination of fractionation, CALUX measurement, and non-target and target chemical analysis. The results for pooled samples showed that the major ER agonists were the endogenous estrogens E2 and estriol, and the major GR agonists were the synthetic glucocorticoids Dex and clobetasol propionate. The only AR agonist identified in major androgenic water extract fractions was DHT, but several unidentified compounds with the same molecular formulae as endogenous androgens were also found.
Collapse
Affiliation(s)
- Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Hidenori Matsukami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Le Huu Tuyen
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Agus Sudaryanto
- National Research and Innovation Agency (BRIN), Jl. M.H. Thamrin 8, Jakarta, Indonesia
| | - Annamalai Subramanian
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
4
|
Ricky R, Shanthakumar S. Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113998. [PMID: 34717103 DOI: 10.1016/j.jenvman.2021.113998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are of emerging concerns because of their large usage, persistent nature which promised their continuous disposal into the environment, as these pollutants are stable enough to pass through wastewater treatment plants causing hazardous effects on all the organisms through bioaccumulation, biomagnification, and bioconcentration. The available technologies are not capable of eliminating all the PPCPs along with their degraded products but phycoremediation has the advantage over these technologies by biodegrading the pollutants without developing resistant genes. Even though phycoremediation has many advantages, industries have found difficulty in adapting this technology as a single-stage treatment process. To overcome these drawbacks recent research studies have focused on developing technology that integrated phycoremediation with the commonly employed treatment processes that are in operation for treating the PPCPs effectively. This review paper focuses on such research approaches that focused on integrating phycoremediation with other technologies such as activated sludge process (ASP), advanced oxidation process (AOP), Up-flow anaerobic sludge blanket reactor (UASBR), UV irradiation, and constructed wetland (CW) with the advantages and limitations of each integration processes. Furthermore, augmenting phycoremediation by co-metabolic mechanism with the addition of sodium chloride, sodium acetate, and glucose for the removal of PPCPs has been highlighted in this review paper.
Collapse
Affiliation(s)
- R Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Shanthakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
5
|
Nguyen PY, Carvalho G, Reis MAM, Oehmen A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. WATER RESEARCH 2021; 188:116446. [PMID: 33038717 DOI: 10.1016/j.watres.2020.116446] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 05/18/2023]
Abstract
Wastewater effluent discharges have been considered as one of the main sources of synthetic chemicals entering into the aquatic environment. Even though they occur at low concentrations, pharmaceutically active compounds (PhACs) can have an impact on ecological toxicity that affects aquatic organisms. Moreover, new regulations in development toward preserving water quality reinforces the increasing need to monitor and abate some PhACs in wastewater treatment plants (WWTPs), where they are typically only partially eliminated. Unlike most previous reviews, we have focussed on how the main biological and chemical molecular factors impact the biotransformations of key PhACs in biological WWTP processes. Biotransformations have been found to be an important contributor towards the removal of PhACs from WWTP effluents. This review paper critically assesses these aspects and the recent advances that have been achieved in wastewater treatment processes for biodegradation of 7 PhACs; namely the non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF); the macrolide antibiotics azithromycin (AZM), erythromycin (ERY) and clarithromycin (CLR); the two natural estrogens estrone (E1) and 17β-estradiol (E2), and the synthetic estrogen 17α-ethinylesradiol (EE2). These represent the micropollutants of the EU Watch list in Decision 2015/495/EU that are most relevant to WWTPs due to their frequent detection. The metabolic pathways, transformation products and impact of relevant factors to biological WWTP processes is addressed in this review. The biokinetics of PhAC biodegradation in different engineered bioprocesses is also discussed. Promising technologies and operational strategies that are likely to have a high impact on controlling PhAC releases are highlighted and future research needs are also proposed.
Collapse
Affiliation(s)
- P Y Nguyen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maria A M Reis
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
6
|
Carneiro RB, Mukaeda CM, Sabatini CA, Santos-Neto ÁJ, Zaiat M. Influence of organic loading rate on ciprofloxacin and sulfamethoxazole biodegradation in anaerobic fixed bed biofilm reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111170. [PMID: 32763746 DOI: 10.1016/j.jenvman.2020.111170] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic compounds, notably sulfamethoxazole (SMX) and ciprofloxacin (CIP), are ubiquitous emerging contaminants (ECs), which are often found in domestic sewage. They are associated with the development of antimicrobial resistance. Operational parameters, e.g. organic loading rate (OLR), hydraulic retention time (HRT) and sludge retention time, may influence EC biodegradation in wastewater treatment plants. This study assessed the impact of the OLR variation on the biodegradation of CIP and SMX, applying two configurations of anaerobic fixed bed reactors: anaerobic packed bed biofilm reactor (APBBR) and anaerobic structured bed biofilm reactor (ASBBR). A significant reduction in the biodegradation of SMX (APBBR: 93-69%; ASBBR: 94-81%) and CIP (APBBR: 85-66%; ASBBR: 85-64%) was observed increasing OLR from 0.6 to 2.0 kgCOD m-3 d-1. The decrease in the HRT from 12 to 4 h resulted in higher liquid-phase mass transfer coefficient (APBBR: ks from 0.01 to 0.05 cm h-1; ASBBR: ks from 0.07 to 0.24 cm h-1), but this was not enough to overcome the decrease in the antibiotic-biomass contact time on biofilm, thus reducing the bioreactors' performance. The ASBBR favored biomethane production (from 7 to 17 mLCH4 g-1VSS L-1 d-1) and biodegradation kinetics (kbio from 1.7 to 4.2 and for SMX and from 2.1 to 4.8 L g-1VSS d-1 for CIP) due to the higher relative abundance of the archaea community in the biofilm and the lower liquid-phase mass transfer resistance in the structured bed. CIP and SMX cometabolic biodegradation was associated to the hydrogenotrophic methanogenesis (mainly Methanobacterium genus) in co-culture with fermentative bacteria (notably the genera Clostridium, Bacillus, Lactivibrio, Syntrophobacter and Syntrophorhabdus). The anaerobic fixed bed biofilm reactors proved to be highly efficient in biodegrading the antibiotics, preventing them from spreading to the environment.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Caio M Mukaeda
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Carolina A Sabatini
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography (CROMA), Institute of Chemistry of São Carlos, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| | - Marcelo Zaiat
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| |
Collapse
|
7
|
Lei K, Lin CY, Zhu Y, Chen W, Pan HY, Sun Z, Sweetman A, Zhang Q, He MC. Estrogens in municipal wastewater and receiving waters in the Beijing-Tianjin-Hebei region, China: Occurrence and risk assessment of mixtures. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121891. [PMID: 31882338 DOI: 10.1016/j.jhazmat.2019.121891] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The potentially high release of estrogens to surface waters due to high population density and local livestock production in the Beijing-Tianjin-Hebei region may pose adverse effects on reproductive systems of aquatic organisms. This study found that total measured concentrations of estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2) and diethylstilbestrol (DES) were 468 ± 27 ng/L in treated wastewater and 219 ± 23 ng/L in river waters in this region. E2, E3 and EE2 were the predominant estrogens in river waters. The restriction of DES for human use should have been enforced, however concentrations of DES were relatively high compared to other studies. Haihe and Yongdingxin Rivers delivered approximately 1.8 tonnes of estrogens to the Bohai Bay annually. Concentrations of individual estrogens were significantly higher in river waters in the dry season, however, mass loadings were significantly higher in the wet season. The average E2-equivalent concentrations reached 1.2 ± 0.2 and 0.64 ± 0.08 μg-E2/L following long-term and short-term exposure estimates, respectively, in river waters with an EE2 contribution of over 90 %. This could give rise to high risks to fish. Estrogens in river waters largely derived from human excretion. Field studies on estrogenic effects on fish reproductive systems are required locally considering high estrogen contamination levels.
Collapse
Affiliation(s)
- Kai Lei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Chun-Ye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ying Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| | - Wei Chen
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Hui-Yun Pan
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo Henan 454000, People's Republic of China
| | - Zhe Sun
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom
| | - Andrew Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Meng-Chang He
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
8
|
Coello-Garcia T, Curtis TP, Mrozik W, Davenport RJ. Enhanced estrogen removal in activated sludge processes through the optimization of the hydraulic flow pattern. WATER RESEARCH 2019; 164:114905. [PMID: 31394465 DOI: 10.1016/j.watres.2019.114905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/07/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The removal of β-estradiol (E2) and α-ethinylestradiol (EE2) in biological wastewater treatment plants (WWTP) would need to be improved in order to comply with prospective Environmental Quality Standards (EQS) of 0.4 and 0.035 ng.L-1 respectively. The effluent concentration of a micropollutant in an activated sludge process is a function of the removal rate, the hydraulic retention time (HRT) and the flow pattern, which is usually overlooked. In order to better understand this aspect, we carried out tracer studies in eight WWTPs in the UK and found that relatively modest changes in aeration tanks would translate into tangible improvements in their flow pattern. We further evaluated the degradation rates for E1 (estrone), E2, E3 (estriol) and EE2 in each WWTP and we estimated that the modification of the flow pattern would be sufficient to place effluent concentrations of E2 (23.2 L∙gVSS-1∙d-1<kbio<210 L∙gVSS-1∙d-1) far below the prospective EQS, while EE2 (0.3 L∙gVSS-1∙d-1<kbio<2.9 L∙gVSS-1∙d-1) would have to rely on river dilution for compliance. Regarding E1 and E3, with no prospective legislation, the modifications would place E3 (9.9 L∙gVSS-1∙d-1<kbio<39.5 L∙gVSS-1∙d-1) effluent concentrations easily below its predicted no-effect concentrations (PNEC = 60 ng.L-1) while for E1, (2.6 L∙gVSS-1∙d-1<kbio<19.2 L∙gVSS-1∙d-1) it would very much depend on the degradation rates of the specific WWTP (PNEC = 6 ng.L-1). Improvement in flow pattern had the additional benefit of improving the effectiveness of other plausible changes in HRT or biological removal rates. Managing the flow pattern of existing WWTPs is a cost-efficient tool for managing the fate of estrogens.
