1
|
Dehghan R, Piri K, Abdoli A, Hosseinkhani S. Parameters Optimization for Improving Bioluminescence Inhibition Assay Using Vibrio fischeri Bacteria to Detect Lipopolysaccharide Toxicity in Aquatic Environments. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:61. [PMID: 39466431 DOI: 10.1007/s00128-024-03970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Bioluminescence inhibition of Vibrio fischeri is a widely used method for toxicity testing in aquatic environments. Certain complex biological contaminants, such as lipopolysaccharide (LPS), can interfere with metabolic pathways during toxicity assays. The standard 15-minute Vibrio fischeri bioluminescence assay has limitations when evaluating and screening water toxicity against complex and emerging chemicals like LPS. To accurately determine the effects of such substances, it is crucial to use a bioassay that encompasses a sufficient cell cycle period. This study tested LPS at varying incubation times (ranging from 60 s to 60 min) and concentrations (1-1*10- 12 mg/ml) to identify the appropriate incubation time for bioluminescence inhibition and toxicity testing. The results indicated that bioluminescence inhibition begins within 60 s and reaches maximum inhibition at 60 min. However, at 30 and 45 min, the bacterial response to different concentrations of LPS varied, with some concentrations causing increased bioluminescence. The EC50 values at different times (60 s, 15, 30, 45, and 60 min) were found to be 0.0012, 0.0063, 4.07e + 54, 3.85e-8, and 3.34e-9 mg/ml respectively. This study highlights the importance of considering incubation time when using bioluminescence inhibition to detect acute toxicity in aquatic ecosystems. A longer incubation time may enhance the method's sensitivity and improve its ability to detect low levels of toxins, such as LPS, in water resources.
Collapse
Affiliation(s)
- Reyhaneh Dehghan
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Khosro Piri
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Asghar Abdoli
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Morales-Cortés S, Sala-Comorera L, Gómez-Gómez C, Muniesa M, García-Aljaro C. CrAss-like phages are suitable indicators of antibiotic resistance genes found in abundance in fecally polluted samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124713. [PMID: 39134166 DOI: 10.1016/j.envpol.2024.124713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Antibiotic resistance genes (ARGs) have been extensively observed in bacterial DNA, and more recently, in phage particles from various water sources and food items. The pivotal role played by ARG transmission in the proliferation of antibiotic resistance and emergence of new resistant strains calls for a thorough understanding of the underlying mechanisms. The aim of this study was to assess the suitability of the prototypical p-crAssphage, a proposed indicator of human fecal contamination, and the recently isolated crAssBcn phages, both belonging to the Crassvirales group, as potential indicators of ARGs. These crAss-like phages were evaluated alongside specific ARGs (blaTEM, blaCTX-M-1, blaCTX-M-9, blaVIM, blaOXA-48, qnrA, qnrS, tetW and sul1) within the total DNA and phage DNA fractions in water and food samples containing different levels of fecal pollution. In samples with high fecal load (>103 CFU/g or ml of E. coli or somatic coliphages), such as wastewater and sludge, positive correlations were found between both types of crAss-like phages and ARGs in both DNA fractions. The strongest correlation was observed between sul1 and crAssBcn phages (rho = 0.90) in sludge samples, followed by blaCTX-M-9 and p-crAssphage (rho = 0.86) in sewage samples, both in the phage DNA fraction. The use of crAssphage and crAssBcn as indicators of ARGs, considered to be emerging environmental contaminants of anthropogenic origin, is supported by their close association with the human gut. Monitoring ARGs can help to mitigate their dissemination and prevent the emergence of new resistant bacterial strains, thus safeguarding public health.
Collapse
Affiliation(s)
- Sara Morales-Cortés
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| |
Collapse
|
3
|
Yang M, Zhang D, Chu W. Adsorption of highly toxic chlorophenylacetonitriles on typical microplastics in aqueous solutions: Kinetics, isotherm, impact factors and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163261. [PMID: 37023804 DOI: 10.1016/j.scitotenv.2023.163261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/04/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Microplastics (MPs) widely exist in all kinds of water bodies. The physical and chemical properties of MPs make them easy to become the carrier of pollutants, but the interaction between disinfection by-products (DBPs) and MPs has not been studied yet. In this study, the occurrence of emerging high-toxic chlorophenylacetonitriles (CPANs) in wastewater treatment plant (WWTP) effluents was determined. CPANs ubiquitously existed in WWTP effluents, and the concentration ranged from 88 ± 5 ng/L to 219 ± 16 ng/L. The typical MPs (i.e., polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)) were selected to study their adsorption of CPANs. Adsorption kinetics and isotherm analysis were carried out. The maximum Langmuir adsorption capacities were 8.602 ± 0.849 to 9.833 ± 0.946 μg/g for PE, 13.340 ± 1.055 to 29.405 ± 5.233 μg/g for PET, and 20.537 ± 1.649 to 43.597 ± 1.871 for PS. Dichloro-CPANs had higher adsorption capacity than monochloro-CPANs. After that, the specific surface area, contact angle, FTIR spectrum, crystallinity, and glass transition temperature (Tg) of MPs were measured. Based on the analysis of the properties of both MPs and CPANs, the mechanism of adsorption was studied. The adsorption of CPANs on PE was mainly affected by pore-filling and van der Waals force. In addition to these two factors, the adsorption of PET was also affected by hydrophobic interaction. Due to the substituents on the benzene ring, there was π-π interaction between PS and CPANs, which might be the reason why PS had the highest adsorption capacity for CPANs. Finally, the effects of pH and dissolved organic matter were studied, and their effects were relatively limited. The results indicated that MPs may adsorb CPANs in actual WWTP effluents, and special attention should be paid to the possible impacts on the aquatic environment caused by the transfer of CPANs on MPs.
Collapse
Affiliation(s)
- Mansu Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Kelmer GAR, Ramos ER, Dias EHO. Coliphages as viral indicators in municipal wastewater: A comparison between the ISO and the USEPA methods based on a systematic literature review. WATER RESEARCH 2023; 230:119579. [PMID: 36640612 DOI: 10.1016/j.watres.2023.119579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The use of traditional faecal indicator bacteria as surrogate organisms for pathogenic viruses in domestic wastewater has been noted as a problematic as concentrations and removal rates of bacteria and viruses do not seem to correlate. In this sense, bacteriophages (phages) emerge as potential viral indicators, as they are commonly found in wastewater in high levels, and can be quantified using simple, fast, low-cost methods. Somatic and F-specific coliphages comprise groups of phages commonly used as indicators of water quality. There are two internationally recognised methods to detect and enumerate coliphages in water samples, the International Standardization Organization (ISO) and the US Environmental Protection Agency (USEPA) methods. Both methods are based on the lysis of specific bacterial host strains infected by phages. Within this context, this systematic literature review aimed at gathering concentrations in raw and treated domestic wastewater (secondary, biological treatment systems and post-treatment systems), and removal efficiencies of somatic and F-specific coliphages obtained by ISO and USEPA methods, and then compare both methods. A total of 33 research papers were considered in this study. Results showed that the ISO method is more commonly applied than the USEPA method. Some discrepancies in terms of concentrations and removal efficiencies were observed between both methods. Higher removal rates were observed for both somatic and F-specific coliphages in activated sludge systems when using the USEPA method compared to the ISO method; in other secondary (biological) treatment systems, this was observed only for F-specific coliphages. The use of different standardised methods available might lead to difficulties in obtaining and comparing phage data in different conditions and locations. Future research comparing both ISO and USEPA methods as well as viral and bacterial pathogens and indicators in WWTP is recommended.
Collapse
Affiliation(s)
- Gisele A R Kelmer
- Postgraduate Programme in Civil Engineering (PEC), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil
| | - Elloís R Ramos
- Environmental and Sanitary Engineering Course, Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil
| | - Edgard H O Dias
- Postgraduate Programme in Civil Engineering (PEC), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil; Department of Sanitary and Environmental Engineering (ESA), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil.
| |
Collapse
|
5
|
Pascual-Benito M, Jorba-Plassa A, Casas-Mangas R, Blanch AR, Martín-Díaz J. Comparison of methods for the enumeration of coliphages in 100 mL water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156381. [PMID: 35660433 DOI: 10.1016/j.scitotenv.2022.156381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
In the last decade coliphages have been included in many water quality regulations as viral faecal indicators. However, the standardised methods used to detect and quantify coliphages differ in bacterial host strains, culture media and techniques. In this comparative study, 100 mL samples of mineral drinking water, river water and wastewater were analysed with International Organization for Standardization (ISO) standard methods, with United States-Environmental Protection Agency (U.S. EPA) based methods as well as commercial kits combining a single agar layer (SAL) assay with ISO bacterial host strains. The three methods gave similar counts (p-value>0.05) for somatic and total coliphages in the matrices with less than 100 PFU/100 mL, whereas for F-specific coliphages, the U.S. EPA method provided statistically significant lower numbers (p-value<0.05) than the other two protocols, possibly because it uses a different bacterial host strain (Escherichia coli HS (pFamp) R vs. the ISO strain Salmonella enterica serovar Typhimurium WG49). In samples with more than 100 PFU/100 mL, the ISO method yielded higher counts of somatic coliphages than the other two protocols (p-value<0.05). As the three methods provided similar results in clean water, the approach combining a SAL assay with the ISO bacterial host strain could be a useful option for coliphage analysis in this type of sample, as it does not require a concentration step.
Collapse
Affiliation(s)
- Miriam Pascual-Benito
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; Bluephage S.L., Gavà 4, 08820, El Prat de Llobregat, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001 Barcelona, Spain
| | | | - Raquel Casas-Mangas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001 Barcelona, Spain
| | - Julia Martín-Díaz
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain; Bluephage S.L., Gavà 4, 08820, El Prat de Llobregat, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001 Barcelona, Spain.
| |
Collapse
|
6
|
Zhang J, He X, Zhang H, Liao Y, Wang Q, Li L, Yu J. Factors Driving Microbial Community Dynamics and Potential Health Effects of Bacterial Pathogen on Landscape Lakes with Reclaimed Water Replenishment in Beijing, PR China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5127. [PMID: 35564521 PMCID: PMC9106022 DOI: 10.3390/ijerph19095127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Assessing the bacteria pathogens in the lakes with reclaimed water as major influents are important for public health. This study investigated microbial communities of five landscape lakes replenished by reclaimed water, then analyzed driven factors and identified health effects of bacterial pathogens. 16S rRNA gene sequence analysis demonstrated that Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, and Verrucomicrobia were the most dominant phyla in five landscape lakes. The microbial community diversities were higher in June and July than that in other months. Temperature, total nitrogen and phosphorus were the main drivers of the dominant microbial from the Redundancy analysis (RDA) results. Various potential bacterial pathogens were identified, including Pseudomonas, GKS98_freshwater_group, Sporosarcina, Pseudochrobactrum, Streptomyces and Bacillus, etc, some of which are easily infectious to human. The microbial network analysis showed that some potential pathogens were nodes that had significant health effects. The work provides a basis for understanding the microbial community dynamics and safety issues for health effects in landscape lakes replenished by reclaimed water.
Collapse
Affiliation(s)
- Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Xiao He
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Huixin Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Yu Liao
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Beijing 100019, China
| | - Luwei Li
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Beijing 100019, China
| |
Collapse
|
7
|
E. coli CB390 as an Indicator of Total Coliphages for Microbiological Assessment of Lime and Drying Bed Treated Sludge. WATER 2021. [DOI: 10.3390/w13131833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The use of a single host strain that allows for an evaluation of the levels of total coliphages in any type of environmental sample would facilitate the detection of and reduction in complexity and costs, favoring countries or areas with technical and economic limitations. The CB390 strain is a candidate for this type of simultaneous determinations, mainly in water samples. The objective of the study was to establish the recovery capacity of the CB390 strain in solid and semi-solid samples and to evaluate the microbiological quality of the sludge generated and stabilized by lime and drying beds in two WWTPs in Colombia. The results of both matrices indicated that CB390 recovered similar numbers of total coliphages (p > 0.05) against the two host strains when evaluated separately. Only the drying bed treatment was able to reduce between 2.0 and 2.9 Log10 units for some microorganisms, while the addition of lime achieved a maximum reduction of 1.3 Log10 units for E. coli. In conclusion, the CB390 strain can be used in solid and semi-solid samples, and the treatment in a drying bed provided a product of microbiological quality. However, the results are influenced by the infrastructure of the WWTP, the treatment conditions, and the monitoring of the stabilization processes.
Collapse
|
8
|
Cossio C, Perez-Mercado LF, Norrman J, Dalahmeh S, Vinnerås B, Mercado A, McConville J. Impact of treatment plant management on human health and ecological risks from wastewater irrigation in developing countries - case studies from Cochabamba, Bolivia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:355-373. [PMID: 31475566 DOI: 10.1080/09603123.2019.1657075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Wastewater irrigation is a common practice in developing countries due to water scarcity and increasing demand for food production. However, there are health risks and ecological risks associated with this practice. Small-scale wastewater treatment plants (WWTPs) intend to decrease these risks but still face management challenges. This study assessed how the management status of five small-scale WWTPs in Cochabamba, Bolivia affects health risks associated with consumption of lettuce and ecological risks due to the accumulation of nutrients in the soil for lettuce and maize crops. Risk simulations for three wastewater irrigation scenarios were: raw wastewater, actual effluent and expected effluent. Results showed that weak O&M practices can increase risk outcomes to higher levels than irrigating with raw wastewater. Improving O&M to achieve optimal functioning of small-scale WWTPs can reduce human health risks and ecological risks up to 2 log10 DALY person-1 year-1 and to 2 log10 kg nitrogen ha-1 accumulated in soil, respectively.
Collapse
Affiliation(s)
- Claudia Cossio
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, Sweden
- Centro de Aguas y Saneamiento Ambiental, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Luis Fernando Perez-Mercado
- Centro de Aguas y Saneamiento Ambiental, Universidad Mayor de San Simón, Cochabamba, Bolivia
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jenny Norrman
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Sahar Dalahmeh
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Björn Vinnerås
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alvaro Mercado
- Centro de Aguas y Saneamiento Ambiental, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Jennifer McConville
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
9
|
Peng L, Wang F, Zhang D, Fang C, van der Hoek JP, Chu W. Effect of oxidation ditch and anaerobic-anoxic-oxic processes on CX 3R-type disinfection by-product formation during wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145344. [PMID: 33515881 DOI: 10.1016/j.scitotenv.2021.145344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/27/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The high chlorine dosages in wastewater treatment plants during the COVID-19 pandemic may result in increased formation of disinfection by-products (DBPs), posing great threat to the aquatic ecosystem of the receiving water body and the public health in the downstream area. However, limited information is available on the effect of biological wastewater treatment processes on the formation of CX3R-type DBPs. This study investigated the effect of oxidation ditch (OD) and anaerobic-anoxic-oxic (AAO), two widely used biological wastewater treatment processes, on the formation of five classes of CX3R-type DBPs, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetaldehydes (HALs), haloacetonitriles (HANs) and halonitromethanes (HNMs), during chlorination. Experimental results showed that biological treatment effectively reduced the dissolved organic carbon (DOC) and UV254, while it increased the dissolved organic nitrogen (DON), and therefore the ratio of DON/DOC. In addition, increases in the contents of soluble microbial product- and humic acid-like matters, and the transformation of high molecular weight (MW) fractions in the dissolved organic matter into low MW fractions were observed after OD and AAO processes. Although biological treatment effectively decreased the formation of Cl-THMs, Cl-HAAs, Cl-HANs and Cl-HNMs, the formation of DBCM, DBAA, BDCAA, DBCAA, DCAL, TCAL and DBAN (where C = chloro, B = bromo, D = di, T = tri) all increased significantly, due to the increased formation reactivity. Moreover, biological treatment increased the ratio of bromide/DOC and bromine incorporation into THMs, HAAs and DHANs except for HALs and THANs. Different from previous studies, this study revealed that biological treatment increased the formation of some DBPs, especially brominated DBPs, despite the efficient removal of organic matters. It provides insights into the DBP risk control in wastewater treatment, particularly during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Liqi Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jan Peter van der Hoek
- Department of Water Management, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands; Research & Innovation, Waternet, Korte Ouderkerkerdijk 7, 1096 AC Amsterdam, the Netherlands
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
10
|
Ballesté E, Blanch AR, Mendez J, Sala-Comorera L, Maunula L, Monteiro S, Farnleitner AH, Tiehm A, Jofre J, García-Aljaro C. Bacteriophages Are Good Estimators of Human Viruses Present in Water. Front Microbiol 2021; 12:619495. [PMID: 34012424 PMCID: PMC8128106 DOI: 10.3389/fmicb.2021.619495] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The detection of fecal viral pathogens in water is hampered by their great variety and complex analysis. As traditional bacterial indicators are poor viral indicators, there is a need for alternative methods, such as the use of somatic coliphages, which have been included in water safety regulations in recent years. Some researchers have also recommended the use of reference viral pathogens such as noroviruses or other enteric viruses to improve the prediction of fecal viral pollution of human origin. In this work, phages previously tested in microbial source tracking studies were compared with norovirus and adenovirus for their suitability as indicators of human fecal viruses. The phages, namely those infecting human-associated Bacteroides thetaiotaomicron strain GA17 (GA17PH) and porcine-associated Bacteroides strain PG76 (PGPH), and the human-associated crAssphage marker (crAssPH), were evaluated in sewage samples and fecal mixtures obtained from different animals in five European countries, along with norovirus GI + GII (NoV) and human adenovirus (HAdV). GA17PH had an overall sensitivity of ≥83% and the highest specificity (>88%) for human pollution source detection. crAssPH showed the highest sensitivity (100%) and specificity (100%) in northern European countries but a much lower specificity in Spain and Portugal (10 and 30%, respectively), being detected in animal wastewater samples with a high concentration of fecal indicators. The correlations between GA17PH, crAssPH, or the sum of both (BACPH) and HAdV or NoV were higher than between the two human viruses, indicating that bacteriophages are feasible indicators of human viral pathogens of fecal origin and constitute a promising, easy to use and affordable alternative to human viruses for routine water safety monitoring.
Collapse
Affiliation(s)
- Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Anicet R. Blanch
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Javier Mendez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Leena Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Silvia Monteiro
- Laboratório Analises, Instituto Superior Tecnico, Universidade Lisboa, Lisbon, Portugal
| | - Andreas H. Farnleitner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Vienna, Austria
- Research Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Andreas Tiehm
- Department of Microbiology and Molecular Biology, DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
| | - Joan Jofre
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Coliphages as a Complementary Tool to Improve the Management of Urban Wastewater Treatments and Minimize Health Risks in Receiving Waters. WATER 2021. [DOI: 10.3390/w13081110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Even in countries with extensive sanitation systems, outbreaks of waterborne infectious diseases are being reported. Current tendencies, such as the growing concentration of populations in large urban conurbations, climate change, aging of existing infrastructures, and emerging pathogens, indicate that the management of water resources will become increasingly challenging in the near future. In this context, there is an urgent need to control the fate of fecal microorganisms in wastewater to avoid the negative health consequences of releasing treated effluents into surface waters (rivers, lakes, etc.) or marine coastal water. On the other hand, the measurement of bacterial indicators yields insufficient information to gauge the human health risk associated with viral infections. It would therefore seem advisable to include a viral indicator—for example, somatic coliphages—to monitor the functioning of wastewater treatments. As indicated in the studies reviewed herein, the concentrations of somatic coliphages in raw sewage remain consistently high throughout the year worldwide, as occurs with bacterial indicators. The removal process for bacterial indicators and coliphages in traditional sewage treatments is similar, the concentrations in secondary effluents remaining sufficiently high for enumeration, without the need for cumbersome and costly concentration procedures. Additionally, according to the available data on indicator behavior, which is still limited for sewers but abundant for surface waters, coliphages persist longer than bacterial indicators once outside the gut. Based on these data, coliphages can be recommended as indicators to assess the efficiency of wastewater management procedures with the aim of minimizing the health impact of urban wastewater release in surface waters.
Collapse
|
12
|
Liao Z, Chen Z, Xu A, Gao Q, Song K, Liu J, Hu HY. Wastewater treatment and reuse situations and influential factors in major Asian countries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111976. [PMID: 33465713 DOI: 10.1016/j.jenvman.2021.111976] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
As Asia is the most populous continent in the world, the contradiction between water supply and demand is increasing. Wastewater treatment and reclaimed water use are important means to solve the contradiction between supply and demand and realize the sustainability of the water management system. Based on the data collected from 48 typical countries and regions in Asia, this study evaluates the possible influential factors on wastewater treatment and reclaimed water use such as Gross Domestic Product (GDP) level, water resource availability, water withdrawn and water stress. It is identified that per capita GDP and water stress are important factors affecting wastewater treatment and reclaimed water use. Although reclaimed water use in most Asian countries is still at the early stage, the development of wastewater treatment is conducive to the development of reclaimed water. The results of this study are believed to be useful in improving water management and sustainability levels in Asian countries.
Collapse
Affiliation(s)
- Zitong Liao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China.
| | - Ao Xu
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu Suzhou, 215163, PR China
| | - Qiang Gao
- Chinese Society for Environmental Sciences, Beijing, 100082, PR China
| | - Keying Song
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Junhan Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| |
Collapse
|
13
|
Chacón L, Barrantes K, Santamaría-Ulloa C, Solano M, Reyes L, Taylor L, Valiente C, Symonds EM, Achí R. A Somatic Coliphage Threshold Approach To Improve the Management of Activated Sludge Wastewater Treatment Plant Effluents in Resource-Limited Regions. Appl Environ Microbiol 2020; 86:e00616-20. [PMID: 32591380 PMCID: PMC7440787 DOI: 10.1128/aem.00616-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/06/2020] [Indexed: 11/20/2022] Open
Abstract
Effective wastewater management is crucial to ensure the safety of water reuse projects and effluent discharge into surface waters. Multiple studies have demonstrated that municipal wastewater treatment with conventional activated sludge processes is inefficient for the removal of a wide spectrum of viruses in sewage. In this study, a well-accepted statistical approach was used to investigate the relationship between viral indicators and human enteric viruses during wastewater treatment in a resource-limited region. Influent and effluent samples from five urban wastewater treatment plants (WWTPs) in Costa Rica were analyzed for somatic coliphage and human enterovirus, hepatitis A virus, norovirus genotypes I and II, and rotavirus. All WWTPs provide primary treatment followed by conventional activated sludge treatment prior to discharge into surface waters that are indirectly used for agricultural irrigation. The results revealed a statistically significant relationship between the detection of at least one of the five human enteric viruses and somatic coliphage. Multiple logistic regression and receiver operating characteristic curve analysis identified a threshold of 3.0 × 103 (3.5 log10) somatic coliphage PFU per 100 ml, which corresponded to an increased likelihood of encountering enteric viruses above the limit of detection (>1.83 × 102 virus targets/100 ml). Additionally, quantitative microbial risk assessment was executed for farmers indirectly reusing WWTP effluent that met the proposed threshold. The resulting estimated median cumulative annual disease burden complied with World Health Organization recommendations. Future studies are needed to validate the proposed threshold for use in Costa Rica and other regions.IMPORTANCE Effective wastewater management is crucial to ensure safe direct and indirect water reuse; nevertheless, few countries have adopted the virus log reduction value management approach established by the World Health Organization. In this study, we investigated an alternative and/or complementary approach to the virus log reduction value framework for the indirect reuse of activated sludge-treated wastewater effluent. Specifically, we employed a well-accepted statistical approach to identify a statistically sound somatic coliphage threshold value which corresponded to an increased likelihood of human enteric virus detection. This study demonstrates an alternative approach to the virus log reduction value framework which can be applied to improve wastewater reuse practices and effluent management.