Collapse
Affiliation(s)
- T Coello-Garcia
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - T P Curtis
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - W Mrozik
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - R J Davenport
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
9
|
Liu L, Zhou X, Lu Y, Shi H, Ma M, Yu T. Triple functional small-molecule-protein conjugate mediated optical biosensor for quantification of estrogenic activities in water samples. ENVIRONMENT INTERNATIONAL 2019; 132:105091. [PMID: 31421388 DOI: 10.1016/j.envint.2019.105091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 05/22/2023]
Abstract
Establishing biosensors to map a comprehensive picture of potential estrogen-active chemicals remains challenging and must be addressed. Herein, we describe an estrogen receptor (ER)-based evanescent wave fluorescent biosensor by using a triple functional small-molecule-protein conjugate as a signal probe for the determination of estrogenic activities in water samples. The signal probe, consisting of a Cy5.5-labelled streptavidin (STV) moiety and a 17β-estradiol (E2) moiety, acts simultaneously as signal conversion, signal recognition and signal report elements. When xenoestrogens compete with the E2 moiety of conjugate in binding to the ER, the unbound conjugates are released, and their STV moiety binds with desthiobiotin (DTB) modified on the optical fiber via the STV-DTB affinity interactions. Signal probe detection is accomplished by fluorescence emission induced by an evanescent field, which positively relates with the estrogenic activities in samples. Quantification of estrogenic activity expressed as E2 equivalent concentration (EEQ) can be achieved with a detection limit of 1.05 μg/L EEQ by using three times standard deviation of the mean blank values and a linear calibration range from 20.8 to 476.7 μg/L EEQ. The optical fiber system is robust enough for hundreds of sensing cycles. The biosensor-based determination of estrogenic activities in wastewater samples obtained from a full-scale wastewater treatment plant is consistent with that measured by the two-hybrid recombinant yeast bioassay.
Collapse
Affiliation(s)
- Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yun Lu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| |
Collapse
|
10
|
Ekpeghere KI, Sim WJ, Lee HJ, Oh JE. Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1015-1023. [PMID: 30021268 DOI: 10.1016/j.scitotenv.2018.05.218] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 05/23/2023]
Abstract
The concentrations and fates of carbamazepine and metabolites (CBMs), nicotine and metabolites (NCTs), estrogenic compounds and metabolites (Es) in various water samples were investigated. Different concentrations were found for water from different sources. The concentrations of these pharmaceuticals and personal care products and their metabolites in human waste treatment plant (HTP) influents (0.08-173 μg L-1) were higher than in the other influent samples and the lowest levels were observed in hospital wastewater treatment plant influents (0.03-7.33 μg L-1). The concentrations were higher in HTP effluents (0.01-11.2 μg L-1) than in the other effluent samples and lowest in sewage treatment plant effluents (0.003-1.26 μg L-1). The NCTs were the most frequently detected pharmaceuticals and personal care products (concentration range 0.05-89.6 μg L-1) in the wastewater treatment plant influents, but the CBMs were found at the highest concentrations (0.003-6.88 μg L-1). 10, 11-Dihydro-10, 11-dihydroxycarbamazepine was the most abundant of the CBMs in the wastewater treatment plants and water samples. Trans-3'-hydroxycotinine was dominant in the HTP and hospital wastewater treatment plant influents, whereas the parent NCT was dominant in the sewage treatment plant influents and in all the effluent and other water samples. Estriol was the dominant estrogenic compound in the HTP and hospital wastewater treatment plant influents. Estriol and estrone were found in many of the HTP influents, but estrone was dominant in the effluent and other water samples. The total removal efficiencies for the CBMs, NCTs, and estrogenic compounds for the treatment plants were -101% to 56%, 2.9%-99%, and >98%, respectively.
Collapse
Affiliation(s)
- Kalu Ibe Ekpeghere
- Department of Civil and Environmental Engineering, Pusan National University, Busan `46241, Republic of Korea; Department of Railroad Civil and Environmental Engineering, Woosong University, Daejeon 34606, Republic of Korea
| | - Won-Jin Sim
- Department of Civil and Environmental Engineering, Pusan National University, Busan `46241, Republic of Korea; Marine & Environmental Evaluation Team, Korea Testing & Research Institute, Ulsan 681-802, Republic of Korea
| | - Heon-Jun Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan `46241, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan `46241, Republic of Korea.
| |
Collapse
|
11
|
Escher BI, Aїt-Aїssa S, Behnisch PA, Brack W, Brion F, Brouwer A, Buchinger S, Crawford SE, Du Pasquier D, Hamers T, Hettwer K, Hilscherová K, Hollert H, Kase R, Kienle C, Tindall AJ, Tuerk J, van der Oost R, Vermeirssen E, Neale PA. Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:748-765. [PMID: 29454215 DOI: 10.1016/j.scitotenv.2018.01.340] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 05/18/2023]
Abstract
Effect-based methods including cell-based bioassays, reporter gene assays and whole-organism assays have been applied for decades in water quality monitoring and testing of enriched solid-phase extracts. There is no common EU-wide agreement on what level of bioassay response in water extracts is acceptable. At present, bioassay results are only benchmarked against each other but not against a consented measure of chemical water quality. The EU environmental quality standards (EQS) differentiate between acceptable and unacceptable surface water concentrations for individual chemicals but cannot capture the thousands of chemicals in water and their biological action as mixtures. We developed a method that reads across from existing EQS and includes additional mixture considerations with the goal that the derived effect-based trigger values (EBT) indicate acceptable risk for complex mixtures as they occur in surface water. Advantages and limitations of various approaches to read across from EQS are discussed and distilled to an algorithm that translates EQS into their corresponding bioanalytical equivalent concentrations (BEQ). The proposed EBT derivation method was applied to 48 in vitro bioassays with 32 of them having sufficient information to yield preliminary EBTs. To assess the practicability and robustness of the proposed approach, we compared the tentative EBTs with observed environmental effects. The proposed method only gives guidance on how to derive EBTs but does not propose final EBTs for implementation. The EBTs for some bioassays such as those for estrogenicity are already mature and could be implemented into regulation in the near future, while for others it will still take a few iterations until we can be confident of the power of the proposed EBTs to differentiate good from poor water quality with respect to chemical contamination.
Collapse
Affiliation(s)
- Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Centre for Applied Geosciences, 72074 Tübingen, Germany; Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Brisbane, QLD 4108, Australia.