Collapse
Affiliation(s)
- Luz Chacón
- Health Sciences Research Institute (Instituto de Investigaciones en Salud [INISA]), Universidad de Costa Rica, Montes de Oca, Costa Rica
| | - Kenia Barrantes
- Health Sciences Research Institute (Instituto de Investigaciones en Salud [INISA]), Universidad de Costa Rica, Montes de Oca, Costa Rica
| | - Carolina Santamaría-Ulloa
- Health Sciences Research Institute (Instituto de Investigaciones en Salud [INISA]), Universidad de Costa Rica, Montes de Oca, Costa Rica
| | - Melissa Solano
- Health Sciences Research Institute (Instituto de Investigaciones en Salud [INISA]), Universidad de Costa Rica, Montes de Oca, Costa Rica
| | - Liliana Reyes
- Health Sciences Research Institute (Instituto de Investigaciones en Salud [INISA]), Universidad de Costa Rica, Montes de Oca, Costa Rica
| | - Lizeth Taylor
- College of Microbiology (Facultad de Microbiología), Universidad de Costa Rica, Montes de Oca, Costa Rica
| | - Carmen Valiente
- National Water Laboratory (Laboratorio Nacional de Aguas), Costa Rican Institute of Aqueducts and Sewerage (Instituto Costarricense de Acueductos y Alcantarillados), Tres Ríos, Costa Rica
| | - Erin M Symonds
- College of Marine Science, University of South Florida, St. Petersburg, Florida, USA
| | - Rosario Achí
- Health Sciences Research Institute (Instituto de Investigaciones en Salud [INISA]), Universidad de Costa Rica, Montes de Oca, Costa Rica
| |
Collapse
|
14
|
Farkas K, Walker DI, Adriaenssens EM, McDonald JE, Hillary LS, Malham SK, Jones DL. Viral indicators for tracking domestic wastewater contamination in the aquatic environment. WATER RESEARCH 2020; 181:115926. [PMID: 32417460 PMCID: PMC7211501 DOI: 10.1016/j.watres.2020.115926] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 05/13/2023]
Abstract
Waterborne enteric viruses are an emerging cause of disease outbreaks and represent a major threat to global public health. Enteric viruses may originate from human wastewater and can undergo rapid transport through aquatic environments with minimal decay. Surveillance and source apportionment of enteric viruses in environmental waters is therefore essential for accurate risk management. However, individual monitoring of the >100 enteric viral strains that have been identified as aquatic contaminants is unfeasible. Instead, viral indicators are often used for quantitative assessments of wastewater contamination, viral decay and transport in water. An ideal indicator for tracking wastewater contamination should be (i) easy to detect and quantify, (ii) source-specific, (iii) resistant to wastewater treatment processes, and (iv) persistent in the aquatic environment, with similar behaviour to viral pathogens. Here, we conducted a comprehensive review of 127 peer-reviewed publications, to critically evaluate the effectiveness of several viral indicators of wastewater pollution, including common enteric viruses (mastadenoviruses, polyomaviruses, and Aichi viruses), the pepper mild mottle virus (PMMoV), and gut-associated bacteriophages (Type II/III FRNA phages and phages infecting human Bacteroides species, including crAssphage). Our analysis suggests that overall, human mastadenoviruses have the greatest potential to indicate contamination by domestic wastewater due to their easy detection, culturability, and high prevalence in wastewater and in the polluted environment. Aichi virus, crAssphage and PMMoV are also widely detected in wastewater and in the environment, and may be used as molecular markers for human-derived contamination. We conclude that viral indicators are suitable for the long-term monitoring of viral contamination in freshwater and marine environments and that these should be implemented within monitoring programmes to provide a holistic assessment of microbiological water quality and wastewater-based epidemiology, improve current risk management strategies and protect global human health.
Collapse
Affiliation(s)
- Kata Farkas
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK.
| | - David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, DT4 8UB, UK
| | | | - James E McDonald
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Luke S Hillary
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
15
|
Hinkley TC, Garing S, Jain P, Williford J, Le Ny ALM, Nichols KP, Peters JE, Talbert JN, Nugen SR. A Syringe-Based Biosensor to Rapidly Detect Low Levels of Escherichia Coli (ECOR13) in Drinking Water Using Engineered Bacteriophages. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1953. [PMID: 32244369 PMCID: PMC7181147 DOI: 10.3390/s20071953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
A sanitized drinking water supply is an unconditional requirement for public health and the overall prosperity of humanity. Potential microbial and chemical contaminants of drinking water have been identified by a joint effort between the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF), who together establish guidelines that define, in part, that the presence of Escherichia coli (E. coli) in drinking water is an indication of inadequate sanitation and a significant health risk. As E. coli is a nearly ubiquitous resident of mammalian gastrointestinal tracts, no detectable counts in 100 mL of drinking water is the standard used worldwide as an indicator of sanitation. The currently accepted EPA method relies on filtration, followed by growth on selective media, and requires 24-48 h from sample to results. In response, we developed a rapid bacteriophage-based detection assay with detection limit capabilities comparable to traditional methods in less than a quarter of the time. We coupled membrane filtration with selective enrichment using genetically engineered bacteriophages to identify less than 20 colony forming units (CFU) E. coli in 100 mL drinking water within 5 h. The combination of membrane filtration with phage infection produced a novel assay that demonstrated a rapid, selective, and sensitive detection of an indicator organism in large volumes of drinking water as recommended by the leading world regulatory authorities.
Collapse
Affiliation(s)
- Troy C. Hinkley
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Spencer Garing
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Paras Jain
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - John Williford
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Anne-Laure M. Le Ny
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Kevin P. Nichols
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Joseph E. Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
| | - Joey N. Talbert
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA;
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
16
|
Worley‐Morse T, Mann M, Khunjar W, Olabode L, Gonzalez R. Evaluating the fate of bacterial indicators, viral indicators, and viruses in water resource recovery facilities. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:830-842. [PMID: 30848516 PMCID: PMC6849880 DOI: 10.1002/wer.1096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 05/03/2023]
Abstract
A year-long sampling campaign at nine water resource recovery facilities (WRRFs) was conducted to assess the treatability and fate of bacterial indicators, viral indicators, and viruses. Influent concentrations of viral indicators (male-specific and somatic coliphages) and bacterial indicators (Escherichia coli and enterococci) remained relatively constant, typically varying by one order of magnitude over the course of the year. Annual average bacterial indicator reduction ranged from 4.0 to 6.7 logs, and annual average viral indicator reduction ranged from 1.6 to 5.4 logs. Bacterial and viral indicator reduction depended on the WRRF's treatment processes, and bacterial indicator reduction was greater than viral indicator reduction for many processes. Viral reduction (adenovirus 41, norovirus GI, and norovirus GII) was more similar to viral indicator reduction than bacterial indicator reduction. Overall, this work suggests that viral indicator reduction in WRRFs is variable and depends on specific unit processes. Moreover, for the same unit treatment process, viral indicator reduction and bacterial indicator reduction can vary. PRACTITIONER POINTS: A year-long sampling campaign was conducted at nine water resource recovery facilities (WRRFs). The treatability and fate of bacterial indicators, viral indicators, and viruses were assessed. Viral indicator reduction in WRRFs is variable and depends on specific unit processes. For the same unit treatment process, viral indicator reduction and bacterial indicator reduction can vary.
Collapse
Affiliation(s)
| | | | | | | | - Raul Gonzalez
- Hampton Roads Sanitation DistrictVirginia BeachVirginia
| |
Collapse
|
17
|
Lee S, Tasaki S, Hata A, Yamashita N, Tanaka H. Evaluation of virus reduction at a large-scale wastewater reclamation plant by detection of indigenous F-specific RNA bacteriophage genotypes. ENVIRONMENTAL TECHNOLOGY 2019; 40:2527-2537. [PMID: 29471753 DOI: 10.1080/09593330.2018.1444675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Evaluating the reduction of virus load in water reclamation plants is important to ensuring the hygienic safety of the reclaimed water. A virus-spiking test is usually used to estimate virus reduction but is not practicable at large-scale plants. Thus, we evaluated virus reduction by ultrafiltration (UF) plus ultraviolet (UV) irradiation at a large-scale reclamation plant (1000 m3/d) by quantifying indigenous F-specific RNA bacteriophages (FRNAPHs). To detect the infectious FRNAPH, we used both plaque assay and integrated culture-reverse-transcription polymerase chain reaction combined with the most probable number assay, which can detect infectious FRNAPH genotypes. For comparison, we determined reductions of indigenous FRNAPHs and spiked MS2 at a small-scale pilot plant (10 m3/d) at the same time. Reductions by UF were not significantly different among the bacteriophages at pilot plants. This result suggests that indigenous bacteriophages could be used for evaluating virus reduction by UF at large-scale plants. Indigenous Genotype I (GI) FRNAPH showed the highest UV resistance, followed by GII, GIII, and GIV. The resistance of GI-FRNAPH was equivalent to that of spiked MS2. The reduction of the total infectious FRNAPHs determined by plaque assay was affected by the predominant FRNAPH genotype, presumably because of their different UV resistances. Our results reveal that indigenous GI-FRNAPH can be a good alternative indicator to spiked MS2 in view of virus reduction during water reclamation. The reclaimed water from our large-scale reclamation plant could be used for irrigation because the expected reduction (6.3 log10) of indigenous GI-FRNAPH achieved the Title 22 (>5 log10).