| | - Selim Aїt-Aїssa
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | | | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | | | | | - Sarah E Crawford
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Timo Hamers
- Vrije Universiteit Amsterdam, Dept. Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | | | - Klára Hilscherová
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Robert Kase
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Cornelia Kienle
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Andrew J Tindall
- Laboratoire Watchfrog, 1 Rue Pierre Fontaine, 91 000 Evry, France
| | - Jochen Tuerk
- Institut für Energie- und Umwelttechnik e.V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, D-47229 Duisburg, Germany
| | - Ron van der Oost
- Waternet Institute for the Urban Water Cycle, Department of Technology, Research and Engineering, Amsterdam, The Netherlands
| | - Etienne Vermeirssen
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Brisbane, QLD 4108, Australia
| |
Collapse
|
12
|
Chen Q, Li Z, Hua X. Fate of estrogens in a pilot-scale step-feed anoxic/oxic wastewater treatment system controlling by nitrogen and phosphorus removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12981-12991. [PMID: 29479651 DOI: 10.1007/s11356-018-1584-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
The control measures for estrogens in the aquatic environment are topics of growing concern. It is a meaningful issue to finding optimal process parameters for efficient removal of estrogens with the purpose of efficient total nitrogen (TN) or total phosphorus (TP) removal in sewage treatment plants. The present paper is concerned with the relationships between the estrogen removal and TN or TP removal in a pilot-scale three-stage anoxic/oxic (A/O) system treating real municipal wastewater. The total removal efficiency for estrone (E1) and 17β-estradiol (E2) and their sulfate and glucuronide conjugates were on average 87% in the pilot-scale system. The concentrations of the sulfate and glucuronide conjugates of estrogens (E1 and E2) in the system were much lower than the estrogens, which might be caused by the rapid degradation of conjugates in the pilot-scale system. The average removal efficiencies of E1 and E2 and their sulfate and glucuronide conjugates were significantly lower under high TP removal conditions than those under high TN removal conditions that suggested that the ammonia oxidation promotes estrogen degradation. When the system achieved efficient TN removal, the concentrations of both E1 and E2 were generally lower in the aerobic zones than those in the anoxic zones. Instead, when the system achieved efficient TP removal conditions, the estrogen concentrations were higher in the aerobic zones than in the anoxic zones. However, it was thought that the variation of the concentrations of the estrogen conjugates had weak influence on concentrations of the free estrogens. The increase of the free estrogens in the aerobic zones could be attributed to the release of the estrogens adsorbed on the sludge. The variation of estrogens in a three-stage A/O system can be properly estimated and measured by a binary linear regression model with the variables of TP and TON (NO2--N and NO3--N), which is probably the important information for the improvement and optimization of wastewater treatment processes to obtain higher removal efficiency for estrogens.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Zebing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China
- State Key Laboratory of Breeding Base Nuclear Resources & Environment, East China Institute of Technology, Nanchang, 330013, People's Republic of China
| | - Xiaoyu Hua
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
13
|
Tarpani RRZ, Azapagic A. A methodology for estimating concentrations of pharmaceuticals and personal care products (PPCPs) in wastewater treatment plants and in freshwaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1417-1430. [PMID: 29890607 DOI: 10.1016/j.scitotenv.2017.12.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
Despite an increasing number of studies on pharmaceuticals and personal care products (PPCPs), data on their concentrations in the environment are still scant. This is due to many factors, including great variability in usage and physicochemical properties of these compounds, which contribute to their widespread presence and complex behaviour, particularly in the aquatic environment. The main pathway for their discharge into the waterways is through wastewater treatment plants (WWTPs), which are inefficient in removing many of PPCP compounds. Therefore, aiming to contribute to a better understanding of the role that WWTPs play in the presence of PPCPs in the environment, this paper proposes a new method for estimating the expected concentrations of these compounds in WWTP influents, effluents and sludge, as well as their expected discharge and related concentrations in freshwaters. The proposed method can assist with future eco-toxicological and environmental risk assessments as well as the development of policies and regulation related to PPCP compounds.
Collapse
Affiliation(s)
- Raphael Ricardo Zepon Tarpani
- School of Chemical Engineering and Analytical Science, The University of Manchester, Room C16, The Mill, Sackville Street, Manchester M13 9PL, UK
| | - Adisa Azapagic
- School of Chemical Engineering and Analytical Science, The University of Manchester, Room C16, The Mill, Sackville Street, Manchester M13 9PL, UK.
| |
Collapse
|
14
|
Ting YF, Praveena SM, Aris AZ, Ismail SNS, Rasdi I. Mathematical modeling for estrogenic activity prediction of 17β-estradiol and 17α-ethynylestradiol mixtures in wastewater treatment plants effluent. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1327-1335. [PMID: 28975452 DOI: 10.1007/s10646-017-1857-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Steroid estrogens such as 17β-Estradiol (E2) and 17α-Ethynylestradiol (EE2) are highly potent estrogens that widely detected in environmental samples. Mathematical modelling such as concentration addition (CA) and estradiol equivalent concentration (EEQ) models are usually associated with measuring techniques to assess risk, predict the mixture response and evaluate the estrogenic activity of mixture. Wastewater has played a crucial role because wastewater treatment plant (WWTP) is the major sources of estrogenic activity in aquatic environment. The aims of this is to determine E2 and EE2 concentrations in six WWTPs effluent, to predict the estrogenic activity of the WWTPs effluent using CA and EEQ models where lastly the effectiveness of two models is evaluated. Results showed that all the six WWTPs effluent had relative high E2 concentration (35.1-85.2 ng/L) compared to EE2 (0.02-1.0 ng/L). The estrogenic activity predicted by CA model was similar among the six WWTPs (105.4 ng/L), due to the similarity of individual dose potency ratio calculated by respective WWTPs. The predicted total EEQ was ranged from 35.1 EEQ-ng/L to 85.3 EEQ-ng/L, explained by high E2 concentration in WWTPs effluent and E2 EEF value that standardized to 1.0 μg/L. The CA model is more effective than EEQ model in estrogenic activity prediction because EEQ model used less data and causes disassociation from the predicted behavior. Although both models predicted relative high estrogenic activity in WWTPs effluent, dilution effects in receiving river may lower the estrogenic response to aquatic inhabitants.
Collapse
Affiliation(s)
- Yien Fang Ting
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Ahmad Zaharin Aris
- Environmental Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sharifah Norkhadijah Syed Ismail
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Irniza Rasdi
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
15
|
Ben W, Zhu B, Yuan X, Zhang Y, Yang M, Qiang Z. Transformation and fate of natural estrogens and their conjugates in wastewater treatment plants: Influence of operational parameters and removal pathways. WATER RESEARCH 2017; 124:244-250. [PMID: 28763640 DOI: 10.1016/j.watres.2017.07.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 05/06/2023]
Abstract
Natural estrogens (NEs) discharged from wastewater treatment plants (WWTPs) have drawn great attention because of their potential risks to aquatic ecosystems. However, neglect of the conjugated natural estrogens (C-NEs) has caused large discrepancies among different studies on the removal of NEs in WWTPs. The present work investigated the transformation and fate of three NEs and six corresponding C-NEs along wastewater treatment processes. The removal efficiencies of the target estrogens (i.e., NEs and C-NEs) and their correlations with the operational parameters were determined over a twelve-month monitoring period at a typical WWTP adopting a combined bio-treatment process (i.e., anaerobic/anoxic/oxic process followed by a moving-bed biofilm reactor). The concentration variations of the target estrogens along the treatment processes were examined to differentiate the transformation and fate of NEs and C-NEs. Moreover, lab-scale experiments were conducted to clarify the removal pathways of C-NEs in the bio-treatment process. Results indicate that both NEs and C-NEs could pass through the treatment processes, thus being frequently detected in the effluent and excess sludge. The aqueous removal efficiencies of NEs and C-NEs were significantly correlated with the sludge retention time and temperature, respectively. C-NEs were more persistent than NEs, so considerably high conjugated ratios (13.5-100.0%) were detected in the effluent. Sulfate conjugates presented a lower adsorption affinity to sludge and a slower hydrolysis rate than glucuronide conjugates, which makes the former more recalcitrant to biodegradation. This study highlights the challenge on the elimination of NEs, particularly their conjugates, by wastewater treatment processes.
Collapse
Affiliation(s)
- Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Bing Zhu
- Beijing Enterprises Water Group of China Co., Ltd., 101 Baiziwan, Beijing 100124, China
| | - Xiangjuan Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Yu Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| |
Collapse
|
16
|
Ting YF, Praveena SM. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: a mini review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:178. [PMID: 28342046 DOI: 10.1007/s10661-017-5890-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Steroid estrogens, such as estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2), are natural and synthetic hormones released into the environment through incomplete sewage discharge. This review focuses on the sources of steroid estrogens in wastewater treatment plants (WWTPs). The mechanisms and fate of steroid estrogens throughout the entire wastewater treatment system are also discussed, and relevant information on regulatory aspects is given. Municipal, pharmaceutical industry, and hospitals are the main sources of steroid estrogens that enter WWTPs. A typical WWTP comprises primary, secondary, and tertiary treatment units. Sorption and biodegradation are the main mechanisms for removal of steroid estrogens from WWTPs. The fate of steroid estrogens in WWTPs depends on the types of wastewater treatment systems. Steroid estrogens in the primary treatment unit are removed by sorption onto primary sludge, followed by sorption onto micro-flocs and biodegradation by microbes in the secondary treatment unit. Tertiary treatment employs nitrification, chlorination, or UV disinfection to improve the quality of the secondary effluent. Activated sludge treatment systems for steroid estrogens exhibit a removal efficiency of up to 100%, which is higher than that of the trickling filter treatment system (up to 75%). Moreover, the removal efficiency of advance treatment systems exceeds 90%. Regulatory aspects related to steroid estrogens are established, especially in the European Union. Japan is the only Asian country that implements a screening program and is actively involved in endocrine disruptor testing and assessment. This review improves our understanding of steroid estrogens in WWTPs, proposes main areas to be improved, and provides current knowledge on steroid estrogens in WWTPs for sustainable development.