Collapse
Affiliation(s)
- Suntae Lee
- a Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University , Otsu , Japan
| | - Shota Tasaki
- a Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University , Otsu , Japan
| | - Akihiko Hata
- a Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University , Otsu , Japan
| | - Naoyuki Yamashita
- a Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University , Otsu , Japan
| | - Hiroaki Tanaka
- a Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University , Otsu , Japan
| |
Collapse
|
18
|
Masciopinto C, De Giglio O, Scrascia M, Fortunato F, La Rosa G, Suffredini E, Pazzani C, Prato R, Montagna MT. Human health risk assessment for the occurrence of enteric viruses in drinking water from wells: Role of flood runoff injections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:559-571. [PMID: 30807946 DOI: 10.1016/j.scitotenv.2019.02.107] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
We demonstrated that floods can induce severe microbiological contamination of drinking water from wells and suggest strategies to better address water safety plans for groundwater drinking supplies. Since 2002, the Italian Water Research Institute (IRSA) has detected hepatitis A virus, adenovirus, rotavirus, norovirus, and enterovirus in water samples from wells in the Salento peninsula, southern Italy. Perturbations in the ionic strength in water flow can initiate strong virus detachments from terra rossa sediments in karst fractures. This study therefore explored the potential health impacts of prolonged runoff injections in Salento groundwater caused by severe flooding during October 2018. A mathematical model for virus fate and transport in fractures was applied to determine the impact of floodwater injection on groundwater quality by incorporating mechanisms that affect virus attachment/detachment and survival in flowing water at microscale. This model predicted target concentrations of enteric viruses that can occur unexpectedly in wells at considerable distances (5-8 km) from the runoff injection site (sinkhole). Subsequently, the health impact of viruses in drinking water supplied from contaminated wells was estimated during the summer on the Salento coast. Specific unpublished dose-response model coefficients were proposed to determine the infection probabilities for Echo-11 and Polio 1 enteroviruses through ingestion. The median (50%) risk of infection was estimated at 6.3 · 10-3 with an uncertainty of 23%. The predicted burden of diseases was 4.89 disability adjusted life years per year, i.e., twice the maximum tolerable disease burden. The results highlight the requirement for additional water disinfection treatments in Salento prior to the distribution of drinking water. Moreover, monthly controls of enteric virus occurrence in water from wells should be imposed by a new water framework directive in semiarid regions because of the vulnerability of karst carbonate aquifers to prolonged floodwater injections and enteric virus contamination.
Collapse
Affiliation(s)
- Costantino Masciopinto
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (IRSA), Reparto di Chimica e Tecnologia delle Acque, Bari, Italy.
| | - Osvalda De Giglio
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi Aldo Moro, Bari, Italy
| | - Maria Scrascia
- Dipartimento di Biologia, Università degli Studi Aldo Moro, Bari, Italy
| | | | - Giuseppina La Rosa
- Dipartimento Ambiente e Salute, Istituto Superiore di Sanità, Roma, Italy
| | - Elisabetta Suffredini
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, Roma, Italy
| | - Carlo Pazzani
- Dipartimento di Biologia, Università degli Studi Aldo Moro, Bari, Italy
| | - Rosa Prato
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Foggia, Italy
| | - Maria Teresa Montagna
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi Aldo Moro, Bari, Italy
| |
Collapse
|
19
|
Zhu L, Torres M, Betancourt WQ, Sharma M, Micallef SA, Gerba C, Sapkota AR, Sapkota A, Parveen S, Hashem F, May E, Kniel K, Pop M, Ravishankar S. Incidence of fecal indicator and pathogenic bacteria in reclaimed and return flow waters in Arizona, USA. ENVIRONMENTAL RESEARCH 2019; 170:122-127. [PMID: 30579985 DOI: 10.1016/j.envres.2018.11.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/13/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The quality of irrigation water used to cultivate produce that is consumed raw is an important issue with regard to food safety. In this study, the microbiological quality of potential irrigation water sources in Arizona was evaluated by testing for the presence of indicator and pathogenic bacteria. Reclaimed water samples were collected from two wastewater treatment plants and return flow samples were collected from two drainage canals and one return flow pond. Standard membrane filtration methods were used for detection of indicator bacteria. Water samples (n = 28) were filtered through cellulose ester membrane filters and bacterial populations were enumerated by placing the filters on selective agar. For detection of pathogens (Salmonella enterica, Listeria monocytogenes and Shiga toxin-producing E. coli (STEC)), water samples were filtered through Modified Moore swabs and enriched in Universal Pre-enrichment Broth, followed by selective enrichment broth for each pathogen. The enriched broth was streaked onto agar media selective for each pathogen. Presumptive colonies were confirmed by PCR/real-time PCR. Among the 14 reclaimed water samples from two sites, the ranges of recovered populations of E. coli, total coliforms, and enterococci were 0-1.3, 0.5-8.3 × 103, and 0-5.5 CFU/100 mL, respectively. No L. monocytogenes, Salmonella or STEC were found. In the 13 return flow water samples from 3 sites, the ranges of recovered populations of E. coli, total coliforms and enterococci were 1.9-5.3 × 102, 6.5 × 102-9.1 × 104, and 2.9-3.7× 103 CFU/100 mL, respectively. All samples were negative for L. monocytogenes. One (7.1%) of the return flow samples was positive for E. coli O145. Nine (64.3%) of the samples were positive for Salmonella. Both real-time PCR and culture-based methods were used for the detection of Salmonella and L. monocytogenes, and the results from the two methods were comparable. The findings of this study provide evidence that irrigation waters in Arizona, including reclaimed water and return flows, could be potential sources of bacterial contamination of produce. Additional work is needed to evaluate whether bacteria present in irrigation water sources transfer to the edible portion of irrigated plants and are capable of persisting through post-harvest activities.
Collapse
Affiliation(s)
- Libin Zhu
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell Street, Tucson, AZ 85721, United States
| | - Monique Torres
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell Street, Tucson, AZ 85721, United States
| | - Walter Q Betancourt
- Department of Soil, Water, and Environmental Science, University of Arizona, 2959 W Calle Agua Nueva, Tucson, AZ 85745, United States
| | - Manan Sharma
- Environmental Microbial & Food Safety Lab, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, 2126 Plant Sciences Building, College Park, MD 20742, United States; Centre for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, United States
| | - Charles Gerba
- Department of Soil, Water, and Environmental Science, University of Arizona, 2959 W Calle Agua Nueva, Tucson, AZ 85745, United States
| | - Amy R Sapkota
- School of Public Health, University of Maryland, 2234P SPH Building, College Park, MD 20742, United States
| | - Amir Sapkota
- School of Public Health, University of Maryland, 2234P SPH Building, College Park, MD 20742, United States
| | - Salina Parveen
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, United States
| | - Fawzy Hashem
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, United States
| | - Eric May
- Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, United States
| | - Kalmia Kniel
- Department of Animal and Food Sciences, University of Delaware, 044 Townsend Hall, Newark, DE 19716, United States
| | - Mihai Pop
- Department of Computer Science & the Center for Bioinformatics and Computational Biology, University of Maryland, 8223 Paint Branch Drive, College Park, MD 20742, United States
| | - Sadhana Ravishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell Street, Tucson, AZ 85721, United States.
| |
Collapse
|
20
|
Rames E, Macdonald J. The QuantiPhage assay: A novel method for the rapid colorimetric detection of coliphages using cellulose pad materials. WATER RESEARCH 2019; 149:98-110. [PMID: 30423504 DOI: 10.1016/j.watres.2018.10.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/23/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
Assessment of viral contamination is essential for monitoring the microbial quality of water and protection of public health, as human virus presence is not accurately determined using bacterial indicators. Currently, the time required for conventional viral testing means that water contaminated with human pathogens may be used (e.g. for drinking, recreation or irrigation) days before results are available. Here we report a new rapid method for coliphage enumeration, the QuantiPhage (QP) assay. The novelty of the assay is the use of cellulose absorbent pad materials to support coliphage growth and colorimetric detection, in place of agar that is used in the plaque assay. In addition to saving time associated with agar preparation and tempering, the QP assay enabled enumeration of somatic coliphages in 1.5-2 h and F+ coliphages in 2.5-3 h. The assays were highly sensitive, with a lower detection limit of 1 plaque forming unit (PFU) per mL where 1 mL sample volumes were analysed, and 1 PFU per 10 mL where 10 mL sample volumes were analysed. This is the first rapid culture assay to enable low numbers of coliphages to be reliably detected and to produce directly equivalent results to agar-based plaque assays. A novel gelatin-immobilisation method is also reported, that reduces time to prepare bacterial cells from ∼20 h to 40-60 min (depending on the assay format), and provides a ready to use form of cells, that is compatible with rapid detection and kit formats. When applied to analysis of somatic coliphages in wastewater samples and surface water samples, mean differences in results of the QP assay and the conventional plaque assay were not statistically significant (mean difference ≤ 0.15 log10 PFU/L and 0.5 PFU/10 mL respectively, P > 0.05). The QP is a valuable tool for assessing microbial water quality, which may assist in improving the management of water resources.
Collapse
Affiliation(s)
- Emily Rames
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia; School of Natural Sciences, Griffith University, Nathan, Queensland, Australia; Future Biosolutions Pty Ltd, Buddina, Queensland, Australia.
| | - Joanne Macdonald
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia; Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, USA
| |
Collapse
|
21
|
Schmitz BW, Moriyama H, Haramoto E, Kitajima M, Sherchan S, Gerba CP, Pepper IL. Reduction of Cryptosporidium, Giardia, and Fecal Indicators by Bardenpho Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7015-7023. [PMID: 29847105 DOI: 10.1021/acs.est.7b05876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Increased demand for water reuse and reclamation accentuates the importance for optimal wastewater treatment to limit protozoa in effluents. Two wastewater treatment plants utilizing advanced Bardenpho were investigated over a 12-month period to determine the incidence and reduction of Cryptosporidium, Giardia, Cyclospora, and fecal indicators. Results were compared to facilities that previously operated in the same geographical area. Protozoa (oo)cysts were concentrated using an electronegative filter and subsequently detected by fluorescent microscopy and/or PCR methods. Cryptosporidium and Giardia were frequently detected in raw sewage, but Cyclospora was not detected in any wastewater samples. Facilities with Bardenpho treatment exhibited higher removals of (oo)cysts than facilities utilizing activated sludge or trickling filters. This was likely due to Bardenpho systems having increased solid wasting rates; however, this mechanism cannot be confirmed as sludge samples were not analyzed. Use of dissolved-air-flotation instead of sedimentation tanks did not result in more efficient removal of (oo)cysts. Concentrations of protozoa were compared with each other, Escherichia coli, somatic coliphage, and viruses (pepper mild mottle virus, Aichi virus 1, adenovirus, and polyomaviruses JC and BK). Although significant correlations were rare, somatic coliphage showed the highest potential as an indicator for the abundance of protozoa in wastewaters.
Collapse
Affiliation(s)
- Bradley W Schmitz
- Department of Civil & Environmental Engineering , National University of Singapore , Block E1A, #07-03, No. 1 Engineering Drive 2 , Singapore , 117576
| | - Hitoha Moriyama
- Department of Environmental Sciences , University of Yamanashi , 4-3-11 Takeda , Kofu , Yamanashi 400-8511 , Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment , University of Yamanashi , 4-3-11 Takeda , Kofu , Yamanashi 400-8511 , Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering , Hokkaido University , North 13 West 8 , Kita-ku, Sapporo , Hokkaido 060-8628 , Japan
| | - Samendra Sherchan
- Department of Global Environmental Health Services , Tulane University of Louisiana , 1440 Canal Street Suite 2100 , New Orleans , Louisiana 70112 , United States
| | - Charles P Gerba
- Water and Energy Sustainable Technology (WEST) Center , The University of Arizona , 2959 West Calle Agua Nueva , Tucson , Arizona 85745 , United States
| | - Ian L Pepper
- Water and Energy Sustainable Technology (WEST) Center , The University of Arizona , 2959 West Calle Agua Nueva , Tucson , Arizona 85745 , United States
| |
Collapse
|
22
|
Ung P, Peng C, Yuk S, Ann V, Mith H, Tan R, Miyanaga K, Tanji Y. Fate of Escherichia coli in dialysis device exposed into sewage influent and activated sludge. JOURNAL OF WATER AND HEALTH 2018; 16:380-390. [PMID: 29952327 DOI: 10.2166/wh.2018.282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tracing the fate of pathogens in environmental water, particularly in wastewater, with a suitable methodology is a demanding task. We investigated the fate of Escherichia coli K12 in sewage influent and activated sludge using a novel approach that involves the application of a biologically stable dialysis device. The ion concentrations inside the device could reach that of surrounding solution when it was incubated in phosphate buffered saline for 2 h. E. coli K12 above 107 CFU mL-1 (inoculated in distilled water, influent, activated sludge) were introduced into the device and incubated in influent and activated sludge for 10 days. Without indigenous microorganisms, E. coli K12 could survive even with the limited ions and nutrients concentrations in influent and activated sludge. E. coli K12 abundance in influent and activated sludge were reduced by 60 and 85%, respectively, after just 1 day. The establishment of microbial community in wastewater played an important role in reducing E. coli K12. Bacteriophage propagated in filtered influent or activated sludge when E. coli K12 was introduced, but not in raw influent or activated sludge. The methodology developed in this study can be applied in the actual environmental water to trace the fate of pathogens.