Collapse
Affiliation(s)
- Yien Fang Ting
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
17
|
Cédat B, de Brauer C, Métivier H, Dumont N, Tutundjan R. Are UV photolysis and UV/H2O2 process efficient to treat estrogens in waters? Chemical and biological assessment at pilot scale. WATER RESEARCH 2016; 100:357-366. [PMID: 27214348 DOI: 10.1016/j.watres.2016.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
In this study, UV based treatments were implemented at pilot scale to assess their ability to remove hormones from treated wastewater, especially with the view to equip small and medium size Wastewater Treatment Plants (WTPs). To this end, the degradation of a mixture of estrogenic hormones (Estrone (E1), β-Estradiol (E2), and 17α-Ethinyl Estradiol (EE2)) in waters by UV photolysis and UV/H2O2 process was investigated in real conditions. A particular attention was paid at designing a well validated laboratory scale pilot in order to optimise oxidant concentrations and UV fluence. A Low pressure lamp (254 nm) was used in a flow through commercial reactor. The effects of water matrices (drinking water and treated wastewater) and H2O2 concentrations (10, 40, and 90 mg/L) on the pilot efficiency were first determined. Only E1 could be partially degraded by UV photolysis whereas hormones were all well removed by UV/H2O2 process in both matrices. The second part of the study focused on a chemical and biological assessment of UV photolysis and UV/H2O2 process (30 and 50 mg/L). Degradation rate constants of hormones as well as changes in estrogenic activity (YES bioassay) and toxicity (Vibrio fischeri) were followed at the same time. UV photolysis could not remove neither estrogens nor estrogenic activity at relevant UV fluence in waters. However 80% of initial estrogenic compounds and estrogenic activity could be removed from treated wastewater by combining UV fluence of 423 and 520 mJ/cm(2) with 50 and 30 mg/L of H2O2, respectively. No high estrogenic or toxic by-products were detected by the two bioassays following UV photolysis or UV/H2O2 process. Operating costs were estimated for a full scale pilot. H2O2 was the major cost. By combining the appropriate concentration of H2O2 and UV fluence, it could be possible to design a cost effective treatment for treating estrogens in small and medium size WTPs.
Collapse
Affiliation(s)
- Bruno Cédat
- COMAP WT, Z.A les petis champs, 26120 Montélier, France; INSA Lyon, DEEP, 34 Avenue des Arts, 69621 Villeurbanne Cedex, France.
| | | | - Hélène Métivier
- INSA Lyon, DEEP, 34 Avenue des Arts, 69621 Villeurbanne Cedex, France
| | - Nathalie Dumont
- INSA Lyon, DEEP, 34 Avenue des Arts, 69621 Villeurbanne Cedex, France
| | - Renaud Tutundjan
- IRSTEA Lyon-Villeurbanne, UR MAEP, Laboratoire écotoxicologie, 5 rue de la Doua CS 70077, 69626 Villeurbanne Cedex, France
| |
Collapse
|
18
|
Liu ZH, Lu GN, Yin H, Dang Z, Rittmann B. Removal of natural estrogens and their conjugates in municipal wastewater treatment plants: a critical review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5288-5300. [PMID: 25844648 DOI: 10.1021/acs.est.5b00399] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This article reviews studies focusing on the removal performance of natural estrogens in municipal wastewater treatment plants (WWTPs). Key factors influencing removal include: sludge retention time (SRT), aeration, temperature, mixed liquor suspended solids (MLSS), and substrate concentration. Batch studies show that natural estrogens should biodegrade well; however, batch observations do not always agree with observations from full-scale municipal WWTPs. To explain this discrepancy, deconjugation kinetics of estrogen conjugates in lab-scale studies were examined and compared. Most estrogen conjugates with slow deconjugation rates are unlikely to be easily removed; others could be cleaved in WWTP settings. Nevertheless, some estrogens cleaved from their conjugates may be found in treated effluent, because deconjugation requires several hours or longer, and there is insufficient rest time for the biodegradation of the cleaved natural estrogens in the WWTP. Therefore, WWTP removals of natural estrogens are likely to be underestimated when estrogen conjugates are present in raw wastewater. This review suggests that biodeconjugation of estrogen conjugates should be enhanced to more effectively remove natural estrogens in WWTPs.
Collapse
Affiliation(s)
- Ze-hua Liu
- †College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong China
| | - Gui-ning Lu
- †College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong China
| | - Hua Yin
- †College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong China
| | - Zhi Dang
- †College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong China
| | - Bruce Rittmann
- §Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe, Arizona 85287-5701, United States
| |
Collapse
|
19
|
Kurisu F, Zang K, Kasuga I, Furumai H, Yagi O. Identification of estrone-degrading Betaproteobacteria in activated sludge by microautoradiography fluorescent in situ
hybridization. Lett Appl Microbiol 2015; 61:28-35. [DOI: 10.1111/lam.12407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/04/2015] [Accepted: 02/20/2015] [Indexed: 01/25/2023]
Affiliation(s)
- F. Kurisu
- Research Center for Water Environment Technology; Graduate School of Engineering; The University of Tokyo; Tokyo Japan
| | - K. Zang
- Department of Urban Engineering; Graduate School of Engineering; The University of Tokyo; Tokyo Japan
| | - I. Kasuga
- Department of Urban Engineering; Graduate School of Engineering; The University of Tokyo; Tokyo Japan
| | - H. Furumai
- Research Center for Water Environment Technology; Graduate School of Engineering; The University of Tokyo; Tokyo Japan
| | - O. Yagi
- College of Industrial Technology; Nihon University; Chiba Japan
| |
Collapse
|
20
|
Liu ZH, Lu GN, Yin H, Dang Z. Do we underestimate the concentration of estriol in raw municipal wastewater? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4753-4758. [PMID: 25537286 DOI: 10.1007/s11356-014-3981-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
The main source of natural estrogens to municipal wastewater is human excretions via urine or feces, thus their concentrations in raw wastewater should show positive linear relationship with their human excretions. This study mainly focused on their concentration relationship in raw wastewater. Based on comparison between chemical analyses and predictions through human excretion rates, the observed concentrations of estriol (E 3) in municipal wastewater were found to be noticeably lower than the predicted values. The main cause for the disparity is that substantial conjugated E 3 also exists in raw wastewater. This work suggested that monitoring both E 3 and its conjugates is necessary to get more accurate E 3 removal performance of wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Ze-hua Liu
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China,
| | | | | | | |
Collapse
|
21
|
Marti EJ, Batista JR. Impact of secondary treatment types and sludge handling processes on estrogen concentration in wastewater sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:1056-1067. [PMID: 24239827 DOI: 10.1016/j.scitotenv.2013.10.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
Endocrine-disrupting compounds (EDCs), such as estrogen, are known to be present in the aquatic environment at concentrations that negatively affect fish and other wildlife. Wastewater treatment plants (WWTPs) are major contributors of EDCs into the environment. EDCs are released via effluent discharge and land application of biosolids. Estrogen removal in WWTPs has been studied in the aqueous phase; however, few researchers have determined estrogen concentration in sludge. This study focuses on estrogen concentration in wastewater sludge as a result of secondary treatment types and sludge handling processes. Grab samples were collected before and after multiple treatment steps at two WWTPs receiving wastewater from the same city. The samples were centrifuged into aqueous and solid phases and then processed using solid phase extraction. Combined natural estrogens (estrone, estradiol and estriol) were measured using an enzyme-linked immunosorbent assay (ELISA) purchased from a manufacturer. Results confirmed that activated sludge treatments demonstrate greater estrogen removal compared to trickling filters and mass concentration of estrogen was measured for the first time on trickling filter solids. Physical and mechanical sludge treatment processes, such as gravity thickeners and centrifuges, did not significantly affect estrogen removal based on mass balance calculations. Dissolved air flotation thickening demonstrated a slight decrease in estrogen concentration, while anaerobic digestion resulted in increased mass concentration of estrogen on the sludge and a high estrogen concentration in the supernatant. Although there are no state or federally mandated discharge effluent standards or sludge application standards for estrogen, implications from this study are that trickling filters would need to be exchanged for activated sludge treatment or followed by an aeration basin in order to improve estrogen removal. Also, anaerobic digestion may need to be replaced with aerobic digestion for sludge that is intended for land application.
Collapse
Affiliation(s)
- Erica J Marti
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4015, USA.
| | - Jacimaria R Batista
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4015, USA
| |
Collapse
|
22
|
Song W, Wang Z, Lian C. Assessment of in vivo estrogenic response and identification of environmental estrogens in influent and effluent from a sewage treatment plant. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 91:324-329. [PMID: 23877625 DOI: 10.1007/s00128-013-1061-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
The in vivo estrogenic response and estrogenic contents of the influent and effluent collected from a sewage treatment plant located in Jiaozuo were assessed. The bioassay showed significant serum vitellogenin (VTG) induction in all the treated male goldfish (Carassius auratus) and significant gonad atrophies were only observed in the fish induced the most VTG expressions. Six target estrogens (estrone, 17β-estradiol, 17α-ethynylestradiol, 4-n-octylphenol, 4-n-nonylphenol and bisphenol A) were detected in different polar fractions, with the exception of the 25 % and 50 % methanol fractions extracted from the influent and the 25 %, 50 %, 95 % and 100 % methanol fractions extracted from the effluent. For both the influent and effluent, natural and synthetic steroidal estrogens were detected in those extracted fractions induced the most abundant VTG expressions.