Collapse
Affiliation(s)
- Porsry Ung
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan E-mail: ; Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Russian Federation Blvd, P.O. Box 86, 12156 Phnom Penh, Cambodia
| | - Chanthol Peng
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan E-mail: ; Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Russian Federation Blvd, P.O. Box 86, 12156 Phnom Penh, Cambodia
| | - Sokunsreiroat Yuk
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan E-mail: ; Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Russian Federation Blvd, P.O. Box 86, 12156 Phnom Penh, Cambodia
| | - Vannak Ann
- Department of Rural Engineering, Institute of Technology of Cambodia, Russian Federation Blvd, P.O. Box 86, 12156 Phnom Penh, Cambodia
| | - Hasika Mith
- Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Russian Federation Blvd, P.O. Box 86, 12156 Phnom Penh, Cambodia
| | - Reasmey Tan
- Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Russian Federation Blvd, P.O. Box 86, 12156 Phnom Penh, Cambodia
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan E-mail:
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan E-mail:
| |
Collapse
|
23
|
Monteiro S, Santos R. Enzymatic and viability RT-qPCR assays for evaluation of enterovirus, hepatitis A virus and norovirus inactivation: Implications for public health risk assessment. J Appl Microbiol 2017; 124:965-976. [PMID: 28833965 DOI: 10.1111/jam.13568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/03/2023]
Abstract
AIM To assess the potential of a viability dye and an enzymatic reverse transcription quantitative PCR (RT-qPCR) pretreatment to discriminate between infectious and noninfectious enteric viruses. METHODS AND RESULTS Enterovirus (EntV), norovirus (NoV) GII.4 and hepatitis A virus (HAV) were inactivated at 95°C for 10 min, and four methods were used to compare the efficiency of inactivation: (i) cell culture plaque assay for HAV and EntV, (ii) RT-qPCR alone, (iii) RT-qPCR assay preceded by RNase treatment, and (iv) pretreatment with a viability dye (reagent D (RD)) followed by RT-qPCR. In addition, heat-inactivated NoV was treated with RD coupled with surfactants to increase the efficiency of the viability dye. No treatment was able to completely discriminate infectious from noninfectious viruses. RD-RT-qPCR reduced more efficiently the detection of noninfectious viruses with little to no removal observed with RNase. RD-RT-qPCR method was the closest to cell culture assay. The combination of surfactants and RD did not show relevant improvements on the removal of inactivated viruses signal compared with viability RT-qPCR, with the exception of Triton X-100. CONCLUSION The use of surfactant/RD-RT-qPCR, although not being able to completely remove the signal from noninfectious viral particles, yielded a better estimation of viral infectivity. SIGNIFICANCE AND IMPACT OF THE STUDY Surfactant/RD-RT-qPCR may be an advantageous tool for a better detection of infectious viruses with potential significant impact in the risk assessment of the presence of enteric viruses.
Collapse
Affiliation(s)
- S Monteiro
- Laboratorio Analises, Instituto Superior Tecnico, Lisbon, Portugal
| | - R Santos
- Laboratorio Analises, Instituto Superior Tecnico, Lisbon, Portugal
| |
Collapse
|
24
|
Azis K, Vardalachakis C, Ntougias S, Melidis P. Microbiological and physicochemical evaluation of the effluent quality in a membrane bioreactor system to meet the legislative limits for wastewater reuse. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:1796-1804. [PMID: 28991794 DOI: 10.2166/wst.2017.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The aim of this study was to assess the efficacy and effluent quality of a pilot-scale intermittently aerated and fed, externally submerged membrane bioreactor (MBRes) treating municipal wastewater. The effluent quality of the MBRes was evaluated regarding system ability to comply with the Greek legislative limits for restricted and unrestricted wastewater reuse. The average permeate flux was 13.9 L m-2 h-1, while the transmembrane pressure remained above the level of -110 mbar. Experimental data showed that biochemical oxygen demand, chemical oxygen demand, total nitrogen, PO43-- P and total suspended solids removal efficiencies were 97.8, 93.1, 89.6, 93.2 and 100%, respectively, whereas turbidity was reduced by 94.1%. Total coliforms and Escherichia coli were fully eliminated by ultrafiltration and disinfection methods, such as chlorination and ultraviolet radiation. In agreement with the Greek legislation (Joint Ministerial Decree 145116/11) and the guidelines recommended for the Mediterranean countries, the disinfected effluent of the MBRes system can be safely reused directly for urban purposes.
Collapse
Affiliation(s)
- Konstantinos Azis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, Xanthi 67100, Greece E-mail:
| | - Charalampos Vardalachakis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, Xanthi 67100, Greece E-mail:
| | - Spyridon Ntougias
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, Xanthi 67100, Greece E-mail:
| | - Paraschos Melidis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, Xanthi 67100, Greece E-mail:
| |
Collapse
|
25
|
Fung FM, Su M, Feng HT, Li SFY. Extraction, separation and characterization of endotoxins in water samples using solid phase extraction and capillary electrophoresis-laser induced fluorescence. Sci Rep 2017; 7:10774. [PMID: 28883632 PMCID: PMC5589922 DOI: 10.1038/s41598-017-11232-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023] Open
Abstract
This study focuses on one of the key environmental threats, endotoxins, also known as lipopolysaccharides (LPS). A capillary electrophoresis method in combination with laser induced fluorescence (LIF) detection was developed for the analysis of endotoxins from 16 different bacterial strains. LPSs were derivatized with the amino-reactive fluorescent dye, fluorescein isothiocyanate (FITC), separated by capillary zone electrophoresis (CZE) under the optimized conditions with the use of 50 mM sodium tetraborate buffer (pH 9.30), and detected by LIF detector. To improve the sensitivity of CZE-LIF detection for the determination of trace amounts of endotoxins and to remove possible interference materials in environmental samples, a solid phase extraction (SPE) pre-concentration technique was applied successfully. The SPE targeted at polysaccharide moieties of LPSs and showed LPS enrichment effects too. CE migration time could also reveal the O-antigen chain lengths of LPSs. This CE method and SPE pretreatment showed linearity at 99.84%, and repeatabilities at 8.44% and 11.0% for endotoxins from E. Coli O55:B5 and E. Coli O26:B6. The limit of detection (LOD) could reach around 5 ng/mL at optimized condition. The method was applied successfully to the determination of LPS levels in tap water and wastewater, and demonstrated sensitive, reproducible and reliable results.
Collapse
Affiliation(s)
- Fun Man Fung
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
- Institute for Application of Learning Science and Educational Technology (ALSET), University Hall, Lee Kong Chian Wing UHL #05–01D, 21 Lower Kent Ridge Road, Singapore, 119077 Singapore
| | - Min Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Hua-tao Feng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411 Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411 Singapore
| |
Collapse
|
26
|
Sidhu JPS, Ahmed W, Palmer A, Smith K, Hodgers L, Toze S. Optimization of sampling strategy to determine pathogen removal efficacy of activated sludge treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19001-19010. [PMID: 28656581 DOI: 10.1007/s11356-017-9557-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/14/2017] [Indexed: 05/27/2023]
Abstract
Large-scale wastewater schemes rely on multi-barrier approach for the production of safe and sustainable recycled water. In multi-barrier wastewater reclamation systems, conventional activated sludge process (ASP) often constitutes a major initial treatment step. The main aim of this research was to determine most appropriate sampling approach to establish pathogen removal efficacy of ASP. The results suggest that ASP is capable of reducing human adenovirus (HAdV) and polyomavirus (HPyV) by up to 3 log10. The virus removal data suggests that HAdV removal is comparable to somatic bacteriophage belonging to Microviridae family. Due to the high removal of Escherichia coli (>3 log10) and very poor correlation with the enteric virus, it is not recommended that E. coli be used as a surrogate for enteric virus removal. The results also demonstrated no statistically significant differences (t test, P > 0.05) in calculated log removal values (LRVs) for HAdV, HPyV, and Microviridae from samples collected on hydraulic retention time (HRT) or simultaneous paired samples collected for influent and effluent. This indicates that a more practical approach of simultaneous sampling for influent and effluent could be used to determine pathogen removal efficiency of ASP. The results also suggest that a minimum of 10, preferably 20 samples, are required to fully capture variability in the removal of virus. In order to cover for the potential seasonal prevalence of viruses such as norovirus and rotavirus, sampling should be spread across all seasons.
Collapse
Affiliation(s)
- Jatinder P S Sidhu
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia.
- School of Public Health, University of Queensland, Herston Road, Brisbane, QLD, 4006, Australia.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia
| | - Andrew Palmer
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia
| | - Kylie Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia
| | - Leonie Hodgers
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia
| | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, 4102, Australia
- School of Public Health, University of Queensland, Herston Road, Brisbane, QLD, 4006, Australia
| |
Collapse
|
27
|
Allende A, Barceló Culleres D, Gironés Llop R, Laval A, Robertson L, da Silva Felício MT, Gervelmeyer A, Ramos Bordajandi L, Liebana E. Request for scientific and technical assistance on proposed EU minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge. ACTA ACUST UNITED AC 2017. [DOI: 10.2903/sp.efsa.2017.en-1247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
McMinn BR, Ashbolt NJ, Korajkic A. Bacteriophages as indicators of faecal pollution and enteric virus removal. Lett Appl Microbiol 2017; 65:11-26. [PMID: 28304098 PMCID: PMC6089083 DOI: 10.1111/lam.12736] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 01/17/2023]
Abstract
Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. SIGNIFICANCE AND IMPACT OF THE STUDY Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal.