Collapse
Affiliation(s)
- Wenting Song
- School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, 454003, People's Republic of China.
| | | | | |
Collapse
|
23
|
Edson Baltazar EA, Petia MN, Gabriela MC, Gabriela MM, Norma RS, Manuel SZ. Presencia y tratamiento de compuestos disruptores endócrinos en aguas residuales de la Ciudad de México empleando un biorreactor con membranas sumergidas. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/s1405-7743(13)72242-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Zeng Q, Li Y, Yang S. Sludge Retention Time as a Suitable Operational Parameter to Remove Both Estrogen and Nutrients in an Anaerobic-Anoxic-Aerobic Activated Sludge System. ENVIRONMENTAL ENGINEERING SCIENCE 2013; 30:161-169. [PMID: 23633892 PMCID: PMC3636585 DOI: 10.1089/ees.2011.0400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/17/2012] [Indexed: 05/27/2023]
Abstract
Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic-anoxic-oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10-25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%-81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (Kd) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%-80.1% was biodegraded; 18.9%-34.7% was released in effluent; and 0.88%-3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants.
Collapse
Affiliation(s)
- Qingling Zeng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- College of Civil Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Shijia Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
25
|
He YJ, Chen W, Zheng XY, Wang XN, Huang X. Fate and removal of typical pharmaceuticals and personal care products by three different treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:248-254. [PMID: 23384648 DOI: 10.1016/j.scitotenv.2013.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/29/2012] [Accepted: 01/01/2013] [Indexed: 06/01/2023]
Abstract
The presence and distribution of typical of pharmaceuticals and personal care products (PPCPs), which comprise two types of polycyclic musks (PCMs) including Galaxolide (HHCB) and Tonalide (AHTN) as well as six types of estrogens containing estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2), diethylstilbestrol (DES), and bisphenol A (BPA), were investigated at two wastewater treatment plants (WWTPs) in Jiangsu, China. Only raw wastewater was treated in WWTP A while WWTP B was serving an urban-industrialized area. In the influent, the concentrations of EE2 (2193-4437ngL(-1)), E2 (1126-1170ngL(-1)), and DES (268-421ngL(-1)) were generally higher than the previously reported values, whereas the concentrations of HHCB (306-316ngL(-1)), E1 (29-129ngL(-1)), E3 (53ngL(-1)), and BPA (26-176ngL(-1)) were much lower than those reported in other previous studies. In addition, AHTN was not detected in either WWTP and E3 was not found in WWTP B. The detected processes including anaerobic/oxic process (A/O), combined orbal oxidation ditch process (C-orbal OD) and anaerobic/anoxic/anoxic/oxic membrane biological reactor (A/A/A/O-MBR) showed higher removal efficiencies for HHCB (67-71%) and EE2 (87%) than those in other previous studies. Besides, the total hydraulic retention time (HRT) ranged between 6.7 and 20.0h, sludge retention time (SRT) ranged between 8 and 23d, and water temperature ranged from 24.8 to 28.2°C. The removal efficiencies for estrogens in biological processes were related to the following factors: the level of hydrophobic estrogens, the type of removal process (C-orbal OD was consistently less efficient in removing estrogens than A/O and A/A/A/O-MBR), and a high SRT or HRT (A/A/A/O-MBR with higher SRT and HRT showed higher and more stable removal of hydrophobic estrogens).
Collapse
Affiliation(s)
- Yu-Jie He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Environment College, Hohai University, Nanjing 210098, PR China
| | | | | | | | | |
Collapse
|
26
|
Chen Q, Shi J, Liu X, Wu W, Liu B, Zhang H. Simulation of estrogen transport and behavior in laboratory soil columns using a cellular automata model. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 146:51-62. [PMID: 23376816 DOI: 10.1016/j.jconhyd.2012.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/11/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
A cellular automata model (CA model) was used to simulate the soil column leaching process of estrogens during the processes of migration and transformation. The results of the simulated leaching experiment showed that the first-order degradation rates of 17α-ethynylestradiol (EE2), 17β-estradiol (E2) and estrone (E1) were 0.131 h(-1) for E2, 0.099 h(-1) for E1 and 0.064 h(-1) for EE2 in the EE2 and E2 leaching process, and the first-order sorption rates were 5.94 h(-1) for E2, 5.63 h(-1) for EE2, 3.125 h(-1) for E1. Their sorption rates were positively correlated with the n-octanol/water partition coefficients. When the diffusion rate was low, its impact on the simulation results was insignificant. The increase in sorption and degradation rates caused the decrease in the total estrogens that leached. In addition, increasing the sorption rate could delay the emerging time of the maximum concentration of estrogen that leached, whereas increasing the degradation rate could shorten the emerging time of the maximum concentration of estrogen that leached. The comparison made between the experimental data and the simulation results of the CA model and the HYDRUS-1D software showed that the establishment of one-component and multi-component CA models could simulate EE2 and E2 soil column leaching processes, and the CA models achieve an intuitive, dynamic, and visual simulation.
Collapse
Affiliation(s)
- Qingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Chen JL, Ravindran S, Swift S, Wright LJ, Singhal N. Catalytic oxidative degradation of 17α-ethinylestradiol by FeIII-TAML/H2O2: estrogenicities of the products of partial, and extensive oxidation. WATER RESEARCH 2012; 46:6309-6318. [PMID: 23022118 DOI: 10.1016/j.watres.2012.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 06/01/2023]
Abstract
The oxidative degradation of the oral contraceptive 17α-ethinylestradiol (EE(2)) in water by a new advanced catalytic oxidation process was investigated. The oxidant employed was hydrogen peroxide in aqueous solution and the catalyst was the iron tetra-amido macrocyclic ligand (Fe(III)-TAML) complex that has been designated Na[Fe(H(2)O)(B*)] (Fe(III)-B*). EE(2) (10 μM) was oxidised rapidly by the Fe(III)-B*/H(2)O(2) (5 nM/4 mM) catalytic oxidation system at 25 °C, and for reactions at pH 8.40-11.00, no unchanged EE2 was detected in the reaction mixtures after 60 min. No oxidation of EE(2) was detected in blank reactions using either H(2)O(2) or Fe(III)-B* alone. The maximum rate of EE(2) loss occurred at pH 10.21. At this pH the half-life of EE(2) was 2.1 min and the oxidised products showed around 30% estrogenicity removal, as determined by the yeast estrogen screen (YES) bioassay. At pH 11.00, partial oxidation of EE(2) by Fe(III)-B*/H(2)O(2) (5 nM/4 mM) was studied (half-life of EE(2) was 14.5 min) and in this case the initial intermediates formed were a mixture of the epimers 17α-ethynyl-1,4-estradiene-10α,17β-diol-3-one (1a) and 17α-ethynyl-1,4-estradiene-10β,17β-diol-3-one (1b) (identified by LC-ToF-MS and (1)H NMR spectroscopy). Significantly, this product mixture displayed a slightly higher estrogenicity than EE(2) itself, as determined by the YES bioassay. Upon the addition of further aliquots of Fe(III)-B* (to give a Fe(III)-B* concentration of 500 nM) and H(2)O(2) (to bring the concentration up to 4 mM assuming the final concentration had dropped to zero) to this reaction mixture the amounts of 1a and 1b slowly decreased to zero over a 60 min period as they were oxidised to unidentified products that showed no estrogenicity. Thus, partial oxidation of EE(2) gave products that have slightly increased estrogenicity, whereas more extensive oxidation by the advanced catalytic oxidation system completely removed all estrogenicity. These results underscore the importance of controlling the level of oxidation during the removal of EE(2) from water by oxidative processes.
Collapse
Affiliation(s)
- Jian Lin Chen
- Department of Civil & Environmental Engineering, University of Auckland, Auckland 1142, New Zealand
| | | | | | | | | |
Collapse
|
28
|
Hamid H, Eskicioglu C. Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix. WATER RESEARCH 2012; 46:5813-33. [PMID: 22939851 DOI: 10.1016/j.watres.2012.08.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 07/29/2012] [Accepted: 08/02/2012] [Indexed: 05/23/2023]
Abstract
Estrogenic hormones (estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2)) are the major contributor to the total estrogenicity in waterways. Presence of these compounds in biosolids is also causing concern in terms of their use as soil amendment. In comparison with wastewater treatment, removal of estrogenic compounds in sewage sludge has received less attention. This paper presents a literature review regarding the source and occurrence of these pollutants in our environment. The removal pathways of estrogenic compounds in engineered systems, such as full-scale wastewater treatment plants (WWTPs), are also discussed. Review of the fate studies revealed that activated sludge system with nutrient removal shows very high (>90%) removal of estrogenic hormones in most of the cases. Although, aerobic digestion showed better attenuation of estrogenic compounds, anaerobic digestion increased the overall estrogenicity of biosolids. Finally, this paper highlights the challenges involved in analytical determination of these compounds in sewage sludge matrix.