Collapse
Affiliation(s)
- Brian R. McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| | - Nicholas J. Ashbolt
- University of Alberta, School of Public Health, 3-57D South Academic Building, Edmonton, AB T6G 2G7, Canada
| | - Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| |
Collapse
|
29
|
Fout GS, Borchardt MA, Kieke BA, Karim MR. Human virus and microbial indicator occurrence in public-supply groundwater systems: meta-analysis of 12 international studies. HYDROGEOLOGY JOURNAL 2017; 25:903-919. [PMID: 30245581 PMCID: PMC6145489 DOI: 10.1007/s10040-017-1581-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/23/2017] [Indexed: 05/06/2023]
Abstract
Groundwater quality is often evaluated using microbial indicators. This study examines data from 12 international groundwater studies (conducted 1992-2013) of 718 public drinking-water systems located in a range of hydrogeological settings. Focus was on testing the value of indicator organisms for identifying virus-contaminated wells. One or more indicators and viruses were present in 37 and 15% of 2,273 samples and 44 and 27% of 746 wells, respectively. Escherichia coli (E. coli) and somatic coliphage are 7-9 times more likely to be associated with culturable virus-positive samples when the indicator is present versus when it is absent, while F-specific and somatic coliphages are 8-9 times more likely to be associated with culturable virus-positive wells. However, single indicators are only marginally associated with viruses detected by molecular methods, and all microbial indicators have low sensitivity and positive predictive values for virus occurrence, whether by culturable or molecular assays, i.e., indicators are often absent when viruses are present and the indicators have a high false-positive rate. Wells were divided into three susceptibility subsets based on presence of (1) total coliform bacteria or (2) multiple indicators, or (3) location of wells in karst, fractured bedrock, or gravel/cobble settings. Better associations of some indicators with viruses were observed for (1) and (3). Findings indicate the best indicators are E. coli or somatic coliphage, although both indicators may underestimate virus occurrence. Repeat sampling for indicators improves evaluation of the potential for viral contamination in a well.
Collapse
Affiliation(s)
- G Shay Fout
- US Environmental Protection Agency, 26 Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Mark A Borchardt
- US Department of Agriculture, 2611 Yellowstone Dr, Marshfield, WI 54449, USA
| | - Burney A Kieke
- Marshfield Clinic Research Foundation, 1000 Oak Ave, Marshfield, WI 54449, USA
| | - Mohammad R Karim
- City of Santa Cruz, Public Works Department, 110 California St, Santa Cruz, CA 95060, USA
| |
Collapse
|
30
|
CRENAME, A Molecular Microbiology Method Enabling Multiparametric Assessment of Potable/Drinking Water. Methods Mol Biol 2017. [PMID: 28540705 DOI: 10.1007/978-1-4939-7060-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The microbial assessment of potable/drinking water is done to ensure that the resource is free of fecal contamination indicators or waterborne pathogens. Culture-based methods for verifying the microbial safety are limited in the sense that a standard volume of water is generally tested for only one indicator (family) or pathogen.In this work, we describe a membrane filtration-based molecular microbiology method, CRENAME (Concentration Recovery Extraction of Nucleic Acids and Molecular Enrichment), exploiting molecular enrichment by whole genome amplification (WGA) to yield, in less than 4 h, a nucleic acid preparation which can be repetitively tested by real-time PCR for example, to provide multiparametric presence/absence tests (1 colony forming unit or microbial particle per standard volume of 100-1000 mL) for bacterial or protozoan parasite cells or particles susceptible to contaminate potable/drinking water.
Collapse
|
31
|
Pype ML, Lawrence MG, Keller J, Gernjak W. Reverse osmosis integrity monitoring in water reuse: The challenge to verify virus removal - A review. WATER RESEARCH 2016; 98:384-95. [PMID: 27128885 DOI: 10.1016/j.watres.2016.04.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 05/03/2023]
Abstract
A reverse osmosis (RO) process is often included in the treatment train to produce high quality reuse water from treated effluent for potable purposes because of its high removal efficiency for salinity and many inorganic and organic contaminants, and importantly, it also provides an excellent barrier for pathogens. In order to ensure the continued protection of public health from pathogen contamination, monitoring RO process integrity is necessary. Due to their small sizes, viruses are the most difficult class of pathogens to be removed in physical separation processes and therefore often considered the most challenging pathogen to monitor. To-date, there is a gap between the current log credit assigned to this process (determined by integrity testing approved by regulators) and its actual log removal capability as proven in a variety of laboratory and pilot studies. Hence, there is a challenge to establish a methodology that more closely links to the theoretical performance. In this review, after introducing the notion of risk management in water reuse, we provide an overview of existing and potentially new RO integrity monitoring techniques, highlight their strengths and drawbacks, and debate their applicability to full-scale treatment plants, which open to future research opportunities.
Collapse
Affiliation(s)
- Marie-Laure Pype
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Michael G Lawrence
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia; Bligh Tanner Fortitude Valley, QLD 4006, Australia
| | - Jurg Keller
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wolfgang Gernjak
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Catalan Institute for Water Research (ICRA), Girona 17003, Spain
| |
Collapse
|
32
|
Rames E, Roiko A, Stratton H, Macdonald J. Technical aspects of using human adenovirus as a viral water quality indicator. WATER RESEARCH 2016; 96:308-26. [PMID: 27065054 DOI: 10.1016/j.watres.2016.03.042] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 05/21/2023]
Abstract
Despite dramatic improvements in water treatment technologies in developed countries, waterborne viruses are still associated with many of cases of illness each year. These illnesses include gastroenteritis, meningitis, encephalitis, and respiratory infections. Importantly, outbreaks of viral disease from waters deemed compliant from bacterial indicator testing still occur, which highlights the need to monitor the virological quality of water. Human adenoviruses are often used as a viral indicator of water quality (faecal contamination), as this pathogen has high UV-resistance and is prevalent in untreated domestic wastewater all year round, unlike enteroviruses and noroviruses that are often only detected in certain seasons. Standard methods for recovering and measuring adenovirus numbers in water are lacking, and there are many variations in published methods. Since viral numbers are likely under-estimated when optimal methods are not used, a comprehensive review of these methods is both timely and important. This review critically evaluates how estimates of adenovirus numbers in water are impacted by technical manipulations, such as during adenovirus concentration and detection (including culturing and polymerase-chain reaction). An understanding of the implications of these issues is fundamental to obtaining reliable estimation of adenovirus numbers in water. Reliable estimation of HAdV numbers is critical to enable improved monitoring of the efficacy of water treatment processes, accurate quantitative microbial risk assessment, and to ensure microbiological safety of water.
Collapse
Affiliation(s)
- Emily Rames
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, Queensland, 4556, Australia
| | - Anne Roiko
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Australia; Smart Water Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Drive, Queensland, 4222, Australia
| | - Helen Stratton
- Smart Water Research Centre, Griffith University, Gold Coast Campus, Edmund Rice Drive, Queensland, 4222, Australia; School of Natural Sciences, Griffith University, Australia
| | - Joanne Macdonald
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, Queensland, 4556, Australia; Division of Experimental Therapeutics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
33
|
Coliphages as Model Organisms in the Characterization and Management of Water Resources. WATER 2016. [DOI: 10.3390/w8050199] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Nasser AM. Removal of Cryptosporidium by wastewater treatment processes: a review. JOURNAL OF WATER AND HEALTH 2016; 14:1-13. [PMID: 26837825 DOI: 10.2166/wh.2015.131] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cryptosporidium is a protozoan parasite that infects humans and various animal species. The environmental stability and the low infectious dose of Cryptosporidium facilitate its transmission by water and food. Discharge of untreated wastewater may result in waterborne or foodborne Cryptosporidium outbreaks, therefore a suitable treatment may prevent its dissemination. Most studies on the prevalence of Cryptosporidium oocysts in wastewater have reported a concentration range between 10 and 200 oocysts/L and a prevalence of 6 to 100%. Activated sludge has been found to be ineffective for the removal of Cryptosporidium oocysts. Stabilization ponds and constructed wetlands are efficient for the reduction of Cryptosporidium from wastewater, especially when the retention time is longer than 20 days at suitable sunlight and temperature. High rate filtration and chlorine disinfection are inefficient for the reduction of Cryptosporidium from effluents, whereas ultrafiltration and UV irradiation were found to be very efficient for the reduction of Cryptosporidium oocysts. Adequate tertiary treatment may result in high quality effluent with low risk of Cryptosporidium for unrestricted irrigation and other non-potable applications.
Collapse
Affiliation(s)
- Abidelfatah M Nasser
- Water Quality Research Laboratory, Ministry of Health, Ben Zvi Rd 69, Tel Aviv, Israel E-mail:
| |
Collapse
|
35
|
Lin YW, Li D, Gu AZ, Zeng SY, He M. Bacterial regrowth in water reclamation and distribution systems revealed by viable bacterial detection assays. CHEMOSPHERE 2016; 144:2165-74. [PMID: 26595310 DOI: 10.1016/j.chemosphere.2015.10.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 05/21/2023]
Abstract
Microbial regrowth needs to be managed during water reclamation and distribution. The aim of present study was to investigate the removal and regrowth of Escherichia coli (E. coli) and Salmonella in water reclamation and distribution system by using membrane integrity assay (PMA-qPCR), reverse transcriptional activity assay (Q-RT-PCR) and culture-based assay, and also to evaluate the relationships among bacterial regrowth, and environmental factors in the distribution system. The results showed that most of the water reclamation processes potentially induced bacteria into VBNC state. The culturable E. coli and Salmonella regrew 1.8 and 0.7 log10 in distribution system, which included reactivation of bacteria in the viable but non-culturable (VBNC) state and reproduction of culturable bacteria. The regrowth of culturable E. coli and Salmonella in the distribution system mainly depended on the residual chlorine levels, with correlations (R(2)) of -0.598 and -0.660. The abundances of membrane integrity and reverse transcriptional activity bacteria in reclamation effluents had significant correlations with the culturable bacteria at the end point of the distribution system, demonstrating that PMA-qPCR and Q-RT-PCR are sensitive and accurate tools to determine and predict bacterial regrowth in water distribution systems. This study has improved our understanding of microbial removal and regrowth in reclaimed water treatment and distribution systems. And the results also recommended that more processes should be equipped to remove viable bacteria in water reclamation plants for the sake of inhibition microbial regrowth during water distribution and usages.
Collapse
Affiliation(s)
- Yi-wen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dan Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Si-yu Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Martín-Díaz J, Casas-Mangas R, García-Aljaro C, Blanch AR, Lucena F. Somatic coliphages as surrogates for enteroviruses in sludge hygienization treatments. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:2182-2188. [PMID: 27148720 DOI: 10.2166/wst.2016.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conventional bacterial indicators present serious drawbacks giving information about viral pathogens persistence during sludge hygienization treatments. This calls for the search of alternative viral indicators. Somatic coliphages' (SOMCPH) ability for acting as surrogates for enteroviruses was assessed in 47 sludge samples subjected to novel treatment processes. SOMCPH, infectious enteroviruses and genome copies of enteroviruses were monitored. Only one of these groups, the bacteriophages, was present in the sludge at concentrations that allowed the evaluation of treatment's performance. An indicator/pathogen relationship of 4 log10 (PFU/g dw) was found between SOMCPH and infective enteroviruses and their detection accuracy was assessed. The obtained results and the existence of rapid and standardized methods encourage the inclusion of SOMCPH quantification in future sludge directives. In addition, an existing real-time quantitative polymerase chain reaction (RT-qPCR) for enteroviruses was adapted and applied.