Collapse
Affiliation(s)
- Hanna Hamid
- School of Engineering, University of British Columbia, Okanagan Campus, 1137 Alumni Ave., Kelowna, BC, V1V 1V7, Canada
| | | |
Collapse
|
29
|
Removal of bisphenol A and 17β-estradiol in single walled carbon nanotubes–ultrafiltration (SWNTs–UF) membrane systems. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2012.02.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Essandoh HMK, Tizaoui C, Mohamed MHA. Removal of Estrone (E1), 17β-Estradiol (E2) and 17α-Ethinylestradiol (EE2) During Soil Aquifer Treatment of a Model Wastewater. SEP SCI TECHNOL 2012. [DOI: 10.1080/01496395.2011.644618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Colosi JC, Kney AD. A yeast estrogen screen without extraction provides fast, reliable measures of estrogenic activity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2261-2269. [PMID: 21755530 DOI: 10.1002/etc.618] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/03/2010] [Accepted: 06/23/2011] [Indexed: 05/31/2023]
Abstract
Yeast estrogen screen (YES) has been used since 1996 as a bioassay to quantify activity in wastewater. Here we present a modification of YES to measure estrogenic activity in water. This modification, called yeast estrogen screen no extraction (YESne), is faster and easier than the common method. The modified method can detect 17β-estradiol equivalent concentrations down to 1.1 ng/L. The median effective concentration value (EC50) is 1.2E-10. It detected average influent concentrations of 16.4 and 17.5 ng/L of 17β-estradiol equivalent at four Lehigh Valley, Pennsylvania, USA, wastewater treatment plants on September 18 and October 23, 2008, respectively, and average effluent concentrations of 5.1 and 8.1 ng/L of 17β-estradiol equivalent at the same plants on the two dates, respectively. Reduction in 17β-estradiol equivalent activity for the four wastewater treatment plants averaged 67.8 and 52.3%, respectively, for the September 18 and October 23 samples. The YESne is a simple, quick method for quantifying estrogenic activity that has been used successfully in nonmajor undergraduate classes and could be adapted by wastewater treatment plant laboratory technicians to measure influent and effluent estrogenicity on a regular basis. This practice will greatly increase our knowledge base of estrogenicity in wastewater before and after treatment.
Collapse
Affiliation(s)
- Joseph C Colosi
- Natural Science Department, DeSales University, Center Valley, Pennsylvania, USA.
| | | |
Collapse
|
32
|
Roh H, Chu KH. Effects of solids retention time on the performance of bioreactors bioaugmented with a 17β-estradiol-utilizing bacterium, Sphingomonas strain KC8. CHEMOSPHERE 2011; 84:227-33. [PMID: 21543102 DOI: 10.1016/j.chemosphere.2011.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 05/26/2023]
Abstract
This study investigated the performance of lab-scale sequencing batch reactors (SBRs) that were inoculated with nitrifying activated sludge and bioaugmented with a Sphingomonas strain KC8 (a 17β-estradiol-degrading bacterium). The bioaugmented SBRs were supplied with synthetic wastewater (average initial total organic carbon (TOC)=175 mgL(-1) and average initial ammonia-N=25 mgL(-1)) and daily dose of 17β-estradiol (1mgL(-1)) and operated under three solid retention times (SRTs) of 5, 10, and 20 d. After three times periods of the operating SRTs, the overall removal of TOC (>87%) and ammonia (>91%) was similar in all the SBRs. Higher 17β-estradiol removals (>99%) were observed for the SBRs. Neither estrogens nor estrogenic activity was detected in the treated water, except some samples from the SBR operating under 5d of SRT. The ratios of known estrogen degraders (Sphingomonas strain KC8 and ammonia-oxidizing bacteria) and amoA gene to the total bacterial population decreased as SRT increased, suggesting the presence of unknown estrogen-degraders in SBRs operating at SRT=10 and 20 d. Real-time-terminal-restriction fragment length polymorphism analysis showed that the evenness of microbial community structures was not affected by the SRT; while, the diversity indices suggest that longer SRTs might lead to more diverse microbial community structure. Overall, the results suggested that bioaugmented bioreactors operating at long SRTs (10 and 20 d) were effective in removing 17β-estradiol to the non-estrogenic treatment endpoint.
Collapse
Affiliation(s)
- Hyungkeun Roh
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, United States
| | | |
Collapse
|
33
|
Bertanza G, Pedrazzani R, Dal Grande M, Papa M, Zambarda V, Montani C, Steimberg N, Mazzoleni G, Di Lorenzo D. Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure. WATER RESEARCH 2011; 45:2473-2484. [PMID: 21420711 DOI: 10.1016/j.watres.2011.01.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 05/30/2023]
Abstract
A major source of the wide presence of EDCs (Endocrine Disrupting Compounds) in water bodies is represented by direct/indirect discharge of sewage. Recent scientific literature reports data about their trace concentration in water, sediments and aquatic organisms, as well as removal efficiencies of different wastewater treatment schemes. Despite the availability of a huge amount of data, some doubts still persist due to the difficulty in evaluating synergistic effects of trace pollutants in complex matrices. In this paper, an integrated assessment procedure was used, based on chemical and biological analyses, in order to compare the performance of two full scale biological wastewater treatment plants (either equipped with conventional settling tanks or with an ultrafiltration membrane unit) and tertiary ozonation (pilot scale). Nonylphenol and bisphenol A were chosen as model EDCs, together with the parent compounds mono- and di-ethoxylated nonylphenol (quantified by means of GC-MS). Water estrogenic activity was evaluated by applying the human breast cancer MCF-7 based reporter gene assay. Process parameters (e.g., sludge age, temperature) and conventional pollutants (e.g., COD, suspended solids) were also measured during monitoring campaigns. Conventional activated sludge achieved satisfactory removal of both analytes and estrogenicity. A further reduction of biological activity was exerted by MBR (Membrane Biological Reactor) as well as ozonation; the latter contributed also to decrease EDC concentrations.
Collapse
Affiliation(s)
- Giorgio Bertanza
- DICATA Department of Civil Engineering, Architecture, Land and Environment, University of Brescia, via Branze 43, I-25123 Brescia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sim WJ, Lee JW, Shin SK, Song KB, Oh JE. Assessment of fates of estrogens in wastewater and sludge from various types of wastewater treatment plants. CHEMOSPHERE 2011; 82:1448-1453. [PMID: 21146855 DOI: 10.1016/j.chemosphere.2010.11.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 05/30/2023]
Abstract
We measured five estrogens in the wastewater samples from the municipal wastewater treatment plants (M-WWTPs), livestock wastewater treatment plants (L-WWTPs), hospital WWTPs (H-WWTPs) and pharmaceutical manufacture WWTPs (P-WWTPs) in Korea. The L-WWTPs showed the highest total concentration (0.195-10.4 μg L(-1)) of estrogens in the influents, followed by the M-WWTPs (0.028-1.15 μg L(-1)), H-WWTPs (0.068-0.130 μg L(-1)) and P-WWTPs (0.015-0.070 μg L(-1)). Like the influents, the L-WWTPs (0.003-0.729 μg L(-1)) and the M-WWTPs (0.001-0.299μgL(-1)) also showed higher total concentration of estrogens in the effluents than the H-WWTPs (0.002-0.021 μg L(-1)) and P-WWTPs (0.011 μg L(-1) in one sample). The L-WWTPs (37.5-543 μg kg(-1), dry weight) showed higher total concentrations in sludge than the M-WWTPs (3.16-444 μg kg(-1), dry weight) like the wastewater. The distribution of estrogens in the WWTPs may be affected by their metabolism in the human body, their transition through biological treatment processes, and their usage for livestock growth. Unlike the concentration results, the daily loads of estrogens from the M-WWTPs were the highest, which is related to the high capacities of WWTPs.
Collapse
Affiliation(s)
- Won-Jin Sim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Inoue D, Nakama K, Sawada K, Watanabe T, Matsui H, Sei K, Nakanishi T, Ike M. Screening of agonistic activities against four nuclear receptors in wastewater treatment plants in Japan using a yeast two-hybrid assay. J Environ Sci (China) 2011; 23:125-132. [PMID: 21476351 DOI: 10.1016/s1001-0742(10)60383-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To assess the potential endocrine disruptive effects through multiple nuclear receptors (NRs), especially non-steroidal NRs, in municipal wastewater, we examined the agonistic activities on four NRs (estrogen receptor alpha, thyroid hormone receptor alpha, retinoic acid receptor alpha and retinoid X receptor alpha) of untreated and treated wastewater from municipal wastewater treatment plants (WWTPs) in Japan using a yeast two-hybrid assay. Investigation of the influent and effluent of seven WWTPs revealed that agonistic activities against steroidal and non-steroidal NRs were always detected in the influents and partially remained in the effluents. Further investigation of four WWTPs employing conventional activated sludge, pseudo-anoxic-oxic, anoxic-oxic and anaerobic-anoxic-oxic processes revealed that the ability to reduce the agonistic activity against each of the four NRs varies depending on the treatment process. These results indicated that municipal wastewater in Japan commonly contains endocrine disrupting chemicals that exert agonistic activities on steroidal and non-steroidal NRs, and that some of these chemicals are released into the natural aquatic environment. Although the results obtained in yeast assays suggested that measured levels of non-steroidal NR agonists in the effluent of WWTPs were not likely to cause any biological effect, further study is required to assess their possible risks in detail.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhou X, Oleszkiewicz JA. Biodegradation of oestrogens in nitrifying activated sludge. ENVIRONMENTAL TECHNOLOGY 2010; 31:1263-1269. [PMID: 21046956 DOI: 10.1080/09593331003674549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The degradation of 17beta-oestradiol (E2) and 17alpha-ethinyloestradiol (EE2) was investigated in an aerobic activated sludge system fed with synthetic wastewater. The effect of different solid residence times (SRTs) and nitrification inhibitors, such as allylthiourea (ATU), was studied in order to assess which group of microorganisms plays a significant role in the degradation of oestrogens. E2 was effectively converted into oestrone (E1) under all the conditions encountered in the nitrifying activated sludge system. The degradation of E2 obeyed first-order reaction kinetics; with an increase in SRT from 12 to 20 days, the degradation rate constant, k, decreased from 2.3 h(-1) to 0.47 h(-1). The removal of EE2 did not change significantly with the addition of ATU and at different SRTs. Only about 20% of EE2 was removed from the system, which demonstrated that EE2 was more recalcitrant than natural oestrogens. The results are supported by other recent studies, which suggest that co-metabolic degradation of EE2 and E2 by ammonia-oxidizing bacteria is not an important removal mechanism. The primary mechanism for E2 and EE2 degradation in activated sludge is most probably the activity of heterotrophic bacteria.
Collapse
Affiliation(s)
- Xiaokang Zhou
- Department of Civil Engineering, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
37
|
Vanparys C, Depiereux S, Nadzialek S, Robbens J, Blust R, Kestemont P, De Coen W. Performance of the flow cytometric E-screen assay in screening estrogenicity of pure compounds and environmental samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:4451-4460. [PMID: 20633926 DOI: 10.1016/j.scitotenv.2010.06.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 06/17/2010] [Accepted: 06/19/2010] [Indexed: 05/29/2023]
Abstract
In vitro estrogenicity screens are believed to provide a first prioritization step in hazard characterization of endocrine disrupting chemicals. When applied to complex environmental matrices or mixture samples, they have been indicated valuable in estimating the overall estrogen-mimicking load. In this study, the performance of an adapted format of the classical E-screen or MCF-7 cell proliferation assay was profoundly evaluated to rank pure compounds as well as influents and effluents of sewage treatment plants (STPs) according to estrogenic activity. In this adapted format, flow cytometric cell cycle analysis was used to allow evaluation of the MCF-7 cell proliferative effects after only 24 h of exposure. With an average EC(50) value of 2 pM and CV of 22%, this assay appears as a sensitive and reproducible system for evaluation of estrogenic activity. Moreover, estrogenic responses of 17 pure compounds corresponded well, qualitatively and quantitatively, with other in vitro and in vivo estrogenicity screens, such as the classical E-screen (R(2)=0.98), the estrogen receptor (ER) binding (R(2)=0.84) and the ER transcription activation assay (R(2)=0.87). To evaluate the applicability of this assay for complex samples, influents and effluents of 10 STPs covering different treatment processes, were compared and ranked according to estrogenic removal efficiencies. Activated sludge treatment with phosphorus and nitrogen removal appeared most effective in eliminating estrogenic activity, followed by activated sludge, lagoon and filter bed. This is well in agreement with previous findings based on chemical analysis or biological activity screens. Moreover, ER blocking experiments indicated that cell proliferative responses were mainly ER mediated, illustrating that the complexity of the end point, cell proliferation, compared to other ER screens, does not hamper the interpretation of the results. Therefore, this study, among other E-screen studies, supports the use of MCF-7 cell proliferation as estrogenicity screen for pure compounds and complex samples.
Collapse
Affiliation(s)
- Caroline Vanparys
- Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
38
|
Thayanukul P, Zang K, Janhom T, Kurisu F, Kasuga I, Furumai H. Concentration-dependent response of estrone-degrading bacterial community in activated sludge analyzed by microautoradiography-fluorescence in situ hybridization. WATER RESEARCH 2010; 44:4878-4887. [PMID: 20705312 DOI: 10.1016/j.watres.2010.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/27/2010] [Accepted: 07/09/2010] [Indexed: 05/29/2023]
Abstract
Inefficient removal of estrone (E1) in wastewater treatment plants (WWTPs) causes feminizing effects in male aquatic creatures. As E1 is mainly removed by biodegradation, investigation of E1 degradation is important to determine better removal strategies. Using microautoradiography-fluorescence in situ hybridization (MAR-FISH), we demonstrated that the structures of [(3)H]E1-incorporating bacterial communities were different at different E1 concentrations applied to activated sludge. At 200 μg/L E1, almost all [(3)H]E1-incorporating cells were associated with either Betaproteobacteria or Gammaproteobacteria (60% and 40% of MAR (+) cells, respectively). The proportion of Betaproteobacteria and Gammaproteobacteria in the total number of [(3)H]E1-incorporating cells decreased as the concentration of E1 decreased. In contrast, the proportion of Alphaproteobacteria in the total number of [(3)H]E1-incorporating cells increased as the concentrations of E1 decreased. At the lowest applied concentration (540 ng/L), almost all the [(3)H]E1-incorporating cells were Alphaproteobacteria (96%). The results of MAR-FISH applied to sludge samples collected from various plant locations and activated sludge processes, and during different seasons also demonstrated the high contribution of Alphaproteobacteria to the entire E1-degrading bacterial community (50.4 ± 11% of the total number of [(3)H]E1-incorporating cells) at 1 μg/L E1. Since the E1 concentration in domestic wastewater is at sub-μg/L levels, the key E1 degraders in activated sludge of domestic WWTPs are probably be Alphaproteobacteria. All [(3)H]E1-incorporating Alphaproteobacteria were hybridized with probe ALF968. Few MAR (+) cells were Sphingomonadales. An E1-degrading bacterial community at low E1 concentration appeared to consist of diverse bacterial groups of Alphaproteobacteria. This study suggested that substrate concentration is an essential factor for revealing E1-degrading bacteria in complex communities.
Collapse
Affiliation(s)
- Parinda Thayanukul
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Chen TS, Chen TC, Yeh KJC, Chao HR, Liaw ET, Hsieh CY, Chen KC, Hsieh LT, Yeh YL. High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:3223-3230. [PMID: 20451953 DOI: 10.1016/j.scitotenv.2010.03.054] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/21/2010] [Accepted: 03/31/2010] [Indexed: 05/26/2023]
Abstract
Environmental estrogenic chemicals interrupt endocrine systems and generate reproductive abnormalities in wildlife, especially natural and synthetic estrogenic steroid hormones such as 17beta-estradiol (E2), estrone (E1), estriol (E3), 17alpha-ethynylestradiol (EE2), and diethylstilbestrol (DES). Concentrated animal feedlot operations (CAFOs) are of particular concern since large amounts of naturally excreted estrogens are discharged into aquatic environments. This study investigated E2, E1, E3, EE2, and DES with high performance liquid chromatography/tandem mass (HPLC-MS/MS) analyses along Wulo Creek in southern Taiwan, near a concentrated livestock feedlot containing 1,030,000 broiler chickens, 934,000 laying hens, 85,000 pigs, and 1500 cattle. Sampling was performed from December 2008 to May 2009, in which 54 samples were collected. Experimental results indicate that concentrations of EE2 were lower than the limit of detection (LOD), and concentrations of DES were only detected twice. Concentrations ranged from 7.4 to 1267 ng/L for E1, from not detected (ND) to 313.6 ng/L for E2, and from ND to 210 ng/L for E3. E1 had the highest average mass fraction (72.2 + or - 3.6%), which was significantly higher than E3 (16.2 + or - 1.7%) and E2 (11.5 + or - 2.6%). Additionally, the mean E2 equivalent quotient (EEQ) ranged from 17.3 to 137.9 ng-E2/L. Despite having a markedly lower concentration than E1, E2 more significantly contributed (52.4 + or - 6.0%) EEQ than E1 (19.7 + or - 3.5%). Moreover, the concentrations of E2, E1, and E3 upstream were significantly higher than concentrations downstream, suggesting a high attenuation effect and fast degradation in the study water. Most concentrations in winter season were higher than those of spring season due to the low dilution effect and low microbial activity in the winter season. Based on the results of this study, we recommend further treatment of the wastewater discharge from the feedlot.