Collapse
Affiliation(s)
- Julia Martín-Díaz
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain and The Water Research Institute, University of Barcelona, Av. Diagonal 684, Barcelona 08034, Spain E-mail:
| | - Raquel Casas-Mangas
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain and The Water Research Institute, University of Barcelona, Av. Diagonal 684, Barcelona 08034, Spain E-mail:
| | - Cristina García-Aljaro
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain and The Water Research Institute, University of Barcelona, Av. Diagonal 684, Barcelona 08034, Spain E-mail:
| | - Anicet R Blanch
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain and The Water Research Institute, University of Barcelona, Av. Diagonal 684, Barcelona 08034, Spain E-mail:
| | - Francisco Lucena
- Department of Microbiology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Spain and The Water Research Institute, University of Barcelona, Av. Diagonal 684, Barcelona 08034, Spain E-mail:
| |
Collapse
|
37
|
Hmaied F, Keskes S, Jebri S, Amri I, Yahya M, Loisy-Hamon F, Lebeau B, Hamdi M. Removal of Rotavirus and Bacteriophages by Membrane Bioreactor Technology from Sewage. Curr Microbiol 2015. [PMID: 26210901 DOI: 10.1007/s00284-015-0882-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human enteric viruses constitute a public health concern due to their low infectious dose and their resistance to environmental factors and to inactivation processes. We aimed at assessing the performance of a laboratory scale Submerged membrane bioreactor (SMBR) treating abattoir wastewaters for Rotavirus (RV) and total coliphages removal. We also aimed at evaluating removal efficiency of enteric viruses through conventional activated sludge treatment by measuring concentrations of total coliphages, considered as fecal and viral contamination indicators, with double-layer agar technique. The Log10 reduction values of bacteriophages ranged from 1.06 to 1.47. Effluents were analyzed to investigate and quantify RV, hepatitis A virus (HAV), Hepatitis E virus (HEV), Noroviruses genogroup I (NoV GI) and genogroup II (NoVGII), and Enterovirus (EV) by real-time PCR, using standardized detection kits (ceeramTools detection kits(®)). All effluent samples were positive for RV; concentrations ranged from 5.2 × 10(5) to 1.3 × 10(7) genome copies/L. These results highlight the inefficiency of conventional biological process for viral removal. A complete removal of RV during Membrane Bioreactor treatment was obtained. To the best of our knowledge, this is the first study providing an evidence of removal of RV simultaneously with total coliphages by SMBR.
Collapse
Affiliation(s)
- F Hmaied
- Unité de Microbiologie Et Biologie Moléculaire, CNSTN, Biotech Pole Sidi Thabet, 2020, Sidi Thabet, Tunisia.
| | - S Keskes
- Institut National des Sciences Appliquées de Tunis, Laboratoire Ecologie Technologie Microbienne, Université de Carthage, BP 676, 1080, Tunis, Tunisia
| | - S Jebri
- Unité de Microbiologie Et Biologie Moléculaire, CNSTN, Biotech Pole Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - I Amri
- Unité de Microbiologie Et Biologie Moléculaire, CNSTN, Biotech Pole Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - M Yahya
- Unité de Microbiologie Et Biologie Moléculaire, CNSTN, Biotech Pole Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - F Loisy-Hamon
- Centre Européen d'Expertise et de Recherche sur les Agents Microbiens (CEERAM), 1 all de la Filée, BP 54424, 44244, La Chapelle-Sur-Erdre Cedex, France
| | - B Lebeau
- Centre Européen d'Expertise et de Recherche sur les Agents Microbiens (CEERAM), 1 all de la Filée, BP 54424, 44244, La Chapelle-Sur-Erdre Cedex, France
| | - M Hamdi
- Institut National des Sciences Appliquées de Tunis, Laboratoire Ecologie Technologie Microbienne, Université de Carthage, BP 676, 1080, Tunis, Tunisia
| |
Collapse
|
38
|
Mondal T, Rouch DA, Thurbon N, Smith SR, Deighton MA. Factors affecting decay of Salmonella Birkenhead and coliphage MS2 during mesophilic anaerobic digestion and air drying of sewage sludge. JOURNAL OF WATER AND HEALTH 2015; 13:459-72. [PMID: 26042978 DOI: 10.2166/wh.2014.313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Factors affecting the decay of Salmonella Birkenhead and coliphage, as representatives of bacterial and viral pathogens, respectively, during mesophilic anaerobic digestion (MAD) and air drying treatment of anaerobically digested sewage sludge were investigated. Controlled concentrations of S. Birkenhead were inoculated into non-sterile, autoclaved, γ-irradiated and nutrient-supplemented sludge and cultures were incubated at 37 °C (MAD sludge treatment temperature) or 20 °C (summer air drying sludge treatment temperature). Nutrient limitation caused by microbial competition was the principal mechanism responsible for the decay of S. Birkenhead by MAD and during air drying of digested sludge. The effects of protease activity in sludge on MS2 coliphage decay in digested and air dried sludge were also investigated. MS2 coliphage showed a 3.0-3.5 log10 reduction during incubation with sludge-protease extracts at 37 °C for 25 h. Proteases produced by indigenous microbes in sludge potentially increase coliphage inactivation and may therefore have a significant role in the decay of enteric viruses in sewage sludge. The results help to explain the loss of viability of enteric bacteria and viral pathogens with treatment process time and contribute to fundamental understanding of the various biotic inactivation mechanisms operating in sludge treatment processes at mesophilic and ambient temperatures.
Collapse
Affiliation(s)
- Tania Mondal
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora 3083, Victoria, Australia E-mail:
| | - Duncan A Rouch
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora 3083, Victoria, Australia E-mail:
| | - Nerida Thurbon
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora 3083, Victoria, Australia E-mail:
| | - Stephen R Smith
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Margaret A Deighton
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora 3083, Victoria, Australia E-mail:
| |
Collapse
|
39
|
Yahya M, Hmaied F, Jebri S, Jofre J, Hamdi M. Bacteriophages as indicators of human and animal faecal contamination in raw and treated wastewaters from Tunisia. J Appl Microbiol 2015; 118:1217-25. [DOI: 10.1111/jam.12774] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/01/2022]
Affiliation(s)
- M. Yahya
- Unité de Microbiologie et Biologie moléculaire; CNSTN, Biotech Pole Sidi Thabet; Sidi Thabet Tunisia
| | - F. Hmaied
- Unité de Microbiologie et Biologie moléculaire; CNSTN, Biotech Pole Sidi Thabet; Sidi Thabet Tunisia
| | - S. Jebri
- Unité de Microbiologie et Biologie moléculaire; CNSTN, Biotech Pole Sidi Thabet; Sidi Thabet Tunisia
| | - J. Jofre
- Department of Microbiology; Barcelona University; Diagonal 645, 08028 Barcelona Spain
| | - M. Hamdi
- Laboratoire Ecologie Technologie Microbienne; Institut National des Sciences Appliquées de Tunis; Université de Carthage; Tunis Tunisia
| |
Collapse
|
40
|
Ajonina C, Buzie C, Rubiandini RH, Otterpohl R. Microbial pathogens in wastewater treatment plants (WWTP) in Hamburg. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:381-387. [PMID: 25734765 DOI: 10.1080/15287394.2014.989626] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microbial pathogens are among the major health problems associated with water and wastewater. Classical indicators of fecal contamination include total coliforms, Escherichia coli, and Clostridium perfringens. These fecal indicators were monitored in order to obtain information regarding their evolution during wastewater treatment processes. Helminth eggs survive for a long duration in the environment and have a high potential for waterborne transmission, making them reliable contaminant indicators. A large quantity of helminth eggs was detected in the wastewater samples using the Bailanger method. Eggs were found in the influent and effluent with average concentration ranging from 11 to 50 eggs/L. Both E. coli and total coliforms concentrations were significantly 1- to 3-fold higher in influent than in effluent. The average concentrations of E. coli ranged from 2.5×10(3) to 4.4×10(5) colony-forming units (CFU)/100 ml. Concentrations of total coliforms ranged from 3.6×10(3) to 7.9×10(5) CFU/100 ml. Clostridium perfringens was also detected in influent and effluent of wastewater treatment plants (WWTP) at average concentrations ranging from 5.4×10(2) to 9.1×10(2) most probable number (MPN)/100 ml. Significant Spearman rank correlations were found between helminth eggs and microbial indicators (total coliform, E. coli, and C. perfringens) in the WWTP. There is therefore need for additional microbial pathogen monitoring in the WWTP to minimize public health risk.
Collapse
Affiliation(s)
- Caroline Ajonina
- a Institute of Wastewater Management and Water Protection , Hamburg , Germany
| | | | | | | |
Collapse
|
41
|
Source identification of bacterial and viral pathogens and their survival/fading in the process of wastewater treatment, reclamation, and environmental reuse. World J Microbiol Biotechnol 2014; 31:109-20. [DOI: 10.1007/s11274-014-1770-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/31/2014] [Indexed: 01/22/2023]
|
42
|
Pachepsky Y, Shelton D, Dorner S, Whelan G. Can E. coli or thermotolerant coliform concentrations predict pathogen presence or prevalence in irrigation waters? Crit Rev Microbiol 2014; 42:384-93. [PMID: 25198779 DOI: 10.3109/1040841x.2014.954524] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An increase in food-borne illnesses in the United States has been associated with fresh produce consumption. Irrigation water presents recognized risks for microbial contamination of produce. Water quality criteria rely on indicator bacteria. The objective of this review was to collate and summarize experimental data on the relationships between pathogens and thermotolerant coliform (THT) and/or generic E. coli, specifically focusing on surface fresh waters used in or potentially suitable for irrigation agriculture. We analyzed peer-reviewed publications in which concentrations of E. coli or THT coliforms in surface fresh waters were measured along with concentrations of one or more of waterborne and food-borne pathogenic organisms. The proposed relationships were significant in 35% of all instances and not significant in 65% of instances. Coliform indicators alone cannot provide conclusive, non-site-specific and non-pathogen-specific information about the presence and/or concentrations of most important pathogens in surface waters suitable for irrigation. Standards of microbial water quality for irrigation can rely not only on concentrations of indicators and/or pathogens, but must include references to crop management. Critical information on microbial composition of actual irrigation waters to support criteria of microbiological quality of irrigation waters appears to be lacking and needs to be collected.
Collapse
Affiliation(s)
- Yakov Pachepsky
- a USDA-ARS, Environmental Mirobial and Food Safety Laboratory , Beltsville , MD , USA
| | - Daniel Shelton
- a USDA-ARS, Environmental Mirobial and Food Safety Laboratory , Beltsville , MD , USA
| | - Sarah Dorner
- b Department of Civil , Geological and Mining Engineering, École Polytechnique de Montréal , Montreal , Quebec , Canada , and
| | - Gene Whelan
- c US Environmental Protection Agency, National Exposure Research Laboratory , Athens , GA , USA
| |
Collapse
|
43
|
Harder R, Heimersson S, Svanström M, Peters GM. Including pathogen risk in life cycle assessment of wastewater management. 1. Estimating the burden of disease associated with pathogens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9438-9445. [PMID: 25058492 DOI: 10.1021/es501480q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The environmental performance of wastewater and sewage sludge management is commonly assessed using life cycle assessment (LCA), whereas pathogen risk is evaluated with quantitative microbial risk assessment (QMRA). This study explored the application of QMRA methodology with intent to include pathogen risk in LCA and facilitate a comparison with other potential impacts on human health considered in LCA. Pathogen risk was estimated for a model wastewater treatment system (WWTS) located in an industrialized country and consisting of primary, secondary, and tertiary wastewater treatment, anaerobic sludge digestion, and land application of sewage sludge. The estimation was based on eight previous QMRA studies as well as parameter values taken from the literature. A total pathogen risk (expressed as burden of disease) on the order of 0.2-9 disability-adjusted life years (DALY) per year of operation was estimated for the model WWTS serving 28,600 persons and for the pathogens and exposure pathways included in this study. The comparison of pathogen risk with other potential impacts on human health considered in LCA is detailed in part 2 of this article series.
Collapse
Affiliation(s)
- Robin Harder
- Chemical Environmental Science, Department of Chemical and Biological Engineering, Chalmers University of Technology , Gothenburg, 412 96 Sweden
| | | | | | | |
Collapse
|
44
|
Comparison of ZetaPlus 60S and nitrocellulose membrane filters for the simultaneous concentration of F-RNA coliphages, porcine teschovirus and porcine adenovirus from river water. J Virol Methods 2014; 206:5-11. [PMID: 24880068 DOI: 10.1016/j.jviromet.2014.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 01/13/2023]
Abstract
Increasing attention is being paid to the impact of agricultural activities on water quality to understand the impact on public health. F-RNA coliphages have been proposed as viral indicators of fecal contamination while porcine teschovirus (PTV) and porcine adenovirus (PAdV) are proposed indicators of fecal contamination of swine origin. Viruses and coliphages are present in water in very low concentrations and must be concentrated to permit their detection. There is little information comparing the effectiveness of the methods for concentrating F-RNA coliphages with concentration methods for other viruses and vice versa. The objective of this study was to compare 5 current published methods for recovering F-RNA coliphages, PTV and PAdV from river water samples concentrated by electronegative nitrocellulose membrane filters (methods A and B) or electropositive Zeta Plus 60S filters (methods C-E). Method A is used routinely for the detection of coliphages (Méndez et al., 2004) and method C (Brassard et al., 2005) is the official method in Health Canada's compendium for the detection of viruses in bottled mineral or spring water. When river water was inoculated with stocks of F-RNA MS2, PAdV, and PTV to final concentrations of 1×10(6) PFU/100 mL, 1×10(5) gc/100 mL and 3×10(5) gc/100 mL, respectively, a significantly higher recovery for each virus was consistently obtained for method A with recoveries of 52% for MS2, 95% for PAdV, and 1.5% for PTV. When method A was compared with method C for the detection of F-coliphages, PAdV and PTV in river water samples, viruses were detected with higher frequencies and at higher mean numbers with method A than with method C. With method A, F-coliphages were detected in 11/12 samples (5-154 PFU/100 mL), PTV in 12/12 samples (397-10,951 gc/100 mL), PAdV in 1/12 samples (15 gc/100 mL), and F-RNA GIII in 1/12 samples (750 gc/100 mL) while F-RNA genotypes I, II, and IV were not detected by qRT-PCR.
Collapse
|
45
|
Jofre J, Blanch AR, Lucena F, Muniesa M. Bacteriophages infecting Bacteroides as a marker for microbial source tracking. WATER RESEARCH 2014; 55:1-11. [PMID: 24583570 DOI: 10.1016/j.watres.2014.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 05/25/2023]
Abstract
Bacteriophages infecting certain strains of Bacteroides are amid the numerous procedures proposed for tracking the source of faecal pollution. These bacteriophages fulfil reasonably well most of the requirements identified as appropriate for a suitable marker of faecal sources. Thus, different host strains are available that detect bacteriophages preferably in water contaminated with faecal wastes corresponding to different animal species. For phages found preferably in human faecal wastes, which are the ones that have been more extensively studied, the amounts of phages found in waters contaminated with human fecal samples is reasonably high; these amounts are invariable through the time; their resistance to natural and anthropogenic stressors is comparable to that of other relatively resistant indicator of faecal pollution such us coliphages; the abundance ratios of somatic coliphages and bacteriophages infecting Bacteroides thetaiotaomicron GA17 are unvarying in recent and aged contamination; and standardised detection methods exist. These methods are easy, cost effective and provide data susceptible of numerical analysis. In contrast, there are some uncertainties regarding their geographical stability, and consequently suitable hosts need to be isolated for different geographical areas. However, a feasible method has been described to isolate suitable hosts in a given geographical area. In summary, phages infecting Bacteroides are a marker of faecal sources that in our opinion merits being included in the "toolbox" for microbial source tracking. However, further research is still needed in order to make clear some uncertainties regarding some of their characteristics and behaviour, to compare their suitability to the one of emerging methods such us targeting Bacteroidetes by qPCR assays; or settling molecular methods for their determination.
Collapse
Affiliation(s)
- Joan Jofre
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain.
| | - Anicet R Blanch
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| | - Francisco Lucena
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| |
Collapse
|
46
|
Enzyme treatment reverse transcription-PCR to differentiate infectious and inactivated F-specific RNA phages. Appl Environ Microbiol 2014; 80:3334-40. [PMID: 24657854 DOI: 10.1128/aem.03964-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
F-specific (F+) RNA phages are recommended as indicators of fecal contamination and the presence of enteric viruses and as viral surrogates to elucidate the resistance of viruses to adverse conditions or to assess the effectiveness of inactivating processes. Reverse transcription (RT)-PCR methods have been used to detect, quantify, or identify subgroups of F+ RNA phages. However, these methods may overestimate the infectivity of F+ RNA phages in test samples, since the presence of both infectious and inactivated phages (or naked RNA) can lead to positive RT-PCR signals. In this study, we evaluated the ability of an enzyme treatment (ET) with proteinase K and RNase A prior to RNA extraction, followed by RT-PCR, to differentiate infectious and inactivated F+ RNA phages. The results indicated that ET RT-PCR reduced, but did not completely eliminate, false-positive signals encountered with RT-PCR alone. The two-step ET RT-PCR, in which the enzymes were added sequentially, was more effective at reducing false-positive signals than the one-step ET RT-PCR, which involved addition of both enzymes together. Despite its inability to completely eliminate false-positive signals, ET RT-PCR gave more reliable information on the infectivity of F+ RNA phages. Thus, the method is better than RT-PCR alone for detecting F+ RNA phages as indicators to assess the risk of fecal contamination by enteric pathogens or to evaluate the effectiveness of virus-inactivating processes.
Collapse
|
47
|
Derry C, Attwater R. Regrowth of enterococci indicator in an open recycled-water impoundment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:63-67. [PMID: 24008073 DOI: 10.1016/j.scitotenv.2013.07.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/27/2013] [Accepted: 07/27/2013] [Indexed: 06/02/2023]
Abstract
The purpose of the research was to assess the potential for enterococci faecal-indicator to regrow in recycled water while under environmentally-open storage. Regrowth would result in false-positive indicator results with possible downgrading, rejection or over-chlorination of recycled water. The research setting was the main 93-megalitre storage impoundment of the Hawkesbury Water Recycling Scheme in Sydney's North West, receiving tertiary treated (chlorinated) effluent from the Richmond sewage treatment plant. The water is used to irrigate horticultural food crops, pasture for dairy cattle, sheep, deer and horses, and for the maintenance of lawns and sports fields. Highly significant positive relationships were noted in multivariate analysis between indicator counts and the growth factors atmospheric temperature and UV254 unfiltered as proxy for total organic carbon (p=0.001 and 0.003 respectively). Nitrate and phosphate did not show significant relationships suggesting that these nutrients may not be growth-limiting at levels found in recycled water. Rainfall and wild duck presence did not appear to have an impact on enterococcal growth in the study. The overall predictive power of the regression model was shown to be highly significant (p=0.001). These findings will assist in recycled water monitoring and the revision of guidelines, with potential for the reduction of the chlorination by-product burden on the environment. A formula derived for the relationship between the indicator and atmospheric temperature could be used in food-production and climate-change modelling.
Collapse
Affiliation(s)
- Chris Derry
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 2751, Australia.
| | | |
Collapse
|
48
|
Yang Y, Griffiths MW. A fluorescence-based method coupled with Disruptor filtration for rapid detection of F +
RNA phages. Lett Appl Microbiol 2013; 58:177-83. [DOI: 10.1111/lam.12173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/16/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Y. Yang
- CRIFS; Department of Food Science; University of Guelph; Guelph ON Canada
| | - M. W. Griffiths
- CRIFS; Department of Food Science; University of Guelph; Guelph ON Canada
| |
Collapse
|
49
|
Li D, Zeng S, Gu AZ, He M, Shi H. Inactivation, reactivation and regrowth of indigenous bacteria in reclaimed water after chlorine disinfection of a municipal wastewater treatment plant. J Environ Sci (China) 2013; 25:1319-25. [PMID: 24218842 DOI: 10.1016/s1001-0742(12)60176-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Disinfection of reclaimed water prior to reuse is important to prevent the transmission of pathogens. Chlorine is a widely utilized disinfectant and as such is a leading contender for disinfection of reclaimed water. To understand the risks of chlorination resulting from the potential selection of pathogenic bacteria, the inactivation, reactivation and regrowth rates of indigenous bacteria were investigated in reclaimed water after chlorine disinfection. Inactivation of total coliforms, Enterococcus and Salmonella showed linear correlations, with constants of 0.1384, 0.1624 and 0.057 L/(mg.min) and R2 of 0.7617, 0.8316 and 0.845, respectively. However, inactivation of total viable cells by measurement of metabolic activity typically showed a linear correlation at lower chlorine dose (0-22 (mg-min)/L), and a trailing region with chlorine dose increasing from 22 to 69 (mg.min)/L. Reactivation and regrowth of bacteria were most likely to occur after exposure to lower chlorine doses, and extents of reactivation decreased gradually with increasing chlorine dose. In contrast to total coliforms and Enterococcus, Salmonella had a high level of regrowth and reactivation, and still had 2% regrowth even after chlorination of 69 (mg.min)/L and 24 hr storage. The bacterial compositions were also significantly altered by chlorination and storage of reclaimed water, and the ratio of Salmonella was significantly increased from 0.001% to 0.045% after chlorination of 69 (mg.min)/L and 24 hr storage. These trends indicated that chlorination contributes to the selection of chlorine-resistant pathogenic bacteria, and regrowth of pathogenic bacteria after chlorination in reclaimed water with a long retention time could threaten public health security during wastewater reuse.
Collapse
Affiliation(s)
- Dan Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
50
|
Agulló-Barceló M, Oliva F, Lucena F. Alternative indicators for monitoring Cryptosporidium oocysts in reclaimed water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:4448-4454. [PMID: 23247532 DOI: 10.1007/s11356-012-1400-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/02/2012] [Indexed: 06/01/2023]
Abstract
With the widespread use of reclaimed water all over the world, there is a clear need to optimise its management in order to guarantee water safety. Model microorganisms (with either indicator or index function) are commonly used to assess risks related to the presence of enteric pathogens in water. Samples from five water reclamation plants located in Northeastern Spain were analysed to validate the use of three model microorganisms (Escherichia coli, somatic coliphages and spores of sulphite-reducing clostridia) as surrogates of Cryptosporidium total or infectious oocysts (TOO and IOO, respectively) in reclaimed water. Probability plots, simple and multiple linear regression and discriminant analyses were performed to assess their relationships. Results show that the detection of E. coli alone is not useful to model either the behaviour or concentrations of Cryptosporidium. However, discriminant analyses showed a high rate of correctly classified samples (91.9%) when E. coli and somatic coliphages data were used together to predict the presence/absence of IOO. Spores of sulphite-reducing clostridia (SRC) showed parallel reduction patterns and high correlation values (r = 0.76) with reductions in TOO. Furthermore, simple regression analyses of SRC and TOO in reclaimed water showed high correlation values (r = 0.85). Therefore, at the treatment plants studied, SRC can be considered to have good indicator and index functions for TOO. From the point of view of health protection, the use of SRC together with E. coli (which is mandatory in the current Spanish regulations) would satisfy the need for improved reclaimed water management.
Collapse
Affiliation(s)
- M Agulló-Barceló
- Department of Microbiology, Faculty of Biology, Universitat de Barcelona, 643 Avinguda Diagonal, 08028 Barcelona, Spain
| | | | | |
Collapse
|