Collapse
Affiliation(s)
- Te-San Chen
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Allinson M, Shiraishi F, Salzman SA, Allinson G. In vitro and immunological assessment of the estrogenic activity and concentrations of 17beta-estradiol, estrone, and ethinyl estradiol in treated effluent from 45 wastewater treatment plants in Victoria, Australia. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 58:576-586. [PMID: 20130850 DOI: 10.1007/s00244-010-9472-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
The project was conducted between May 2006 and September 2007, and involved the collection of effluent samples from 45 wastewater treatment plants (WWTPs). The 45 WWTPs included 16 lagoon-based plants and 29 with activated sludge-based processes. Permission was obtained from all the relevant water authorities to collect samples of final effluent at point of discharge to the environment, whether that was to a creek, a river, the ocean, or the land. Samples were collected on two occasions, namely, in August 2006 (winter) and late February-early March 2007 (summer), and subjected to a number of biological and chemical analyses, including toxicity tests, measurement of hormonal (estrogenic) activity using yeast-based bioassays, and measurement of specific hormonal concentrations using enzyme-linked immunosorbent assays (ELISAs). Almost all of the effluents examined showed estrogenic activity: in winter, no activity to 73 ng/l 17beta-estradiol equivalents (EEQ); and in summer, no activity to 20 ng/l EEQ. On the whole, the levels of estrogenic activity observed were comparable with the range recently reported in Australia and New Zealand using human estrogen receptor-based assays ("not detected" to approximately 10 ng/l EEQ). The low/no bioassay response was confirmed by the chemical assessment of estradiol, estrone, and ethinyl estradiol concentrations by ELISA, which returned concentrations of these compounds for the most part below 10 ng/l.
Collapse
Affiliation(s)
- M Allinson
- Future Farming Systems Research, Department of Primary Industries, DPI Queenscliff Centre, Queenscliff, VIC, 3225, Australia
| | | | | | | |
Collapse
|
41
|
Kurisu F, Ogura M, Saitoh S, Yamazoe A, Yagi O. Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp. J Biosci Bioeng 2009; 109:576-82. [PMID: 20471597 DOI: 10.1016/j.jbiosc.2009.11.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/02/2009] [Accepted: 11/10/2009] [Indexed: 11/26/2022]
Abstract
Five bacterial strains capable of utilizing 17beta-estradiol (E2) and estrone (E1) were isolated from soil samples. Using their morphological and physiological features and 16S rDNA sequences, we classified these isolates into two groups: Group A (Rhodococcus sp. strains ED6, ED7, and ED10) and Group B (Sphingomonas sp. strains ED8 and ED9). All isolates used E2 and E1 as the sole carbon sources and showed high E1 and E2 degradation activities. In all strains, more than 50% of 0.8 mg of E1 or E2 was degraded in 4 mL of inorganic medium over 24 h, and 90% was degraded over 120 h. By incubating the resting ED8 cells with E2 and the meta-cleavage inhibitor 3-chlorocatechol, we identified two metabolites, 4-hydroxyestrone (4-OH-E1) and 4-hydroxyestradiol (4-OH-E2), and confirmed their identity using authentic chemicals. The 4-OH-E1 and 4-OH-E2 compounds were assumed to be intermediate metabolites formed before meta-cleavage, as they were not identified in culture without 3-chlorocatechol. Degradation of E2 by strain ED8 can be initiated by hydroxylation of the C-4 position, followed by meta-cleavage of the benzene ring. When strains ED8 degraded E2, we further identified hydroxy-E2, keto-E1 and -E2, and an additional degradation product via mass spectrometry. The presence of these compounds implied degradation through a second pathway initiated through an attack of the saturated ring.
Collapse
Affiliation(s)
- Futoshi Kurisu
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Natural and synthetic estrogens are some of the most potent endocrine disrupting compounds found in municipal wastewater. Much research has been conducted on the source and fate of estrogens in wastewater treatment plants. Sorption and biodegradation are the primary removal mechanisms for estrogens in activated sludge systems, which are widely used biological treatment techniques for municipal wastewater treatment. However, when removal of estrogens in a wastewater treatment plant is incomplete, these compounds enter the environment through wastewater discharges or waste activated sludge at concentrations that can cause endocrine-reproductive system alterations in birds, reptiles and mammals. Therefore, studies have also focused on potential advanced treatment technologies with the aim of removing the compounds before discharging wastewater effluent or disposing waste sludge. This review discusses the physiological effects of these estrogens and the degree of problems estrogens pose as they enter the wastewater stream. Thereafter, this review also analyzes their fate in wastewater treatment systems and how they may reach drinking water sources. Furthermore, this review includes a discussion on various treatment technologies being investigated and future research trends for this pressing environmental issue.
Collapse
Affiliation(s)
- LeeAnn Racz
- Department of Civil and Environmental Engineering, University of Utah, Ste 104, 122 S. Central Campus Drive, Salt Lake City, UT 84112-0610, USA
| | | |
Collapse
|
43
|
Song HL, Nakano K, Taniguchi T, Nomura M, Nishimura O. Estrogen removal from treated municipal effluent in small-scale constructed wetland with different depth. BIORESOURCE TECHNOLOGY 2009; 100:2945-51. [PMID: 19254839 DOI: 10.1016/j.biortech.2009.01.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/12/2009] [Accepted: 01/25/2009] [Indexed: 05/22/2023]
Abstract
The presence of estrone (E1), 17 beta-estradiol (E2) and 17 alpha-ethynylestradiol (EE2) in sewage treatment work (STW) effluent pose a potential risk to aquatic ecosystem. The objectives of this study were to evaluate the effectiveness of vertical-flow wetland as polishing step of conventional wastewater treatment in the removal of estrogens and to examine the effect of sand depth. The highest removal efficiency of 67.8+/-28.0%, 84.0+/-15.4% and 75.3+/-17.6% for E1, E2 and EE2, respectively, was achieved by the shallowest wetland among three constructed wetlands with different filter layer depth (i.e. 7.5, 30 and 60 cm). Together with the result that the performance of wetlands when operating in unsaturated condition was superior to that when operating in water-saturated condition, it is suggested that maintaining sufficient aerobic circumstance in constructed wetlands was important for estrogens removal. Core sampling indicated that the highest efficiency achieved in extremely shallow wetland might be due partly to the highest root density, besides the superior condition for penetration of oxygen. The adsorbed estrogens in sand accounted for less than 12% of the removed estrogens irrespective of the depth, indicating biotic processes play a major role in the estrogens removal.
Collapse
Affiliation(s)
- Hai-Liang Song
- Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Sendai 980-8579, Japan
| | | | | | | | | |
Collapse
|
44
|
Hashimoto T, Murakami T. Removal and degradation characteristics of natural and synthetic estrogens by activated sludge in batch experiments. WATER RESEARCH 2009; 43:573-582. [PMID: 19019407 DOI: 10.1016/j.watres.2008.10.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 10/18/2008] [Accepted: 10/28/2008] [Indexed: 05/26/2023]
Abstract
The removal and degradation characteristics of natural and synthetic estrogens by activated sludge were investigated by a series of batch experiments using the activated sludge samples of four actual wastewater treatment plants and synthetic wastewater spiked with estrogen. The rapid removal and degradation of 17beta-estradiol (E2) and estrone (E1) were observed by the activated sludge samples of the oxidation ditch process which operated at higher solids retention time (SRT). On the other hand, E1 tended to remain both in the water phase and the sludge phase in the activated sludge samples of the conventional activated sludge process which operated at lower SRT. The anoxic condition was considered to be not favorable to the effective removal of estrogens as compared with the aerobic condition. The removal and degradation of EE2 showed the lag phase, which neither E2 nor E1 showed, but EE2 was finally removed and degraded completely after 24h. The removal of estrogens in the water phase did not follow the first-order-rate reaction because a large part of the spiked estrogen was immediately removed from the water phase to the sludge phase by adsorption.
Collapse
Affiliation(s)
- T Hashimoto
- Research and Development Department, Japan Sewage Works Agency, Shimosasame 5141, Toda, Saitama 335-0037, Japan.
| | | |
Collapse
|
45
|
Shappell NW, Vrabel MA, Madsen PJ, Harrington G, Billey LO, Hakk H, Larsen GL, Beach ES, Horwitz CP, Ro K, Hunt PG, Collins TJ. Destruction of estrogens using Fe-TAML/peroxide catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:1296-1300. [PMID: 18351108 DOI: 10.1021/es7022863] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Endocrine disrupting chemicals (EDCs) impair living organisms by interfering with hormonal processes controlling cellular development Reduction of EDCs in water by an environmentally benign method is an important green chemistry goal. One EDC, 17alpha-ethinylestradiol (EE2), the active ingredient in the birth control pill, is excreted by humans to produce a major source of artificial environmental estrogenicity, which is incompletely removed by currenttechnologies used by municipal wastewater treatment plants (MWTPs). Natural estrogens found in animal waste from concentrated animal feeding operations (CAFOs) can also increase estrogenic activity of surface waters. An iron-tetraamidomacrocyclic ligand (Fe-TAML) activator in trace concentrations activates hydrogen peroxide and was shown to rapidly degrade these natural and synthetic reproductive hormones found in agricultural and municipal effluent streams. On the basis of liquid chromatography tandem mass spectrometry, apparent half-lives for 17 alpha- and 17 beta-estradiol, estriol, estrone, and EE2 in the presence of Fe-TAML and hydrogen peroxide were approximately 5 min and included a concomitant loss of estrogenic activity as established by E-Screen assay.
Collapse
Affiliation(s)
- Nancy W Shappell
- Animal Metabolism Unit, Biosciences Research Laboratory, United States Department of Agriculture-Agricultural Research Service, 1605 Albrecht Boulevard, Fargo, North Dakota 58105, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|